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Abstract

This paper proposes a simple, practical and efficient MCMC algorithm for Bayesian analysis of 

big data. The proposed algorithm suggests to divide the big dataset into some smaller subsets and 

provides a simple method to aggregate the subset posteriors to approximate the full data posterior. 

To further speed up computation, the proposed algorithm employs the population stochastic 

approximation Monte Carlo (Pop-SAMC) algorithm, a parallel MCMC algorithm, to simulate 

from each subset posterior. Since this algorithm consists of two levels of parallel, data parallel and 

simulation parallel, it is coined as “Double Parallel Monte Carlo”. The validity of the proposed 

algorithm is justified mathematically and numerically.
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1 Introduction

The MCMC method has proven to be a very powerful tool for analyzing data of complex 

structures. However, it is difficult to be applied to big data problems for which complex 

models are often needed. The difficulty comes from two aspects. The first one is on data 

storage; the dataset can be too large for a single computer to store and process. The second 

one is on computational time; the MCMC method can be very time consuming for 

simulating from the posterior of a large data set, which typically requires a large number of 

iterations and a complete scan of the full dataset for each iteration. However, thanks to the 

strategy of embarrassingly parallel computing, the two issues can now be solved 

simultaneously.

The strategy of embarrassingly parallel computing is to divide a large dataset into a number 

of smaller subsets such that each subset can be stored in a single machine, and then conduct 

the Bayesian analysis for each subset separately. Finally, the posterior samples generated for 

each subset are aggregated in some way such that correct inference can be made for the full 

data posterior. During the past few years, this strategy has been pursued by a few groups 
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enthusiastically, and several algorithms have been developed to address the issue of subset 

posterior aggregation.

To be a little more detailed, suppose that a large dataset has been partitioned into k subsets, 

and N posterior samples have been generated for each subset. Let {θ1
(i), …θN

(i)} denote the 

posterior samples generated from subset i. Based on the Bernstein-von Mises theorem, 

which states that the posterior tends to a normal distribution centered around the true 

parameter value θ* as the number of observations grows, Scott et al. (2016) proposed to use 

the weighted average ∑i = 1
k wiθ j

(i) to approximate a full data posterior sample, where the 

weight wi is the inverse of the covariance matrix of {θ1
(i), …θN

(i)}. This algorithm is exact 

when the subset posterior is Gaussian. Based on the same theory, Neiswanger et al. (2014) 

proposed to fit the posterior samples generated for each subset by a Gaussian density, 

denoted the fitted density by p̂i for i = 1, …, k, and then draw samples from the product 

density p̂1 … p̂k. As an extension of this approach, Neiswanger et al. (2014) proposed to 

estimate the subset posterior density using a Gaussian kernel density estimation method or a 

semiparametric density estimation method. Another method that makes use of kernel 

approximation is by Minsker et al. (2014), where the subset posteriors are combined by 

estimating a probability distribution that minimizes a loss function defined in the 

reproducing kernel Hilbert space embedding the subset posteriors. In addition, Wang and 

Dunson (2013) proposed a Weierstrass refinement sampler, where the samples from an 

initial approximation to the full data posterior (e.g., obtained via variational approximation 

or other methods) are refined using the information obtained from the subset posterior 

samples within a Weierstrass approximation. Later, Wang et al. (2015) proposed to combine 

the subsets using random partition trees. These methods generally work well, but their 

accuracy can vary significantly depending on how close the subset posteriors are to 

Gaussian, or the choice of kernel and its bandwidth, or the accuracy of density estimators for 

the subset posteriors, or whether the subset posteriors have non-overlapping supports. In 

particular, their accuracy can be low when the dimension of θ is high. Quite recently, the so-

called WASP method was proposed by Srivastava et al. (2015a) and Srivastava et al. 
(2015b), where each subset posterior is approximated by an empirical measure and they are 

combined by estimating their barycenter in the Wasserstein space of probability measures. 

This method does not depend on the kernel density estimation any more, but computing the 

Wasserstein barycenter needs to solve a huge linear programming problem which often 

requires a lot of computer memory. To resolve the computational problem, Li et al. (2017) 

proposed a simple and general posterior interval estimation algorithm (PIE) by averaging 

quantiles estimated from each subset. However, this method was devised to estimate certain 

quantiles and can not be directly used to estimate the whole distribution.

In this paper, we propose a new method for aggregating subset posterior samples. The new 

method is surprisingly simple, which is to first simulate from some modified subset 

posteriors, for which the log-likelihood functions are appropriately scaled according to their 

sample size, and then recenter the subset posterior samples to their global mean. Under mild 

conditions, we show that the aggregated samples have the same convergence rate toward the 

true parameter θ* as those drawn from the full data posterior. The numerical results indicate 
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that the new method can be rather accurate compared to the existing ones. In order to further 

speed up computation, we suggest to use the Pop-SAMC algorithm(Song et al., 2014), rather 

than traditional single chain MCMC algorithms, to draw samples from each subset posterior. 

Since the proposed method consists of two levels of parallel, data parallel and simulation 

parallel, it is coined as “Double Parallel” Monte Carlo.

The remainder of this article is organized as follows. Section 2 presents the proposed sample 

aggregation method and describes its theoretical properties. Section 3 first gives a brief 

review of the pop-SAMC algorithm, and then discusses the Double Parallel strategy. 

Sections 4 and 5 present some numerical results along with comparisons with some existing 

methods. Section 6 concludes the article with a brief discussion.

2 Subset Posterior Aggregation

Suppose that a random sample X = {X1, …, Xn} has been collected from the distribution f(x|

θ*), where θ* ∈ Θ ⊂ ℝp and Θ is the parameter space. Let g(θ) denote the prior distribution 

of θ. Then the posterior distribution of θ is given by

π(θ | X) =
∏i = 1

n f (Xi |θ)g(θ)
∫ Θ∏i = 1

n f (Xi |θ)g(θ)dθ
. (1)

In most cases, π(θ|X) is analytically intractable and we have to approximate it using the 

Markov chain Monte Carlo(MCMC) method. However, as mentioned previously, when n is 

very large, the MCMC method is computationally prohibitive because it requires a large 

number of scans of the dataset.

To address this issue, we divide the data into k subsets, each containing about the same 

number of samples. Let X[j] = (Xj1,…, Xjmj) denote the jth subset, where mj denotes the 

sample size of X[j]. Let π(θ|X[j]) denote the posterior distribution corresponding to the 

subset X[j], for which the variance is approximately n/mj times the variance of the full data 

posterior π(θ|X). To adjust the variance, for each subset, we instead work on a modified 

subset posterior

π∼(θ | X[ j]) =
∏i = 1

m j f
n/m j(X ji |θ)g(θ)

∫ Θ∏i = 1
m j f

n/m j(X ji |θ)g(θ)dθ
, (2)

where each sample is duplicated n/mj times. Such a modification, first introduced in Minsker 

et al. (2014), ensures that π̃(θ|X[j]) has about the same variance as the full data posterior. In 

what follows, we refer to π̃(θ|X[j]) as a subposterior and, without loss of generality, assume 

that m1 = m2 = ⋯ = mk = m holds.
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Let μ(1),⋯, μ(k) denote the mean vectors of the respective subposteriors, and let 

μ = 1
k ∑ j = 1

k μ( j) denote their averages. We propose to recenter each of the subposteriors to μ̂ 

and then use the following mixture of re-centered subposteriors to approximate the full data 

posterior π(θ|X):

π∼(θ | X) = 1
k ∑

j = 1

k
π∼(θ − μ + μ( j) | X[ j]) . (3)

To quantify the accuracy of the approximation, we make the following assumptions:

A1 The log-likelihood function ∑i = 1
n log  f (Xi |θ) = − nun(θ) is six-times 

continuously differentiable on Θ and has local minima {θ̂n : n = 1, 2, …}. Let 

Bδ(θ) denote an open ball of radius δ centered at θ, and let D2un(θ) denote the 

Hessian of un at θ. Further suppose there exist positive numbers ε, M, η and an 

integer n0 such that when n ≥ n0,

i. For all θ ∈ Bε(θn̂) and all 1 ≤ j1,…, jd ≤ p with 0 ≤ d ≤ 6, |∂j1,…,jd 
un(θ)| < M.

ii. det(D2un(θ̂n)) > η.

iii. for all δ for which 0 < δ < ε, Bδ (θ̂n) ⊆ Θ and

lim sup
n ∞

sup
θ ∈ Θ\Bδ(θn)

{un(θn) − un(θ)} < 0 .

A2 θ* is an interior point of Θ, g(θ*) > 0, and g(θ) is four times continuous 

differentiable on Θ. In addition, ∫ Θg(θ)‖θ‖2
2 exp{ − nun(θ)}dθ < ∞ for n = 1, 2,…

A3 The number of subsets k can increase slowly with n, but should be at the rate of 

o(n1/2).

Since the quantification involves posterior expansions based on Laplace’s method, the 

Laplace regularity condition (A1) is assumed. Refer to Kass et al. (1990) for more details. 

This condition is standard and generally holds for the exponentially family. Under the above 

conditions, we have the following theorem, whose proof is given in the appendix.

Theorem 1

If the conditions A1–A3 are satisfied, then we have

Eπ∼(θ) − Eπ(θ) = Op(m−1), (4)
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Varπ∼(θ) − Varπ(θ) = op(n−1), (5)

d2(π∼(θ | X), δ
θ∗) − d2(π(θ | X), δ

θ∗) = op(n−1), (6)

where Eπ and Eπ̃ denote the expectations with respect to π(θ|X) and π̃(θ|X), respectively; 

Varπ and Varπ̃ denote the variances with respect to π(θ|X) and π̃(θ|X), respectively; and 

d2(π∼(θ | X), δ
θ∗) = ∫ Θ‖θ − θ∗‖2

2
π∼(θ | X)dθ is the square of the Wasserstein distance of order 2 

between π̃(θ|X) and the Dirac measure at θ*.

Equations (4) and (5) measure the accuracy of the approximation of π̃(θ|X) to π(θ|X) in 

terms of mean and variance, respectively. Usually, d2(π(θ|X), δθ*) is O(n−1), thus equation 

(6) implies that π̃(θ|X) and π(θ|X) share the same convergence rate toward the true value θ*. 

In other words, the subposterior aggregation does not lose much information about the data.

Rather than θ itself, sometimes we are interested in h(θ), a ℝp ↦ ℝq function of θ. A 

similar result, which measures the accuracy of the approximation π̃(h(θ)|X), can be obtained 

if we further have the following assumption:

A4 h(θ) is four times continuously differentiable on Θ and satisfies 

∫ Θg(θ)‖h(θ)‖2
2 exp{ − nun(θ)}dθ < ∞ for n = 1, 2, …

Corollary 1

If the conditions A1–A4 are satisfied, then we have

Eπ∼h(θ) − Eπh(θ) = Op(m−1),

Varπ∼h(θ) − Varπh(θ) = op(n−1),

d2(π∼(h(θ) | X), δ
h(θ∗)

) − d2(π(h(θ) | X), δ
h(θ∗)

) = op(n−1) .

The proof is similar to that of Theorem 1, which is based on the expansion for the posterior 

mean of h(θ) and thus omitted in the paper.
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3 Double Parallel Monte Carlo

In this section, we first give a brief review of the Pop-SAMC algorithm and discuss its 

implementation on the OpenMP platform. Then we describe the Double Parallel Monte 

Carlo scheme.

3.1 Pop-SAMC algorithm and its OpenMP implementation

As aforementioned, although MCMC is powerful for analyzing the data of complex 

structures, its computer-intensive nature precludes its use for big data analysis. To accelerate 

computation, one feasible way is to conduct parallel MCMC simulations. People have 

debated for a long time to make a single long run or many short runs. For conventional 

MCMC algorithms, such as the Metropolis-Hastings algorithm (Metropolis et al., 1953; 

Hasting, 1970) and the Gibbs sampler (Geman and Geman, 1984), parallel runs may not 

provide any theoretical advantages over a single long run. In general, if one cannot get a 

good answer with a long run, then one cannot get a good answer with many short runs either. 

However, this situation differs for the population stochastic approximation Monte Carlo 

(pop-SAMC) algorithm (Song et al., 2014), where it is shown that running pop-SAMC with 

κ chains (in parallel) for T iterations is asymptotically more efficient than running a single 

SAMC chain for κT iterations when the gain factor sequence decreases slower than O(1/t), 
where t indexes iterations. This is due to that the chains in pop-SAMC interact with each 

other intrinsically.

The pop-SAMC algorithm consists of two steps, population sampling and ξ-updating, where 

ξ denotes a vector of adaptive parameters evolving with iterations. In the population 

sampling step, each chain is updated independently for one or a few iterations. In the ξ-

updating step, ξt (i.e., the value of ξ at iteration t) is updated based on the collected 

information from individual chains, which enforces interactions between different chains 

and, consequently, improves the efficiency of the algorithm. To make the paper self-

contained, the algorithm is briefly described as follows.

Suppose that we are interested in simulating samples from a density function p(θ), θ ∈ Θ, 

and Θ has been partitioned into M subregions: E1 = {θ : U(θ) < u1}, E2 = {θ : u1 ≤ U(θ) < 

u2}, …, EM−1 = {θ : uM−2 ≤ U(θ) < uM−1}, and EM = {θ : U(θ) ≥ uM−1}, where U(θ) is a 

pre-specified function of θ, e.g., U(θ) = −log p(θ), and u1 < u2 < ⋯ < uM−1 are pre-specified 

numbers. To explain the concept of SAMC, we assume for the time being that all the 

subregions are non-empty; that is, zi = ∫Ei p(θ)dθ > 0 for all i = 1, …, M. However, as 

explained in Liang et al. (2007), the algorithm does allow the existence of empty subregions. 

Let π = (π1, …, πM) denote the desired sampling distribution of the M subregions, where 

∑i = 1
M πi = 1 and πi > 0 for all i = 1, …, M. Given the partition and the desired sampling 

distribution, Pop-SAMC seeks to draw samples from the distribution

pz(θ) ∝ ∑
i = 1

M πip(θ)
zi

I(θ ∈ Ei) .
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If zi’s are known and the space is partitioned appropriately, e.g., the energy bandwidth of 

each subregion is small enough, then the sampling will lead to a random walk in the space of 

subregions and thus the local-trap problem can be overcome essentially. However, since z1, 

…, zM are generally unknown, Pop-SAMC employs the stochastic approximation algorithm 

(Robbins and Monro, 1951) to learn their values (up to a constant factor) in an adaptive way.

Let κ denote the population size, i.e., the number of parallel Markov chains contained in 

Pop-SAMC, and let θt = (θt1, …, θtκ) denote the current state of the κ chains. Let ξt = (ξt1, 

…, ξtM) denote the working estimate of (log(z1/π1), …, log(zM/πM)) obtained at iteration t. 
One iteration of the algorithm consists of the following steps:

1. (Population sampling) For i = 1, …, κ, generate a new sample θt,i starting from 

θt−1,i by a single MH update with the target distribution given by

pξt − 1
(θ) ∝ ∑

j = 1

M p(θ)
e

ξt − 1, j
I(θ ∈ E j) . (7)

2. (ξ-update) Set ξt = ξt−1 + γt(Ht − (1/M)1), where 

Ht = (∑i = 1
κ I(θt, i ∈ E1)/κ, ⋯, ∑i = 1

N I(θt, i ∈ EM)/κ)T, and γt is a gain factor.

To ensure the convergence of the algorithm, the gain factor {γt} is required to satisfy the 

conditions:

∑
t = 1

∞
γt = ∞,

γt + 1 − γt
γt

= O(γt + 1
τ ), ∑

t = 1

∞ γt
(1 + τ′)/2

t
< ∞,

for some τ ∈ [1, 2) and τ′ ∈ (0, 1). For example, one can set γt = O(1/tζ) for ζ ∈ (1/2, 1]. 

To accommodate the case that ξt takes values in an unbounded space, a varying truncation 

version of the algorithm can be considered as in Andrieu et al. (2005).

Like the SAMC algorithm(Liang et al., 2007), Pop-SAMC possesses the self-adjusting 

mechanism, which operates based on past samples and enables the simulation to be immune 

to local traps. This can be considered as a significant advantage over conventional MCMC 

algorithms, such as the Metropolis-Hastings algorithm and the Gibbs sampler. Also, we 

would like to state that the pop-SAMC algorithm is essentially a dynamic importance 

sampling algorithm for which the trial distribution, i.e., the working target distribution (7), 

changes from iteration to iteration, and the quantities of interest can be estimated through 

weighted averaging as in conventional importance sampling (Liang, 2009). That is, Pop-

SAMC generates a sequence of importance samples {(θt,1, eξt,J(θt,1)), …, (θt,κ, eξt,J(θt,κ))}, 

where J(θt,i) denotes the index of the subregion that θt,i belongs to, and eξt,J(θt,i) Specifies 

the importance weight of θt,i.

OpenMP is an application programming interface (API) for parallel programming on multi-

core CPUs which are now available in regular desktops/laptops. It works in a shared 

memory mode with the fork/join parallelism, and is particularly suitable for pop-SAMC. To 
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be precise, the population sampling step of pop-SAMC can be carried out in parallel through 

the pragma omp parallel to fork multiple threads with each thread running for an individual 

Markov chain. After the parallel execution, the threads join back to the master thread, where 

ξt is updated based on the information collected from the multiple threads. Since OpenMP 

works in a shared memory mode, distributing the updated ξt to different threads is avoided. 

Since the population sampling steps cost the major portion of the CPU, the parallel 

execution provides a nearly linear speedup for the simulation.

3.2 Double Parallel Monte Carlo

Based on the subposterior aggregation theory studied in Section 2 and the Pop-SAMC 

algorithm, we propose the following Double Parallel Monte Carlo algorithm for Bayesian 

analysis of big data.

• (Data Parallel) Divide the dataset into k subsets with each being about of the 

same sample size.

• (Simulation Parallel) Run Pop-SAMC for each subposterior π̃(θ|X[i]) separately. 

Let {(θ1
(i), w1

(i)), …, (θN
(i), wN

(i))} denote the importance samples generated by Pop-

SAMC from π̃(θ|X[i]) for i = 1, …, k. Let μ(i) = ∑ j = 1
N w j

(i)θ j
(i)/∑ j = 1

N w j
(i) denote 

the mean of the subposterior π̃(θ|X[i]).

• (Sample aggregation) Calculate the global mean μ = ∑i = 1
k μ(i)/k, recenter the 

importance samples as {(θ1
(i) − μ(i) + μ, w1

(i)), …, (θN
(i) − μ(i) + μ, wN

(i))} for i = 1, …, 

k.

Then, for each i = 1, 2, …, k, the re-centered samples can be viewed as a batch of 

importance samples generated from the full data posterior. For any function h(θ) that 

satisfies A4, the expectation ρ = Eπh(θ) can be naturally estimated by ρ1 = ∑i = 1
k ρ1

(i)/k, 

where ρ1
(i) = ∑ j = 1

N w j
(i)h(θ j

(i) − μ(i) + μ)/∑ j = 1
N w j

(i). Alternatively, ρ can be estimated by

ρ2 =
∑i = 1

k ∑ j = 1
N w j

(i)h(θ j
(i) − μ(i) + μ)

∑i = 1
k ∑ j = 1

N w j
(i) .

Let Ui = ∑ j = 1
N w j

(i)h(θ j
(i) − μ(i) + μ), Si = ∑ j = 1

N w j
(i), S = E(Si) and Vi = Ui − ρSi. Following 

from the property of SAMC, the variances of Ui and Vi are both finite. Then the standard 

error of ρ̂2 can be calculated as for the ratio estimate (Ripley, 1987). The Vi’s can be treated 

as iid random variables with zero mean and finite variance, and its variance can be estimated 

by σV
2 = 1/k∑i = 1

k V i
2. The law of large numbers implies that 1/ k∑i = 1

k V i is asymptotically 

normal N(0, σV
2 ) and that
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k(ρ2 − ρ) =
1
k

∑i = 1
k Vi

1
k ∑i = 1

k Si

N(0, σ2),

where σ2 = σV
2 /S2, and it can be estimated by σV

2 /S2 with S = ∑i = 1
k Si/k.

4 Simulation Study

4.1 Logistic Regression

The first example is very simple, whose goal is to show the validity of the proposed 

subposterior aggregation method. The example is adopted from Srivastava et al. (2015b). It 

is for a logistic regression with n = 104 and the true parameter θ* = (1, −1)T. The covariates 

Z1 and Z2 are drawn from the standard Gaussian distribution. The prior distribution of θ is 

N(0, I2). To follow the notation in Section 2, we let X = (Y, Z1, Z2).

To implement the proposed Double Parallel algorithm, we randomly divided the dataset into 

10 subsets with each consisting of 1000 samples. Then Pop-SAMC was run for each subset. 

Specifically, for each subset, we partitioned the parameter space Θ according to the energy 

function U(θ) = −log pj(θ) with an equal bandwidth Δu = 0.5 into five subregions E1 = {θ : 

U(θ) < u+0.5}, E2 = {θ : u+0.5 ≤ U(θ) < u+1}, E3 = {θ : u + 1 ≤ U(θ) < u + 1.5} E4 = {θ : u 
+ 1.5 ≤ U(θ) < u + 2}, and E5 = {θ : U(θ) ≥ u + 2}, where pj denote the subposterior of the 

jth subset, and u was chosen as the smallest value of U(θ) obtained in a preliminary trial. 

The gain factor γt was set as 100/ max(100, t). The proposal was set as a Gaussian random 

walk distribution with the covariance matrix 0.22I2. The population size was set to N = 10 

and the number of iterations was set to T = 105. The first 104 iterations were discarded for 

the burn-in process, and samples were collected from the remainder of the run at every 5 

iterations. In total, we had 1.8 × 105 importance samples collected at the end of each run.

Figure 1 shows the contour plots of the full data posterior π(θ|X), each subposterior π̃(θ|

X[j]), and the proposed mixture posterior π̃(θ|X). The R package KernSmooth (Wand, 2015) 

was used to generate the corresponding binned kernel density estimates. The plots indicate 

that each subposterior has a similar shape with the full data posterior, however, most of them 

have a notably biased center from the true parameter θ*. By shifting the mean of each 

subposterior to the global mean, the bias was successfully removed. The mixture posterior 

π̃(θ|X) closely matches the full data posterior π(θ|X).

4.2 Nonlinear Regression

We use the following nonlinear regression example to compare the approximation accuracy 

of the proposed Double Parallel algorithm, posterior interval estimation(PIE) (Li et al., 
2017) and Consensus Monte Carlo (Scott et al., 2016):

yi = θ1 exp(θ2zi1) + θ3 exp(θ4zi2 + θ5zi3) + θ6zi4 + θ7sin(θ8zi5 + π /6) + θ9
exp(θ10zi6)

1 + exp(θ10zi6) + εi,
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for i = 1, 2, …, n, where θ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10) = (2, 2, 2, 2, −2, −2, 5, 2, 

4, 2) are the true parameters, and ε1, ⋯, εn are i.i.d. normal random errors with mean 0 and 

variance σ2 = 0.25. The covariates z1 and z2 are drawn from the standard normal distribution 

independently. Set the covariates z3 = 0.7z2+0.3e and z4 = 0.7z1+0.3e′, where e and e′ are 

also drawn from the standard normal distribution. Under this setting, z2 and z3 are highly 

correlated with a correlation coefficient of 0.919, so do z1 and z4. The covariates z5 and z6 

are drawn independently from a t-distribution with the degree of freedom 10. We generated 

n = 104 samples from this model and used the non-informative prior g(θ) ∝ 1 for all the 

parameters. To follow the notation in Section 2, we set Xi = (yi, zi1, zi2, zi3, zi4, zi5, zi6).

For the Double Parallel algorithm, we randomly divided the dataset into 10 subsets with 

each consisting of 1000 samples. Pop-SAMC was run for each subset separately with the 

same setting as for the previous example except that the energy bandwidth was set to Δu = 2 

and the covariance matrix of the Gaussian random walk proposal distribution was set to 

0.012I10. For comparison, Consensus Monte Carlo and PIE were also applied to this 

example. Note for Consensus Monte Carlo, the subset posterior is defined as

∏i = 1
m f (X ji |θ)g1/k(θ)

∫ Θ∏i = 1
m f (X ji |θ)g1/k(θ)dθ

, (8)

which is slightly different from the subposterior defined in (2), the one used in PIE and 

Double Parallel.

To evaluate the approximation accuracy of Double Parallel, PIE and Consensus Monte 

Carlo, we utilized two criteria. The first criterion is the credible interval. The similarity 

between the credible intervals constructed by a method and those constructed by the full 

data-based MCMC method indicates the approximation accuracy of the method. We 

measured the similarity by the p-value of the paired-t test for the length of credible intervals 

of different parameters. The second criterion is more direct, which uses the following 

function

Accuracy(π1, π2) = 1 − 1
2 |π1(θ) − π2(θ) |dθ, (9)

to measure the similarity between two density functions π1 and π2. This function lies in [0, 

1], with a larger value indicating higher similarity. In our case, π1 is the posterior density 

obtained by the method under evaluation, and π2 is the posterior density generated based on 

the full data. These densities can be estimated based on the posterior samples using the bkde 

function in the R package KernSmooth (Wand, 2015).

Table 1 and Table 2 show, respectively, the 90% and 80% credible intervals produced by 

different methods. As indicated by the p-values, Double Parallel and PIE produced very 

similar credible intervals to the full data-based MCMC method, while Consensus Monte 
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Carlo did not. Hence, in this criterion, we conclude that Double Parallel and PIE 

outperforms Consensus Monte Carlo for this example.

Table 3 shows the approximation accuracy of Double Parallel and Consensus Monte Carlo to 

the full data posterior distribution, for each of the ten parameters. We don’t include PIE here 

because (i) from previous results, we expect the approximation accuracy of PIE should be 

very similar to that of Double Parallel, and (ii) PIE is proposed for quantile approximation 

and cannot be directly used for density approximation. Table 3 shows that for some 

parameters, Consensus Monte Carlo has better performance, while for others, Double 

Parallel wins. We suspect that this may depend on the similarity of each parameter’s 

posterior distribution with the normal distribution. In the average of approximation accuracy 

of the ten parameters, we find that Double Parallel is still slightly better than Consensus 

Monte Carlo for this example: Double Parallel produced an average of 0.924 with a standard 

deviation of 0.012, while Consensus Monte Carlo produced an average of 0.902 with a 

standard deviation of 0.015.

5 A Big Data Example

The goal of this example is to show how efficient the Double Parallel algorithm can be 

compared to the traditional single chain MCMC algorithm for a big data problem. For this 

purpose, we applied the Double Parallel algorithm to the MiniBooNE particle identification 

dataset, which is available at the UCI machine learning repository. This dataset records 

130,064 events (observations), including 36,499 signal events and 93,565 background 

events. Each observation consists of the event type (signal event or background event) and 

50 associated particle variables. The task of the problem is to explore the relationship 

between the event type and the associated particle variables. The more detailed description 

for the dataset and its physical background can be found in Roe et al. (2005).

The problem can be naturally treated using a logistic regression, where the event type is used 

as the response variable and the 50 associated particle variables are used as the predictors. 

To identify the important variables that are associated with the event type, we let the 

regression coefficients be subject to a heavy-tail distribution, t(3), which belongs to the class 

of local shrinkage priors but is more moderate in shrinking large regression coefficients than 

the Lasso prior(Tibshirani, 1996). Other local shrinkage priors, such as the horseshoe 

prior(Carvalho et al., 2010), can also be used here without affecting on the efficiency of the 

proposed algorithm. In data preprocessing, we first removed 468 samples with missing 

observations and then randomly divide the remaining samples into 10 subsets of nearly the 

same sample size. For each subset, Pop-SAMC was run with the population size κ = 20. The 

sample space was partitioned with an energy bandwidth Δu = 1 and the subregions 

determined through a preliminary run. The gain factor was set as γt = min(1, (t/1000)−0.6). 

The algorithm was run for 1.1 × 105 iterations, where the first 104 iterations were for the 

burn-in process and the samples collected from the remaining 105 iterations were used for 

inference. At each iteration, 20 parameters was randomly selected to be updated along a 

random direction with a step size of 0.1. The acceptance rate was around 0.16, which 

indicates the effectiveness of the simulation. On a high-end Dell Precision T7610 
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Workstation with 24 cores, one run of Pop-SAMC costs about 9 minutes (wall clock time) or 

166 minutes total CPU time.

For comparison, the single chain Metropolis-Hastings (MH) algorithm was directly applied 

to simulate from the full data posterior. The algorithm was run for 2.2×106 (= 20×1.1×105) 

iterations correspondingly, where the first 2.0×105 were discarded for the burn-in process 

and the samples collected from the remaining iterations were used for inference. The MH 

algorithm used the same proposal as the Pop-SAMC and the resulting acceptance rate was 

also about 0.16. On the same computer, one run of the MH algorithm costs about 1,373 

minutes (wall clock time) or 1,371 minutes CPU time. In wall clock time, the computational 

cost by the Double Parallel algorithm is only 0.67% of that by the single chain MH 

algorithm! We have also implemented Consensus Monte Carlo on this dataset. For each 

subset, we utilized MH algorithm to generate samples and for each subset, the MH 

algorithm was run for 2.2 × 106 iterations. To be fair to Consensus Monte Carlo, we only 

reported its results, but not its computational time, since Consensus Monte Carlo can also be 

implemented by Pop-SAMC, and in this case, it should use similar time with our method.

Table 4 shows the computational results produced by the three methods. For each method, 

we reported only the ten most significant variables, including their posterior mean and 

standard deviation. Here the significance of each variable was measured according to the 

ratio of its posterior mean and standard deviation. The results from the Double Parallel 

algorithm is surprisingly consistent with the result from the MH algorithm: All the variables 

have about the same posterior mean and standard deviation. The top 10 significant variables 

are exactly the same, even in the same order! This again indicates the validity of the Double 

Parallel algorithm for approximation of the full data posterior. Consensus Monte Carlo also 

selected the same top 10 significant variables, but in a slightly different order.

6 Discussion

This paper has proposed a simple, practical and efficient MCMC algorithm for Bayesian 

analysis of big data. The proposed algorithm has two innovations. First, it provides a simple 

and practical way to aggregate subposteriors to approximate the full data posterior. Second, 

it suggests to implement the Pop-SAMC algorithm to simulate from each subposterior. Since 

the whole algorithm consists of two levels of parallel, data parallel and simulation parallel, it 

is called the Double Parallel Monte Carlo algorithm. Theoretically, we have shown that the 

Double Parallel algorithm can produce a good approximation to the full data posterior 

distribution. Empirically, we have demonstrated that the results produced by the Double 

Parallel algorithm agree well with those generated from the full data posterior, while 

enabling massive speed-ups in computational time.

Compared to Consensus Monte Carlo, the Double Parallel algorithm has two advantages. 

First, it is more efficient in terms of quantities of effective samples generated in single unit 

CPU time. Recall that the Double Parallel algorithm converts the subset posterior samples to 

full-data posterior samples by simply recentering, while a weighted average applies for 

Consensus Monte Carlo. Second, it relaxes the requirement for the asymptotic normality of 

the posterior distributions by assuming the Laplace regularity for the log-likelihood function. 
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This relaxation may explain why the Double Parallel algorithm outperforms Consensus 

Monte Carlo, as shown in Tables 1, 2 and 4, for our examples.

The Double Parallel algorithm works based on Laplace’s method, but it can also cover some 

problems that are traditionally treated as discrete, such as variable selection problems. As 

shown in Section 5, these problems can be treated as continuous by imposing a local 

shrinkage prior on the space of variable coefficients. A further extension of the proposed 

algorithm to general discrete parameter space will be of great interest.

Acknowledgments

Liang’s research was supported in part by the grants DMS-1545202, DMS-1612924 and R01-GM117597. The 
authors thank the Editor, Associate Editor and two referees for their constructive comments which has led to 
significant improvement of this paper.

Appendix A

Proof of Theorem 1

Under conditions A1 and A2, we can expand the mean of each subposterior at the 

corresponding MLE, θ̂(j), as follows:

μ( j) = Eπ∼ j
(θ) = θ( j) + I ( j) − 1

n
∂ log g(θ)

∂θ |
θ( j) − 1

2H( j)I ( j) − 1 + O(n−2),

where π̃
j = π̃(θ|X[j]), I

( j) = − 1
m

∂2 log  f (X[ j] |θ)

∂θ∂θT |
θ = θ( j)

, H( j) = − 1
m

∂3 log  f (X[ j] |θ)

∂θ∂θT ∂θ
|
θ = θ( j)

, and 

Ĥ(j) Î(j)−1 is a vector whose rth element equals ∑st Hrst
( j)I st

( j) − 1. To simplify the notation, we 

denote I ( j) − 1[∂ log g(θ)/ ∂θ|
θ( j) − 1

2 H( j)I ( j) − 1] by ν(j). Here we would like to mention that 

although A1 and A2 are directly associated with the Laplace approximation of the full 

posterior, i they can also lead to the conditions that guarantee the Laplace approximation of 

each subposterior, as long as m goes to ∞ with n.

Moreover, for each θ̂(j), we have

θ( j) = θ∗ + ξ( j)
m

+ Op(m−1),

where

ξ( j) = 1
m

I−1 ∑
i = 1

m ∂ log  f (X ji |θ∗)
∂θ , I = − E

X |θ∗
∂2 log  f (X |θ∗)

∂θ∂θT .

Therefore, the mean of the mixture distribution π̃(θ|X) is given by
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Eπ∼(θ) = 1
k ∑

j = 1

k
μ( j) = θ∗ + 1

k ∑
j = 1

k ν( j)
n + 1

k ∑
j = 1

k ξ( j)
m

+ Op(m−1) + O(n−2) .

We can also implement a similar procedure on the full data posterior π(θ|X) and obtain

Eπ(θ) = θ∗ + ν
n + ξ

n
+ Op(n−1) + O(n−2),

where 

ν = I −1[∂ log g(θ)/ ∂θ|
θ

− 1
2 HI −1], ξ = 1

n I−1∑i = 1
n ∂ log  f (Xi |θ∗)

∂θ , I = − 1
n

∂2 log  f (X |θ)
∂θ∂θT |

θ = θ
, H

= − 1
m

∂3 log  f (X |θ)
∂θ∂θT ∂θ

|
θ = θ

, 

and θ̂ denotes the MLE of θ calculated with the full dataset. By noting that ξ
n = 1

k ∑ j = 1
k ξ( j)

m

and ν are O(1), m < n, equation (4) in Theorem 1 can thereby be verified:

Eπ∼(θ) − Eπ(θ) = 1
k ∑

j = 1

k ν( j)
n + Op(m−1) − ν

n + Op(n−1) + O(n−2)

= O(n−1) + Op(m−1) + O(n−1) + Op(n−1) + O(n−2) = Op(m−1) .

The variance of each subposterior can be approximated as follows:

Varπ∼ j
(θ) = I ( j) − 1

n + O(n−2) .

Therefore, the variance of the mixture distribution π̃(θ|X) is given by

Varπ∼(θ) = 1
k ∑

j = 1

k
Varπ∼ j

(θ) = 1
k ∑

j = 1

k I ( j) − 1
n + O(n−2) .

In addition, we have

Varπ(θ) = I −1
n + O(n−2) .

Since Î(j) = I + op(1) and Î = I + op(1), we further have Î(j)−1 = I−1 + op(1) and Î−1 = I−1 + 

op(1). The equation (5) in Theorem 1 can thereby be verified:
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Varπ∼(θ) − Varπ(θ) = 1
k ∑

j = 1

k I ( j) − 1
n − I −1

n + O(n−2) = I−1
n + op(n−1) − I−1

n + op(n−1) + O(n−2) = op

(n−1) .

Finally, for the square of the Wasserstein distance of order 2, we have

d2(π∼(θ | X), δ
θ∗) − d2(π(θ | X), δ

θ∗) =
Θ

θ − θ∗
2
2

π∼(θ | X)dθ −
Θ

θ − θ∗
2
2
π(θ | X)dθ

= |‖Eπ∼(θ) − θ∗
2
2 + tr (Varπ∼(θ)) − Eπ(θ) − θ∗

2
2 − tr (Varπ(θ))

≤ Eπ∼(θ) − Eπ(θ) + Eπ(θ) − θ∗
2
2 − Eπ(θ) − θ∗

2
2 + tr (Varπ∼(θ) − Varπ(θ))

≤ Eπ∼(θ) − Eπ(θ)
2
2 + 2 Eπ∼(θ) − Eπ(θ)

2
Eπ(θ) − θ∗

2 + op(n−1)

= Op(m−2) + 2Op(m−1)Op(n−1/2) + op(n−1) = op(n−1),

where the last equality follows from the fact n = o(m2). This verifies the equation (6) in 

Theorem 1.
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Figure 1. 
Binned kernel posterior density estimates for the parameters of a logistic regression. The 

true parameter θ* = (1,−1)T (black dot).
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Table 1

90% credible intervals for each parameter produced by full data MCMC, Double Parallel, PIE and Consensus 

Monte Carlo, where the p-value is calculated by a paired-t test for the length of credible intervals in 

comparison with the full data MCMC method.

MCMC Double Parallel PIE Consensus Monte Carlo

θ1 (1.965,2.016) (1.966,2.014) (1.966,2.014) (1.958,2.018)

θ2 (1.995,2.012) (1.996,2.012) (1.995,2.012) (1.995,2.014)

θ3 (1.968,2.040) (1.967,2.038) (1.967,2.038) (1.970,2.055)

θ4 (1.962,2.024) (1.964,2.024) (1.964,2.025) (1.947,2.021)

θ5 (−2.017,−1.950) (−2.017,−1.951) (−2.017,−1.950) (−2.014,−1.932)

θ6 (−2.024,−1.979) (−2.022,−1.978) (−2.022,−1.978) (−2.023,−1.971)

θ7 (4.984,5.007) (4.984,5.007) (4.984,5.007) (4.983,5.007)

θ8 (1.997,2.001) (1.997,2.001) (1.997,2.001) (1.997,2.001)

θ9 (3.972,4.060) (3.972,4.066) (3.972,4.066) (3.956,4.051)

θ10 (1.944,2.033) (1.944,2.039) (1.944,2.038) (1.954,2.046)

p-value — 0.769 0.586 2.68 × 10−3
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Table 2

80% credible intervals for each parameter produced by full data-based MCMC, Double Parallel, PIE and 

Consensus Monte Carlo, where the p-value is calculated by a paired-t test for the length of credible intervals in 

comparison with the full data MCMC method.

MCMC Double Parallel PIE Consensus Monte Carlo

θ1 (1.972,2.012) (1.971,2.008) (1.971,2.008) (1.968,2.011)

θ2 (1.996,2.009) (1.998,2.011) (1.998,2.011) (1.997,2.011)

θ3 (1.975,2.031) (1.976,2.030) (1.976,2.030) (1.978,2.044)

θ4 (1.969,2.018) (1.970,2.017) (1.971,2.017) (1.958,2.015)

θ5 (−2.011,−1.957) (−2.010,−1.958) (−2.010,−1.958) (−2.006,−1.945)

θ6 (−2.019,−1.984) (−2.017,−1.982) (−2.017,−1.982) (−2.018,−1.979)

θ7 (4.986,5.004) (4.987,5.005) (4.987,5.005) (4.986,5.004)

θ8 (1.997,2.001) (1.997,2.001) (1.997,2.001) (1.997,2.001)

θ9 (3.981,4.050) (3.982,4.056) (3.982,4.056) (3.969,4.041)

θ10 (1.953,2.023) (1.954,2.027) (1.954,2.027) (1.963,2.032)

p-value — 0.901 0.811 0.016
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