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Abstract

We extend the idea of tempering stable Lévy processes to temper-
ing more general classes of Lévy processes. We show that the original
process can be decomposed into the sum of the tempered process and
an independent point process of large jumps. We then use this to set
up a rejection sampling algorithm for sampling from the tempered pro-
cess. A small scale simulation study is given to help understand the
performance of this algorithm.
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1 Introduction

Tempered stable distributions are a class of models obtained by modifying
the tails of stable distributions to make them lighter. This leads to models
that are more realistic for a variety of applications, where real-world frictions
prevent extremely heavy tails from occurring. Perhaps the earliest models
of this type are Tweedie distributions, which were introduced in Tweedie
(1984), see also Küchler and Tappe (2013) for a recent review. A more
general approach is given in Rosiński (2007). This was further generalized in
several directions in Rosiński and Sinclair (2010), Bianchi et al. (2011), and
Grabchak (2012). A survey with many references, which discuss a variety
of applications, including those to actuarial science, biostatistics, computer
science, mathematical finance, and physics can be found in Grabchak (2016).
Associated with every tempered stable distribution, is a tempered stable
Lévy process, which behaves like a stable Lévy process in a small time frame,
but it has fewer large jumps.

The purpose of this paper is two-fold. First, we extend the idea of tem-
pering a stable Lévy process to tempering any Lévy process, and give results
about the relationship between the original process and the tempered one.
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In particular, we show that the original process can be decomposed into
the sum of the tempered process and an independent point process of large
jumps. Our second purpose is to use this decomposition to set up a rejection
sampling algorithm for simulating from the tempered process.

The problem of simulation has not been resolved even for tempered stable
distributions. For these, rejection sampling techniques are currently known
only for Tweedie distributions. For other tempered stable distributions, the
only known exact simulation technique is the inversion method, which is
computationally inefficient because it requires numerically calculating the
quantile function, which can only be done by numerically inverting the cu-
mulative distribution function (cdf). However, calculating the cdf is, itself,
expensive, since, for most tempered stable distributions, it can only be eval-
uated by numerically applying an inverse Fourier transform to the charac-
teristic function. Other simulation techniques are only approximate, and
are based either on truncating a shot-noise representation (Imai and Kawai,
2011), or on approximations by a compound Poisson Process (Baeumer and
Kovacs, 2012) or a Brownian motion (Cohen and Rosiński, 2007).

The basic idea of our rejection sampling approach is to start by sam-
pling an increment of the original process. This increment is then rejected
if it is too large, otherwise it is accepted. The procedure is in keeping with
the motivation for defining tempered processes as having marginal distribu-
tions that are similar to those of the original process, but with lighter tails.
In deciding if the observation is too large, we require the ability to evalu-
ate the probability density functions of the marginal distributions of both
the original and the tempered process. While this may be computationally
challenging, in many situations it is more efficient than implementing the
inversion method, see the simulation results in Section 7 below.

The rest of the paper is organized as follows. In Section 2, we recall
basic facts about infinitely divisible distributions and their associated Lévy
processes. In Section 3, we formally introduce tempered Lévy processes
and give our main theoretical results. Then, in Section 4, we show how
to use these results to set up a rejection sampling algorithm. In Section
5, we recall some basic facts about tempered stable distributions and give
conditions under which our results hold. Then, in Section 6, we give detailed
conditions for an important subclass of tempered stable distributions, which
has additional structure and is commonly used. Finally, in Section 7, we
give a small scale simulation study to illustrate how our method works in
practice.

Before proceeding, we introduce some notation. Let N = {1, 2, . . . } be
the set of natural numbers. Let Rd be the space of d-dimensional column
vectors of real numbers equipped with the usual inner product 〈·, ·〉 and
the usual norm | · |. Let Sd−1 = {x ∈ Rd : |x| = 1} denote the unit
sphere in Rd. Let B(Rd) and B(Sd−1) denote the Borel sets in Rd and Sd−1,
respectively. For a Borel measureM on Rd and t ≥ 0, we write tM to denote
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the Borel measure on Rd given by (tM)(B) = tM(B) for every B ∈ B(Rd).
If a, b ∈ R, we write a ∨ b and a ∧ b to denote, respectively, the maximum
and the minimum of a and b. If µ is a probability measure on Rd, we write
X ∼ µ to denote that X is an Rd-valued random variable with distribution
µ. Finally, we write U(0, 1) to denote the uniform distribution on (0, 1) and
N(b, A) to denote the multivariate normal distribution with mean vector b
and covariance matrix A.

2 Infinitely Divisible Distributions and Lévy Pro-
cesses

Recall that an infinitely divisible distribution µ on Rd is a probability mea-
sure with a characteristic function of the form φµ(z) = exp{Cµ(z)}, where,
for z ∈ Rd,

Cµ(z) = −1

2
〈z,Az〉+ i〈b, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉h(x)

)
L(dx).

Here, A is a symmetric nonnegative-definite d× d-dimensional matrix called
the Gaussian part, b ∈ Rd is called the shift, and L is a Borel measure, called
the Lévy measure, which satisfies

L({0}) = 0 and
∫
Rd

(|x|2 ∧ 1)L(dx) <∞. (1)

The function h : Rd 7→ R, which we call the h-function, can be any Borel
function satisfying∫

Rd

∣∣∣ei〈z,x〉 − 1− i〈z, x〉h(x)
∣∣∣L(dx) <∞ (2)

for all z ∈ Rd. For a fixed h-function, the parameters A, L, and b uniquely
determine the distribution µ, and we write

µ = ID(A,L, b)h.

The choice of h does not affect parameters A and L, but different choices of
h result in different values for b, see Section 8 in Sato (1999).

Associated with every infinitely divisible distribution µ = ID(A,L, b)h
is a Lévy process, {Xt : t ≥ 0}, which is stochastically continuous with
independent and stationary increments, and the characteristic function of
Xt is (φµ(z))t. We denote the distribution of Xt by µt. It follows that,
for each t ≥ 0, Xt ∼ µt = ID(tA, tL, tb)h. For more on infinitely divisible
distributions and their associated Lévy processes see Sato (1999).
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3 Main Results

Let µ = ID(A,L, b)h be any infinitely divisible distribution, and define the
Borel measure L̃ by

L̃(dx) = g(x)L(dx),

where g : Rd 7→ [0,∞) is a Borel function. Throughout, we make the follow-
ing assumptions:

A1. 0 ≤ g(x) ≤ 1 for all x ∈ Rd, and

A2. ∫
Rd

(|xh(x)| ∨ 1) (1− g(x))L(dx) <∞.

Assumption A1 guarantees that L̃ satisfies (1) and (2). Thus L̃ is a valid
Lévy measure, and we can use the same h-function with L̃ as with L. Let
µ̃ = ID(A, L̃, b̃)h, where

b̃ = b−
∫
Rd
xh(x) (1− g(x))L(dx).

We call µ̃ the tempering of µ and we call g the tempering function.

Remark 1. The name “tempering function” comes from the fact that, when
the additional assumption lim|x|→∞ g(x) = 0 holds, the tails of the distribu-
tion µ̃ are lighter than those of µ. In this sense, the distribution µ̃ “tempers”
the tails of µ. While this assumption is part of the motivation for defining
such distributions, we do not require it in this paper.

Remark 2. We can always take h(x) = 1[|x|≤1]. In this case (|xh(x)| ∨ 1) =
1 and Assumption A2 becomes

∫
Rd (1− g(x))L(dx) < ∞. However, when

we work with other h-functions, we need Assumption A2 to be as given.

In light of Assumptions A1 and A2, we can define the finite Borel measure

ρ(dx) = (1− g(x))L(dx).

Now, set
η := ρ(Rd) <∞,

and define the probability measure

ρ1(B) =
ρ(B)

η
, B ∈ B(Rd).
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Let Z1, Z2, . . . be independent and identically distributed (iid) random
variables with distribution ρ1. Independent of these, let {Nt : t ≥ 0} be a
Poisson process with intensity η, and set

Vt =

Nt∑
i=1

Zi, t ≥ 0. (3)

This is a compound Poisson process and, by Proposition 3.4 in Cont and
Tankov (2004), the characteristic function of Vt is given by

E
[
ei〈Vt,z〉

]
= exp

{
t

∫
Rd

(
ei〈x,z〉 − 1

)
ρ(dx)

}
, z ∈ Rd.

Let T = inf{t : Nt > 0} and note that, by properties of Poisson processes,
T has an exponential distribution with rate η, i.e.

P (T > t) = e−tη, t > 0. (4)

We now give our main result, which generalizes a result about relativistic
stable distributions1 given in Ryznar (2002).

Theorem 1. Let µ = ID(A,L, b)h and let g : Rd 7→ [0,∞) be a Borel
function satisfying Assumptions A1 and A2. Let µ̃ = ID(A, L̃, b̃)h, V =
{Vt : t ≥ 0}, and T be as described above. Let X̃ = {X̃t : t ≥ 0} be a Lévy
process, independent of V , with X̃1 ∼ µ̃ and set

Xt = X̃t + Vt, t ≥ 0.

1. The process X = {Xt : t ≥ 0} is a Lévy process with X1 ∼ µ.
2. If 0 ≤ t < T , then Xt = X̃t.
3. For any B ∈ B(Rd) and t ≥ 0 we have

P (X̃t ∈ B) ≤ etηP (Xt ∈ B).

This theorem implies that the process X̃ is obtained from X by throwing
out the jumps that are governed by Vt. We call X̃ the tempered Lévy process,
and, in this context, we refer to X as the original process.

Proof. We begin with the first part. Since X̃ and V are independent Lévy
processes and the sum of independent Lévy processes is still a Lévy process,
it suffices to check that the characteristic function of Xt is the same as the

1Relativistic stable distributions are the distributions of
√
XZ, where X and Z are

independent, X has a Tweedie distribution, and Z ∼ N(0, I), where I is the identity
matrix.
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characteristic function of X̃t +Vt. The characteristic function of X̃t +Vt can
be written as etC(z), where for z ∈ Rd

C(z) = −1

2
〈z,Az〉+

∫
Rd

(
ei〈x,z〉 − 1− i〈x, z〉h(x)

)
L̃(dx) + i〈b̃, z〉

+

∫
Rd

(
ei〈x,z〉 − 1

)
ρ(dx)

= −1

2
〈z,Az〉+

∫
Rd

(
ei〈x,z〉 − 1− i〈x, z〉h(x)

)
g(x)L(dx) + i〈b, z〉

−
∫
Rd
i〈x, z〉h(x) (1− g(x))L(dx)

+

∫
Rd

(
ei〈x,z〉 − 1

)
(1− g(x))L(dx)

= −1

2
〈z,Az〉+

∫
Rd

(
ei〈x,z〉 − 1− i〈x, z〉h(x)

)
L(dx) + i〈b, z〉,

as required. The second part follows immediately from the fact that Vt = 0
when 0 ≤ t < T . We now turn to the third part. Since X̃ and T are
independent, for any B ∈ B(Rd) we can use the second part to get

P (X̃t ∈ B)P (T > t) = P (X̃t ∈ B, T > t) = P (Xt ∈ B, T > t) ≤ P (Xt ∈ B).

From here, the result follows by (4).

4 Rejection Sampling

In this section, we set up a rejection sampling scheme for sampling from the
tempered Lévy process X̃, when we know how to sample from the original
Lévy process X. To begin with, assume that, for some t > 0 we want to
simulate X̃t. For our approach to work, we need the distributions of both
X̃t and Xt to be absolutely continuous with respect to Lebesgue measure on
Rd. Thus, each distribution must have a probability density function (pdf).
This always holds, for instance, if A is an invertible matrix or if both∫

Rd
|φµ(z)|t dz <∞ and

∫
Rd
|φµ̃(z)|t dz <∞.

More delicate conditions, in terms of the corresponding Lévy measures, can
be found in Section 27 of Sato (1999).

Now assume that Assumptions A1 and A2 hold, and let ft and f̃t be
the pdfs of Xt and X̃t, respectively. Since the inequality in the third part
of Theorem 1 holds for all Borel sets, it holds for pdfs as well. Thus, for
Lebesgue almost every x,

f̃t(x) ≤ etηft(x),
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where
η = ρ(Rd) =

∫
Rd

(1− g(x))L(dx).

This means that we can set up a rejection sampling algorithm (see Devroye
(1986)) to sample from f̃t as follows.

Algorithm 1.
Step 1. Independently simulate U ∼ U(0, 1) and Y ∼ ft.
Step 2. If U ≤ e−ηtf̃t(Y )/ft(Y ) accept, otherwise reject and go back to
Step 1.

Let pt be the probability of acceptance on a given iteration and let It
be the expected number of iterations until the first acceptance. By a simple
conditioning argument, it follows that pt = e−ηt, and hence that It = eηt.
Note that both of these quantities approach 1 as t→ 0. On the other hand,
when t → ∞, we have pt → 0 and It → ∞. Thus, this method works best
for small t.

We now describe how to use Algorithm 1 to simulate the tempered Lévy
process X̃ = {X̃t : t ≥ 0} on a finite mesh. For simplicity, assume that
the mesh points are evenly spaced; the general case can be dealt with in
a similar manner. Thus, fix ∆ > 0 and assume that we want to simulate
X̃∆, X̃2∆, . . . , X̃n∆ for some n ∈ N. To do this, we begin by simulating n
independent increments Y1, Y2, . . . , Yn

iid∼ f̃∆ using Algorithm 1. We expect
this to take nI∆ = ne∆η iterations. Now, to get values of the process, we set

X̃k∆ =

k∑
j=1

Yj , k = 1, 2, . . . , n. (5)

Next, consider the case, when we only want to simulate X̃t ∼ f̃t for
some fixed t > 0. While this can be done directly using Algorithm 1, when
t is large, the expected number of iterations, It = eηt, is large as well.
Instead, we can choose some n ∈ N and sample n independent increments
Y1, Y2, . . . , Yn

iid∼ f̃t/n. Then the sum X̃t = Y1 +Y2 + · · ·+Yn has distribution
f̃t. In this case, we only expect to need nIt/n = neηt/n iterations. This
requires fewer iterations so long as n < etη(1−1/n). Since the function b(x) =
xetη/x is minimized (on x > 0) at x = tη, it follows that the optimal choice
of n is near this value. As an example, assume that we want to simulate one
observation when t = 10 and η = 1. To do this directly, we expect to need
I10 = e10 ≈ 22026 iterations. On the other hand, to simulate 10 observations
when t = 1 and η = 1 we only expect to need 10I1 = 10 ∗ e1 ≈ 27 iterations.
Thus, the second approach is much more efficient, in this case.

7



5 Tempered Stable Distributions

Most, if not all, tempered Lévy processes that have appeared in the liter-
ature, are those associated with tempered stable distributions. Before dis-
cussing these, we recall that an infinite variance stable distribution on Rd is
an infinitely divisible distribution with no Gaussian part and a Lévy measure
of the form

Mα(B) =

∫
Sd−1

∫ ∞
0

1B(tξ)r−1−αdrσ(dξ), B ∈ B(Rd), (6)

where α ∈ (0, 2) and σ is a finite Borel measure on Sd−1. For these distribu-
tions we will use the h-function

hα(x) =


0 α ∈ (0, 1)
1[|x|≤1] α = 1

1 α ∈ (1, 2)
. (7)

We denote the distribution ID(0,Mα, b)hα by Sα(σ, b). For more on stable
distributions, see the classic text Samorodnitsky and Taqqu (1994).

Now, following Rosiński and Sinclair (2010), we define a tempered stable
distribution on Rd as an infinitely divisible distribution with no Gaussian
part and a Lévy measure of the form

M̃α(B) =

∫
Sd−1

∫ ∞
0

1B(tξ)r−1−αq(r, ξ)drσ(dξ), B ∈ B(Rd),

where α ∈ (0, 2), q : (0,∞) × Sd−1 7→ [0,∞) is a Borel function, and σ
is a finite Borel measure on Sd−1. Here, the tempering function is g(x) =
q(|x|, x/|x|). Using the h-function given by (7), we denote the distribution
ID(0, M̃α, b)hα by TSα(σ, q, b). In this case,

ρ(B) =

∫
Sd−1

∫ ∞
0

1B(rξ)r−1−α (1− q(r, ξ)) drσ(dξ), B ∈ B(Rd),

and Assumptions A1 and A2 become:

B1. 0 ≤ q(r, ξ) ≤ 1 for all r > 0 and ξ ∈ Sd−1, and

B2. ∫
Sd−1

∫ ∞
0

r−1−α (1− q(r, ξ)) drσ(dξ) <∞.

Note that Assumption B2 implies that, for σ almost every ξ, we have

lim
r↓0

q(r, ξ) = 1. (8)
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Next, we turn to the question of when both Sα(σ, b) and TSα(σ, q, b) are
absolutely continuous with respect to Lebesgue measure on Rd. Before char-
acterizing when this holds, we recall the following definition. The support of
σ is the collection of all points ξ ∈ Sd−1 such that, for any open set G ⊂ Sd−1

with ξ ∈ G, we have σ(G) > 0.

Proposition 1. If the support of σ contains d linearly independent vectors,
then both Sα(σ, b) and TSα(σ, q, b) are absolutely continuous with respect to
Lebesgue measure on Rd.

In particular, when d = 1, this holds so long as σ 6= 0.

Proof. By Proposition 24.17 and Theorem 27.10 in Sato (1999), it suffices
to show that, for σ almost every ξ ∈ Sd−1,∫ ∞

0
r−1−αdr =∞ and

∫ ∞
0

r−1−αq(r, ξ)dr =∞.

The first of these is immediately, while the second follows from (8).

In light of this proposition, we introduce the third assumption:

B3. The support of σ contains d linearly independent vectors.

We now specialize our main results to the case of tempered stable distri-
butions.

Corollary 1. Let µ = Sα(σ, b), µ̃ = TSα(σ, q, b̃), where

b̃ = b−
∫
Sd−1

∫ ∞
0

hα(r) (1− q(r, ξ)) r−αdrξσ(dξ),

If Assumptions B1 and B2 hold, then the results of Theorem 1 hold. If, in
addition, Assumption B3 holds, then we can use Algorithm 1 to simulate
from the Lévy process associated with µ̃.

In particular, this means that, when Assumptions B1 and B2 hold, if
{Xt : t ≥ 0} is a Lévy process withX1 ∼ µ and {X̃t : t ≥ 0} is a Lévy process
with X̃1 ∼ µ̃, then Xt = X̃t for 0 ≤ t < T , where T is as in Theorem 1. This
strengthens the well-known fact that tempered stable Lévy processes behave
like stable Lévy processes in a short time frame, see Rosiński and Sinclair
(2010). Algorithm 1 requires the ability to sample from a stable distribution.
In the one dimensional case, this is easily done using the classical method of
Chambers, Mallows, and Stuck (1976). In the multivariate case, this problem
has not been fully resolved, however a method for simulating from a dense
class of multivariate stable distributions is given in Nolan (1998).
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6 p-Tempered α-Stable Distributions

In the previous section, we allowed for tempered stable distributions with
very general tempering functions. However, it is often convenient to work
with families of tempering functions, which have additional structure. One
such family, which is commonly used, corresponds to the case, where

q(r, ξ) =

∫
(0,∞)

e−sr
p
Qξ(ds). (9)

Here p > 0 and {Qξ : ξ ∈ Sd−1} is a measurable family of probability
measures on (0,∞). For fixed α ∈ (0, 2), the corresponding tempered stable
distributions are called p-tempered α-stable. For p = 1 these were introduced
in Rosiński (2007), for p = 2 they were introduced in Bianchi et al. (2011),
and the general case was introduced in Grabchak (2012). See also the recent
monograph Grabchak (2016).

Now, consider the distribution TSα(σ, q, b), where q is as in (9), and
define the measures

Q(B) =

∫
Sd−1

∫
(0,∞)

1B(sξ)Qξ(ds)σ(dξ), B ∈ B(Rd)

and
R(B) =

∫
Rd

1B

(
x

|x|1+1/p

)
|x|α/pQ(dx), B ∈ B(Rd).

We call R the Rosiński measure of the distribution. For fixed p > 0 and
α ∈ (0, 2), R uniquely determines q and σ. Further, Proposition 3.6 in
Grabchak (2016) implies that we can recover σ by

σ(B) =

∫
Rd

1B

(
x

|x|

)
|x|αR(dx), B ∈ B(Sd−1). (10)

Due to the importance of the Rosiński measure, we sometimes denote the
distribution TSα(σ, q, b), where q is of the form (9), by TSpα(R, b). We now
characterize when Assumptions B1 and B2 hold.

Proposition 2. Consider the distribution TSα(σ, q, b), where q is of the
form (9) and let R be the corresponding Rosiński measure. This distribution
always satisfies Assumption B1. Further, it satisfies Assumption B2 if and
only if 0 < α < p and R is a finite measure on Rd. In this case

η =
Γ(1− α/p)

α
R(Rd).

Proof. The fact that Assumption B1 always holds follows from (9) and the
fact that Qξ is a probability measure for every ξ ∈ Sd−1. We now turn to
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Assumption B2. First assume that 0 < α < p. In this case, the fact that
{Qξ : ξ ∈ Sd−1} is a collection of probability measures implies that∫ ∞

0
r−1−α (1− q(r, ξ)) dr =

∫
(0,∞)

∫ ∞
0

r−1−α (1− e−srp) drQξ(ds)

=

∫
(0,∞)

sα/p

p

∫ ∞
0

(
1− e−r

)
r−1−α/pdrQξ(ds)

=

∫
(0,∞)

sα/pQξ(ds)
Γ(1− α/p)

α
,

where the second line follows by substitution and the third by integration
by parts. It follows that

η =

∫
Sd−1

∫ ∞
0

r−1−α (1− q(r, ξ)) drσ(dξ)

=
Γ(1− α/p)

α

∫
Sd−1

∫
(0,∞)

sα/pQξ(ds)σ(dξ)

=
Γ(1− α/p)

α

∫
Rd
|x|α/pQ(dx)

=
Γ(1− α/p)

α
R(Rd),

which is finite if and only if R(Rd) <∞. Now assume that α ≥ p. We again
have∫ ∞

0
r−1−α (1− q(r, ξ)) dr =

∫
(0,∞)

sα/p

p
Qξ(ds)

∫ ∞
0

(
1− e−r

)
r−1−α/pdr.

To see that Assumption B2 does not hold in this case, observe that∫ ∞
0

(
1− e−r

)
r−1−α/pdr ≥ .5

∫ 1

0
r−α/pdr =∞,

where we use the fact that, for r ∈ [0, 1], (1 − e−r) ≥ .5r, see e.g. 4.2.37 in
Abramowitz and Stegun (1972).

Remark 3. Perhaps, the most famous p-tempered α-distributions are Tweedie
distributions, which were introduced in Tweedie (1984). These are some-
times also called classical tempered stable subordinators. These are one-
dimensional distributions with p = 1, α ∈ (0, 1), σ({−1}) = 0, σ({1}) = a,
and Q1(dt) = δc(dt), where a, c > 0 and δc is the point-mass at c. In
this case R(dt) = acαδ1/c(dt). It is not difficult to show that such distribu-
tions satisfy Assumptions B1, B2, and B3 and thus that Algorithm 1 can be
used. Further, in this case, η = Γ(1 − α)acα/α, and it can be shown that
e−ηtft(Y )/f̃t(Y ) = e−cY . Thus, in this case, Algorithm 1 is computation-
ally easy to perform. In fact, it reduces to the standard rejection sampling
algorithm for Tweedie distributions given in e.g. Kawai and Masuda (2011).
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7 Simulations

In this section we perform a small scale simulation study to see how well
Algorithm 1 works in practice. We focus on a parametric family of tempered
stable distributions for which, up to now, there has not been an exact simu-
lation method except for the inversion method. Specifically, we consider the
family of p-tempered α-stable distribution on R1 with Rosiński measures of
the form

R`(dx) = C(1 + |x|)−2−α−`dx,

where ` > 0 is a parameter and

C = .5(α+ `+ 1)
α

Γ(1− α/p)
.

These distributions were introduced in Grabchak (2016) as a class of tem-
pered stable distributions, which can have a finite variance, but still fairly
heavy tails. If fact, if random variable Y has a distribution of this type,
then, for β ≥ 0,

E|Y |β <∞ if and only if β < 1 + α+ `.

Thus, ` controls how heavy the tails of the distribution are. Distributions
with tails of this type are useful, for instance, in modeling financial returns,
since, as is well-known, returns tend to have heavy tails, but the fact that
they exhibit aggregational Gaussianity suggests that their tails cannot be
too heavy and that the variance should be finite, see e.g. Cont and Tankov
(2004) or Grabchak and Samorodnitsky (2010).

Since R` is a finite measure, Proposition 2 implies that, when 0 < α < p,
Assumptions B1 and B2 hold and

η =
Γ(1− α/p)

α
R`(R) = 1.

By (10), it follows that we are tempering a symmetric stable distribution
with

s := σ({−1}) = σ({1}) = C

∫ ∞
0

xα(1 + x)−2−α−`dx.

Let µ = Sα(σ, b) and µ̃ = TSpα(R`, b̃). When p = 1, methods for evaluating
the pdfs and related quantities of both of these distribution are available in
the SymTS package (Grabchak and Cao, 2017) for the statistical software
R. For this reason, we focus on the case p = 1. In this case, we are restricted
to α ∈ (0, 1).

For our simulations, we took α = .75, ` = 1, and b = b̃ = 0. By numerical
integration, we got s = 0.0591034. Let µ̃ = TSpα(R`, b̃) = TS1

.75(R1, 0) and
let µ = Sα(σ, 0) = S.75(σ, 0), where σ({−1}) = σ({1}) = 0.0591034. Plots of
the pdfs of µ and µ̃ are given in Figure 1.
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Figure 1: The solid line is the pdf of the stable distribution µ and the dashed
line is the pdf of the tempered stable distribution µ̃. These are presented at
two scales.
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Figure 2: Tempered Stable and Stable KDE. On the left, the solid line is the
KDE of the simulated tempered stable random variables, and the dashed line
is the pdf of µ̃ smoothed by the kernel and bandwidth used for the KDE. On
the right, the solid line is the KDE of the simulated stable random variables,
and the dashed line is the pdf of µ smoothed by the kernel and bandwidth
used for the KDE.

13



0 200 400 600 800 1000

-2
0

-1
5

-1
0

-5
0

Simulated Levy Process (Tempered Stable)

t

0 500 1000 1500 2000 2500 3000

0
20
0

40
0

60
0

80
0

10
00

Simulated Levy Process (Stable)

tFigure 3: Simulated Lévy Processes. On the left is the simulated tempered
stable Lévy process and on the right is the simulated stable Lévy process.
The tempered stable Lévy process was obtained by rejecting some of the
jumps of the stable Lévy process.

To get 1000 observations from µ̃ using Algorithm 1, we expect to need
1000e1 ≈ 2718 iterations. For simplicity, we ran 3000 iterations. Thus,
we began by simulating 3000 observations from µ. This was done using
the method of Chambers, Mallows, and Stuck (1976). We then applied
Algorithm 1 to see which observations should be rejected. Here, we used the
SymTS package to evaluate the pdfs. In the end, we wound up with 1110
observations from µ̃.

Figure 2 (left) plots the kernel density estimator (KDE) for our samples
from µ̃. Here, KDE used a Gaussian kernel with a bandwidth of .02463.
The plot is overlaid with the pdf of µ̃ smoothed by the Gaussian Kernel with
this bandwidth. This verifies, numerically, that we are simulating from the
correct distribution. For comparison, Figure 2 (right), plots the KDE of the
original 3000 samples from µ. This is overlaid with the smoothed pdf of µ.
Here, KDE used a Gaussian kernel with a bandwidth of .006565.

Next, consider the Lévy process {X̃t : t ≥ 0}, where X̃1 ∼ µ̃. To simulate
X̃1, X̃2, . . . , X̃1110, we apply (5) to the iid increments, which we simulated
above. A plot of this Lévy process is given in the left plot of Figure 3. For
comparison, the right plot of Figure 3 gives the Lévy process based on the
original 3000 iid increments from µ. Comparing the two processes, we see
that all of the largest jumps have been rejected.

In our simulation, we used 3000 observations from µ to get 1110 obser-
vations from µ̃. Of course, due to the structure of the algorithm, if we run
the simulation again, we may get a different number of observations from µ̃.
We performed the simulation 500 times to see how many observations from
µ̃ are obtained. Figure 4 gives a boxplot and a histogram for all resulting
values. The smallest value observed was 1010 and the largest was 1172. The
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Figure 4: The number of observations from µ̃ (obtained based on a sample
of size 3000 from µ) was evaluated 500 times. A boxplot and histogram of
these is given.

mean was 1104.1 with a standard deviation of 25.1. Note that the observed
mean is very close to the theoretical mean of 3000e−1 ≈ 1103.6.

Now, consider the case, where we want to simulate from µ̃10 = TS(10R, 0),
which is the distribution of X̃10. A plot of this distribution is given in Figure
5 (left). We have two choices. First, we can use Algorithm 1 directly, which
requires, on average, e10 ≈ 22026 iterations to get one observation. Sec-
ond, we can use Algorithm 1 to simulate 10 independent observations from
µ̃, and then aggregate these by taking the sum. This requires, on average,
10e1 ≈ 27 iteration to get one observation. Clearly, the second approach is
more efficient, and, hence, it is the one that we use.

Say that we want 1000 independent observations from µ̃10. This requires
10000 independent observations from µ̃, and we expect to need 10000e1 ≈
27183 iterations. We performed 30000 iterations, which gave us 11130 obser-
vations from µ̃. These, in turn, gave 1113 observations from µ̃10. In Figure
5 (right), we plot the KDE of the simulated data. This is overlaid with the
pdf of µ̃ smoothed by the appropriate kernel and bandwidth. Here, KDE
used the Gaussian kernel with bandwidth 0.1863.

For a comparison, we also performed simulations using the inversion
method, which is implemented in the SymTS package. First, we fixed
α = 0.75, ` = 1.0, and considered t = 1, 2, 5, 10, 20. Computation times
for both approaches are reported in Table 1. Not surprisingly, when t is
small, Algorithm 1 is more efficient, but for large t the inversion method
works better. Second, we fixed t = 1 and considered α = 0.5, 0.75, 0.95 and
` = 0.5, 1.0, 5.0. Computation times are reported in Table 2. Both sets of
simulations were performed on a desktop PC with a 3.40GHz Intel Core i7-
6700 CPU. The computer was running Ubuntu 16.04.4 LTS and R version
3.2.3.
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Figure 5: Plots for t = 10. On the left, the solid line is the pdf of the
stable distribution µ10 and the dashed line is the pdf of the tempered stable
distribution µ̃10. On the right, the solid line is the KDE of the simulated
tempered stable random variables, and the dashed line is the pdf of µ̃10

smoothed by the kernel and bandwidth used for the KDE.

Algorithm 1 Inversion Method
t run time iterations obs run time obs ratio
1 24.711 sec 3000 1121 285.210 sec 1000 0.087
2 47.399 sec 6000 1105 255.879 sec 1000 0.185
5 118.563 sec 15000 1104 224.227 sec 1000 0.529
10 237.747 sec 30000 1084 193.319 sec 1000 1.230
20 443.286 sec 56000 1024 191.004 sec 1000 2.321

Table 1: Comparison of the performance of Algorithm 1 and the inversion
method for several values of t. For Algorithm 1, the iterations column gives
the number of stable random variables simulated and the obs column gives
the number of tempered stable random variables obtained after performing
rejection and aggregation. The ratio column is the run time for Algorithm
1 divided by the run time for the inversion method.
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Algorithm 1 Inversion Method
α ` run time observations run time observations ratio
.50 0.5 66.841 sec 1057 785.870 sec 1000 0.085
.50 1.0 30.531 sec 1116 338.867 sec 1000 0.090
.50 5.0 47.035 sec 1090 509.506 sec 1000 0.092
.75 0.5 53.346 sec 1124 668.588 sec 1000 0.080
.75 1.0 23.844 sec 1082 282.788 sec 1000 0.084
.75 5.0 37.353 sec 1093 448.820 sec 1000 0.083
.95 0.5 51.121 sec 1101 601.804 sec 1000 0.084
.95 1.0 23.444 sec 1096 278.804 sec 1000 0.084
.95 5.0 38.190 sec 1100 470.784 sec 1000 0.081

Table 2: Comparison of the performance of Algorithm 1 and the inversion
method for several values of α and `. For Algorithm 1, the observations
column gives the number of tempered stable random variables obtained based
on a sample for 3000 observations from the stable distribution. The ratio
column is the run time for Algorithm 1 divided by the run time for the
inversion method.

For the above simulations, we attempted to cover a large part of the
parameter space. However, while the parameter α can, in principle, take
any value in (0, 1), we did not consider the case α < 0.5. This is because
we found it difficult to numerically evaluate the pdfs with enough accuracy
in this case. We conjecture that this difficulty is due to the fact that, for
such values of α, stable distributions are extremely heavy tailed. On the
other hand, there is no difficulty with values near 1, as is illustrated by the
simulations for α = .95.

For both Algorithm 1 and the inversion method, the most expensive part
of the calculation involves evaluating the required functions. These are ft
and f̃t for Algorithm 1 and the quantile function for the inversion method.
When we are simulating many observations from the same distribution, both
methods can be improved by precomputing these functions on a grid and then
using interpolation.
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