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Abstract

A framework for designing and analyzing computer experiments is presented, which is
constructed for dealing with functional and real number inputs and real number outputs. For
designing experiments with both functional and real number inputs a two stage approach
is suggested. The first stage consists of constructing a candidate set for each functional
input and during the second stage an optimal combination of the found candidate sets and
a Latin hypercube for the real number inputs is searched for. The resulting designs can be
considered to be generalizations of Latin hypercubes. GP models are explored as metamodel.
The functional inputs are incorporated into the kriging model by applying norms in order to
define distances between two functional inputs. In order to make the calculation of these
norms computationally feasible, the use of B-splines is promoted.
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1 Introduction

A lot of physical phenomena are now studied virtually by means of computer codes. For complex

phenomena it often happens that the code is too time-consuming for a direct usage. This issue

is usually addressed by creating “metamodels”, also called “surrogates” or “emulators”, that

correspond to quick-to-evaluate mathematical models of the computer codes. In particular the

(meta)model based on a Gaussian process (GP) proposed by Sacks et al. (1989a,b) and Currin

et al. (1991) at the end of the eighties has gained in popularity, and is now described in several

books (see e.g. Santner et al. (2003), Fang et al. (2006), Rasmussen and Williams (2006)). In

the sequel we will use the term “GP model” though other equivalent expressions can be found,

such as GP Regression, GaSP, GP emulator, or Kriging model. One main reason for its success

is that the GP model both provides an interpolation of the data and an uncertainty quantification

in the unexplored regions. Furthermore, it depends on a positive definite function, or kernel, that

is adaptable to specific priors or frameworks.

A large amount of research has addressed the case of scalar-valued inputs and outputs, though

this is often a summary of functional inputs and outputs, given as functions of time or space. Nev-

ertheless there has been a recent literature focusing on this more complex functional framework.

Bayarri et al. (2007) investigated model validation with functional outputs by using a wavelet

decomposition. Shi et al. (2007) had batches of time-varying data, and modeled separately the

mean structure with a functional regression model (Ramsay and Silverman (1997)) and the co-

variance structure with a GP model. Developments are given in Shi and Shoi (2011). Morris

(2012) introduced a new kernel for the GP model that allows modelling time-varying inputs and

outputs. He also considered the design problem, and extended the maximin distance to the time-

varying case. Some theoretical results on designs for computer experiments with time varying

inputs can be found in Morris (2014).

In this article we consider the situation where the inputs are either scalar-valued or functional,

and where the output is scalar-valued. This corresponds, for instance, to practical situations

where engineers study a summary of the output, but consider the whole complexity of the inputs,

that may be scalar-valued but also time-varying functions or more general multivariate functions.

We investigate a GP model approach using a customized kernel based on norms and B-splines.

We also propose an original design strategy aiming at providing an initial space-filling design.
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Although the methods are related to the work presented by Morris (2012), it covers different

cases, e.g. our method is not restricted to time varying inputs and, at the same time, time varying

outputs. Furthermore we allow for a combination functional and scalar inputs.

Section 2 provides some notations and presents the functional framework, including some

basics about B-splines and functional norms. In Section 3 designs for computer experiments

with both functional and scalar-valued inputs are described. In Section 4, GP models are derived,

including a weighting procedure for extracting which part of a functional input has high influence

on the output. In Section 5, the methodology is applied to a theoretical example and to a sheet

metal forming problem. A concluding discussion is given in Section 5.

2 Background and notations

In this paper we consider a scalar-valued function g depending on functional inputs f(t) =

(f1(t), . . . , fdf (t)), as well as, possibly, on scalar-valued inputs x = (x1, . . . , xds):

y = g(x, f(t)) (1)

In the notations above, g represents a time-consuming simulator and ds, df are two integers,

with df > 0. For the sake of simplicity we consider that t ∈ [0, 1] is scalar-valued but the

methodology presented here could be generalized to a vector-valued input t ∈ [0, 1]dt . We assume

that the inputs are bounded, and have been rescaled to [0, 1]: x ∈ [0, 1]ds and fj(t) ∈ [0, 1]

for all t ∈ [0, 1] and j ∈ {1, . . . , df}. In this framework, a design of experiments D with n

runs consists of two sets of scalar and functional inputs denoted by x(i) = (x
(i)
1 , . . . , x

(i)
ds

) and

f (i)(t) = (f
(i)
1 (t), . . . , f

(i)
df

(t)), i = 1, . . . , n. We denote by y(1), . . . , y(n) the corresponding

scalar-valued outputs. The design used is denoted by D, in contrast to a distance later on denoted

by D.

2.1 Some basics on B-splines

B-splines are an attractive tool for the modeling of functional input (see de Boor (2001), Ram-

say and Silverman (1997)). They cover various types of functions, reduce the infinite space of

functions considerably and provide a practical mathematical framework for further computations.
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B-spline functions are always bounded, which is an important feature for input functions which

usually are only allowed to vary between given values.

A B-spline is defined as a linear combination of B-spline basis functions Bi,m, i = 1, . . . , K

of order m

f(t) =
K∑
i=1

βiBi,m(t)

where the order m = 1 relates to (piecewise) constant functions. K and m have to be fixed with

K ≥ m and β = (β1, . . . , βK) is the vector of basis coefficients. The B-spline basis functions

are defined over a sequence of increasing knots (time points) of length K−m+2 with additional

m − 1 replicates for the first and the last knot which are necessary for basis functions at the

bounds

τ1 = · · · = τm−1 = τm < τm+1 < · · · < τK < τK+1 = τK+2 = · · · = τK+m.

They are recursively given by

Bi,1(t) = 1[τi,τi+1](t)

for i = 1 . . . , K +m− 1 and

Bi,m(t) =
t− τi

τi+m−1 − τi
Bi,m−1(t) +

τi+m − t
τi+m − τi+1

Bi+1,m−1(t)

for i ∈ 1, . . . , K, with Bi,m = 0 if τi = · · · = τi+m = 0 to avoid division by zero.

Figure 1 shows basis functions for B-splines of order 1, 2, 3, and 4. For order 1 the basis

functions are disjoint piecewise constant functions, for order 4 the functions form the popular

cubic spline. In the figure the number of basis functions K is set to 5 for each order. It follows

that the number of knots decreases with the order. It can be further seen that at each time point

t, the sum of all 5 basis functions is 1, which implies that if β ∈ [0, 1]K then for all t we have

0 ≤ f(t) ≤ 1, f(t) = 1⇔ β1 = · · · = βK = 1 and f(t) = 0⇔ β1 = · · · = βk = 0. Therefore a

bounded function f corresponds to a hypercubic domain for the basis coefficients β.

One result which justifies the use of B-Splines is found in de Boor (2001) on page 55, equation

12. In our notation the result stats that given an unknown but four times differentiable function

g(t) defined on [τm, τK ], the (pointwise) interpolation error of a cubic B-spline is bounded from

above and the bound depends on the maximum stepwidth of the knots and the absolute maximum

of 4th derivative of the function g. Hence, while B-splines itself are a somewhat restriced class
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of functions, they can be used to approximate a very broad class of functions, i.e. all sufficiently

smooth functions.
0.
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Figure 1: B-Spline bases of increasing orders (1 to 4 from top to bottom) for a fix number of

K = 5 functions. The knots are shown as ticks on the x-axis.

2.2 Distance-based approach

To discriminate between functions, a distance based approach is chosen. Similar to the L2 norm

in Euclidean space, the well known L2 norm for functions is defined as
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Df (f, f̃) = ‖f − f̃‖L2 =

√∫ 1

0

(f(t)− f̃(t))2dt. (2)

Other choices of norms could be possible, e.g. weighted norms, general p norms or norms

working on derivatives, e.g. Sobolev norms. The choice of a suitable norm is case sensitive.

In the case that the functions are designed as B-splines of the same basis (same number of basis

functions, basis order and knot points) the L2 norm of h(t) = f(t)− f̃(t) =
∑K

i=1(βi− β̃)bi(t) =∑K
i=1 δibi(t) reduces to a norm in RK

‖h‖2L2 =

∫ 1

0

h(t)2 dt (3)

=

∫ 1

0

∑
i,j

δiδjbi(t)bj(t) dt (4)

=δ′Jδ (5)

=‖δ‖2J (6)

where J is the K ×K matrix
(∫ 1

0
bi(t)bj(t) dt

)
1≤i,j≤K

. As the matrix J does not depend on the

coefficients of a B-spline function but just on the order and number of basis functions, this matrix

can be stored and reused.

In order to include the scalar valued inputs into the framework, a further distance function

has also to be defined:

D((x(i), f (i)), (x(j), f (j))) =

√√√√‖x(i) − x(j)‖22 +

df∑
k=1

(Df (f
(i)
k , f

(j)
k ))2. (7)

In the case that there are no scalar inputs, this distance simplifies to
√∑df

k=1(Df (f
(i)
k , f

(j)
k ))2.

3 Designs for functional inputs

3.1 Theory

There are many approaches on how to design a simulation experiment. A good summary can

be found in Fang et al. (2006). Uniform design criteria like the Wrap Around Discrepancy or
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the Centered Discrepancy are popular approaches, as well as distance-based design criteria like

maximin and minimax designs. In contrast to uniform and distance-based designs, which are not

directly linked to a statistical model, maximum entropy designs and IMSE optimal are optimality

criteria, which are directly linked to a GP model and an assumed covariance kernel. A popular

class of designs are Latin Hypercube designs (LHD), invented by McKay et al. (1979).

Our aim is to generalize the concept of LHD to situations with functional inputs. One ap-

proach would be to design the coefficients of a basis, such as a B-spline basis, a polynomial

basis, etc. (see Ramsay and Silverman (1997)).

Here another approach is taken. For a conventional LHD with just scalar inputs, the values

of each input variable xk are equally spread between 0 and 1, i.e. x(i)k = π(i)−1
n−1 , i = 1, . . . , n,

where π(.) is a permutation of 1, . . . , n. While it is not obvious, which combination of the

input variables x1 to xd to use, it is ensured, that the one dimensional projections are uniformly

distributed. The combination is then chosen according to a fitness criterion. This idea is copied

to the functional inputs such that in a first step, a candidate set of functions f (1)
k , . . . , f

(n)
k is

constructed for each k ∈ {1, . . . , df}. Once these sets are constructed, the best combination of

the sets and the scalar inputs is determined.

In the following, the strategy for finding a candidate set based on B-splines is described. This

corresponds to finding equally spread points in one dimension for conventional LHD with scalar

inputs. Depending on the restrictions on the candidate set, different strategies for finding a good

candidate set can be applied. If no prior knowledge is available, our strategy is to apply distance-

based approaches here as well. After finding a candidate set, in a second step a space-filling

combination of the scalar LHD and the candidate set is found.

3.1.1 Constructing the candidate set

For B-splines, the choice of the candidate set reduces to the choice of the coefficients of basis

functions, i.e. for a candidate set with n functions with K bases, n ∗ K coefficients have to be

chosen.

In order to have a space-filling candidate set, the coefficients have to be chosen with care.

Ideally a big variety of functions are covered, i.e. increasing/decreasing functions or functions

which are in average very high or low.
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Here the basis coefficients are sampled from a LHD, i.e. each basis function is considered

as an input factor in a LHD. The coefficients could also be sampled and optimized without any

restriction to a LHD, but in this case, the coefficients tend to be near to the extremes for DoEs

with larger number of basis functions and higher number of runs. As a fitness criterion, not

directly the minimum distance among all pairs of functions is used, but a variant proposed in

Morris and Mitchell (1995):

Φq(Df (β)) = (
n∑
i=1

i−1∑
j=1

(Df (f
(i)(βi), f

(j)(βj)))
−q)1/q. (8)

Here, q = 5 is applied. The criterion Φq(Df (β)) is written in dependence on β, as for the

construction of the candidate set the optimization takes place over the coefficient vector of the B-

spline representation. This fitness criterion does not only use the minimum distance for compar-

ison of different designs but all possible pairs of functions. In order to optimize the Φq-criterion

any existing algorithm for optimizing LHD can be used, e.g. simulated annealing or genetic

algorithms. Here, simulated annealing has been used.

3.1.2 Constructing a generalized Latin hypercube

Given for each functional input fk a set of functions is created, the best combination of the LHD

for the real inputs and the sets for the functional input has to be searched. Here the same set

is used for all functional inputs. However, it would be possible to use a different set for each

functional input. In order to rank full designs again a maximin strategy will be chosen. Therefore

the distance (7) is used for the following criterion:

Φc
q(D(π)) =

(
n∑
i=1

i−1∑
j=1

(D((x(i)(πi), f
(i)(πi)), (x

(j)(πj), f
(j)(πj))))

−q

)1/q

(9)

The criterion Φc
q(D(π)) is written in dependence on a permutation π in order to indicate, that

in this step of the design construction, the optimization only takes place over switching indices

of the scalar of functional inputs. In order to optimize this fitness criterion by an algorithm,

there are multiple algorithms possible. In principle, all algorithms used for optimizing LHDs can

be applied here, as the candidate sets themselves are not changed, just the combination of the

candidate sets and the scalar inputs. Here a variant of simulated annealing as described in Morris

and Mitchell (1995) is used.

8



Remark 1. Another alternative for finding designs, which seems to be promising in the first place

is to apply a searching algorithm directly on the fitness criterion by optimizing over the class of

functions, the results is that only extremes of the class are chosen. This is similar to maximin

designs with just real inputs: The optimal maximin design without restricting it to be a LHD in d

dimensions with 2d runs is a traditional full factorial design with two levels, which is definitely

not a space-filling design. In order to illustrate this behaviour, a design with 2 functional and

2 scalar inputs, 15 runs and 8 basis functions has been set up. This design has been optimized

unconditionally over the coefficients of the functional inputs and the permutation of the scalar

inputs. In Figure 2 a plot of the B-splines for the first functional input is given. Clearly the

distinctive functions cluster at the minimum and maximum of the allowed range.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

4
1.

0

t

Figure 2: Plot of one functional input of an unconditionally optimized design with 15 runs, 2

functional and 2 scalar inputs and 8 basis functions. Clearly, the functions are clustering at the

minimum and maximum of the allowed output range.
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4 Surrogate models

As for many simulations, the evaluation of the simulation is costly, a big part of literature about

computer experiments focused on constructing statistical models for simulation output. Different

types of models are applied, e.g. response surface models, artifical neural networks or radial basis

functions. However, the most popular model is most likely the GP model (Santner et al. (2003)),

also called Kriging. There are several reasons for using a GP model. It is capable of exactly

reproducing the observations, gives an uncertainty estimate and is very flexible by incorporating

different covariance kernels. Furthermore, the GP model has often a very high prediction power

compared to other approaches and there is an easy way to switch from interpolation to smoothing

by incorporating a nugget effect. In Morris (2012), a GP model is extended to incorporate time

varying inputs, which are modeled as functional inputs. The ideas presented in the following are

in some ways extensions of the modeling ideas developed by Morris.

Especially due to the flexibility a GP model is chosen here as well. For a standard GP model

it is assumed that the output of the simulation follows a Gaussian process:

Y (x, f) = µ+ Z(x, f),

where the zero centered GP Z(x, f) is characterized by its covariance function. A typical GP

model approach is to use an anisotropic, tensor-product kernel, which can easily be extended

here:

cov(Z(x(1), f (1)), Z(x(2), f (2))) = σ2g(Ds(x
(1), x(2); θs))g(Df (f

(1), f (2); θf )). (10)

HereDf (., .; θf ) andDs(., .; θs) are distances for the functional and scalar inputs respectively,

scaled by some covariance parameters θs, θf . Standard kernels for gk(., θ) are the Gaussian kernel

(g(h, θ) = exp(−h
2

2θ2
)), the Matern 5/2 kernel (g(h, θ)) = (1 +

√
5|h|
θ

+ 5h2

3θ2
)exp(−

√
5|h|
θ

).

In this statistical model, the parameters µ, σ, θs and θf have to be estimated. There are several

approaches for parameter estimation in GP models (Maximum likelihood, restricted Maximum

Likelihood, cross validation), where the most common is Maximum Likelihood. As the likeli-

hood cannot be optimized analytically here algorithmic optimization is chosen.

While in the general case, ‖f − f̃‖ requires the evaluation of an integral, the use of a B-spline

basis simplifies the computation. The kernel reduces to a kernel defined on D × D where D is
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the hypercube [0, 1]ds+df×K , e.g. a Gaussian covariance kernel reduces to

exp

− dx∑
`=1

1

2

(
x
(1)
` − x

(2)
`

θx`

)2
 exp

− df∑
`=1

1

2

(
(β

(1)
` − β

(2)
` )′J(β

(1)
` − β

(2)
` )

θf`

)2
 .

with f` =
∑K

k=1 β`,kBk,m for the functional inputs ` = 1, . . . , df . Furthermore the domain is

here hypercubic, both for scalar inputs and functional inputs, due to the property of B-splines

(see Section 2.1).

The estimation of the parameters is done in a similar way to the estimation methods used in

the R package DiceKriging (R Core Team (2013), Roustant et al. (2012)). Therefore in a first

step a number of random points in the parameter space are checked for their log-likelihood value

and the best is chosen as starting point for the optimization by the R-command optim.

Many useful concepts, which are known for scalar-valued inputs also work in this context of

functional inputs. A leave-one-out cross validation, where the unknown parameters are estimated

based on the full data set, but a prediction is made for data point (x(i), f (i)) based on the full data

set omitting data point i, can be useful to check model adequacy. Although such kind of leave

one out prediction is optimistic, it still can help to identify problems with the model.

As for other GP models, an uncertainty estimate is available and hence EGO type optimization

techniques (Jones et al. (1998)) can be applied for sequential optimization.

4.1 Weighting

The surrogate model strategy explained above is attractive, as it shrinks down the infinite dimen-

sional functional input to a problem where for each functional input one covariance parameter is

estimated. The disadvantage of this approach is that it tells if one functional input as a whole is

important or not via its covariance parameter. But it does not give any result about, which part

of the input space of a functional input is important. In order to construct a more informative

parameter estimation process, a weighting step in the GP model is suggested. So far the dis-

tance between two different functions of one functional input is determined by the L2 distance of

the two functions and this distance it used as basis for constructing the covariance between two

outputs Y (1) and Y (2). For the special case of B-splines, the L2 distance reduces to δ′Jδ. The
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general idea for the weighting process is to use instead

D̃w(f, f̃) =

√∫ 1

0

(w(t;ω) ∗ (f(t)− f̃(t)))2dt, (11)

with
∫ 1

0
w(t;ω)dt = 1. One of the advantages of using B-splines is that the integration is easily

done numerically. As this advantage should not be destroyed, the weighting process has to be

chosen carefully. Writing equation (11) with f and f̃ being B-splines becomes

D̃w(f, f̃) =

√√√√∫ 1

0

(
K∑
i=1

δiBi,m(t)w(t;ω))2dt, (12)

with δi = βi − β̃i Although this would be in general a possible way for weighting, the numerical

computation would be much more complex than before, as the matrix J would now also depend

on (weighting) parameters to be estimated. In order to avoid this drawback, the weighting process

is discretized such that each basis function is weighted separately:

Dw(f, f̃) =

√√√√∫ 1

0

(
K∑
i=1

δiBi,m(t)wi(ω))2dt, (13)

with weighting coefficients w1(ω), . . . , wK(ω) ≥ 0,
∑K

k=1wk = 1. As the weights can be taken

out of the integration, now the integral can again be calculated efficiently using

D2
w(f, f̃) = δ′W (ω)JW (ω)δ. (14)

Beforehand, the same formula was derived without the W (ω)-matrix in equation (3). W (ω)

is a diagonal matrix of size K. The parameter ω is a (potentially multidimensional) parameter

describing the weighting. This parameter is estimated during the maximum likelihood optimiza-

tion. One possibility would be to include each diagonal entry of W into ω and just restrict it

to be positive. This is unfortunate for two reasons. First this potentially increases the number

of parameters to be estimated by ML dramatically. Secondly, the GP model would no longer

be uniquely identifiable. The covariance parameter θ and the weighting parameter ω could be

exchanged without changing the model. To overcome the identification problem, the entries of

W are restricted to be nonnegative and to sum up to 1: Wii ≥ 0, tr(W ) = 1. In order to reduce

the number of parameters, here a parametric description of the weighting by a beta distribution
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is used. The beta distribution is a very flexible distribution with support [0, 1]. It is described

by two parameters, which both need to be greater than 0. Let dbeta(t, ω) the density of a beta

distribution with parameters ω. Then the weighting matrix is defined as

W̃ii = dbeta(timax, ω), W (ω) := W̃ (ω)/tr(W̃ (ω)). (15)

The value timax is the argument value, where the ith basis spline has its maximum, i.e. the place

where the ith basis has the highest influence. As the two parameters in ω are just restricted to be

≥ 0, the numerical optimization of these two parameters can easily be incorporated into the ML

estimation procedure for the covariance parameters.

5 Application

5.0.1 Theoretical example 1

In order to check if the estimation of the covariance parameters work comparable both for real

number inputs and functional inputs the following example is used:

g1(x, f) =x1 + 2x2 + 4

∫ 1

0

tf1(t)dt+ 1

∫ 1

0

f2(t)dt

The first real number and the second functional input are of the same importance, i.e. the function

x1 and the function
∫ 1

0
f2(t)dt have the same output domain. At the same time, the second real

number input and the first functional input are comparably influential but are more important than

the first real number and functional input.

A DoE with 20 runs and 3 real number and 3 functional inputs is set up (hence there are

inactive input parameters). The corresponding B-splines have 7 basis functions and are of order

4. Afterwards a GP model with the Matern5/2 covariance kernel inlcuding weighting is fitted to

the data. The result of the covariance plot is shown in Figure 3 and the weighting plots are shown

in Figure 4.

5.0.2 Theoretical example 2

The second example has again 3 scalar inputs and 3 functional inputs fk(t) ∈ C0([0, 1]), k =

1, 2, 3, satisfying boundary constraints 0 ≤ fk ≤ 1, but this time the function is chosen to

13



x1 x2 x3 f1 f2 f3

(1 − Correlation) 
 for distance = 1

0.
00

0
0.

00
4

Figure 3: Sensitivity plot for the first theoretical example using a GP model including weighting.

be more complex. The real number part is the well known Branin function (Dixon and Szego

(1978)) plus one inactive input and the functional part of the example has 2 active inputs and one

inactive, including interactions between the real number and functional inputs.

g2(x, f) =(x2 −
5

4π2
x21 +

5

π
x1 − 6)2 + 10(1− 1

8π
)cos(x1) + 10

+
4

3
π

(
42

∫ 10

−5
f1(t)(1− t)dt+ π((x1 + 5)/5 + 15)

∫ 1

0

tf2(t)dt

)
.

In order to construct a design, the strategy described above is applied with n = 40, K =

7,m = 4. The candidate set is shown in figure 5.

A generalized LHD according to the methodology described above has been constructed and

two GP models have been estimated: One without any weighting for the functional inputs and

a second one including weighting for the functional inputs as described in the last chapter. As

a covariance kernel, the Matern 5/2 kernel has been used. Both GP models have been used in

order to make predictions for 300 randomly selected sets of inputs points and input functions in

order to validate the prediction quality of the two models. For both models, the weighted and
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Figure 4: Weighting plot for the first theoretical example. As the third functional input is (cor-

rectly) rated as unimportant, only the first two weighting plots are shown.

the unweighted one, the covariance parameters are summarized in a bar plot in order to illustrate,

which inputs are important. In this bar plot, 1− gk(1; θk) is plotted, where gk is the kernel of the

covariance function chosen (see Figure (7)). For the weighted model, the result of the weighting

procedure is plotted in figure (8). Here again 1− gk(1; θk) is plotted in a bar plot. Furthermore, a

Bspline is plotted, where the weights obtained from the maximum likelihood procedure are used

as β-coefficients. This plot indicates which part of the support has high importance and which

part has low importance.

Both models deliver a good prediction based on prediction plots (see figure (6)), where the

weighted version has slightly better RMSE (0.055) than the nonweighted version (0.081) based

on 300 independent observations of the theoretical example.

5.1 Springback analysis

In deep drawing sheet metal forming, the final shape of a part depends on the elastic energy

stored during the process of the forming. The energy is influenced by a number of process pa-
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Figure 5: Candidate set with n = 40, K = 5,m = 4.

rameters like blankholder force and friction. Springback, one of the main sources of geometrical

inaccuracy, can be predicted by these parameters in simulation models. Usually, the analysis is

limited to constant input parameters. The goal here is to achieve better predictions and deeper

information to the springback development by varying the process parameters blankholder force

and friction in time using the norm-based function analysis approach.

An explicit Finite Element Method (FEM) via LS-DYNA is used which takes two parame-

ters as input, the friction coefficient (fF ) and the blankholder force (fB), which can be varied

externally during the punch travel.

A generalized LHD with 40 runs, using 6 B-spline basis functions of order 4 is constructed
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Figure 6: Prediction plots for the two models including weighting (left hand side) and without

weighting (right hand side).

and performed in the FEM model. On these data, a functional Kriging model including weighting

on a Gauss covariance kernel is fitted. The value 1− gk(1; θk) is around 0.78 for fF and 0.28 for

fB indicating a much larger influence for friction as for blankholder force on the springback. A

weighting plot as in Fig. 8 can be seen in Fig. 9. It can be found that in the FEM model the effect

of the inputs on the springback reduction is increases towards the end of the punch travel. This

shows the importance of careful settings at the end of the process, where the flange of the part is

formed.

5.2 Exploration of B-splines

We revisit the theoretical example 2 of Section 5.0.2 for a small study in which we examine

the effect of the B-spline order m to the presented functional design and modelling approach.

We compare five different orders, 1, 2, 3, 4 and 5. For each order we set up a design of size

n = 20 with K = 7 basis functions and construct a surrogate model. The constant number K

ensures a comparable number of model parameters between the different orders. The procedure
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Figure 7: Sensitivity plots based on the covariance parameters for the two models including

weighting (left hand side) and without weighting (right hand side).

is repeated 100 times for each order and 5 test data sets of size 600, one for each order, are set

up for comparison. Table 1 shows the resulting root mean square errors (RMSE), averaged over

the 100 models. The spline order m = 4 performs best here. We conclude that, at least in our

experience, the B-spline order 4 can be recommended. Figure 10 shows boxplots of the values

1− gk(1; θk), comparable to Figure (7). The box sizes give an impression of the accuracy of the

covariance estimates.

m 1 2 3 4 5

Average RMSE 56.29 53.10 44.81 37.07 40.065

Table 1: B-spline order comparison: Average RMSE values between the predicted and true values

of the 5 test data sets.

6 Conclusion

In this article a methodology for incorporating functional inputs and scalar inputs into simulation

experiments via the use of B-splines is presented. Therefore designs and metamodels are de-
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Figure 8: Weighting plot for the GP model including weighting. Areas on the x-scale with a high

value are of higher importance on the output than areas with smaller values.

veloped. For constructing a space-filling designs, a distance-based approach is presented, which

works in two steps. In a first step a candidate set for the functional input parameters is constructed

and in the second step a design for the functional as well for the scalar inputs is constructed in

a Latin hypercube manner. Given scalar outputs from a simulation, the data can be modelled by

a GP model and the covariance parameters are used in order to rank the inputs by importance.

In order to learn more about the behaviour of the functional inputs, a weighting process can be

introduced, which can analyze, where a functional input is of high importance. This gives an

attractive possibility to learn more about the behaviour of the functional inputs. But this benefit

comes with the cost of introducing additional parameters and therefore with a more demanding

optimization process. The weighting process is not so beneficial for improving prediction but it

aims at learning more about the functional inputs. Although when the data set is large enough the

prediction for the weighted GP model has often been slightly better than for the unweighted ver-

sion, especially for small sample sizes, the estimation process of the parameters for weighted GP

model does not work as reliably as for the non-weighted GP model. All in all, the methodology

developed incorporates functional inputs in a way that the functional character is not changed but

still computations are feasible. Fundamental to this has been the usage of functional norms in
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Figure 9: Weighting plots for the springback FEM model.
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Figure 10: B-spline order comparison: Boxplots of the values 1− gk(1; θk).

order to incorporate functional inputs and the usage of B-splines as a representation of functional

inputs.
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