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Abstract. This article proposes a mixture modeling approach to estimating cluster-
wise conditional distributions in clustered (grouped) data. We adapt the mixture-
of-experts model to the latent distributions, and propose a model in which each
cluster-wise density is represented as a mixture of latent experts with cluster-wise
mixing proportions distributed as Dirichlet distribution. The model parameters are
estimated by maximizing the marginal likelihood function using a newly developed
Monte Carlo Expectation-Maximization algorithm. We also extend the model such
that the distribution of cluster-wise mixing proportions depends on some cluster-level
covariates. The finite sample performance of the proposed model is compared with
some existing mixture modeling approaches as well as linear mixed model through
the simulation studies. The proposed model is also illustrated with the posted land
price data in Japan.
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1 Introduction

Grouped or clustered data often arise in many scientific fields such as econometrics,
epidemiology, and genetics. Although the mixed-effects model (Demidenko, 2004) has
been widely used for such data, it fundamentally aims at modeling conditional means
in each cluster, which could be inappropriate if the data distribution is skewed or mul-
timodal. As an alternative modeling strategy, the finite mixture model (McLachlan
and Peel, 2000) has been extensively applied for its flexibility to capture the within-
cluster heterogeneity in the data. For modeling independent data, the mixture model
with covariates was originally proposed in Jacob et al. (1991), known as mixture-of-
experts. To date, a large body of literature has been concerned with flexible modeling
of the conditional density for independent data. For example, see Jordan and Jacobs
(1994), Hurn et al. (2003), Geweke and Keane (2007), Villani et al. (2009), Villani
et al. (2012) and Nguyen and McLachlan (2016).

However, the existing models for independent data are not suitable for estimating
cluster-wise conditional distributions. If we globally apply the mixture models to a
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whole dataset ignoring the clustering labels (we call global mixture modeling), the
estimated conditional distributions are the same over all clusters, which is clearly
inappropriate in clustered data analysis. On the other hand, applying the mixture
models independently to each cluster in order to capture the cluster heterogeneity (we
call local mixture modeling) leads to unstable results since the within-cluster samples
sizes are usually not large in practice. Hence, another flexible modeling strategy for
clustered data is desired. Up to now, several methods have been proposed for mod-
eling cluster-wise distributions. Rubin and Wu (1997) proposed a mixture of linear
mixed-effects models. Sun et al. (2007) developed a mixture of linear models with
the random effects used in the generalized linear model for the mixing proportions.
Rosen et al. (2000) and Tang and Qu (2016) used the generalized estimating equation
approach to estimate the component distributions by incorporating the correlations
within clusters.

In this article, we propose a compromised model between the global and local
mixture modeling. Note that the local mixture model can be expressed as

fi(y|x) =

K∑
k=1

πikhik(y|x),

where y is the response variable, x is the vector of covariates, and hik is the component
distribution for the kth component of the ith cluster with the mixing proportion πik
satisfying

∑K
k=1 πik = 1. Since the within-cluster sample size is usually small in

practice, hik(y|x) would not be stably estimated. Hence, we restrict hik(y|x) =
hk(y|x), that is, the component distributions are the same over all the clusters like
global modeling. Then the model reduces to

fi(y|x) =
K∑
k=1

πikhk(y|x),

which can be interpreted as there exists K latent distributions and each cluster-
wise distribution fi(y|x) is expressed by these distributions with cluster-wise mixing
proportions πik. Hence, as long as K is a moderate number, one can estimate K
component distributions with reasonable accuracy. On the other hand, estimating
unstructured πik is not feasible since the number of πik’s grows as the number of clus-
ters increases. To overcome this difficulty, we assume that the vector of proportions
πi = (πi1, . . . , πiK)t that characterizes the conditional distribution of the ith cluster,
is a realization from a multivariate distribution. Therefore, πi plays a similar role to
the random effect in the context of the mixed-effects model. As a distribution of πi,
we use the Dirichlet distribution, which allows us to develop a tractable estimating
method for model parameters.

In this article, the model parameters are estimated based on a likelihood-based
approach. The model can be viewed as a three-stage hierarchical model, where the
first stage consists of the model for the response variable, the second stage consists of
the latent variables which assign the latent distribution, and the third stage consists
of the model for the mixing proportions. We develop a Monte Carlo Expectation-
Maximization (MCEM) algorithm (Dempster et al., 1977; Wei and Tanner, 1990)
for parameter estimation of which the E-step is consist of a simple Gibbs sampling
scheme for imputing the latent variables. Since the number of latent distributions K

2



is generally unknown, we consider selecting K based on the Akaike information crite-
ria (AIC) or Bayesian information criteria (BIC), where the maximum log-marginal
likelihood can be easily computed from a simple Monte Carlo approximation.

The rest of the paper is organized as follows: Section 2 describes the proposed
model in detail and develops the MCEM algorithm for maximizing the marginal
likelihood. In Section 3, the performance of the proposed method is demonstrated
along with some existing methods through simulation studies. An application to the
real data set is also presented. In Section 4, some discussion is provided.

2 Latent Mixture Model

2.1 Model setup

Suppose that we have the clustered (grouped) observations yij , i = 1, . . . ,m, j =
1, . . . , ni, with an associated p-dimensional vector of covariates xij . Let fi(y|x) be a
density or probability mass function of yij given xij , which are the same within clus-
ters but different across clusters. Our aim is to estimate the cluster-wise conditional
density fi(y|x) from the data set {yij ,xij}. To this end, we consider the following
latent mixture model:

fi(y|πi,x,φ) =

K∑
k=1

πikhk(y|x,φk), (1)

where πik is the weight for the kth component in the ith cluster, hk(·|·,φk), k =
1, . . . ,K are the latent conditional densities characterized by the parameter φk, and
K is the unknown number of latent densities. Moreover, we assume that the mixing
proportions πi’s are independent realizations from the Dirichlet distribution with the
density

p(πi|α) =
Γ
(∑K

k=1 αk
)∏K

k=1 Γ(αk)

K∏
k=1

παk−1
ik (2)

for i = 1, . . . ,m, where Γ(·) denotes the gamma function and α = (α1, . . . , αK)t

is a vector of unknown parameters. In this article, we let (1) and (2) together de-
note the latent mixture model. The unknown model parameters to be estimated are
φ1, . . . ,φK in latent distributions and α in the Dirichlet distribution. Under the
setting (1) and (2), taking expectation of πik with respect to Dir(α), we have

fi(y|x,α,φ) =
K∑
k=1

pkhk(y|x,φk), pk =
αk∑K
`=1 α`

, (3)

which is referred to the marginal model, and is common over all the clusters. Hence,
we can observe that πi characterizes the cluster-wise conditional density and plays
a similar role to the random effects in the context of mixed-effects models. The
mixing proportion πi can be estimated by the conditional expectation E[πi|Y ], where
Y is a set of all the response variables. Under (1) and (2), response variables in
different clusters are mutually independent, so that it holds E[πi|Y ] = E[πi|Yi] with
Yi = {yi1, . . . , yini}. Then, if the model parameters are known, the estimator of the
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cluster-wise conditional density is given by

f̃i(y|x,α,φ) =
K∑
k=1

E[πik|Yi]hk(y|x,φk). (4)

Generally speaking, the conditional expectation E[πik|Yi] tends close to the marginal
mean pk if the cluster-specific sample size ni is small, so that the estimated conditional
density would be close to the marginal model (3). On the other hand, in clusters with
relatively large ni, the estimated conditional density might vary from the marginal
model (3), depending on the information of Yi. Therefore, this model allows us to
carry out a kind of shrinkage estimation of the cluster-wise conditional densities.

As often done in estimating mixture models, by introducing the latent component
indicator zij ∈ {1, . . . ,K}, the proposed model (1) and (2) can be expressed in the
three-stage hierarchical model:

1st stage: yij |xij , (zij = k) ∼ Fk(xij ,φk),
2nd stage: zij |πi ∼ Cat(K,πi),

3rd stage: πi ∼ Dir(α),

(5)

where Fk is the distribution having density hk, and Cat(K,πi) is the categorical
distribution on {1, . . . ,K} with the probability vector πi. In hierarchy (5), zij and
πi are the latent variables. The latent density hk is determined by the user and
the generalized linear model is an attractive choice. For example, Fk(xij ,φk) =
N(xtijβk, σ

2
k) when yij is a continuous variable, and Fk(xij ,φk) = Po(exp(xtβk))

when yij is a counting variable.

2.2 Monte Carlo EM algorithm for parameter estimation

For completion of the conditional density (4), we need to estimate the unknown
model parameters θ = {φ1, . . . ,φK ,α} based on the data. Under the hierarchical
formulation (5), the marginal likelihood function L(θ) is expressed as

L(θ) =

(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)m m∏
i=1

∑
zi

∏K
k=1 Γ(

∑ni
j=1wijk + αk)

Γ(ni +
∑K

k=1 αk)

 ni∏
j=1

K∏
k=1

hk(yij |xij ,φk)wijk

 ,

where wijk = I(zij = k) and
∑
zi

denotes the summation over the all combination
of zi ∈ {1, . . . ,K}ni . Hence, a direct maximization of the marginal likelihood is
not feasible since evaluation of the likelihood function L(θ) requires the summation
over Kni elements for each i, which is computationally prohibitive even for small K.
Moreover, since the functional form of L(θ) is complex and not familiar, the brute
force maximization of L(θ) is not realistic.

Instead, we exploit the hierarchical representation (5) and develop the EM algo-
rithm (Dempster et al., 1977) which indirectly and iteratively maximizes L(θ). Let
π = {π1, . . . ,πm} and z = {z1, . . . ,zm}. Then, the complete log-likelihood function
`c of (5) is given by

`c(θ, z,π) =

m∑
i=1

ni∑
j=1

K∑
k=1

I(zij = k) log
{
πikhk(yij |xij ,φk)

}
+

m∑
i=1

log p(πi|α),
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where p(πi|α) denotes the density function of Dir(α). Then, given the value of θ
in the tth iteration denoted by θ(t), the E-step entails the imputation of the latent
variables z and π by taking expectation

Q(θ|θ(t)) = E[`c(θ, z,π)|Y,θ(t)],

where the expectation is taken with respect to the posterior distribution of (w,π)
given all the response variables Y . However, since an analytical form of Q(θ|θ(t)) is
not available, we consider Monte Carlo approximation of Q(θ|θ(t)) as

Q(θ|θ(l)) ≈ 1

L

L∑
l=1

`c(θ, z(l),π(l)),

where L is a sufficiently large number, and z(l) and π(l) are the lth random sample
generated from the posterior distribution of (z,π) given Y with θ = θ(t). Under the
hierarchy (5), the marginal posterior distributions of z and π are not simple forms,
but the full conditional distributions of z|π, Y and π|z, Y are the following familiar
distributions:

zij |πi, Y ∼ Cat(K, p̃ij), i = 1, . . . ,m, j = 1, . . . , ni,

πi|z, Y ∼ Dir(ãi), i = 1, . . . ,m,
(6)

where p̃ij = (p̃ij1, . . . , p̃ijK)t and ãi = (ãi1, . . . , ãiK)t with

p̃ijk =
πikhk(yij |xij ,φ

(t)
k )∑K

l=1 πilhl(yij |xij ,φ
(t)
l )

, and ãik = α
(t)
k +

ni∑
j=1

I(zij = k).

Then we can use a Gibbs sampler for generating random samples of the posterior
distribution of (z,π).

The M-step maximizes Q(θ|θ(t)) obtained from the E-step, noting that

Q(θ|θ(t)) = C +
m∑
i=1

ni∑
j=1

K∑
k=1

z∗ijk log hk(yij |xij ,φk) +
m∑
i=1

E[log p(πi|α)|Y,θ(t)],

where C is a constant independent of θ and z∗ijk = E[I(zij = k)|Y,θ(t)] computed

from the E-step. Therefore, the maximization problem of Q(θ|θ(t)) can be divided
into the following:

φ̂k = argmax
φk

m∑
i=1

ni∑
j=1

z∗ijk log hk(yij |xij ,φk), k = 1, . . . ,K,

α̂ = argmax
α

{
m log Γ

( K∑
k=1

αk

)
−m

K∑
k=1

log Γ(αk) +
K∑
k=1

αk

m∑
i=1

(log πik)
∗

}
,

(7)

where (log πik)
∗ = E[log πik|Y,θ(t)]. It is noted that the maximization with respect to

each φk is identical to maximizing the weighted log-likelihood function of the latent
conditional distributions, which can be easily carried out by using, for example, the
Newton-Raphson algorithm. Similarly, the maximization with respect to α is similar
to performing the maximum likelihood method in the Dirichlet distribution and is
not difficult.

The whole procedure of the proposed MCEM algorithm is summarized as follows.
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Algorithm 1 (MCEM algorithm). Iterative:

1. Set the initial values θ(0) and t = 0.

2. Draw a large number of samples π and z by Gibbs sampling with the full
conditionals (6), and compute z∗ijk = E[I(zij = k)|Y,θ(t)] and (log πik)

∗ =

E[log πik|Y,θ(t)].

3. Solve the maximization problem (7) and set φ
(t+1)
k = φ̂k and α(t+1) = α̂.

4. If the algorithm has converged, the the algorithm is terminated. Otherwise, set
t = t+ 1 and go back to Step 2.

In the case of the normal linear regression model as the latent model, namely
Fk(xij ,φk) = N(xtijβk, σ

2
k) in (5), the M-step for φk = (βtk, σ

2
k)
t in (7) can be

obtained analytically:

β̂k =

( m∑
i=1

ni∑
j=1

z∗ijkxijx
t
ij

)−1 m∑
i=1

ni∑
j=1

z∗ijkxijyij ,

σ̂2k =

( m∑
i=1

ni∑
j=1

z∗ijk

)−1 m∑
i=1

ni∑
j=1

z∗ijk(yij − xtijβ̂k)2.

for k = 1, . . . ,K.
Following Shi and Copas (2002), the convergence of the proposed MCEM al-

gorithm is monitored by using the batch mean θ̃
(t)

= H−1
∑H−1

h=0 θ
(t−h), after the

Hth iteration. The algorithm is terminated when the relative difference ‖θ̃
(t)
−

θ̃
(t−d)
‖/(‖θ̃

(t−d)
‖ + δ), is smaller than some predetermined (small) ε. Here, H, d,

ε and δ are specified by the user, and we use H = 30, d = 5, ε = δ = 0.001 as default
choices. For the E-step, L = 500 is used as the default choice and this choice appears
to work well in the numerical examples in Section 3.

For selecting the number of latent distributions, K, we use the Akaike information
criteria (AIC) or the Bayesian information criteria (BIC) based on the log-marginal
likelihood, without any theoretical justifications. When φk is p-dimensional, the
number of parameters included in the model (5) is pK + K. Then the formulations
of AIC and BIC are given by

AIC = −2

m∑
i=1

log fmi (yi|xi, θ̂) + 2(pK +K),

BIC = −2

m∑
i=1

log fmi (yi|xi, θ̂) + (pK +K) logN,

where N =
∑m

i=1 ni is the total number of observations and

fmi (yi|xi, θ̂) =

∫ 
ni∏
j=1

K∑
k=1

πikhk(yij |xij , φ̂k)

 p(πi|α̂)dπi (8)
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is the maximum marginal likelihood. As noted in Section 2.2, since the direct evalua-
tion of the marginal likelihood is computationally prohibitive, the maximum marginal
likelihood is evaluated by the Monte Carlo integration. Let π∗

i = (π∗i1, . . . , π
∗
iG)t be

the random vector generated from Dir(α̂). Then, the Monte Carlo approximation of
(8) is

fmi (yi|xi, θ̂) ≈ 1

B

B∑
b=1


ni∏
j=1

K∑
k=1

π
∗(b)
ik hk(yij |xij , φ̂k)

 ,

for a large B, where (π
∗(b)
i1 , . . . , π

∗(b)
iK )t is the bth draw from Dir(α̂).

Let K∗ be the selected number of latent distributions based on AIC or BIC. Then
the feasible version of the cluster-wise estimated conditional density (4) is given by

f̂i(y|x) =

K∗∑
k=1

π̂ikhk(y|x, φ̂k),

where π̂ik = E[πik|Yi] evaluated at θ = θ̂, which can be computed via the Gibbs
sampler (6) with θ = θ̂.

2.3 Flexible modeling of mixing proportions

One possible criticism for the formulation of the proposed latent mixture model (1)
is its simplicity in the relationship between the response variable y and covariate
vector x. In the context of mixture modeling for non-clustered (independent) data,
Geweke and Keane (2007) proposed a flexible modeling of the mixing proportions
by considering covariate dependent structures. Then, we here consider implementing
the idea to the modeling cluster-wise conditional densities, that is, we consider the
following structure in the distribution of the mixing proportions:

πi ∼ Dir(αi), αi = (αi1, . . . , αiK)t, αik = exp(wt
iγk), (9)

where wi is the q-dimensional vector of the cluster-specific covariates and γk is

the corresponding coefficient. One can take, for example, wi = x̄
(s)
i where x̄

(s)
i =

n−1
i

∑ni
j=1 x

(s)
ij and x

(s)
ij is the subvector of xij . Under this setting, it hods that

E[πik] =
exp(wt

iγk)∑K
k=1 exp(wt

iγk)
.

the MCEM algorithm developed in Section 2.2 can be easily modified to estimate
the model with (9). Specifically, in the E-step ãik appeared in the full conditional
distribution of πi|w, Y in (6) is replaced with

ãik = exp(wt
iγ

(t)
k ) +

ni∑
j=1

I(zij = k),

and the M-step for α in (7) is replaced with the maximizing

Q(γ) =
m∑
i=1

log Γ
{ K∑
k=1

exp(wt
iγk)

}
−

m∑
i=1

K∑
k=1

log Γ(exp(wt
iγk))

+
m∑
i=1

K∑
k=1

exp(wt
iγk)(log πik)

∗,
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where γ = {γ1, . . . ,γK}. Finally, it is noted that the number of parameters under
(9) is K(p+q), so that the penalty terms in AIC and BIC used for selecting K should
be changed accordingly.

3 Numerical Studies

3.1 Simulation studies

The finite sample performance of the proposed latent mixture model is investigated
together with some existing methods. We consider two cases of within-cluster sample
sizes ni = 30 and ni = 50 for i = 1, . . . ,m and m = 50. For the true conditional
density in the ith cluster, the following two scenarios are considered:

(I) fi(y|x) = πiφ(y;−1 + x, 1) + (1− πi)φ(y; 1− x, 1), πi ∼ Beta (5, 3) ,

(II) fi(y|x) = I(1 ≤ i ≤ 15)φ(y;−1 + 2x, 0.52) + I(16 ≤ i ≤ 30)φ(y; 1.5 + x, 1)

+ I(31 ≤ i ≤ 50)φ(y;−x, 1.52),

where i = 1, . . . ,m, and φ(·; a, b) denotes the density function of the normal distribu-
tion N(a, b) and xij ∼ N(0, 1) in each scenario. The latent mixture regression (LMR)
model with normal linear regression models used as latent models is considered, and
the number of latent components are selected by using BIC. For comparison, we also
consider the local mixture (LM) model where the mixture of normal linear regres-
sions is fitted to each cluster separately and global mixture (GM) model where the
single mixture of normal linear regressions is fitted to the whole data ignoring the
cluster heterogeneity. For both models, the number of components was selected based
on BIC. Moreover, as the competitor from random effect models, we also applied a
random intercept (RI) model. Note that GM ignores the clustering structure and
produces the same conditional densities over all the clusters. On the other hand,
while LM may flexibly express the cluster-wise conditional density, the results are
expected to be unstable due to the relatively small within-cluster sample sizes.

The performance of the models is measured based on the cluster-wise mean inte-
grated squared error (MISE) defined as

MISEi =
1

R

R∑
r=1

∫ {
f̂
(r)
i (t|x)− fi(t|x)

}2
dt, i = 1, . . . ,m,

where f̂
(r)
i (t|x) is the estimated conditional density obtained from the rth replication.

Since the above MISE depends on the covariate x, we considered the three values,
x = −1.5,−0.75, 0. We computed the cluster-wise MISE of four models based on
R = 100 replications.

Figure 1 and 2 present the cluster-wise MISE for Scenario (I) and (II), respectively.
The figures show that the proposed LMR model outperforms in all cases. As expected,
LM appears to have produced the unstable results due to the relatively small sample
sizes in spite of its flexibility. On the other hand, GM seems to perform relatively well
in this study as the number of parameters is small compared with LM. However, since
GM produces the same conditional density estimators over the clusters, GM performs
no better than LMR. Concerning RC, it may perform as well as GM for x = 0 in
Scenario (I) and some cases in Scenario (II), but the result is much inferior to that of
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LMR. Although not shown here, BIC selected the true number of components most
of the time, while the selected number of components by AIC tended to be larger
than the truth. Hence, BIC would be preferable to AIC and only the results based
on BIC are considered in the rest of this article.

We next investigate the efficacy of the modeling the distribution of the mixing
proportion in terms of some covariates as introduced in Section 2.3. To this end, we
consider the following true conditional density:

(III) fi(y|x) = πiφ(y;−1 + x, 1) + (1− πi)φ(y; 1− x, 1), πi ∼ Beta(αi1, αi1),

αi1 = exp(1 + 0.6wi), αi2 = exp(1− 0.5wi), wi ∼ Ber(0.4).

We set ni = i for i = 1, . . . ,m such that the within-cluster sample size varies across
clusters and consider two cases of m, m = 50 and 80. As in the previous studies,
the covariates xij ’s are generated from N(0, 1). The latent mixture regression model
with covariate-dependent structure of mixing proportions (LMR-CD) and the latent
mixture regression model (LMR) are fitted to the simulated data. For both models, we
use the normal linear regression models as the component models, and the number
of components is selected based on BIC. For comparison, we again computed the
MISE with x = −1.5,−0.75, 0, and the results are presented in Figure 3. In the
figure, LMR-CD appears to perform better than LMR for the clusters with the small
within-cluster sample sizes for both m.

3.2 Real data example

To demonstrate the proposed method in a practical situation, we apply the latent
mixture model to the posted land price (PLP) data in Tokyo and the surrounding
four prefectures (Chiba, Saitama, Kanagawa and Ibaraki) in 2001. The data units
(locations) are clustered with respect to the nearest station. The number of clusters
is m = 295 and the total number of units is N = 2363. The number of within-cluster
samples ni are ranging from 1 to 45, and the histogram of ni is provided in the left
panel in Figure 4. We note that there are 221 clusters with ni smaller than 10 and
25 clusters with ni = 1. The response variable yij is the PLP which is measured in
100,000 yen per squared meter. In each jth unit (location) in ith cluster (station),
yij is observed with the floor area ratio (%) Fij and amount of time Aij (second)
to station i on foot. Moreover, as cluster level information, the amount of time
Ti from Tokyo station by train and the prefecture to which the station belongs are
available. We use four dummy variables Di1, Di2, Di3, and Di4 for Chiba, Saitama,
Kanagawa, and Ibaraki, respectively, which take value one if the station i belongs to
the corresponding prefecture and zero otherwise. The values of yij range from 0.158
to 20.3. The right panel of Figure 4 shows that the histogram of yij for yij < 8. Note
that the number of samples with yij ≥ 8 is only 20 which is less than 1% of the total
number of observations. Using this dataset, the conditional density of the PLP for
each station is estimated.

Let xij = (1, Fij , Aij , Ti, Di1, . . . , Di4)
t. We consider the following latent mixture
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regression (LMR) model:

fi(yij |πi1, . . . , πiK) =
K∑
k=1

πikφ(yij ;x
t
ijβk, σ

2
k), j = 1, . . . , ni, i = 1, . . . ,m,

(πi1, . . . , πiK)t ∼ Dir(αi1, . . . , αiK), αik = exp(γ1k + γ2kT
∗
i ), k = 1, . . . ,K,

(10)

where φ(·; a, b) denotes the density function of N(a, b), and T ∗
i is the standardized

version of Ti. It is noted that the marginal model (3) is given by

fi(yij) =

K∑
k=1

pikφ(yij ;x
t
ijβk, σ

2
k), pik =

αik∑K
`=1 αi`

, (11)

and the cluster-wise estimated density (4) is

fi(y) =

K∑
k=1

E[πik|Yi]φ(y;xtβk, σ
2
k),

where Yi = {yi1, . . . , yini} and E[πik|Yi] can be computed from the Gibbs sampling
(6). Moreover, based on BIC, the number of latent components was selected to be
K = 6 from {1, . . . , 8}. We also doubled the number of Gibbs draws in the E-step,
but the same result was obtained.

For comparison with the proposed method, we also applied the global mixture
(GM) model with K∗ components:

f(y) =

K∗∑
k=1

pkφ(y;xtβk, σ
2
k),

where
∑K∗

k=1 pk = 1. It is expected that the estimated GM is similar to the marginal
model in LMR. Based on BIC K∗ = 5 was selected.

To visualize the estimated conditional density in each cluster, we fixed the co-
variate vector x at (1, 100, 600, Ti, Di1, . . . , Di4)

t, in which fi(y|x) corresponds to the
density function of the PLP of each cluster when the floor area ratio is 100 and the
location is 10 minutes’ walk from the nearest station. Figure 5 presents the estimated
density under LMR, the marginal model of LMR (mLMR), and GM for the stations
with small ni. The figure shows that the cluster-wise estimated densities under LMR
are close to those under the marginal model (11) when ni is small. This is because the
small ni values leads to a small difference between the prior mean pik and posterior
mean E[πik|Yi] of πik, so that the estimated densities in such clusters are automat-
ically close to those under the marginal model which can be stably estimated from
the data. Figure 6 presents the estimated densities for the stations with relatively
large ni. Contrary to Figure 5, the estimated densities under LMR are apart from the
marginal model in some clusters. The result implies that the marginal model is ad-
justed by the observed data in these clusters. We finally point out that the marginal
model of LMR and GM are similar in most cases since their modeling strategies are
similar in the sense that they aim at estimating the global density by ignoring the
clustering structure.
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4 Conclusion and Discussion

We have proposed the latent mixture model for estimating the cluster-wise conditional
distributions. The model parameters are estimated by using the simple Monte Carlo
EM algorithm instead of the brute force maximization of the marginal likelihood.
Through the simulation and empirical studies, the proposed method is found to be
useful for flexible modeling of clustered data.

In this article, we selected the number of components by using AIC and BIC.
However, it is well-recognized that the mixture model is a singular model and the
use of AIC or BIC is not justified. The detailed investigation of selecting the number
of latent components with theoretical validity would extend the scope of this article,
which will be left as a valuable future work.
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Figure 1: Mean integrated squared error (MISE) of four models evaluated at x =
−1.5,−0.75, 0 in scenario (I) with n = 30 (left) and n = 50 (right).
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Figure 2: Mean integrated squared error (MISE) of four models evaluated at x =
−1.5,−0.75, 0 in scenario (II) with n = 30 (left) and n = 50 (right).
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Figure 3: Mean integrated squared error (MISE) of three models evaluated at x =
−1.5,−0.75, 0 in scenario (III) with m = 50 (left) and m = 80 (right).
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Figure 5: Estimated cluster-wise conditional densities of PLP in stations with small
ni.
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Figure 6: Estimated cluster-wise conditional densities of PLP in stations with mod-
erate or large ni.
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