Skip to main content
Log in

Objective Bayesian transformation and variable selection using default Bayes factors

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this work, the problem of transformation and simultaneous variable selection is thoroughly treated via objective Bayesian approaches by the use of default Bayes factor variants. Four uniparametric families of transformations (Box–Cox, Modulus, Yeo-Johnson and Dual), denoted by T, are evaluated and compared. The subjective prior elicitation for the transformation parameter \(\lambda _T\), for each T, is not a straightforward task. Additionally, little prior information for \(\lambda _T\) is expected to be available, and therefore, an objective method is required. The intrinsic Bayes factors and the fractional Bayes factors allow us to incorporate default improper priors for \(\lambda _T\). We study the behaviour of each approach using a simulated reference example as well as two real-life examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bartlett, M.S.: Comment on D.V. Lindley’s statistical paradox. Biometrika 44, 533–534 (1957)

    Article  MATH  Google Scholar 

  • Berger, J.O., Pericchi, L.R.: The intrinsic Bayes factor for linear models. In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (eds.) Bayesian Statistics, vol. 5, pp. 25–44. Oxford University Press, Oxford (1996a)

    Google Scholar 

  • Berger, J.O., Pericchi, L.R.: The intrinsic Bayes factor for model selection and prediction. J. Am. Stat. Assoc. 91, 109–122 (1996b)

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J.O., Pericchi, L.R.: Objective Bayesian methods for model selection: Introduction and comparison. In: Lahiri, P. (ed.) ‘Model selection’, Lecture Notes-Monograph Series, vol. 38, Institute of Mathematical Statistics, pp. 135–207 (2001)

  • Berger, J.O., Pericchi, L.R.: Training samples in objective model selection. Ann. Stat. 32, 841–869 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G.E.P., Cox, D.R.: An analysis of transformations (with discussion). J. R. Stat. Soc. Ser. B 26, 211–252 (1964)

    MathSciNet  MATH  Google Scholar 

  • Casella, G., Moreno, E.: Objective Bayesian variable selection. J. Am. Stat. Assoc. 101, 157–167 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Charitidou, E., Fouskakis, D., Ntzoufras, I.: Bayesian transformation family selection: moving towards a transformed Gaussian universe. Can. J. Stat. 43, 600–623 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Consonni, G., Veronese, P.: Compatibility of prior specifications accross linear models. Stat. Sci. 23, 332–363 (2008)

    Article  MATH  Google Scholar 

  • Gottardo, R., Raftery, A.E.: Bayesian robust variable and transformation selection: a unified approach. Can. J. Stat. 37, 1–20 (2009)

    Article  MATH  Google Scholar 

  • Hald, A.: Statistical Theory with Engineering Applications. Wiley, New York (1952)

    MATH  Google Scholar 

  • Hoeting, J.A., Ibrahim, J.G.: Bayesian predictive simultaneous variable and transformation selection in the linear model. J. Comput. Stat. Data Anal. 28, 87–103 (1998)

    Article  MATH  Google Scholar 

  • Hoeting, J.A., Raftery, A.E., Madigan, D.: A method for simultaneous variable and transformation selection in linear regression. J. Comput. Graph. Stat. 11, 485–507 (2002)

    Article  MATH  Google Scholar 

  • Ibrahim, J.G., Chen, M.H.: Power prior distributions for regression models. Stat. Sci. 15, 46–60 (2000)

    Article  MathSciNet  Google Scholar 

  • John, J.A., Draper, N.R.: An alternative family of transformations. Appl. Stat. 29, 190–197 (1980)

    Article  MATH  Google Scholar 

  • Kim, S., Chen, M.H., Ibrahim, J.G., Shah, A.K., Lin, J.: Bayesian inference for multivariate meta-analysis Box–Cox transformation models for individual patient data with applications to evaluation of cholesterol-lowering drugs. Stat. Med. 32, 3972–3990 (2013)

  • Kuo, L., Mallick, B.: Variable selection for regression models. Sankhyā B 60, 65–81 (1998)

    MathSciNet  MATH  Google Scholar 

  • Laud, P.W., Ibrahim, J.G.: Predictive model selection. J. R. Stat. Soc. B 57, 247–262 (1995)

    MathSciNet  MATH  Google Scholar 

  • Ley, E., Steel, M.F.J.: On the effect of prior assumptions in Bayesian model averaging with applications to growth regression. J. Appl. Econom. 24, 651–674 (2009)

    Article  MathSciNet  Google Scholar 

  • Madigan, D., York, J.: Bayesian graphical models for discrete data. Int. Stat. Rev. 63, 215–232 (1995)

    Article  MATH  Google Scholar 

  • Miranda, M.F., Zhu, H., Ibrahim, J.G.: Bayesian spatial transformation models with applications in neuroimaging data. Biometrics 69, 1074–1083 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • O’Hagan, A.: Fractional Bayes factors for model comparison. J. R. Stat. Soc. B 57, 99–138 (1995)

    MathSciNet  MATH  Google Scholar 

  • Pérez, J.M., Berger, J.O.: Expected-posterior prior distributions for model selection. Biometrika 89, 491–511 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Pericchi, L.R.: A Bayesian approach to transformations to normality. Biometrika 68, 35–43 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, J.G., Berger, J.O.: Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Stat. 38, 2587–2619 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Sweeting, T.J.: On the choice of the prior distribution for the Box–Cox transformed linear model. Biometrika 71, 127–134 (1984)

    Article  MathSciNet  Google Scholar 

  • Thall, P.F., Russell, K.E., Simon, R.M.: Variable selection in regression via repeated data splitting. J. Am. Stat. Assoc. 6, 416–434 (1997)

    Google Scholar 

  • Villa, C., Lee, J.E.: Model prior distribution for variable selection in linear regression models (2016). arXiv:1512.08077. http://arxiv.org/abs/1104.0861

  • Weisberg, S.: Applied Linear Regression, 3rd edn. Wiley-Interscience, New Jersey (2005)

    Book  MATH  Google Scholar 

  • Westerberg, I., Guerrero, J.L., Seibert, J., Beven, K.J., Halldin, S.: Stage-discharge uncertaintly derived with a non-stationary rating curve in the Choluteca river, honduras. Hydrol. Process. 25, 603–613 (2011)

    Article  Google Scholar 

  • Yang, Y., Christensen, O.F., Sorensen, D.: Analysis of a genetically structured variance heterogeneity model using the Box–Cox transformation. Genet. Res. 93, 33–46 (2011)

    Article  Google Scholar 

  • Yang, Z.: A modified family of power transformations. Econ. Lett. 92, 14–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Yeo, I.K., Johnson, R.A.: A new family of power transformations to improve normality or symmetry. Biometrika 87, 954–959 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fouskakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charitidou, E., Fouskakis, D. & Ntzoufras, I. Objective Bayesian transformation and variable selection using default Bayes factors. Stat Comput 28, 579–594 (2018). https://doi.org/10.1007/s11222-017-9749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9749-3

Keywords

Navigation