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Abstract

Bootstrap methods for estimating the long-run covariance of stationary functional time
series are considered. We introduce a versatile bootstrap method that relies on functional
principal component analysis, where principal component scores can be bootstrapped by
maximum entropy. Two other bootstrap methods resample error functions, after the depen-
dence structure being modeled linearly by a sieve method or nonlinearly by a functional
kernel regression. Through a series of Monte-Carlo simulation, we evaluate and compare
the finite-sample performances of these three bootstrap methods for estimating the long-run
covariance in a functional time series. Using the intraday particulate matter (PM10) data set
in Graz, the proposed bootstrap methods provide a way of constructing the distribution of
estimated long-run covariance for functional time series.
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1 Introduction

Functional data often arise from measurements obtained by separating an almost continuous

time record into natural consecutive intervals, for example days, weeks or years; see Hörmann

& Kokoszka (2012). The functions thus obtained form a time series {Xi, i ∈ Z} where each Xi

is a random function Xi(t) for t lies within a function support range I . We refer to such data

structures as functional time series, examples of which include daily price curves of a financial

stock in Kokoszka & Zhang (2012), monthly sea surface temperature in climatology in Shang &

Hyndman (2011), and yearly age-specific mortality rates in Hyndman & Ullah (2007).

A central issue in the analysis of such data is to take into account the temporal dependence of

the functional observations denoted by X = (X1, . . . ,Xn)>. Due to this temporal dependence,

even the most elementary statistics become inaccurate; an example is estimating the unknown

mean function µ = E(X ) of a functional time series. The sample mean X̄n = 1
n ∑n

i=1Xi is not

the most efficient estimator in the presence of strong serial correlation. As shown in Politis

(2003), one can decompose a functional time series as Xi = µ + εi. When εi are independent

and identically distributed (IID), X̄n is the ordinary least squares estimator of µ. However,

when (ε1, . . . , εn) are correlated, the best linear unbiased estimator of µ is the generalized least

squares estimator. Let I = (1, . . . , 1)> and Γn denotes the (unknown) covariance operator of a

time series of functions X with i, j element given by γ(i− j) = Cov(Xi,Xj). The generalized

least squares estimator is then given by µ̂ =
(
I>Γ−1

n I
)−1

I>Γ−1
n X , where > symbolizes

matrix transpose. It is obvious that µ̂ is a weighted average of X , where the weights depend

on the unknown covariance operator. As many statistics require the correct calculation of

sample mean function, the serial correlation in functional time series poses challenges in the

calculations of other summary statistics, such as long-run covariance function considered in

Section 2.

In functional time series, a main task is to make inference about the sampling distribution

of ϑ̂n, a statistic estimating the parameter of interest ϑ. Not only it is important to obtain a

consistent estimator, we are also interested in estimating the variability associated with ϑ̂ and

constructing its confidence intervals (CIs) or carrying out a hypothesis test (see, for example,

Benko et al. (2009), Hall & Hosseini-Nasab (2006), Horváth et al. (2014), Paparoditis & Sapatinas

(2015)). When such a problem arises, resampling methodology especially bootstrapping turns

out to be the only practical alternative (see, for example, Cuevas et al. (2006), Goldsmith et al.

(2013), McMurry & Politis (2011), Shang (2015)) by using sampling from the sample to model

2



sampling from the population. However, the dependence in functional time series complicates

matters because the bootstrap must be modified so that the resampled functional time series

has an asymptotically similar dependence structure to the original functional time series.

Bootstrapping functional data is not new, but it has been studied mostly on independent

functional data (see e.g., Benko et al. (2009), Cuevas et al. (2006), Paparoditis & Sapatinas

(2015), Shang (2015)). There are relatively fewer studies on bootstrap techniques for functional

time series, noticeably the work of Raña et al. (2016) and Raña et al. (2015) who extended the

stationary bootstrap of Politis & Romano (1994) to functional time series. The essential idea

of stationary bootstrap is that the resampled functional time series contains arbitrary length

blocks of consecutive observations from the original functional time series, where the average

length of the blocks grows as sample size becomes large. However, it relies on stationarity

condition and it can be difficult to determine the optimal length of blocks, which is a form of

smoothing parameter. Using too small block length will corrupt the dependence structure,

increasing the bias of the bootstrap method, choosing block length too large will result a

method which has relatively high variance and consequent inaccuracy; see Politis et al. (1999).

Bootstrapping functional time series is receiving increasing attention in functional data

literature, as shown by three concurrent working papers. Franke & Nyarige (2016) proposed

a residual-based bootstrap for functional autoregressions and showed that the empirical dis-

tribution of the centered sample innovations converges to the distribution of the innovations

with respect to the Mallows metric. Paparoditis (2016) also considered the functional au-

toregressions and derived bootstrap consistency as the sample size and order of functional

autoregression both tend to infinity. From a nonparametric viewpoint, Zhu & Politis (2016)

proposed a kernel estimation of first-order nonparametric functional autoregression model

and its bootstrap approximation.

To contribute to this field, this article provides an informative account of three techniques

from a computational perspective that merge the ideas of functional time series analysis and

bootstrap techniques for univariate time series in Section 3. Illustrated by simulation studies

in Section 4, we evaluate and compare the finite-sample performances between these three

bootstrap techniques. In Section 5, we apply these bootstrap techniques to an intraday PM10

data set in Graz, Austria. Conclusions are given in Section 6, along with some ideas on how

the methodology presented here can be further extended in this exciting area of research.
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2 Estimation of long-run covariance

2.1 Notation

It is commonly assumed that random functions are sampled from a second-order stochastic

processX in L2, where L2 is the Hilbert space of square-integrable functions. Each realizationXi

satisfies the condition ‖Xi‖2 =
∫
I X

2
i (t)dt < ∞ with a function support range I , inner product

〈 f , g〉 =
∫
I f (t)g(t)dt for any two functions, f and g ∈ L2(I) and induced squared norm

‖ · ‖ = 〈·, ·〉. All random functions are defined on a common probability space (Ω, A, P). The

notation X ∈ Lp
H(Ω, A, P) is used to indicate that for some p > 0, the condition E(‖X ‖p) < ∞.

When p = 1, X has the mean curve µ = E(X ); when p = 2, X has the covariance operator

K(s, t) = Cov[X (s),X (t)] = E{[X (s)− µ(s)][X (t)− µ(t)]}, where s, t ∈ I .

2.2 Long-run covariance estimation

In order to provide a formal definition of the long-run covariance function, suppose that

{Xi(t), t ∈ I}i∈Z is a set of stationary and ergodic functional time series. The long-run

covariance function is defined as

K(s, t) =
∞

∑
`=−∞

γ`(u, s),

γ`(u, s) = cov(X0(u),X`(s)),

and is a well-defined element of L2 under mild weak dependence and moment conditions. Via

right integration, C defines a Hilbert-Schmidt integral operator on L2 given by

C( f )(u) =
∫
K(s, t) f (s)ds, (1)

whose eigenvalues and eigenfunctions are related to the dynamic functional principal com-

ponents defined in Hörmann et al. (2015), and (1) provides asymptotically optimal finite

dimensional representations of the sample mean of dependent functional data.

It is of interest in practice to estimate C from a finite sample X1, . . . ,Xn. Given its definition

as a bi-infinite sum, a natural estimator of C is

K̂h,q(s, t) =
n−1

∑
`=−(n−1)

Wq

(
`

h

)
γ̂`(u, s),
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where h is called the bandwidth parameter,

γ̂`(u, s) =


1
n

n−`
∑
j=1

[
Xj(u)−X (u)

] [
Xj+`(s)− X(s)

]
, ` ≥ 0;

1
n

n

∑
j=1−`

[
Xj(u)− X(u)

] [
Xj+`(s)−X (s)

]
, ` < 0.

is an estimator of γ`(u, s), and Wq is a symmetric weight function with bounded support of

order q. Mild conditions must be assumed on the bandwidth parameter h in order for K̂h,q

to be a consistent estimator of C in norm, that is h = h(n) → ∞ as n → ∞ and h(n) = o(n).

However, its choice can greatly affect the performance of the estimator in finite samples, and

hence Rice & Shang (2016) developed a two-step data-driven approach to select h in order

to minimize the estimation error, and showed its asymptotic consistency. In the first step, a

pilot bandwidth is estimated using the flat-top kernel of Politis & Romano (1996) as the initial

weight function and h = n
1
5 as the initial bandwidth. In the second step, the first-order Bartlett

kernel is chosen as the optimal final weight function.

3 Some resampling techniques

3.1 Bootstrap functional principal component scores

Among many techniques for modeling the variability of functional time series, model based on

Karhunen-Loéve decomposition are commonly used (see Hörmann et al. (2015) among others).

A Karhunen-Loéve expansion of X evaluated at t ∈ I is expressed by

X (t) = µ(t) + ε(t)

= µ(t) +
∞

∑
j=1

β jφj(t), (2)

with the mean function µ(t) = E[X (t)] and the basis functions (φ1(t), φ2(t), . . . ) are the

orthonormal eigenfunctions of the long-run covariance kernel K(s, t). The long-run covariance

kernel K(s, t) can be expressed as∫
I
K(s, t)φj(t)dt = λjφj(s),

K(s, t) =
∞

∑
j=1

λjφj(t)φj(s),
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where λj ≥ 0 is a set of eigenvalues in a decreasing order, and the condition
∫
I E
[
X 2(t)

]
dt <

∞ entails ∑∞
j=1 λj < ∞. The principal component scores β j in (2) is given by the projection

of X − µ in the direction of the jth eigenfunction φj, i.e., β j = 〈X − µ, φj〉. The principal

component scores (β1, β2, . . . ) consist of uncorrelated sequences of random variables with zero

mean and finite variance.

In practice, we often observe a time series of functions at regular and dense grid in Ramsay

& Silverman (2005) or irregular and sparse grid in Yao et al. (2005). In the case of irregular

and sparse grid, one can implement a nonparametric smoothing technique, such as local

linear smoother, to obtain a regular and dense grid (see for example, Yao et al. (2005)). Due to

simplicity, we concentrate on the regular and dense grid, where the number of grid points is

often larger than the sample size. A time series of functions X (t) = {X1(t), . . . ,Xn(t)} can be

decomposed as

Xi(t) = µ̂(t) +
n

∑
k=1

β̂i,kφ̂k(t), i = 1, . . . , n,

where µ̂(t) = 1
n ∑n

i=1Xi(t), β̂k =
(

β̂1,k, . . . , β̂n,k
)

are estimated from empirical covariance

function and (β̂1, . . . , β̂K) are uncorrelated series, and
{

φ̂1(t), φ̂2(t), . . . ,
}

represents a set of

estimated functional principal components. Since principal component scores are considered

as surrogates of original functional time series, these principal component scores capture the

dependence structure inherited in the original functional time series (see also Paparoditis (2016)

and Salish & Gleim (2015)). By adequately bootstrapping these principal component scores, we

can generate a set of bootstrapped functional time series, conditional on the estimated mean

function and estimated functional principal components from the observed functional time

series.

Among many bootstrap techniques for time series of principal component scores, we

implement a maximum entropy (ME) bootstrap proposed by Vinod (2004). The advantages of

the ME bootstrap for univariate time series are:

(i) stationarity condition is not required;

(ii) bootstrap technique computes ranks of a time series, thus it is robust against outliers of

the principal component scores;

(iii) bootstrap samples satisfy the ergodic theorem, central limit theorem and mean preserving

constraint;
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(iv) bootstrap samples are adjusted so that the population variance of the ME density equals

that of the original data.

For each series of the estimated principal component scores, we approximate its probability

distribution, as a measure of uncertainty of a random variable. In the information theory

literature, the measure of uncertainty is known as entropy in Shannon (1948). Instead of

assuming a parametric distribution for the principal component scores, it is more objective

to choose the functional form of this probability distribution, which maximizes the Shannon

entropy subject to mass and mean-preserving constraints. This is the idea of ME.

In order to use the ME to construct a bootstrap method valid for time series with any level

of persistence, we must take into account data information and preserve persistence. Vinod &

de Lacalle (2009) introduce a ME bootstrap method to address both points. The algorithm can

be summarized below.

1) Sort each set of the estimated principal component scores in increasing order to create

order statistics x(i) and store the ordering index vector.

2) Compute intermediate points zt =
x(i)+x(i+1)

2 for i = 1, . . . , n− 1 from the order statistics.

3) Compute the trimmed mean, denoted by mtrim of deviations xi − xi−1 among our consec-

utive observations. Compute the lower limit for left tail as z0 = x(1) −mtrim and upper

limit for right tail as zn = x(n) + mtrim. These limits become the limiting intermediate

points.

4) Compute the mean of the ME density within each interval such that the “mean-preserving

constraint” is satisfied. Interval means are denoted as {m1, . . . , mn}. The means for the

first and last intervals have simpler formulas:
m1 = 3

4 x(1) +
1
4 x(2)

mη = 1
4 x(η−1) +

1
2 x(η) +

1
4 x(η+1), η = 2, . . . , n− 1,

mn = 1
4 x(n−1) +

3
4 x(n)

5) Generate random numbers from Uniform[0, 1], compute sample quantiles of the ME

density at those points and sort them.

6) Re-order the sorted sample quantiles by using the ordering index of step 1). This recovers

the temporal dependence relationships of the originally observed data.
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7) Adjust the variance of bootstrap samples so that the population variance of the ME

density equals that of original data, see Vinod (2013).

8) Repeat steps 2) to 7) several times.

Computationally, the meboot.pdata.frame function in the meboot package in R R Core Team

(2016) was utilized for producing bootstrap samples from the estimated principal component

scores. These bootstrap samples are capable of mimicking the correlation within each univariate

time series of principal component scores. Conditional on the estimated mean function and

estimated functional principal components, the bootstrapped functional time series can be

expressed as

X b
i (t) = µ̂(t) +

n

∑
k=1

β̂b
i,kφ̂k(t), i = 1, . . . , n,

where
{

β̂b
1,k, . . . , β̂b

n,k
}

represents the bootstrapped kth principal component scores, for b =

1, . . . , B where B symbolizes the number of bootstrap replications. While this method is data-

driven, considerations are also given to two residual bootstrap techniques described in the

subsections 3.2 and 3.3.

3.2 Functional autoregressive (FAR) bootstrap

When the stationarity condition satisfies for a functional time series {X1, . . . ,Xn}, a parametric

or a nonparametric estimator of the conditional mean given by

m(Xn−1, . . . ,Xn−p) = E(Xn|Xn−1, . . . ,Xn−p), (3)

is able to capture correlation among functional time series. From a parametric bootstrapping

aspect, Bosq (2000) proposed the functional autoregressive of order 1 (FAR(1)) and derived one-

step-ahead forecasts that are based on regularized form of the Yule-Walker equations. Later,

FAR(1) has been extended to FAR(p), where the order p can be determined via a hypothesis

testing procedure of Kokoszka & Reimherr (2013). Klepsch & Klüppelberg (2016) proposed

the functional moving average (FMA) process and introduced an innovations algorithm to

obtain the best linear predictor. Klepsch et al. (2016) extended the FAR and FMA processes to

functional autoregressive moving average (FARMA). Li et al. (2016) considered long-range

dependent functional time series and proposed a functional autoregressive integrated moving

average process. Here, we consider the FAR model and sample with replacement from error
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functions, where temporal dependence can be captured by functional autoregressive (FAR) of

order p (see e.g., Bosq (2000)). The FAR(p) model can be expressed as:

Xω = µ + ρ1 (Xω−1 − µ) + · · ·+ ρp
(
Xω−p − µ

)
+ εω,

where εω denotes an error term with mean zero; (ρ1, . . . , ρp) represent different lags autocor-

relation operators; and ω = p + 1, . . . , n. Although Kokoszka & Reimherr (2013) presented

a multistage testing procedure for determining the optimal order p of a FAR process, it does

not guarantee that εω is completely serial uncorrelated. Instead, our bootstrap method uses

the simplest FAR(1) model, where estimated error functions can then be resampled by the ME

bootstrap, in order to capture any remaining temporal dependence exhibited in the error term.

The FAR(1) model is given by

Xω = µ + ρ (Xω−1 − µ) + εω, (4)

where ρ = γ(1)/γ(0) represents the first-lag autocorrelation operator. Let X c
ω(t) be the centred

functional data, then (4) can be conveniently re-expressed as

X c
ω = ρX c

ω−1 + εω,

where c symbolizes a centered functional time series.

Based on a set of centered functional time series, the variance and autocovariance functions

γ(0) and γ(1) are estimated by the sample variance and autocovariance

γ̂(0) =
1
n

n

∑
ω=1
X c

ω ⊗X c
ω, γ̂(1) =

1
n

n−1

∑
ω=1
X c

ω ⊗X c
ω+1,

where ⊗ denotes a tensor product.

Assuming the FAR(1) is the correct parametric model, the best linear predictor of X c
ω given

the past values X c
ω−1 is given by

X̂ c
ω = ρ̂X c

ω−1.

The one-step-ahead estimation error is then given by

êω = X c
ω − X̂ c

ω, ω = 2, . . . , n.

Similar to {X2, . . . ,Xn}, {ê2, . . . , ên} is a set of realizations of a stochastic process, wherê̂eω = êω − êω be a centered stochastic process. Without such a centering, the resulting bootstrap

approximation often has a random bias that does not vanish in the limit; see Lahiri (2003).
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Since the FAR(1) model may not capture all dependence structure in the original functional

time series, it is expected some residual dependence structure will be manifested in the

centered residual functions. These centered residual functions can be bootstrapped through

the ME bootstrap method given in Section 3.1. In the simulation study, we also examine data

generating processes (DGPs) that differ from the FAR(1) model.

3.3 Functional kernel regression (FKR) bootstrap

Although the class of linear time series is quite rich, such as the FAR models, the class of

nonlinear time series is vast. It is clear that the FAR bootstrap will generally not work well

when applied to functional time series {X1, . . . ,Xn} from a nonlinear time series. Under some

smoothness assumption on conditional mean function m(·) in (3), this data-driven estimation

can be performed under different nonparametric smoothing techniques, such as functional

kernel smoothing (see, e.g., Ferraty & Vieu (2006), Masry (2005), Paparoditis & Politis (2000)).

For some fixed order p ∈N, the error functions are given as

εω = Xω −m
(
Xω−1, . . . ,Xω−p

)
, (5)

where ω = p + 1, . . . , n, m(·) is an unknown smooth function, and εω denotes error functions.

The functional form of m(·) is often estimated in a data-driven manner. There are a growing

amount of literature on the development of nonparametric functional estimators, such as func-

tional Nadaraya-Watson estimator in Ferraty & Vieu (2006), functional local linear estimator in

Berlinet et al. (2011), functional k-nearest neighbor estimator in Kudraszow & Vieu (2013) and

distance-based local linear estimator in Boj et al. (2010). Throughout this paper, we illustrate

the proposed method using the functional Nadaraya-Watson estimator because of its simplicity

and mathematical elegance.

Let Xω be the functional response, and X =
(
Xω−1, . . . , Xω−p

)
be functional predictors.

The functional Nadaraya-Watson estimator can be written as

m̂n(x) =
∑n

ω=p+1 K
[

d(x,X )
h

]
Xω

∑n
ω=p+1 K

[
d(x,X )

h

] , p ≥ 1,

where K(·) is a symmetric real-valued kernel function defined on R+ satisfying
∫ ∞
−∞ K(x)dx =

1; d(·, ·) is a semi-metric used to measure distance between two functions and it has the

properties d(a, a) = 0, but d(a, b) = 0 6=⇒ a = b ; h ∈ R+ represents a bandwidth associated

with an infinite-dimensional function-valued predictor, and it controls the trade-off between
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squared bias and variance in the mean squared error. This estimator m̂n(x) is a weighted

average of the observed response, where the weights are governed by a semi-metric distance

and a bandwidth.

From (5), the residual functions can be expressed as

êω = Xω − m̂n
(
Xω−1, . . . ,Xω−p

)
,

let ̂̂eω = êω − êω denotes the centered stochastic process. Similar to the FAR bootstrap, the FKR

bootstrap also requires the optimal selection of order p. Following Raña et al. (2015), we also

consider p = 1 expressed as

êω = Xω − m̂n (Xω−1) , ω = 2, . . . , n. (6)

Since (6) may not capture all dependence structure in the original functional time series, it is

expected the residual dependence structure will be manifested in the centered residual func-

tions. These centered residual functions can then be bootstrapped through the ME bootstrap

method given in Section 3.1.

4 Simulation study

In Section 2, we introduce a kernel sandwich estimator for estimating long-run covariance

of functional time series, used by the three bootstrap techniques described in Section 3 to

estimate the distribution of the long-run covariance of functional time series. In Section 4.1, we

introduce a simulation setup, while the evaluation metrics are given in Section 4.2. Simulation

results are presented in Section 4.3, where the accuracies of different resampling techniques

are evaluated and compared.

4.1 Simulation DGPs

In order to define the DGPs that we considered, let {Bi(t),−∞ < i < ∞, t ∈ [0, 1]} denote IID

standard Brownian motions. Following an early work by Rice & Shang (2016), we generate

functional time series according to

FARφ(p) : Xi(t) =
p

∑
j=1

φjXi−j(t) + Bi(t),

FMAθ(q) : Xi(t) = Bi(t) +
q

∑
j=1

θjBi−j(t).

11



We consider two FAR processes, namely FAR0.5(1) and FAR(−0.6,0.09)(2), and three functional

moving average (FMA) processes, namely FMA0.5(1), FMA0.5(4) and FMA0.5(8).

As an illustration of the estimators Ĉh,q, Figure 1 shows lattice plots of the sample long-run

covariance estimates with the FAR0.5(1) simulated data, using the plug-in bandwidth selection

procedure for n = 100, 300, 500 and theoretical long-run covariance.
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Figure 1: Lattice plots of the long-run covariance function estimates with the FAR0.5(1) simulated

data, using the first-order Bartlett kernel with the proposed plug-in bandwidth for values of

n = 100, 300 and 500 along with the theoretical long-run covariance (lower right).

4.2 Simulation evaluation

To evaluate the finite-sample performances of the three bootstrap methods, we investigate the

distribution of the estimation errors between the sample estimated and theoretical long-run
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covariance functions, and between the sample estimated and bootstrapped sample long-run

covariance functions. These can be expressed as

D̂ = ‖K(s, t)− K̂(s, t)‖2,

D̂b = ‖K̂(s, t)− K̂b(s, t)‖2,

where K̂b(s, t) represents the bootstrapped sample long-run covariance function estimates, and

‖ε(s, t)‖2 = [
∫

ε2(s, t)dsdt]1/2. Given a sample {X1,X2, . . . ,Xn}, we draw R = 200 replications

of bootstrapped samples using the three bootstrap methods, along with the IID bootstrap

method of Shang (2015); and the same pseudo-random seeds were used for all the methods in

order to give the same simulation randomness.

The 100(1− α)% bootstrap CIs of the long-run covariance function estimation error, is

defined by calculating the cut-off value, DT, such that the 100(1− α)% of the bootstrapped esti-

mation errors are within a distance smaller than DT. In our simulation study, the performance

of bootstrap is evaluated through R = 200 replications, the corresponding CIs are constructed

based on B = 399 repetitions for each replication.

To calculate pointwise interval forecast accuracy, we utilize the interval score of Gneiting &

Raftery (2007) (see also Gneiting & Katzfuss (2014)). A scoring rule for the pointwise interval

forecast is given as

Sα(D̂l, D̂u, D) = (D̂u − D̂l) +
2
α
(D̂l − D)I{D < D̂l}

+
2
α
(D− D̂u)I{D > D̂u},

where I{·} denotes a binary indicator function, and α denotes the levels of significance, such

as α = 0.05, 0.2, 0.5 for their corresponding 95%, 80%, 50% CIs, respectively. The interval score

rewards a narrow CI, if and only if the true observation D lies within the CI constructed from

D̂b. The optimal interval score is achieved when D lies between D̂l and D̂u and the distance

between D̂l and D̂u is minimal.

Averaged over R = 200 replications, we compute the averaged interval score given by

Sα =
1
R

R

∑
r=1

Sα,r.

The best bootstrap method is the one that has the smallest averaged interval score.

13



4.3 Simulation results

In Table 1, we report the averaged interval scores obtained from four bootstrap methods for

sample sizes n = 100, 200, bootstrap repetitions B = 399, and bootstrap replications R = 200.

Table 1: Averaged interval scores based on n = 100, 200, B = 399 repetitions and R = 200 replica-

tions. The smallest averaged interval scores are highlighted in bold.

n = 100 n = 200

α Bootstrap method Bootstrap method

DGP IID ME FAR FKR IID ME FAR FKR

α = 0.05

FAR0.5(1) 6.1745 0.1401 0.0758 0.0977 14.0217 0.1207 0.0642 0.0764

FAR(−0.6,0.09)(2) 6.8091 0.1474 0.0688 0.0941 14.7645 0.1214 0.0568 0.0703

FMA0.5(1) 0.0958 0.0072 0.0042 0.0051 0.1689 0.0061 0.0033 0.0038

FMA0.5(4) 65.3362 0.3658 0.0842 0.1163 94.9467 0.3185 0.0693 0.0886

FMA0.5(8) 819.4318 4.2373 0.4305 0.6141 1250.9981 4.2912 0.3914 0.5441

α = 0.2

FAR0.5(1) 2.2643 0.1709 0.0997 0.1186 4.1063 0.1336 0.0762 0.0872

FAR(−0.6,0.09)(2) 2.4869 0.1725 0.0923 0.1138 4.3445 0.1309 0.0678 0.0792

FMA0.5(1) 0.0649 0.0080 0.0050 0.0059 0.0772 0.0061 0.0036 0.0041

FMA0.5(4) 17.6960 0.4312 0.1155 0.1463 24.8471 0.3463 0.0860 0.1066

FMA0.5(8) 213.7299 5.0534 0.5839 0.7973 320.1938 4.7279 0.5255 0.6861

α = 0.5

FAR0.5(1) 1.3222 0.1671 0.0996 0.1168 1.9924 0.1303 0.0753 0.0858

FAR(−0.6,0.09)(2) 1.4446 0.1659 0.0923 0.1109 2.1165 0.1258 0.0670 0.0776

FMA0.5(1) 0.0467 0.0074 0.0048 0.0056 0.0495 0.0055 0.0034 0.0039

FMA0.5(4) 7.9032 0.4273 0.1171 0.1462 10.6051 0.3373 0.0862 0.1066

FMA0.5(8) 90.9713 5.0452 0.6252 0.8171 132.6385 4.7377 0.5480 0.6977

Subject to the same random seed, the FAR bootstrap method performs the best with

the smallest averaged interval score, followed closely by the FKR bootstrap method. For

comparison, we also include the IID bootstrap method of Shang (2015), where each set of
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the principal component scores is randomly sampled with replacement. It produces rather

unsatisfactory results with the largest averaged interval scores in all DGPs. This demonstrates

that any naive application assuming that the functional data are IID when in fact they are not,

can be disastrous. In contrast, the proposed three bootstrap methods were implemented by

preserving the data structure and show empirically bootstrap consistency. As the sample size

n increases, the averaged interval scores become smaller.

When the DGPs were simulated from the FAR(1) models, the FAR bootstrap method

performs the best, since the assumed model is correct. To our surprise, the FAR bootstrap

method is also favorable when the DGPs were simulated from the FAR(−0.6,0.09)(2) and three

FMA models. In the former case, an explanation is that the DGP is linear in structure, thus

a functional autoregression model even with a wrongly chosen order would be preferable

than a functional kernel regression. In the latter case, an explanation is that stationary and

invertible FMA models can be re-expressed in terms of a FAR model. As the temporal depen-

dence increases from FMA(1) to FMA(4) to FMA(8), the averaged interval scores increase for

all bootstrap methods. It reveals the difficulty of all the bootstrap methods considered for

modeling long-range dependent functional time series.

5 Intraday PM10 curves

As a vehicle of illustration, intraday PM10 concentrations were considered. The observations

are half-hourly measurements of concentration of PM with an aerodynamic diameter of less

than 10um, in ambient air taken in Graz, Austria from 1/October/2010 until 31/March/2011

(see also Hörmann et al. (2015)). Based on this observed time period, we convert N = 8, 736

discrete univariate time series points into n = 182 daily curves.

Let {Zw, w ∈ [1, N]} be a seasonal univariate time series, which has been observed at N

equispaced time points. When the seasonal pattern is strong, one way to model the time series

nonparametrically is to use ideas from functional data analysis (see also Ferraty et al. (2002)).

We divide the observed time series into n trajectories, and then consider each trajectory of

length p as a curve rather than as p distinct points. The functional time series is given by

Xi(tj) = {Zw, w ∈ (p(i− 1), pi]}, i = 1, . . . , n,

where j = 1 . . . , 48 denotes p = 48 discrete points, and 0 < t1 ≤ t2 ≤ · · · ≤ t48 = 24. A

univariate time series display of intraday pollution curves is given in Figure 2a, with the same
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data shown in Figure 2b as a time series of functions.
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(a) A univariate time series display
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(b) A functional time series display

Figure 2: Graphical displays of intraday measurements of the PM10 from 1/October/2010 to

31/March/2011.

Using the stationarity test proposed by Horváth et al. (2014), we carried out a hypothesis

testing procedure with the null hypothesis that the functional time series is stationary. Since

the p-value = 0.078 > 0.05, we conclude that this functional time series is stationary.

Our aim is to apply a bootstrap method to construct the 80% CI of the estimated long-run

covariance of the PM10 intraday data set. Among the bootstrap methods considered, we

implemented the FAR bootstrap method, as it has the best finite-sample performance in our
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simulation study. While the sample estimated long-run covariance is shown in Figure 3a, the

lower and upper bounds of the 80% CIs are shown in Figures 3b and 3c, respectively.

0
5

10

15

20
0

5

10

15
20

1500

2000

2500

3000

(a) Sample estimated covariance

0
5

10

15

20
0

5

10

15
20

1500

2000

2500

3000

(b) Estimated lower bound

0
5

10

15

20
0

5

10

15
20

1500

2000

2500

3000

(c) Estimated upper bound

Figure 3: Sample long-run covariance estimated by the kernel sandwich estimator, and the estimated

80% lower and upper bounds of the estimated long-run covariance using Bartlett kernel and

the plug-in bandwidth.

6 Conclusion

We present three bootstrap methods to visualize the distribution of a descriptive statistic of

functional time series. Since functional time series are intrinsically infinite dimension, a func-
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tional principal component analysis was used to reduce dimensionality and the autocorrelation

in the original functional time series is manifested in the principal component scores. By

bootstrapping these scores via the ME, bootstrapped functional observations that preserve

the temporal dependence were obtained, conditional on the estimated mean function and

estimated functional principal components. While this method is purely data-driven, we also

consider the first-order FAR and FKR to first capture simple linear and non-linear temporal

dependence structures, before bootstrapping centered residual functions by the ME.

Through some Monte-Carlo simulation studies, we illustrate the improved averaged inter-

val scores as the sample size increases from n = 100 to 200 for all proposed bootstrap methods.

In the presence of autocorrelation, it is advantageous to consider bootstrap methods that are

appropriate for functional time series, as they would result in much smaller estimation errors

and hence better estimation accuracy of a population statistic, such as the long-run covariance

considered here.

One limitation of the simulation study is that the DGPs are restricted to a linear functional

form, which is common in Bosq (2000) and Horváth et al. (2016). However, non-linear func-

tional time series analysis is an important research topic that deserves future investigation, but

it is currently in its infancy. The other limitation of the proposed bootstrap methods is that

we can not establish the bootstrap consistency. It is a topic that we aim to address in future

research.

Illustrated by the intraday PM10 data set in Graz, it is shown that the first-order FAR

bootstrap procedure provides an effective descriptive tool to the distributional analysis of the

estimated long-run covariance of a stationary functional time series. It is our hope that the

bootstrap methods, including the ones proposed here, will receive increasing popularity in

functional time series analysis, where the object of interest is on the distribution of functional

estimators.

A future research direction is to consider high-order bootstrapping for functional time

series. Recent advances in statistical and econometric theories show that iterating the bootstrap

principle brings further refinements upon the single bootstrapping (see, for example, Davidson

& MacKinnon (2007)). Iterating the bootstrap principle reduces the dependence structure

between the probability distribution of the resamples and the unknown DGP. For instance,

double bootstrap has typically higher order accuracy than single bootstrap, but at a much

higher computational cost. Addressing this computational challenge and extending high-order

bootstrapping to functional time series remain a future research.
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Horváth, L., Rice, G. & Whipple, S. (2016), ‘Adaptive bandwidth selection in the long run

covariance estimator of functional time series’, Computational Statistics & Data Analysis

100, 676–693.

Hyndman, R. & Ullah, M. (2007), ‘Robust forecasting of mortality and fertility rates: A func-

tional data approach’, Computational Statistics & Data Analysis 51(10), 4942–4956.
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