Skip to main content
Log in

Approximate computations for binary Markov random fields and their use in Bayesian models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Discrete Markov random fields form a natural class of models to represent images and spatial datasets. The use of such models is, however, hampered by a computationally intractable normalising constant. This makes parameter estimation and a fully Bayesian treatment of discrete Markov random fields difficult. We apply approximation theory for pseudo-Boolean functions to binary Markov random fields and construct approximations and upper and lower bounds for the associated computationally intractable normalising constant. As a by-product of this process we also get a partially ordered Markov model approximation of the binary Markov random field. We present numerical examples with both the pairwise interaction Ising model and with higher-order interaction models, showing the quality of our approximations and bounds. We also present simulation examples and one real data example demonstrating how the approximations and bounds can be applied for parameter estimation and to handle a fully Bayesian model computationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Austad, H.M.: Approximations of binary Markov random fields. PhD thesis, Norwegian University of Science and Technology. Thesis number 292:2011. Available from http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14922 (2011)

  • Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36, 192–225 (1974)

    MathSciNet  MATH  Google Scholar 

  • Besag, J.: On the statistical analysis of dirty pictures (with discussion). J. R. Stat. Soc. Ser. B 48, 259–302 (1986)

    MATH  Google Scholar 

  • Clifford, P.: Markov random fields in statistics. In: Grimmett, G.R., Welsh, D.J.A. (eds.) Disorder in Physical Systems, pp. 19–31. Oxford University Press (1990)

  • Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Networks and Expert Systems, Exact Computational Methods for Bayesian Networks. Springer, London (2007)

    MATH  Google Scholar 

  • Cressie, N.A.C.: Statistics for Spatial Data, 2nd edn. Wiley, New York (1993)

    MATH  Google Scholar 

  • Cressie, N., Davidson, J.: Image analysis with partially ordered Markov models. Comput. Stat. Data Anal. 29, 1–26 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Ding, G., Lax, R., Chen, J., Chen, P.P.: Formulas for approximating pseudo-Boolean random variables. Discret. Appl. Math. 156, 1581–1597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Ding, G., Lax, R., Chen, J., Chen, P.P., Marx, B.D.: Transforms of pseudo-Boolean random variables. Discret. Appl. Math. 158, 13–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Friel, N., Rue, H.: Recursive computing and simulation-free inference for general factorizable models. Biometrika 94, 661–672 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Friel, N., Pettitt, A.N., Reeves, R., Wit, E.: Bayesian inference in hidden Markov random fields for binary data defined on large lattices. J. Comput. Graph. Stat. 18, 243–261 (2009)

    Article  MathSciNet  Google Scholar 

  • Gelman, A., Meng, X.-L.: Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat. Sci. 13, 163–185 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Geyer, C.J., Thompson, E.A.: Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Am. Stat. Assoc. 90, 909–920 (1995)

    Article  MATH  Google Scholar 

  • Grabisch, M., Marichal, J.L., Roubens, M.: Equivalent representations of set functions. Math. Oper. Res. 25, 157–178 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Green, P.J.: Reversible jump MCMC computation and Bayesian model determination. Biometrika 82, 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Grelaud, A., Robert, C., Marin, J.M., Rodolphe, F., Taly, J.F.: ABC likelihood-free methods for model choice in Gibbs random fields. Bayesian Anal. 4, 317–336 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Gu, M.G., Zhu, H.T.: Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation. J. R. Stat. Soc. Ser. B 63, 339–355 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hammer, P.L., Holzman, R.: Approximations of pseudo-Boolean functions; applications to game theory. Methods Models Oper. Res. 36, 3–21 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Hammer, P.L., Rudeanu, S.: Boolean Methods in Operation Research and Related Areas. Springer, Berlin (1968)

    Book  MATH  Google Scholar 

  • Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22, 1087–1116 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Künsch, H.R.: State space and hidden Markov models. In: Barndorff-Nielsen, O.E., Cox, D.R., Klppelberg, C. (eds.) Complex Stochastic Systems. Chapman & Hall/CRC (2001)

  • Liang, F.: A double Metropolis-Hastings sampler for spatial models with intractable normalizing constants. J. Stat. Comput. Simul. 80, 1007–1022 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, F., Liu, C., Carroll, R.: Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples. Wiley, New York (2011)

    MATH  Google Scholar 

  • Lyne, A.M., Girolami, M., Atchadé, Y., Strathmann, H., Simplson, D.: On Russian roulette estimates for Bayesian inference with doubly-intractable likelihoods. Stat. Sci. 30, 443–467 (2015)

    Article  MathSciNet  Google Scholar 

  • Marin, J.M., Mengersen, K., Robert, C.P.: Bayesian modelling and inference on mixtures of distributions. In: Dey, D.K., Rao, C.R. (eds.) Essential Bayesian Models, pp. 253–300. North-Holland, Amsterdam (2011)

    Google Scholar 

  • Møller, J., Pettitt, A., Reeves, R., Berthelsen, K.: An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93, 451–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, I., Ghahramani, Z., MacKay, D.: Mcmc for doubly-intractable distributions. In: Proceedings of the Twenty-Second Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-06), AUAI Press, Arlington, Virginia, pp. 359–366 (2006)

  • Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Stuct. Algorithms 9, 223–252 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Reeves, R., Pettitt, A.N.: Efficient recursions for general factorisable models. Biometrika 91, 751–757 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Riggan, W.B., Creason, J.P., Nelson, W.C., Manton, K.G., Woodbury, M.A., Stallard, E., Pellom, A.C., Beaubier, J.: U.S. Cancer Mortality Rates and Trends, 1950–1979, vol. IV (U.S. Goverment Printing Office, Washington, DC: Maps, U.S. Environmental Protection Agency) (1987)

  • Sherman, M., Apanasovich, T.V., Carroll, R.J.: On estimation in binary autologistic spatial models. J. Stat. Comput. Simul. 76, 167–179 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Tjelmeland, H., Austad, H.: Exact and approximate recursive calculations for binary Markov random fields defined on graphs. J. Comput. Graphical Stat. 21, 758–780 (2012)

    Article  MathSciNet  Google Scholar 

  • Viterbi, A.J.: Error bounds for convolutional codes and an asymptotic optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260–269 (1967)

    Article  MATH  Google Scholar 

  • Walker, S.: Posterior sampling when the normalising constant is unknown. Commun. Stat. Simul. Comput. 40, 784–792 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkon Tjelmeland.

Appendices

Appendix: Proof of Theorem 3

Expanding \(\hbox {SSE}(f,\tilde{\tilde{f}}) = \sum _{x \in {\varOmega }} \left\{ f(x)-\tilde{\tilde{f}}(x) \right\} ^2\) we get,

$$\begin{aligned}&\sum _{x \in {\varOmega }} \left\{ f(x)-\tilde{\tilde{f}}(x) \right\} ^2 = \sum _{x \in {\varOmega }} \left\{ f(x)-\tilde{f}(x) + \tilde{f}(x)-\tilde{\tilde{f}}(x) \right\} ^2\\&= \sum _{x \in {\varOmega }} \left\{ f(x)-\tilde{f}(x) \right\} ^2 + \sum _{x \in {\varOmega }} \left\{ \tilde{f}(x)-\tilde{\tilde{f}}(x) \right\} ^2\\&\qquad +\sum _{x \in {\varOmega }} \left\{ f(x)-\tilde{f}(x)\right\} \left\{ \tilde{f}(x)-\tilde{\tilde{f}}(x)\right\} \\&= \hbox {SSE}(f,\tilde{f}) + \hbox {SSE}(\tilde{f},\tilde{\tilde{f}})\\&\qquad + \sum _{x \in {\varOmega }} \{f(x)-\tilde{f}(x)\}\tilde{f}(x)-\sum _{x \in {\varOmega }} \{f(x)-\tilde{f}(x)\}\tilde{\tilde{f}}(x). \end{aligned}$$

To prove the theorem it is thereby sufficient to show that,

$$\begin{aligned} \sum _{x \in {\varOmega }}\left\{ f(x)-\tilde{f}(x) \right\} \tilde{f}(x)-\sum _{x \in {\varOmega }}\left\{ f(x)-\tilde{f}(x)\right\} \tilde{\tilde{f}}(x) = 0. \end{aligned}$$

First recall that we from (9) know that,

$$\begin{aligned} \sum _{x \in {\varOmega }_\lambda }\left\{ f(x) - \tilde{f}(x) \right\} = 0, \quad \text { } \forall \text { } \lambda \in \tilde{S}. \end{aligned}$$
(42)

Also, since \(\tilde{\tilde{S}} \subseteq \tilde{S}\),

$$\begin{aligned} \sum _{x \in {\varOmega }_\lambda }\left\{ f(x) - \tilde{f}(x) \right\} = 0, \quad \text { } \forall \text { } \lambda \in \tilde{\tilde{S}}. \end{aligned}$$
(43)

We study the first term, \(\sum _{x \in {\varOmega }}\{f(x)-\tilde{f}(x)\}\tilde{f}(x)\), expand the expression for \(\tilde{f}(x)\) outside the parenthesis and change the order of summation,

$$\begin{aligned}&\sum _{x \in {\varOmega }}\{f(x)-\tilde{f}(x)\}\tilde{f}(x)\\&\quad = \sum _{x \in {\varOmega }}\left[ \{f(x)-\tilde{f}(x)\} \sum _{{\varLambda }\in \tilde{S}} \tilde{\beta }^{{\varLambda }} \prod _{k \in {\varLambda }}x_k \right] \\&\quad = \sum _{{\varLambda }\in \tilde{S}} \left( \tilde{\beta }^{{\varLambda }} \sum _{x \in {\varOmega }} \left[ \prod _{k \in {\varLambda }}x_k\{f(x)-\tilde{f}(x)\} \right] \right) \\&\quad = \sum _{{\varLambda }\in \tilde{S}} \left[ \tilde{\beta }^{{\varLambda }} \sum _{x \in {\varOmega }_{\varLambda }} \left\{ f(x)-\tilde{f}(x) \right\} \right] = 0, \end{aligned}$$

where the last transition follows from (42). Using (43) we can correspondingly show that \(\sum _{x \in {\varOmega }} \{f(x)-\tilde{f}(x)\}\tilde{\tilde{f}}(x) = 0\).

Proof of Theorem 4

We study the error sum of squares,

$$\begin{aligned}&\sum _{x \in {\varOmega }} \left\{ f(x) - \tilde{f}(x) \right\} ^2\\&\quad = \sum _{x \in {\varOmega }}\left[ \{f(x)-\tilde{f}(x)\}f(x) \right] \\&\qquad -\sum _{x \in {\varOmega }}\left[ \{f(x)-\tilde{f}(x)\}\tilde{f}(x) \right] \\&\quad = \sum _{x \in {\varOmega }} \left[ \sum _{{\varLambda }\in S} \beta ^{{\varLambda }} \{f(x)-\tilde{f}(x)\}\prod _{k \in {\varLambda }}x_k \right] \\&\quad \quad - \sum _{x \in {\varOmega }} \left[ \sum _{{\varLambda }\in \tilde{S}} \tilde{\beta }^{{\varLambda }} \{f(x)-\tilde{f}(x)\}\prod _{k \in {\varLambda }}x_k \right] \\&\quad = \sum _{{\varLambda }\in S} \beta ^{{\varLambda }} \left[ \sum _{x \in {\varOmega }_{{\varLambda }}} \{f(x)-\tilde{f}(x)\} \right] \\&\quad \quad - \sum _{{\varLambda }\in \tilde{S}} \tilde{\beta }^{{\varLambda }} \left[ \sum _{x \in {\varOmega }_{{\varLambda }}} \{f(x)-\tilde{f}(x)\} \right] , \end{aligned}$$

where the second sum is always zero by (43). Since \(\tilde{S} \subseteq S\), the first sum can be further split into two parts,

$$\begin{aligned}&\sum _{{\varLambda }\in S} \beta ^{{\varLambda }} \left[ \sum _{x \in {\varOmega }_{{\varLambda }}} \{f(x)-\tilde{f}(x)\} \right] \\&\quad = \sum _{{\varLambda }\in \tilde{S}} \beta ^{{\varLambda }} \left[ \sum _{x \in {\varOmega }_{{\varLambda }}} \{f(x)-\tilde{f}(x)\} \right] \\&\quad \quad + \sum _{{\varLambda }\in S\setminus \tilde{S}} \beta ^{{\varLambda }} \left[ \sum _{x \in {\varOmega }_{{\varLambda }}} \{f(x)-\tilde{f}(x)\} \right] , \end{aligned}$$

where once again the first sum is zero.

Proof of Theorem 5

From Theorem 1 it follows that it is sufficient to consider a function f(x) with non-zero interactions \(\beta ^{\varLambda }\) only for \({\varLambda }\in S_{\{ i,j\}}\), since we only need to focus on the interactions we want to remove. Thus we have

$$\begin{aligned} f(x) = \sum _{{\varLambda }\in S_{\{ i,j\}}} \beta ^{\varLambda }\prod _{k\in {\varLambda }}x_k \hbox {~~~and~~~} \widetilde{f}(x) = \sum _{{\varLambda }\in \widetilde{S}} \widetilde{\beta }^{\varLambda }\prod _{k\in {\varLambda }} x_k, \end{aligned}$$

and we need to show that then

$$\begin{aligned} \tilde{\beta }^{\varLambda }= \left\{ \begin{array}{@{}ll} - \frac{1}{4}\beta ^{{\varLambda }\cup \{ i,j\}} &{} \hbox {~~if }{\varLambda }\cup \{i,j\} \in S, \\ \frac{1}{2}\beta ^{{\varLambda }\cup \{ i\}} &{} \hbox {~~if }{\varLambda }\cup \{ i\}\in S \hbox { and }{\varLambda }\cup \{ j\}\not \in S, \\ \frac{1}{2}\beta ^{{\varLambda }\cup \{ j\}} &{} \hbox {~~if }{\varLambda }\cup \{ i\}\not \in S \hbox { and }{\varLambda }\cup \{ j\}\in S, \\ 0 &{} \hbox {~~otherwise.} \end{array}\right. \end{aligned}$$
(44)

We start by defining the sets

$$\begin{aligned} R_{\varLambda }= \{ {\varLambda }\setminus \{ i\},{\varLambda }\setminus \{ j\}, {\varLambda }\setminus \{ i,j\}\} \hbox {~~for }{\varLambda }\in S_{\{i,j\}}, \end{aligned}$$

and note that these sets are disjoint, and, since we have assumed S to be dense, \(R_{\varLambda }\subseteq \widetilde{S}\). Defining also the residue set

$$\begin{aligned} T = \widetilde{S} \setminus \left( \bigcup _{{\varLambda }\in S_{\{ i,j\}}} R_{\varLambda }\right) \end{aligned}$$

we may write the approximation error \(f(x)-\widetilde{f}(x)\) in the following form,

$$\begin{aligned}&f(x)-\widetilde{f}(x) \\&\quad =\sum _{{\varLambda }\in S_{\{ i,j\}}} \left\{ \left( \beta ^{\varLambda }x_ix_j - \sum _{\lambda \in R_{\varLambda }} \widetilde{\beta }^\lambda \prod _{k\in {\varLambda }\setminus \lambda } x_k \right) \prod _{k\in {\varLambda }\setminus \{ i,j\}} x_k\right\} \\&\qquad - \sum _{{\varLambda }\in T} \widetilde{\beta }^{\varLambda }\prod _{k\in {\varLambda }} x_k. \end{aligned}$$

Defining

$$\begin{aligned} \Delta f^{\varLambda }(x_i,x_j)= & {} \beta ^{\varLambda }x_i x_j - \sum _{\lambda \in R_{\varLambda }} \widetilde{\beta }^\lambda \prod _{k\in {\varLambda }\setminus \lambda }x_k\\= & {} \beta ^{\varLambda }x_ix_j - \left( \widetilde{\beta }^{{\varLambda }\setminus \{ i,j\}} + \widetilde{\beta }^{{\varLambda }\setminus \{ j\}}x_i + \widetilde{\beta }^{{\varLambda }\setminus \{ i\}}x_j\right) \end{aligned}$$

we have

$$\begin{aligned} f(x)-\widetilde{f}(x)= & {} \sum _{{\varLambda }\in S_{\{ i,j\}}} \Delta f^{\varLambda }(x_i,x_j) \prod _{k\in {\varLambda }\setminus \{ i,j\}} x_k\nonumber \\&-\sum _{{\varLambda }\in T} \widetilde{\beta }^{\varLambda }\prod _{k\in {\varLambda }}x_k. \end{aligned}$$
(45)

Inserting this into (9) and switching the order of summation we get

$$\begin{aligned}&\sum _{x\in {\varOmega }_\lambda }\left\{ f(x)-\widetilde{f}(x)\right\} \nonumber \\&\quad =\sum _{x\in {\varOmega }_\lambda }\left( \sum _{{\varLambda }\in S_{\{ i,j\}}} \Delta f^{\varLambda }(x_i,x_j) \prod _{k\in {\varLambda }\setminus \{ i,j\}} x_k\right. \nonumber \\&\left. \qquad - \sum _{{\varLambda }\in T} \widetilde{\beta }^{\varLambda }\prod _{k\in {\varLambda }}x_k\right) \nonumber \\&\quad = \sum _{{\varLambda }\in S_{\{ i,j\}}} \left( \sum _{x\in {\varOmega }_\lambda } \Delta f^{\varLambda }(x_i,x_j) \prod _{k\in {\varLambda }\setminus \{ i,j\}} x_k\right) \nonumber \\&\qquad - \sum _{{\varLambda }\in T}\left( \sum _{x\in {\varOmega }_\lambda } \widetilde{\beta }^{\varLambda }\prod _{k\in {\varLambda }} x_k\right) \nonumber \\&\quad =\sum _{{\varLambda }\in S_{\{ i,j\}}} \left( \sum _{x\in {\varOmega }_{\lambda \cup ({\varLambda }\setminus \{ i,j\}}} \Delta f^{\varLambda }(x_i,x_j)\right) \nonumber \\&\quad \quad - \sum _{{\varLambda }\in T}\left( \sum _{x\in {\varOmega }_{\lambda \cup T}} \widetilde{\beta }^{\varLambda }\right) = 0 \end{aligned}$$
(46)

for all \(\lambda \in \widetilde{S}\). We now proceed to show that this system of equations has a solution where \(\widetilde{\beta }^{\varLambda }= 0\) for \({\varLambda }\in T\) and \(\sum _{x\in {\varOmega }_{\lambda \cup ({\varLambda }\setminus \{ i,j\}}} \Delta f^{\varLambda }(x_i,x_j) = 0\) for each \({\varLambda }\in S_{\{ i,j\}}\). Obviously for each \({\varLambda }\) the function \(\Delta f^{\varLambda }(x_i,x_j)\) has only our possible values, namely \(\Delta f^{\varLambda }(0,0)\), \(\Delta f^{\varLambda }(1,0)\), \(\Delta ^{\varLambda }(0,1)\) and \(\Delta f^{\varLambda }(1,1)\). Thus the sum \(\sum _{x\in {\varOmega }_{\lambda \cup ({\varLambda }\setminus \{ i,j\}}} \Delta f^{\varLambda }(x_i,x_j)\) is simply given as a sum over these four values multiplied by the number of times they occur. Consider first the case where \(\lambda \), and thereby also \(\lambda \cup ({\varLambda }\setminus \{ i,j\})\) does not contain i or j. Then the four values \(\Delta f^{\varLambda }(0,0)\), \(\Delta f^{\varLambda }(1,0)\), \(\Delta ^{\varLambda }(0,1)\) and \(\Delta f^{\varLambda }(1,1)\) will occur the same number of times, so

$$\begin{aligned}&\sum _{x\in {\varOmega }_{\lambda \cup ({\varLambda }\setminus \{ i,j\})}} \Delta f^{\varLambda }(x_i,x_j) \nonumber \\&\quad =\frac{|{\varOmega }_{\lambda \cup ({\varLambda }\setminus \{ i,j\}}|}{4} \left( \Delta f^{\varLambda }(0,0)+\Delta f^{\varLambda }(1,0)\right. \nonumber \\&\qquad \left. +\,\Delta f^{\varLambda }(0,1) + \Delta f^{\varLambda }(1,1)\right) . \end{aligned}$$

Next consider the case when \(\lambda \), and thereby also \(\lambda \cup ({\varLambda }\setminus \{ i,j\})\), contains i, but not j. Then \(x_i=1\) in all terms in the sum, so the values \(\Delta f^{\varLambda }(0,0)\) and \(\Delta f^{\varLambda }(0,1)\) will not occur, whereas the values \(\Delta f^{\varLambda }(1,0)\) and \(\Delta f^{\varLambda }(1,1)\) will occur the same number of times. Thus,

$$\begin{aligned} \sum _{x\in {\varOmega }_{\lambda \cup ({\varLambda }\setminus \{ i,j\})}} \Delta f^{\varLambda }(x_i,x_j)= & {} \frac{|{\varOmega }_{\lambda \cup ({\varLambda }\setminus \{ i,j\}}|}{2} \left\{ \Delta f^{\varLambda }(1,0)\right. \\&+\left. \Delta f^{\varLambda }(1,1)\right\} . \end{aligned}$$

When \(\lambda \) contains j, but not i we correspondingly get

$$\begin{aligned} \sum _{x\in {\varOmega }_{\lambda \cup ({\varLambda }\setminus \{ i,j\})}} \Delta f^{\varLambda }(x_i,x_j)= & {} \frac{|{\varOmega }_{\lambda \cup ({\varLambda }\setminus \{ i,j\}}|}{2} \left\{ \Delta f^{\varLambda }(0,1)\right. \\&+ \left. \Delta f^{\varLambda }(1,1)\right\} . \end{aligned}$$

The final case, that \(\lambda \) contains both i and j, will never occur since \(\lambda \in \widetilde{S}\) and all interaction involving both i and j have been removed from \(\widetilde{S}\). We can now reach the conclusion that if we can find a solution for

$$\begin{aligned}&\Delta f^{\varLambda }(0,0)+\Delta f^{\varLambda }(1,0)+\Delta f^{\varLambda }(0,1)+\Delta (1,1) = 0,\\&\Delta f^{\varLambda }(1,0)+\Delta f^{\varLambda }(1,1) = 0, \\&\Delta f^{\varLambda }(0,1)+\Delta f^{\varLambda }(1,1) = 0, \end{aligned}$$

for all \({\varLambda }\in S_{\{ i,j\}}\) we also have a solution for (46) as discussed above. Using our expression for \(\Delta f^{\varLambda }(x_i,x_j)\), the above three equations become

$$\begin{aligned}&\beta ^{\varLambda }- \left( 4\widetilde{\beta }^{{\varLambda }\setminus \{ i,j\}} + 2\widetilde{\beta }^{{\varLambda }\setminus \{ i\}} + 2\widetilde{\beta }^{{\varLambda }\setminus \{ j\}}\right) =0,\\&\beta ^{\varLambda }- \left( 2\widetilde{\beta }^{{\varLambda }\setminus \{ i,j\}} + \widetilde{\beta }^{{\varLambda }\setminus \{ i\}} + 2\widetilde{\beta }^{{\varLambda }\setminus \{ j\}}\right) =0,\\&\beta ^{\varLambda }- \left( 2\widetilde{\beta }^{{\varLambda }\setminus \{ i,j\}} + 2\widetilde{\beta }^{{\varLambda }\setminus \{ i\}} + \widetilde{\beta }^{{\varLambda }\setminus \{ j\}}\right) =0. \end{aligned}$$

Since the sets \(R_{\varLambda }\) are disjoint, the three equations above can be solved separately for each \({\varLambda }\), and the solution is \(\widetilde{\beta }^{{\varLambda }\setminus \{ i,j\}} = -\frac{1}{4}\beta ^{\varLambda }\) and \(\widetilde{\beta }^{{\varLambda }\setminus \{ i\}}=\widetilde{\beta }^{{\varLambda }\setminus \{ j\}}= \frac{1}{2}\beta ^{\varLambda }\). Together with \(\widetilde{\beta }^{\varLambda }=0\) for \({\varLambda }\in T\) this is equivalent to (13) in the theorem. Inserting the values we have found for \(\widetilde{\beta }^{\varLambda }\) in (45) we get

$$\begin{aligned} \Delta f^{\varLambda }(x_i,x_j) = \left( x_ix_j + \frac{1}{4} - \frac{1}{2}x_i - \frac{1}{2}x_j\right) \beta ^{\varLambda }. \end{aligned}$$

Inserting this into the above expression for \(f(x)-\widetilde{f}(x)\), and using that we know \(\widetilde{\beta }^{\varLambda }=0\) for \({\varLambda }\in T\) we get (14) given in the theorem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austad, H.M., Tjelmeland, H. Approximate computations for binary Markov random fields and their use in Bayesian models. Stat Comput 27, 1271–1292 (2017). https://doi.org/10.1007/s11222-016-9685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-016-9685-7

Keywords

Navigation