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Abstract

The paper considers non-parametric maximum likelihood estimation of the failure time distribution

for interval censored data subject to misclassification. Such data can arise from two types of observation

scheme; either where observations continue until the first positive test result or where tests continue

regardless of the test results. In the former case, the misclassification probabilities must be known,

whereas in the latter case joint estimation of the event-time distribution and misclassification proba-

bilities is possible. The regions for which the maximum likelihood estimate can only have support are

derived. Algorithms for computing the maximum likelihood estimate are investigated and it is shown

that algorithms appropriate for computing non-parametric mixing distributions perform better than an

iterative convex minorant algorithm in terms of time to absolute convergence. A profile likelihood ap-

proach is proposed for joint estimation. The methods are illustrated on a data set relating to the onset

of cardiac allograft vasculopathy in post-heart-transplantation patients.

1 Introduction

Interval censored time-to-event data is commonly encountered in applications in which continual monitoring

is not possible and instead the status of a subject, for instance whether they have developed a disease, is

only known at intermittent observation or examination times. It is usually assumed that the status of the
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process can be determined with complete accuracy at each of these examination times. However, in many

medical applications where the event of interest is onset of a disease or onset of infection, diagnosis may be

subject to classification error.

Time-to-event data subject to misclassification error has been considered previously. Espeland et al

(1989) analyzed data relating to the diagnosis of onset of puberty in adolescents and considered a discrete

time model where events could occur within ‘sub epochs’ of ‘epochs’ for which the incidence rate was assumed

constant. They developed an EM algorithm that allowed for estimation of the underlying incidence rates

and error probabilities. Balasubramanian and Lagakos (2003) considered estimation for a general continuous

time model, but ensured identifiability by fixing the increments in the failure time distribution to be equal

between some time points. Fully non-parametric estimation of the failure time distribution F (t) has been

considered in the case of current status (or Type I interval censored) survival data subject to misclassification

of outcomes (McKeown and Jewell (2010); Sal y Rosas and Hughes (2011)). In that case, since each subject

is observed precisely once, the misclassification probabilities must be known a priori in order to estimate the

survivor distribution.

The purpose of this paper is to develop methods for fully non-parametric estimation of the failure time

distribution, F (t), for general (or mixed case) interval censored data subject to classification error, by

extending existing methods for standard interval censored survival data. Two observation schemes are

considered. In the first scenario, observations may be assumed to persist only until the first observed failure.

Such an observation scheme has been considered in a discrete-time setting by Richardson and Hughes (2000)

where patients were assessed based on an imperfect diagnostic test, with known error probabilities, repeatedly

until their first positive test at which point they were treated and hence left the study. In this case, the

misclassification probabilities must be known in order to estimate F (t).

However, a second scenario is also considered where it is assumed that examinations of a subject continue

to occur regardless of whether a positive result has been observed. This type of observation has been

considered both for interval censored survival data without misclassification (Betensky et al, 2001; Zhu et al,

2008) and for misclassified data (Espeland et al, 1989). Such data may arise in studies where there are several

outcomes of interest. In this case methods to jointly estimate F (t) and the misclassification probabilities,

which can be constant or depend parametrically on time, are considered.

The remainder of the paper is organized as follows. Section 2 formalizes the problem and character-

izes the non-parametric maximum likelihood estimate (NPMLE), Section 3 discusses computation of the

NPMLE, Section 4 considers methods for obtaining standard errors or confidence regions, Section 5 presents
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a numerical study and Section 6 gives an illustrative example based on data from post-heart-transplantation

patients. The paper concludes with a discussion of potential model extensions.

2 Non-parametric Maximum Likelihood Estimate

Consider failure times Tj ∼ F (t) for subjects j = 1, . . . , n, indirectly observed through a series of observations

Yj = (Y1j , . . . , Ynjj) at times Xj = (X1j , . . . , Xnjj) where Yij is a binary random variable such that

P (Yij = 1|Xij < Tj) = α(Xij ;θ)

and

P (Yij = 0|Xij ≥ Tj) = β(Xij ;θ).

At each observation time, Yij is the outcome of an imperfect diagnostic test where the functions α(x;θ)

and β(x;θ) represent the probabilities of a false positive and false negative result, respectively, and may

depend on the age of the process, x. It is assumed that α(x;θ) and β(x;θ) are known functions satisfying

0 ≤ α(x;θ) < 1, 0 ≤ β(x;θ) < 1 and 0 ≤ α(x;θ) + β(x;θ) < 1 for all θ ∈ Θ and x > 0. The observation

times Xij are potentially random, but are assumed to be generated from a process that is non-informative

for F and θ, as defined by Grüger et al (1991).

Interest lies in estimating F and possibly also θ. When observations stop at the first failure time, α(x;θ)

and β(x;θ) must be fully specified. However, if observations persist after a first positive result then θ can

also be estimated.

In the simplest case, the diagnostic test performed at each observation time would be assumed to have

fixed sensitivity, (1−α), and specificity (1− β). A convenient way to parameterize this is through a logistic

transformation such that α(x;θ) = (1 + exp(−θ1))−1 and β(x;θ) = (1 + exp(−θ2))−1 for θ = (θ1, θ2).

Alternatively if, as in Espeland et al (1989), the test accuracy is considered age-dependent, this could be

represented by

logit{α(x;θ)} =



θ1 if x < τ1

θ1 + θ2 if τ1 ≤ x < τ2

...
...

θ1 + θm x ≥ τK−1,

for fixed cut-points 0 < τ1 < . . . < τK−1, with a similar expression for β(x;θ), implying that the sensitivity

and specificity are piecewise constant functions.
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Assuming the observation times, Xj are non-informative, the likelihood with respect to F for a single

subject j can be expressed as

Lj =

nj+1∑
i=1

{F (Xij+)− F (Xi−1j−)} ×
i−1∏
k=1

α(Xkj ;θ)Ykj (1− α(Xkj ;θ))1−Ykj

×
nj∏
k=i

β(Xkj ;θ)1−Ykj (1− β(Xkj ;θ))Ykj

where X0j = 0 and Xnj+1j =∞ and F (∞) = 1. Note that in the case where α ≡ β ≡ 0, such that there is

no classification error, the expression reduces to the standard expression for interval censored survival data,

Lj =

nj+1∑
i=1

{F (Xij+)− F (Xi−1j−)}I(Yij = 1, Yi−1j = 0)

= {F (Rj+)− F (Lj−)}.

where Y0j = 0 and Ynj+1j = 1 and Rj = mini({Xij′ : Yij′ = 1, j′ = j} ∪ {∞}) and Lj = maxi({Xij′ : Yij′ =

0, j′ = j} ∪ {∞}).

2.1 Support of the NPMLE

Under standard interval censored survival data, the non-parametric maximum likelihood estimate (NPMLE)

is only uniquely defined up to increments of mass within semi-closed intervals between unique observation

times (Turnbull, 1976; Ng, 2002). The NPMLE for misclassified survival data also has this property and it

is only the determination of the particular intervals of support which differs.

Initially assume that α(x;θ) > 0, β(x;θ) > 0 for all x ≥ 0 and that examination times are generated from

a continuous distribution such that there are no tied observation times with probability 1. For notational

convenience in the proof below the dependence of α and β on x and θ is suppressed, but the argument

remains valid for non-constant error probabilities.

Let L = {0} ∪ {Xij : Yij = 0} and R = {Xij : Yij = 1} ∪ {∞} denote the sets of observation times

corresponding to negative and positive test results, respectively.

A further set can be constructed consisting of disjoint intervals whose left and right end points lie in the

sets L and R respectively and which do not contain any members of L or R. Let {Qi := (li, ri], 1 ≤ i ≤ I}

be those intervals, where l1 < r1 < l2 < r2 < . . . < lI < rI ≤ ∞ and Q = ∪iQi.

Theorem 1

The NPMLE of the cumulative distribution function, F , can only increase on Q and is unique only up to

the values of F (ri) and F (li−), (1 ≤ i ≤ I).
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Y(i) : 0 0 1 0 1 1 0 1 0 0 1 1 0

Figure 1: Example of the (shaded) support regions of the NPMLE for a particular set of pooled observations

Y(i) corresponding to the ordered observation times X(i)

Proof

Let X(i) denote the ith ordered observation time from the pooled set of observation times across all subjects,

with corresponding observation Y(i). Suppose the NPMLE, F̂ , increases by ε > 0 between times X(i)

and X(i+1) corresponding to observations Y(i) and Y(i+1), where Y(i) = 1. Construct F̃ to be identical

to F̂ except that the increment on (X(i), X(i+1)] is set to zero and the increment on (X(i∗), X(i∗+1)] is

increased from π0 to π0 + ε, where i∗ = arg max
j
{j : j < i, Y(j) = 0, Y(j+1) = 1}. The likelihood under

F̂ and F̃ is equal for all subjects except individuals observed at time points X(i∗+1), . . . , X(i). For each

of these subjects, assuming they are observed exactly once in [X(i∗+1), X(i)], their likelihood contributions

are of the form L(F̂ ) = C + K(π0(1 − β) + εα) and L(F̃ ) = C + K(π0 + ε)(1 − β), for some C,K > 0.

Hence L(F̃ ) − L(F̂ ) = Kε(1 − β − α) > 0, since α + β < 1, and therefore F̂ cannot be the MLE. If

there are subjects observed m > 1 times within [X(i∗+1), X(i)] then L(F̂ ) = C + K(π0(1 − β) + εα)m and

L(F̃ ) = C +K(π0 + ε)m(1− β)m and L(F̃ ) > L(F̂ ) provided α+ β < 1.

Similarly, suppose the NPMLE, F̂ , increases by ε > 0 between times X(i) and X(i+1) corresponding

to observations Y(i) and Y(i+1), where Y(i+1) = 0. Construct F̃ to be identical to F̂ except the increment

on (X(i), X(i+1)] is set to zero and the increment on (X(i∗), X(i∗+1)] is increased from π0 to π0 + ε, where

i∗ = arg min
j
{j : j > i, Y(j) = 0, Y(j+1) = 1}. The likelihood contributions under F̂ and F̃ are equal

for all subjects except individuals observed at time points X(i+1), . . . , X(i∗+1). For each of these subjects,

assuming they are observed exactly once in [X(i+1), X(i∗+1)] their likelihood contributions are of the form

L(F̂ ) = C+K(π0(1−β) + εα) while L(F̃ ) = C+K(π0 + ε(1−β), for some C,K > 0. Hence L(F̃ )−L(F̂ ) =

Kε(1− β − α) > 0 since α+ β < 1, and therefore F̂ cannot be the MLE. Again, a similar argument follows

for subjects observed m > 1 times within [X(i+1), X(i∗+1)].

Figure 1 illustrates the implied support regions for a particular set of pooled observations ordered by

observation time.

Special cases arise when either one of α(x;θ) or β(x;θ) is identically equal to 0. If α(x;θ) ≡ 0, an
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individual’s failure time can be determined to have occurred before the first positive observation. Define

X−j = inf({Xij′ : Yij′ = 1, j′ = j} ∪ {∞}) for j = 1, . . . , n and let L− = ∪j{Xij′ : Yij′ = 0, Xij′ < X−j , j
′ =

j}∪ {0} and R− = ∪j{Xij′ : Xij′ = X−j , j
′ = j}∪ {∞}. The set of support, Q, is then constructed from the

disjoint closed sets L− and R−.

If β(x;θ) ≡ 0, an individual’s failure time can be determined to have occurred after the last observed

0. Define X+
j = sup({0} ∪ {Xij′ : Yij′ = 0, j′ = j}) and let L+ = ∪j{Xij′ : Xij′ = X+

j , j
′ = j}{0} and

R+ = ∪j{Xij′ : Yij′ = 1, Xij′ > X+
j , j

′ = j} ∪ {∞}. The set of support Q is then constructed from L+ and

R+.

If α(x;θ) 6≡ 0 and β(x;θ) 6≡ 0 but are equal to zero for some observation times, define X−j = inf({Xij′ :

Yij′ = 1, α(Xij′ ; θ) = 0, j′ = j} ∪ {∞}) and X+
j = sup({0} ∪ {Xij′ : Yij′ = 0, β(Xij′ ; θ) = 0, j′ = j}) and

L± = ∪j{Xij′ : Yij′ = 0, X+
j ≤ Xij′ < X−j , j

′ = j} ∪ {0} and R± = ∪j{Xij′ : Yij′ = 1, X+
j < Xij′ ≤

X−j , j
′ = j} ∪ {∞}. Again the set of support Q is constructed from L± and R±.

When α(x;θ) ≡ β(x;θ) ≡ 0, the data are standard interval censored and the support set is defined as in

Turnbull (1976) in the case where there is no truncation.

The above assumes the observation times are unique. If there are ties we can define X(i) to be the

ith ordered unique observation time and an analogous argument can be applied to show that a necessary

condition for the NPMLE to increase on (X(i), X(i+1)] is that at least one observed state at time X(i) must

be 0 and at least one observed state at time X(i+1) must be 1.

2.2 Optimality conditions

Böhning et al (1996) noted the relationship between the non-parametric estimates of the survivor function

for interval censored data and the NPMLE of a mixing distribution. This relationship also exists in the case

of misclassified failure time data. Again assuming the Xij are non-informative, the likelihood with respect

to F for a single individual can also be expressed as

Lj =

∫ ∞
0

nj∏
i=1

P (Yij |Xij , Tj = t)dF (t),

where the unobserved failure time Tj acts as a mixing variable.

Having established the support of the NPMLE in Section 2.1, the likelihood can be expressed in terms

of a finite mixture. Let

γij(α, β) = P (Yj |Xj , Tj ∈ (li, ri])
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represent the joint probability of subject j’s outcome vector Yj given observation times Xj and that the

failure time for subject j occurs within the ith support region, Qi = (li, ri]. Note that γij(α, β) depends on the

full classification probability functions α(x;θ) and β(x;θ) but this dependence is suppressed for notational

convenience. Denote the probability that the failure occurs in the ith support region as πi = F (ri)−F (li−)

with π = (π1, . . . , πI) then the likelihood for the data can be written as

L(π) =

n∏
j=1

I∑
i=1

γij(α, β)πi.

Let S be the I × n matrix with (i, j) entry

dij(π) =
γij(α, β)∑I

k=1 γik(α, β)πk
,

the first and second derivatives of the log-likelihood can be expressed as ∇ logL = (S1)
′

and ∇2 logL = SS
′

respectively, hence the Hessian is positive-semi-definite and logL is concave.

In general, γij(α, β) can be computed by considering which of subject j’s observations, Yj , would be false

positives, true positives, false negatives and true negatives given the failure occurred in (li, ri] and computing

the relevant probability at the corresponding event times. Hence the general expression is of the form

γij(α, β) =

n∏
j=1

nj∏
k=1

α(Xkj ;θ)YkjI(Xkj<li−1)(1− α(Xkj ;θ))(1−Ykj)I(Xkj<li−1)

×β(Xkj ;θ)(1−Ykj)I(Xkj≥ri)(1− β(Xkj ;θ))YkjI(Xkj≥ri).

However, in the special case where the misclassification probabilities are time constant it is only necessary

to count the number of false and true negatives and positives, so that the expression can be simplified to

γij(α, β) = αn−1j(li−1)(1− α)n
−
0j(li−1)βn+

0j(ri)(1− β)n
+
1j(ri) (2.1)

where

n−1j(t) =

nj∑
k=1

YkjI(Xkj < t), n+
1j(t) =

∑nj

k=1 YkjI(Xkj ≥ t),

n−0j(t) =

nj∑
k=1

(1− Ykj)I(Xkj < t), n+0j(t) =
∑nj

k=1(1− Ykj)I(Xkj ≥ t).

Finally, in the case where there is no classification error, such that α = β = 0 and meaning a subject’s failure

time can be bounded by (Lj , Rj ], the expression reduces to

γij(0, 0) = I((li, ri] ⊆ (Lj , Rj ]).

This expression can be derived from (2.1) by adopting the convention that 00 = 1 and noting that when

there is no misclassification, I(n−1j(t) = 0) = I(Rj ≤ t) and I(n+0j(t) = 0) = I(Lj ≥ t).
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The NPMLE of F can be obtained by considering the constrained maximization problem maxπ log(L(π))

subject to
∑I

i=1 πi = 1 and πi ≥ 0 for all i. The Kuhn-Tucker conditions for π to be the NPMLE relate

to the directional derivatives. The directional derivative of L(π) from π to a mixing distribution with all

mass in the interval (li, ri] is given by di(π) =
∑n

j=1 dij(π)−n. The Kuhn-Tucker conditions for optimality

can then be expressed as maxi di(θ) = 0. The equivalence of maximizing the likelihood with minimizing

the largest directional derivative and finding the solution with maxi di(θ) = 0 can also be shown by using a

fundamental theorem of mixture estimation in Lindsay (1983), which is analogous to the general equivalence

theorem of optimal design.

3 Computation

Initial proposals for algorithms for finding the NPMLE both in the case of interval censored survival data

(Turnbull, 1976) and also in the case of non-parametric mixing distributions (Laird, 1978), were based

upon EM algorithms. However, in each case other algorithms have been devised with substantially better

properties. This section considers applying two of the best performing algorithms to the problem of finding

the NPMLE for misclassified data.

3.1 Iterative convex minorant algorithm

The best performing algorithms for computing the NPMLE for interval censored survival data are the

iterative convex minorant (ICM) algorithm (Jongbloed, 1998) or hybrid ICM-EM algorithm (Wellner and

Zhan, 1997). In principle, an ICM type algorithm could also be used for misclassified survival data.

The ICM approach parameterizes by Fi where πi = Fi − Fi−1 and uses a quadratic function about Fi

based on its gradient and approximate Hessian (taken as the diagonal of the full Hessian) and maximizes

this quadratic form with respect to monotonicity constraints on F . Under this parameterization, the first

derivatives of the log-likelihood have the form

gi =
∂ logL

∂Fi
=
∑
k

γik − γi+1k

Lk

and the diagonal elements of the Hessian have the form

Hii = −∂
2 logL

∂F 2
i

=
∑
k

(γik − γi+1k)2

L2
k

.

Each step of the ICM algorithm then involves updating F̃ (s) by taking F̃ (s+1) to be the solution, F̂ , to the
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isotonic regression problem

min
∑
i

Hii(F̂ − F̃ (s)
i − gi

Hii
)2 (3.1)

subject to monotonicity constraints on F̂ . This can be achieved by using the pool-adjacent-violators (PAV)

algorithm (Barlow et al, 1972).

However to guarantee convergence, it is necessary to include a line search step where F̃ (s+1) is taken to

be the point on the line F̃ (s) + (F̂ − F̃ (s))d, d ∈ (0, 1] for which the likelihood is maximized. In practice, as

suggested by Jongbloed (1998), the line search only needs to be applied if taking the step length d = 1, i.e.

applying F̃ (s+1) = F̂ does not result in an increase in the likelihood or increases the likelihood by less than

some specified threshold.

The effectiveness of (3.1) as a quasi-Newton step and hence the effectiveness of ICM as a whole, depends

on the extent to which the full Hessian can be approximated by its diagonal. For standard interval censored

data the approximation is usually quite effective since each subject’s failure time can be observed to have

only occurred in a small proportion of the support regions. In contrast for misclassified data, with imperfect

sensitivity and specificity, no support regions can be ruled out for any subject. The effectiveness of a diagonal

approximation will depend on the error probabilities α and β, with better performance expected when these

are smaller.

3.2 Constrained Newton algorithm

Given the representation as a non-parametric mixture problem, an alternative approach to take is to use an

algorithm appropriate for finding the NPMLE of a mixing distribution. Several such algorithms exist, for

instance the vertex exchange method (Böhning (1985)), the intra-simplex direction method (Lesperance and

Kalbfleisch (1992)) and the constrained Newton method of Wang (2007). Here an adapted version of this

latter algorithm is proposed.

The main idea behind the constrained Newton algorithm is to use the optimality condition based upon

the directional derivatives, to determine the best locations to add new support points or regions. Specifically

it seeks the maximum, or maxima, of the directional derivatives, with respect to the mixing parameter π

and proposes these points as additions to the finite mixture.

The constrained Newton algorithm can be difficult to implement for a general non-parametric mixture

where as it requires a line search over the continuous space of π to find the maxima. However, the problem

is simplified for the case of misclassified interval censored data, as the support reduction step ensures that

only a finite number of locations, corresponding to the support intervals Qi = (li, ri], need to be considered.
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The proposed algorithm involves collecting a set of support intervals I ⊆ Q, where πi > 0 for all i ∈ I

and πi = 0 for all i 6∈ I. Set s = 0 and an initial feasible π(s) implying a support set I(s), such that

logL(π(s)) > −∞.

1. Find the set I∗ of i ∈ I(s) such that di(π
(s)) > di−1(π(s)) and di(π

(s)) > di+1(π(s)) where, by

convention, d0(π(s)) = dI+1(π(s)) = 0. If maxi di(π
(s)) = 0 stop.

2. Set I+ = I ∪ I∗. Compute π(s+1) by performing one constrained Newton iteration.

3. Discard all points in I+ with zero entries in π(s+1) to obtain I(s+1). Set s =: s+ 1 and return to 1.

Step 2 of the algorithm involves maximizing a quadratic approximation to logL(π) in a neighbourhood

of π(s). Wang (2007) shows that this is equivalent to solving minπ∗ ||Sπ∗ − 2||2 subject to π∗
′
1 = 1, π∗i ≥ 0

for all i ∈ I+, which in turn can be solved using the non-negative least squares (NNLS) algorithm (Lawson

and Hanson (1974)).

A simplified procedure, which retains all possible support points for π at each iteration of the algorithm,

would also be effective but somewhat slower due to requiring a larger NNLS problem to be solved at each

iteration.

In Section 5 the performance of the constrained Newton algorithm is compared with the ICM algorithm.

3.3 Semi-parametric estimation

In the scenario in which observation continues after the first observed failure, there is scope for joint estima-

tion of F and the misclassification probabilities α(x;θ) and β(x;θ). In this case the model can be expressed

as a semi-parametric mixture, where the mixture distribution - defined through F - is non-parametric, but

there are additional parameters determining the response conditional on the mixture component.

Provided α(x;θ), β(x;θ) > 0 and α(x;θ) + β(x;θ) < 1 for all x > 0 and θ ∈ Θ, the potential support

points of F will remain fixed. This ensures that the profile likelihood is differentiable with respect to θ,

provided α(x;θ) and β(x;θ) are themselves differentiable. The maximum likelihood estimate can be found

by maximizing the profile log-likelihood

pl(θ) = l(θ, π̂(θ)).

Clearly, the profile likelihood can be computed by applying the algorithm for non-parametric estimation for

a fixed value of θ. Following Wang (2010), standard unconstrained quasi-Newton type algorithms can be
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used to maximize the profile likelihood, using finite-difference approximations to evaluate

∂pl(θ)

∂θ
=
∂l(θ,π)

∂θ

∣∣∣∣
π=π̂(θ)

.

4 Estimates of uncertainty

Estimation of standard errors or the construction of confidence intervals for F is not straightforward since, in

common with other NPMLE for mixing distributions or interval censored data standard n1/2 asymptotics do

not apply and instead the estimator converges at a slower rate (van de Geer, 2003). In the context of current

status data, some progress has been made in developing asymptotic theory. For instance, if the observation

times are random and generated from a continuous distribution, the convergence rate of the NPMLE is

n1/3 (Groeneboom and Wellner, 1992). Banerjee and Wellner (2001, 2005) derive the limiting form of

the likelihood ratio and Tang et al (2012) have developed an adaptive inference procedure suitable when

the nature of the sampling times distribution, and hence the convergence rate, is unknown. However, these

results are not easily extendable either to general (mixed case) interval censored data or to misclassified data.

Abrevaya and Huang (2005) showed that standard non-parametric bootstrap approaches are not consistent

for estimators with n1/3 convergence implying that the standard non-parametric bootstrap is unlikely to be

consistent for misclassified survival data.

Possible approaches to quantifying the uncertainty in F̂ could involve either a parametric bootstrap,

though this requires estimation of the inspection process, subsampling (Politis and Romano, 1994) if n1/3

convergence can be assumed, or the use of a smoothed bootstrap (Sen and Xu, 2015). If the distribution of

examination times can be assumed to have finite support, then standard n1/2 asymptotics will apply, but

may nevertheless have poor performance in finite samples (Maathuis and Hudgens (2011)).

For the semi-parametric case, if interest is in estimation of the parameters θ that determine α and β, with

F as a nuisance parameter, then through direct application of results from Murphy and van der Vaart (1997),

profile likelihood ratio based confidence intervals can be obtained. An asymptotic 100(1 − ν)% confidence

region for θ can be found by taking

{θ : 2{l(θ̂, F̂θ̂)− l(θ, F̂θ)} ≤ χ2
|θ|(ν)}. (4.1)

A confidence interval for an individual component, θk of θ can be found in a similar way by inverting a

profile likelihood ratio test with respect to θk, which profiles out the other components of θ as well as F .

Alternatively, standard errors can be obtained by computing the Hessian of the profile likelihood through a

finite difference approximation.
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Figure 2: Comparison of the NPMLE for the misclassified data (solid line and solid shading) and the NPMLE

for the interval censored data (dashed line and cross hatched shading).

5 Numerical Investigation

To illustrate the differences between the estimation of the NPMLE for interval censored data and the NPMLE

for misclassified data a dataset of n = 100 subjects is simulated. The sampling times are random with

independent gap times distributed U(0, 2) up to a fixed administrative censoring time at t = 10. From the

true classifications, I(Ti < Xij), standard interval censored survival data, consisting of pairs (Lj , Rj ], can

be obtained. In addition misclassified data, taking the misclassification probabilities to be fixed in time as

α = 0.05 and β = 0.1, is generated. The failure time distribution is estimated, first assuming (α, β) are fixed

and known and second by jointly estimating (α, β). Figure 2 shows the estimates for a particular simulated

dataset.

Applying the ICM and proposed constrained Newton algorithms for α and β at their true values, the

convergence of the constrained Newton algorithm was considerably faster than that of ICM. Convergence,

assessed based upon a criterion of max di < 1× 10−8, was reached in 27 iterations using constrained Newton

compared to 281 iterations with ICM. This also corresponded to a CPU time of 0.28s for constrained Newton

compared to 10.59s for ICM. The precise comparison may depend on the efficiency of the implementations
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Table 1: Proportion of simulated likelihood ratio statistics above nominal χ2
2 upper quantiles

Nominal upper quantile

n 0.5 0.2 0.1 0.05 0.01

100 0.562 0.256 0.138 0.070 0.014

500 0.536 0.255 0.134 0.067 0.016

of the PAV and NNLS algorithms. Here, there should be reasonable comparability since in each case Fortran

routines ported into R via the packages Iso and nnls, respectively. Similarly, in each case the starting point

was chosen such that all mass in F was in the single support region j for which
∑n

i=1 γij was maximized.

The number of increments of the NPMLE is similar for the interval censored and the misclassified data.

However, the regions of support are typically much narrower for the misclassified data because they are

always bounded by consecutive unique ordered sampling times.

Over 1000 samples of n = 100, the median number of increments of the NPMLE was 15 for both the

standard interval censored data and the misclassified data. The mean width of support regions, excluding

those bounded by ∞, was 0.07 for standard interval censored data and 0.01 for the misclassified data.

Table 1 compares the distribution of the profile likelihood ratio statistic, 2{l(θ̂, F̂θ̂)− l(θ0, F̂θ0)}, testing

a null hypothesis that θ0 = (α, β) = (0.05, 0.1), across 1000 samples of n = 100 and n = 500 against

the asymptotic χ2
2 distribution. This shows that the likelihood ratio test is slightly anti-conservative which

implies that constructed confidence regions using (4.1) would tend to have lower than nominal coverage.

6 Example: Onset of Cardiac Allograft Vasculopathy

As an illustrative example, an analysis of data on the time of onset of cardiac allograft vasculopathy (CAV)

among post-heart-transplantation patients is presented. CAV is the narrowing of arteries of the transplanted

heart and is asymptomatic in its early stages. Patients are diagnosed through angiographic surveillance which

is known to misdiagnose in some cases.

The data consist of the apparent presence or absence of CAV at a series of patient specific examination

times. Diagnoses were made on the basis of 1304 angiograms taken from 562 patients in their first 6 years

after transplanation, with individual patients having between 1 and 5 angiograms. It is assumed that the
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donated organs are healthy such that the patients will be CAV free at the time of transplantation.

Observations continue to take place after the first positive diagnosis so it is possible to jointly estimate

the time-to-onset distribution as well as the false positive and false negative rates of the angiogram.

Table 2: Estimates and confidence intervals of false positive and false negative CAV diagnosis probabilities

for models based on a non-parametric failure time distribution and an exponential failure time distribution.

NPMLE Exponential

Estimate 95% CI Estimate 95% CI

α 0.022 (0.007, 0.045) 0.021 (0.008, 0.053)

β 0.073 (0.015, 0.147) 0.090 (0.038, 0.197)

Table 2 gives the estimated diagnostic error rates using the NPMLE and also based on a parametric model

assuming a constant hazard of progression, implying exponentially distributed onset times. The estimated

error probabilities are broadly similar - in each case there is estimated to be a greater risk that the angiogram

will fail to detect the presence of CAV, than to over-diagnose it. The estimated false negative probability,

β, is slightly lower for the non-parametric model.

Figure 3 gives the NPMLE of the onset distribution compared to the exponential estimate from the

parametric model. There is some suggestion of an increasing hazard of onset since the non-parametric

estimate is somewhat lower than the parametric in the period 1 to 2 years post-transplantation.

7 Discussion

In addition to allowing the misclassification probabilities to depend on time, a relatively straightforward

extension would be to allow dependence on explanatory variables. A more challenging extension is to

incorporate the effect of explanatory variables into the failure time distribution F . One approach would be

to adopt an accelerated failure time model where log Tj = Z
′

jθ + εj for a p-dimensional covariate Zj with

corresponding p-dimensional regression coefficient θ, where εj are independent and identically distributed

residuals with unknown distribution F̃ . In the standard interval censored case, Rabinowitz et al (1995)

considered estimation via a family of score statistics. This approach can be adapted for misclassified data.

Let Xij,u = logXij −Z
′

ju and γ̃ij = P (Yj |εj ∈ (li, ri]), where (li, ri] denote the left and right boundaries of
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Figure 3: NPMLE for probability of disease onset (solid line) and parametric exponential estimate (dashed

line) for CAV data.

the support regions of the NPMLE for F̃ given a particular value, u, of the regression coefficient. Estimation

can be based upon a score statistic of the form

S(u) =

n∑
j=1

Zj

∑nj+1
i=1 {g(F (Xij,u))− g(F (Xij−1,u))} γ̃ij∑nj+1

i=1 ({F (Xij,u)− F (Xij−1,u)}γ̃ij)

whereXi0,u = −∞ andXini+1,u =∞ and g is some function with domain [0, 1] satisfying g(0) = g(1) = 0,

with this condition ensuring Eu(S(u)) = 0. The efficiency of this estimator will depend on the choice of g.

An adaptive procedure for choosing g, similar to that proposed by Rabinowitz et al (1995), may be possible,

but is beyond the scope of this paper.

In applications of the model, the assumption of independence of the observations conditional on the

failure time is likely to be key. In principle, a more general form for γij(α, β) could be adopted allowing the

individual classifications to be correlated, for instance via a shared multivariate binary copula. However, it

is not clear how this would affect the support set of F or the joint identifiability of F and θ.

In the application on onset of CAV, an implicit assumption that censoring due to death was made. The

data used was restricted to the first 6 years of follow-up, where death from CAV is relatively rare. However,

a more appropriate method of dealing with this issue, particularly if data with greater follow-up were used,
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would be to adopt an illness-death type model with misclassified illness status (Sharples et al, 2003; Teeple

and Brown, 2015). A fully non-parametric approach in this case would require the extension of the methods

of Frydman and Szarek (2009) for three-state illness-death Markov models.
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Böhning D (1985) Numerical estimation of a probability measure. Journal of Statistical Planning and Infer-

ence 11:57–69
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