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Abstract We present an importance sampling algorithm that can produce realisations of Marko-
vian epidemic models that exactly match observations, taken to be the number of a single event type
over a period of time. The importance sampling can be used to construct an efficient particle filter
that targets the states of a system and hence estimate the likelihood to perform Bayesian inference.
When used in a particle marginal Metropolis Hastings scheme, the importance sampling provides
a large speed-up in terms of the effective sample size per unit of computational time, compared to
simple bootstrap sampling. The algorithm is general, with minimal restrictions, and we show how
it can be applied to any continuous-time Markov chain where we wish to exactly match the number
of a single event type over a period of time.

1 Introduction

Many epidemic models are most naturally described by continuous-timeMarkov chains (Keeling and Rohani
2007; Black and McKane 2012). These capture the discrete nature of the individuals, which is im-
portant when considering smaller populations, as well as the random nature of the underlying
events. Bayesian inference using these models is difficult because, apart from when the state space
is small (Black and Ross 2013; Black et al. 2017), the transition density for such models cannot be
evaluated point-wise. Thus many modern methods for performing inference using these models rely
on simulating from the underlying model—sampling the transition density instead of evaluating
it—which is typically quite simple (Golightly and Wilkinson 2011).
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One such method is particle marginal Metropolis Hastings (pmMH) (Andrieu et al. 2010). This
can be understood as a basic Metropolis-Hastings algorithm targeting the parameter posterior of
the model, but where the likelihood is replaced by an unbiased estimate from a particle filter, which
is a form of sequential Monte Carlo (SMC) (Doucet et al. 2001; Doucet and Johansen 2009). The
popularity of pmMH stems from it targeting the exact posterior distribution for the parameters of
the model, despite the estimate. The challenge in implementing this method is that the mixing of the
chain depends strongly on the variance of the likelihood estimate (Doucet et al. 2015; Sherlock et al.
2015), which in turn depends on the performance of the particle filter.

The simulations of the discrete-state model are normally done using the stochastic simulation
algorithm (SSA)1 (Gillespie 1976), which is an example of a bootstrap filter (Gordon et al. 1993).
The problem with this approach is that if the observed events are rare, or the state space is large,
the number of particles needed to estimate the state and hence the marginal likelihood in any one
step of the SMC becomes prohibitively large. This is a well known problem in SMC where the
more accurate the observations, the worse the filter performs. So in epidemic models where we
observe a component of the state exactly—for example the number of infection or recovery events
over an interval of time (but not the exact times at which they occur)—the cost of producing
simulations that match this data becomes high. This can be mitigated to some extent by assuming
or adding noise on top of the observations, essentially increasing the likelihood of a particle matching
(Golightly and Wilkinson 2011). Whether this is reasonable, or not, is a modelling decision, but will
inevitably add extra variance to the parameter estimates. A better approach is to use importance
sampling to generate realisations of the process that exactly match the observations. Importance
sampling works by changing the rules by which a process evolves so as to make a rare event more
probable (Kroese et al. 2011). This bias is then corrected for in the calculation of the likelihood.

In this paper we present a simulation algorithm that implements importance sampling to produce
realisations of complex stochastic epidemic models that match observations exactly. This builds
substantially on the earlier work of McKinley et al. (2014). By modifying and extending the basic
ideas of McKinley et al., the resulting algorithm can be easily applied to quite complex models and
does not suffer the numerical instabilities that are inherent to the original algorithm.

We begin by describing the basic importance sampling idea for the simplest one-dimensional
model. We then show how this can be generalised to a number of more complex multi-dimensional
epidemic models, where our data are the observations of one component of the state, typically
the number of a certain transition or event. Finally, we illustrate the use of importance sampling
in a particle filter to perform inference on a number of outbreak time series using a model that
accounts for different infectious phases. The resulting posterior distributions are compared to results
from using an alive particle filter (Del Moral et al. 2015), which uses the SSA for sampling. The
version using importance sampling achieves a large speed-up in the effective sample size per unit of
computation time using the same number of particles, and this speed-up increases as the size of the
data set grows. MATLAB and C code is provided for all of these methods as part of the EpiStruct
(2017) project.

1 Also known as the Gillespie algorithm or the Doob-Gillespie algorithm.
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2 Importance sampling

We first introduce the basic importance sampling idea for a continuous-time Markov chain using
a very simple example. Consider a simple model of a decay process where there is a collection of
M objects initially, which each decay independently at rate γ. We define Z(t) to be the number of
decay events by time t, hence the number of objects left is X(t) =M − Z(t). The rate of an event
is therefore

a(Z(t)) = γ(M − Z(t)). (1)

Assume that over some interval of time, which without loss of generality we take as [0, 1], we
observe y events. We then wish to calculate a Monte Carlo estimate of the likelihood of this ob-
servation2, which corresponds to one step in a sequential Monte Carlo routine (Doucet et al. 2001;
Doucet and Johansen 2009). The likelihood of our observation can be written

p(y) = p(y|z1)p(z1|z0),

where zj = Z(j) is the state of the system at time t = j. As we observe the state of the system
exactly, the observation density is

p(y|z1) = δz1, y =

{

1 if z1 matches y,

0 otherwise.

Given the initial state of the process, we can sample from the transition density by using the SSA

(z
(i)
t ∼ p(zt|z0)), where z

(i)
t is the state of the ith realisation, or particle, at time t (Gillespie 1976;

Golightly and Wilkinson 2011). A Monte Carlo estimate of the likelihood is simply (Kroese et al.
2011),

p̂(y) =
1

N

N
∑

i=1

δ
z
(i)
1 ,y

,

where N is the total number of realisations produced.

As there is only one type of event, simulation of a realisation of the process is straightforward.
Starting at t = 0, the time to the next decay event is exponentially distributed with rate parameter
a, given in Eq. (1),

t′ ∼ Exp(a).

Hence we generate times and increment the variables Z ← Z+1 and t← t+ t′, and keep repeating
this, until the next generated time is greater than the observation window (t + t′ > 1), then the
algorithm stops. A realisation of the process can then be specified by the initial state and the set
of times, {t1, . . . , tn}, at which events occur. Sampling from the transition density is illustrated in
Figure 1(a), using N = 10 realisations. If the observation was, for example, y = 10 then none of
the particles match this, hence their weight would be zero and the estimate of the likelihood zero.

Instead we can use importance sampling to estimate the likelihood (Kroese et al. 2011). This
means we sample a realisation of the process according to an importance sampling distribution,

2 In fact this can be done analytically for this model.
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(b)

Fig. 1 Illustration of bootstrap sampling from the transition density (a) and importance sampling (b), with N = 10,
y = 10 and γ = 1. The red circles indicate the particles initially; the blue circles show the particles after propagation
by 1 day. The grey plot shows the true transition density. The importance sampling makes all the particles end in
the observed state, but the particles have different weights (indicated by the size of the circles). Note that in panel
(a) the estimate of the likelihood is 0 as none of the particles match the observation, and hence all particles would
be assigned weight 0.

z
(i)
1 ∼ q(z1|z0, y), but this has to be taken into account in our estimate to recover the correct
likelihood:

p̂(y) =
1

N

N
∑

i=1

p(y|z
(i)
1 )

p(z
(i)
1 |z0)

q(z
(i)
1 |z0, y)

. (2)

The key insight developed by McKinley et al. (2014) is that it is possible to design simulation

algorithms such that the observation likelihood p(y|z
(i)
1 ) = 1, i.e., all the realisations end in a state

consistent with the observation. Eq. (2) then reduces to

p̂(y) =
1

N

N
∑

i=1

p(z
(i)
1 |z0)

q(z
(i)
1 |z0, y)

=
1

N

N
∑

i=1

wi, (3)

where the ratio of the transition density, p, to the importance sampling density, q, is known as the
weight, and can be calculated iteratively as the simulation progresses.

One choice of importance sampling density for this decay model is particularly simple. If y
events are observed then we first generate the times of the events distributed uniformly over the
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observation interval, and these are sorted,

τ = {t1, . . . , ty}. (4)

These are known as order statistics (David and Nagaraja 2005) and can be generated by sorting
uniform random numbers or by employing a dedicated algorithm (Kroese et al. 2011). With the
times, τ , generated, all that remains is to calculate the weight of the realisation. The importance
density of any particular realisation is just

q(τ) = y!, (5)

which follows from considering the joint distribution for the y uniform random variables. Under the
original process—i.e., the one where events occur at a rate given by Eq. (1)—the time to the next
event is distributed exponentially, with pdf

f(t) = ae−at.

Thus for a given set of times, τ , the transition density under the original process is

p(τ) = e−a(Z(ty))(1−ty)

y
∏

i=1

a(Z(ti−1))e
−a(Z(ti−1))(ti−ti−1), (6)

where t0 = 0 and the term at the front of the expression is the probability of no further events
in the interval [ty, 1]. The recursive nature of this expression means that it is simple to evaluate
this iteratively—this is seen clearly in the code provided—and this is exploited in later simulation
algorithms. In practice we work with the log of q and p to avoid numerical issues. Figure 1(b) shows
10 realisations produced using importance sampling simulations for the same example as before.
By construction, all particles end in the observed final state, but have different weights.

3 Application to epidemic models

3.1 SIR model

We now take the basic idea developed in the previous section—that we can simulate realisa-
tions that match the observations exactly—and show how this can be applied to estimate the
states and likelihood for a two-dimensional Susceptible–Infected–Recovered (SIR) epidemic model
(Keeling and Rohani 2007), where we only observe a single component of the state. In doing this,
we begin to develop the idea that the importance sampling algorithm can be considered as a suit-
ably modified version of the original process, conditioned on a set of event times that are initially
randomly generated.

Instead of defining the model in terms of the population numbers (S and I) we instead work pri-
marily in terms of the numbers of two events that can occur: infection and recovery (Jenkinson and Goutsias
2012; Black and Ross 2015). Thus we denote by Z1(t) and Z2(t) the number of infection and recov-
ery events that have occurred up to time t, and hence the state of the system is specified by a vector
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Z(t) = (Z1(t), Z2(t)). We assume that our observations of the system correspond to the number of
infection events, y, over the interval of time [0, 1], but recovery events are not observed; hence we
do not know the number of infected or recovered individuals in the system. Defining zi = Z(i), the
observation likelihood is

p(y|z1) = δg(z1), y, (7)

where the function g picks the first component of the vector zi.

First note that we can write the number of susceptible and infected individuals in terms of the
number of events as (dropping the dependence on t),

(

S
I

)

=

(

S0

0

)

+

(

−1 0
1 −1

)(

Z1

Z2

)

(8)

where the matrix in Eq (8) is known as the stoichiometric matrix (van Kampen 1992), and we have
assumed we start with a completely susceptible population of size S0. The stoichiometric matrix
encodes how each event changes the numbers of S and I. For example, an infection event decreases
the number of S by 1 and increases the number of I by 1. The rates of the two events are,

a1 = βSI = β(S0 − Z1)(Z1 − Z2),

a2 = γI = γ(Z1 − Z2),
(9)

where β and γ are the infection and recovery rate parameters respectively, and are herein assumed
fixed. The reason to work primarily in terms of the event counts rather than the population numbers
is that event counts only ever increase, which leads naturally to the relation

Z2 ≤ Z1. (10)

Given that the system starts in a particular state, z0, at time t = 0, a realisation can be generated
using the SSA (Gillespie 1976). There are two basic versions of this; in the ‘direct’ version, the time
to the next event is exponentially distributed with rate parameter a0 = a1 + a2,

t′ ∼ Exp(a0).

The event that happens after this time (1 or 2) is then chosen randomly according to the probabilities
ai/a0, i = 1, 2. An equivalent way of performing this simulation is to instead draw two times,
t′1 ∼ Exp(a1), and t

′

2 ∼ Exp(a2), then the next event is chosen as the one with the smallest time.
This is known as the next reaction method (Gillespie 1976; Gibson and Bruck 2000; Anderson 2007).
However generated, a realisation of the process can be specified by the initial condition, Z(0), and
a list of times and the index of the event that occurs at those times,

ψ = {{t1, e1}, {t2, e2}, . . . {tn, en}} .

where 0 < ti < 1, and ei ∈ {1, 2} is the index of the ith event. The form of the rates of each
event given in Eq. (9) means that any realisation generated by this procedure will have Eq. (10)
automatically satisfied.

We can use importance sampling, as introduced in the previous section, to generate realisations
that match our data exactly. This means the number of infection events over the observation interval
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will be equal to y, but their times are random as are the number and times of recovery events. The
basic idea is that a realisation can be produced by first randomly generating the times of y infection
events over the interval [0, 1] and then generating recovery times such that the set of all times are
consistent with the model and the data. The recovery times are generated by simulating a modified
version of the the model, conditioned on the initially-generated infection times. Consistency with
the model means that Eq (10) must be true; consistency with the data means that as we specify
the times of infection events in the first step, then these must always be possible, which requires

a1 > 0 =⇒ I = (Z1 − Z2) > 0,

otherwise the epidemic has faded out3.

To generate a realisation we proceed as follows. First, a set of y ordered infection times is
generated from a uniform distribution over the interval [0, 1],

τ = (t1, t2, . . . , ty). (11)

We call these forced events. Next we generate recovery times to produce a valid realisation; we do
this by running a modified version of our model over the same interval of time, conditioned on the
times τ . To do this, first note that because we have specified the times, and the exact number,
of the infection events in the first step, the rate of further infection events must be zero over the
observation period. Also, if I(t) = 1 then there cannot be another recovery event before the next
infection event, hence this rate of the event must be zero. The modified process therefore has rates

b1 = 0,

b2 =

{

a2 if I > 1,

0 if I = 1,

(12)

for events of type 1 and 2 respectively and b0 = b1+b2. This may seem wasteful to specify the process
in this way (with b1 = 0), but this redundancy significantly simplifies the general version of the
algorithm and its exposition. This can be removed—and the algorithm made slightly quicker—by
simply re-labelling the events as discussed later.

Starting from t = 0, the modified process is simulated with rates (12). Let tn be the time of the
next forced event, given the current time t. The algorithm then proposes a time to the next event,
drawn from an exponential distribution,

t′ ∼ Exp(b0).

This is compared with tn as follows,

– If t′ < tn − t then the next event is a recovery event at time t+ t′, that is, we set Z2 ← Z2 + 1
and t← t+ t′.

– If t′ ≥ tn − t, then the next event is an infection at time tn, so Z1 ← Z1 + 1 and t ← tn, and
the next forced event time, tn, is updated.

3 This condition may not be true after the final observed infection event, depending on what other observations
are made on the system afterwards.
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Note that if b2 = 0 then the next step in the algorithm will be to implement the next forced infection
event at time tn. Once the algorithm has reached the time of the last forced infection event, then
the procedure above carries on, potentially adding recovery times, but if t+ t′ > 1, then this means
that no new events occur before the end of the observation window and the simulation terminates.

Thus at each iteration there are three things that can happen: either add a recovery at the
proposed time, add a pre-calculated infection time, or the end of the observation window is reached.
Through this procedure we generate a realisation where the number of infection events matches the
observation, but is also consistent. What remains is to calculate the probability densities of the
realisation under the modified process (from which it is generated) and under the original process,
so as to calculate the weight of the realisation. First, the contribution to the weight from the
initially-generated infection times is the same as before, given by Eq. (5). The rest of the weight
contributions are then most easily calculated iteratively as the algorithm proceeds. First note that
the log transition density for an event under the original process is

log

(

ai
a0
a0 exp(−a0s)

)

= log(ai)− a0s, i = 1, 2, (13)

where s is the time until the event. If a recovery event happens (t′ < tn− t) then the log importance
weight is updated as

w ← w + log

(

a2
b2

)

− (a0 − b0)t
′. (14)

If an infection event occurs (t′ ≥ tn − t) then the log importance weight is updated as,

w← w + log(a1)− (a0 − b0)(tn − t), (15)

where the second term is the probability of proposing a time greater than tn. Finally, after the last
infection event, if t′ > 1− t then no event occurs so the contribution is

w← w − (a0 − b0)(1 − t), (16)

which is simply the log of the ratio of the probabilities of no further events in the interval under
the original and modified processes.

3.2 SEIR model

We now extend the algorithm developed so far to generate realisations of an SEIR model that
match observations exactly. This adds an additional complication in maintaining consistency of a
particular realisation. The SEIR model is similar to the SIR model, but has an additional latent
class, E, where an individual is infected, but not yet infectious. This model can be defined in
terms of three events: infection (S → E), latent progression (E → I) and recovery (I → R). For
conciseness, we will refer to these as events 1, 2 and 3 respectively, and Z(t) = (Z1(t), Z2(t), Z3(t))
counts the number of these events that have occurred by time t. The relation between the number
of each event and the population numbers is,





S
E
I



 =





S0

0
0



+





−1 0 0
1 −1 0
0 1 −1









Z1

Z2

Z3



 , (17)
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where we assume an initially susceptible population of size S0. The rates of each event are then

a1 = βSI = β(S0 − Z1)(Z1 − Z2),

a2 = σE = σ(Z1 − Z2),

a3 = γI = γ(Z2 − Z3),

(18)

where (β, γ, σ) are the fixed parameters and a0 = a1 + a2 + a3. For this model, we assume the
number of event 2 (E → I) is observed over the interval [0, 1], which is denoted y. This can be
justified for diseases where the onset of symptoms and infectiousness coincide, such as influenza.

The simulation algorithm for this model is similar to that for the SIR model. In the first step,
the times of event 2 are generated, then in the second step, the times of the other two events (1
and 3) are generated, conditional on the event 2 times. In the SIR model, we assumed that the
observations were of the first event in the chain (infection). In this model we now observe the second
event (when an individual becomes infectious after a latent period), which introduces additional
complexity. For this model, we now require for consistency that,

Zi ≤ Zj for i < j, (19)

as well as

E + I = Z1 − Z3 > 0, (20)

which enforces that the disease cannot go extinct. In addition to these, because the event 2 times
are specified in the first step, when they are implemented in the second step,

a2 > 0 =⇒ E = Z1 − Z2 > 0. (21)

It should be emphasized that E may go to zero (and this has to be allowed otherwise we change
the dynamics of the original model), but if it does go to zero then an event 1 must occur before the
next event 2. In practice, this means that at certain points in the simulation an event 1 may also
need to be forced to maintain consistency of the realisation—how this is done is discussed later.
Depending on what other observations have been made, we may also wish to condition the process
on the final size of the outbreak. If NF is the total number of event 2 observed over the course of
the outbreak then Z1 ≤ NF , which by Eq. (19) implies Z2 ≤ NF also.

The simulation proceeds in two stages as follows. For the first stage, the y times of event 2 are gen-
erated from a uniform distribution over the observation interval and sorted. Before, these were stored
as a simple vector, but now these are stored in a stack denoted ψ (Knuth 1997; Aho and Ullman
1995). These times are added to the stack in reverse order along with the event indices, so the
earliest forced event is at the top of the stack. The move to a stack is because the algorithm may
need to force more events during the course of the simulation. Let tn and en point to the top time
and event index respectively, which we call the next forced event. An example of this step is shown
in Figure 2(a).

The second stage of the procedure simulates a modified Markov chain over the interval [0, 1]
to generate the times of the other events. The algorithm proceeds in a similar manner to the SIR
model, by proposing times to the next event and accepting / rejecting that based on the time of
the next forced event. The only additional step occurs at the beginning of each iteration, where the
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algorithm checks the index of the next forced event, en, and the state of the system. This idea is
illustrated by way of an example in Figure 2. At t = 0 the state of the system is Z(0) = (2, 1, 0).
en = 2, but E = 1, so the state is consistent with the next forced event. Thus a time, t′, is proposed
derived from a modified process, specified in more detail later. In this example, t + t′ > tn so the
next forced event is implemented instead of the proposed one, and tn and en are updated. After
this event, t = t1 and Z(t) = (2, 2, 0). For the next iteration, en = 2 but E = 0, hence the state is
inconsistent with the next forced event so at least 1 event 1 must occur within the interval [t1, t2]
for the model to be consistent at time t2. The time of this event is generated from a truncated
exponential distribution on this interval, with rate a1(t), i.e., the current rate of this event,

t′ ∼ TruncExp(a1, 0, tn − t). (22)

The time t+t′ and event index 1 are then pushed on to the top of the stack. This step is represented
pictorially in Figure 2 (c and d). Whenever an additional event is forced in this way, the modified rate
of that event (b1 in this case) is set to zero until the event has been implemented. The contribution
to the log importance weight of this extra forced event is

w ← w − log(a1) + a1t
′ + log[1− exp(−a1(tn − t))], (23)

which is the log of the density of a truncated exponential RV with rate a1. This step to ensure
consistency is different from the scheme presented in McKinley et al. (2014). The consequences of
this are discussed fully later.

After this step, the algorithm proceeds essentially as for the SIR model with a few modifications.
First the modified rates are calculated as follows:

b1 =

{

0 if en = 1 or Z1 = NF ,

a1 otherwise,

b2 = 0,

b3 =

{

a3 if I + E > 1,

0 if I + E = 1,

(24)

and b0 = b1 + b2 + b3. The second rate is always zero as the number and times of these events
are already generated. The third rate is set to zero if there is only a single infected or exposed
individual, to stop the disease going extinct. The first rate is set equal to zero if en = 1, i.e., if event
1 is the next forced event. The first rate is also set to zero if the number of these events equals
the observed final size (if this is available). Thus all realisations would end with the correct total
number of infections. We can see that there are situations in which b0 = 0, in which case the next
forced event is implemented at the next step in the algorithm.

Once the modified rates are calculated, a time is proposed, t′ ∼ Exp(b0) and compared to the
time of the next forced event, tn as described for the SIR model. The only additional step required
is that if the proposed time is accepted, the particular event that occurs is randomly chosen in
proportion to its rate bi/b0, i ∈ {1, 3} as in the SSA. Hence if the proposed time is accepted
(t′ < tn − t) and the ith event is chosen then the log importance weight is updated as

w← w + log

(

ai
bi

)

− (a0 − b0)t
′. (25)
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Fig. 2 Illustration of the algorithm for the SEIR model, Z(0) = (2, 1, 0) and y = 4. (a) For initialisation the times
of the 2nd (observed) event are generated and added in reverse order to the stack, ψ; tn and en point to the the top
time and event index respectively. (b) In the first step, E(0) = 1 and en = 2 so the state of the system is consistent
with the next forced event. Hence a time, t′, is proposed, with pdf shown in light blue. In this example, t + t′ > tn
so the next forced event is implemented, and popped off the top of the stack. (c) Now E(t1) = 0 and en = 2 so the
state is inconsistent. Thus the algorithm forces an event 1 in the interval [t1, t2]. The pdf for this time is shown in
light green. (d) The stack after this addition, where t5 = t1 + t′. Note that after t5 is added to the stack, t = t1 still,
but en = 1 so the state is now consistent with the next forced event. Hence, the next step in the algorithm will be
to propose a time for the next event as in (b).

If instead, the next forced event is implemented, (t′ ≥ tn− t) and en is the index of that event, then

w← w + log(ane
)− (a0 − b0)(tn − t). (26)

After these steps, the algorithm returns to the start and checks the state of the system and the next
forced event. This continues until after the last detection event, at which point the constraints on
the modified process are much simpler as the algorithm only has to stop fade out of the disease and
there are no more forced events. Once the first proposed time goes beyond the observation window
(t+ t′ > 1) then the algorithm stops and the final weight contribution of this step is as in Eq. (16).
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The importance sampling described here does have one limitation, which is that it will not
perform well for all parameters. For example, if 1/σ → 0 then the model effectively becomes an
SIR model as an individual leaves the exposed class almost immediately after entering it. In this
case the times of the infection events and the observed events become highly correlated and the
importance sampling process is no longer a good approximation to the true process. In this case
the the importance sampling can actually increase the variance of the estimate of the likelihood
in comparison to a more naive approach. This does restrict the range of parameters for which
the algorithm can be used. If used within a pmMH routine, then this can be enforced by setting
appropriate priors for the Metropolis Hastings part of the algorithm.

3.3 Summary of the exact-matching algorithm

At this point we can give a summary of the importance sampling algorithm. Assume we have a
model with M event types, where we observe the number of type k over the interval [0, 1]. The
algorithm is then as follows, where steps 2 and 3 are model dependent and hence are discussed in
more detail in the next two sections.

Initialisation: set the initial condition, Z(0), and generate the times of the y observed events (of
type k) from a uniform distribution over the interval [0, 1]. Sort and add these to the stack, ψ, in
reverse order and set en, tn and t = 0.
Set the initial importance weight, w = ln(y!).

1. Calculate the rates of the original process, ai(Z(t)), i = 1, . . . ,M given the current state and

a0 =
∑M

i=1 ai.

2. Check the consistency of system given the next forced event, en. If inconsistent, then force an
event to fix this within the interval [t, tn]. Assuming this event is of type l, generate

s ∼ TruncExp(al, 0, tn − t),

and
w ← w − log(al) + als+ log[1− exp(−al(tn − t))].

Push t+ s and event index l onto the stack and update en and tn.

3. Calculate the rates of the modified process, bi(Z(t), ne), i = 1, . . . ,M , which depend on the

current state and the next forced event. Calculate the total rate, b0 =
∑M

i=1 bi.

4. Propose a time to the next event, t′ ∼ Exp(b0).

5. If t′ < tn − t, choose an event index, j ∈ {1, . . . ,M} with probability Pr(j = i) = bi/b0 and
update Zj ← Zj + 1, t← t+ t′ and

w← w + log

(

aj
bj

)

− (a0−b0)t
′.
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Otherwise (if t′ > tn − t) implement the next forced event at time tn.
Set Zne

← Zne
+ 1, t← tn and

w ← w + log(aen)− (a0 − b0)(tn − t).

6. While |ψ| > 0, goto 1.

Once all the forced events have been implemented (the stack is empty, |ψ| = 0), then the simulation
continues until t+t′ > 1, but step 2 is no longer required and the conditioning of the modified process
in step 3 is in turn simpler. The algorithm terminates once t′ > 1− t and the final contribution to
the weight is

w← w − (a0 − b0)(1 − t).

As signposted, steps 2 and 3 depend on the model structure. For the the SIR model, step 2 is
not required as we observe the first event in the chain. For the the SEIR model, these steps are
detailed in Section 3.2. In the next Section we will describe how these steps can be carried out for
a more complex model that potentially requires forcing chains of events to maintain consistency of
the state given the next forced event.

4 Model with symptomatic phases

In this section we give an example of how the algorithm can be applied to a model with a more
complex structure that requires a decision tree for deciding how to force events to maintain consis-
tency of a realisation. In the second part we incorporate this into a particle filter and compare it
with a standard approach from the literature. The model has the structure illustrated in Figure 3.
This splits the infectious class into two stages modelling a pre-symptomatic (Ip) and a symptomatic
(Is) phase (Regan et al. 2016). It also includes the possibility of asymptomatic individuals that do
not contribute towards the overall force of infection (and hence go straight to the R class). In this
paper we refer to this as the SEIAR model. We assume that we observe y of event 3 over interval
the interval [0, 1], which corresponds to individuals becoming symptomatic. We also assume a final
size observation, NF , had been made from later observations. Final size here refers to the total
number of detections over the course of the outbreak, not the total number of individuals infected.

The rates of the events for this model are:

a1 = (S0 − Z1)[βp(Z2 − Z3) + βs(Z3 − Z4)],

a2 = qσ(Z1 − Z2 − Z5),

a3 = γ(Z2 − Z3),

a4 = γ(Z3 − Z4),

a5 = (1− q)σ(Z1 − Z2 − Z5),

(27)

where (βs, βp, σ, γ, q) are fixed parameters, with βp and βs the transmission rates of pre-symptomatic
and symptomatic individuals respectively.
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S E

Ip IsZ2
Z4

Z5

Z1

Z3

R

Fig. 3 Model where individuals go through a pre-symptomatic stage and also includes asymptomatic individuals
that do not contribute to the force of infection. Individuals are observed when they first enter the Is class.

Only steps 2 and 3 of the algorithm are different to what has already been presented. Step 2
is more complicated than for the previous two models as there can now be situations where the
algorithm needs to force a chain of extra events so that the state is consistent at the time of the
current next forced event. For example, if en = 3 and both Ip = 0 and E = 0 then at least 1 of
each of event 1 and event 2 must occur in the interval [t, tn]. Another complication arises in step 3
as we also need to monitor the number of event 5 (non-detections) that can occur, so that at later
time-steps—as would occur in a particle filter—there are still enough susceptible individuals left
such that the algorithm can match the final size observation.

There are different ways of implementing step 2, but we adopt the rule that when the current
state of the system is inconsistent with the next forced event, we force the first event (in a possible
chain of events) such that the system is again consistent. Returning to the example above, if en = 3
and both Ip = 0 and E = 0, the algorithm would first force an event 1 in the interval [t, tn], after
which ne = 1, which is consistent with the current state. Once the algorithm has then reached this
time, E = 1, Ip = 0 and en = 3, so the state is again inconsistent and this is fixed by forcing an
event 2 (which is now allowed because E > 0).

This rule is adopted because the state of the system can be made consistent by forcing a single
event, thus the algorithm only needs to keep track of the next forced event rather than keeping
track of chains. Following on from this, the times of these extra forced events and the importance
weights remain simple to calculate as detailed in the previous section and the algorithm proceeds
through steps 3-5 with no further modifications. This rule also means that the logic of which events
have to be forced, given the type of the next forced event, en, and the current state, Z(t), can be
represented as a decision tree that can be readily deduced.

The decision tree for computing the type, l, of the forced event in step 2 of the algorithm for
this model is shown in Figure 4. This is implemented as a set of conditional statements, where if a
‘φ’ is reached this indicates that the current state of the system is consistent with the next forced
event (hence nothing extra needs to be forced). Once the type is computed, this index along with
a time is added to the stack as described in Section 3.3. Another example, with a simpler decision
tree, is given in the Supplementary material. After this step, the modified rates for this model are
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then calculated as follows:

b1 =

{

0 if en = 1 or (Z1 = NF and q = 1),

a1 otherwise.

b2 =

{

0 if en = 2 or Z2 = NF ,

a2 otherwise,

b3 = 0

b4 =

{

0 if Z1 − Z4 − Z5 = 1

a4 otherwise,

b5 =

{

0 if Z5 = S0 −NF or Z1 − Z4 − Z5 = 1,

a5 otherwise.

(28)

The rates b1 and b2 are set to zero if either of these events have already been forced and are in the
stack. The rates b1 and b5 are modified so as not to allow too many of either of these events when
final size data is available. Finally, the rates b4 and b5 are also modified so that the disease cannot
prematurely fadeout. Once the modified rates are calculated, all other steps of the algorithm are
the same as Section 3.3.

F T

force event 2 force event 1force event 1

TF T

TFTF

F

en = 2

en = 3

E = 0E = 0

Ip = 0

φφ

φ

Fig. 4 Decision tree for the SEIAR model with pre- and a-symptomatic individuals. If a ‘φ’ is reached, this indicates
that the state, Z(t) is consistent with the next forced event.

4.1 Inference example

In this section we use the SEIAR model to perform inference on an example time series using
the pmMH algorithm. The particle filter uses importance sampling as described in the previous
sections and the resulting posteriors are compared with those obtained by using an alive particle
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filter (Del Moral et al. 2015; Drovandi and McCutchan 2016). The alive filter works at each time
step by simulating a number of realisations using the SSA, until a certain number of matches are
obtained. This is clearly computationally expensive, but gives an unbiased estimate of the likelihood.

For the SEIAR model we can define R0, the basic reproductive ratio, as

R0 =
q(βp + βs)

γ
, (29)

where we have assumed frequency-dependent transmission and hence βs and βp are both scaled
by S0 − 1. We define κ as the proportion of transmission due to pre-symptomatic individuals,
(in class Ip). Hence the proportions of R0 attributable to pre- and symptomatic individuals are
Rp

0 = qβp/γ = κR0 and Rs
0 = qβs/γ = (1 − κ)R0, respectively.

We performed inference on a number of synthetically generated outbreak time series from in-
creasingly large populations. The parameters used to generate the data were set asR0 = 2.2, κ = 0.7,
1/σ = 1, 1/γ = 1, q = 0.9, which are similar to influenza, in populations of N = 150, 350, 500
and 1000. These could represent, for example, outbreaks aboard ships. A fixed initial condition
of Z(0) = (1, 1, 0, 0, 0) was used for simplicity, and this was replicated in the inference routines.
Only major outbreaks were chosen and the final number of detections for each outbreak, NF , are
summarised in Table 1. The time series themselves are plotted in the supplementary material.

Both algorithms were coded in C. The Metropolis Hastings part of the algorithm used a simple
random walk proposal and a pilot run was carried out to determine an appropriate covariance
matrix for this, which was used for all four time series. In our implementation of the alive filter we
follow Drovandi and McCutchan (2016) and set a maximum number of trials at each time step, K,
before the filter terminates and returns zero for the likelihood. This introduces some error to the
algorithm, but stops it becoming stuck if the proposed parameters mean the observation is a very
rare event; we set K = 105 for the three smaller datasets, but this had to be increased to 106 for
the largest (N = 1000). Using the smaller value for this resulted in a large error in the tails of the
posterior for the parameter κ, as the likelihood is too small to estimate with only 105 trials at each
time step.

The alive filter was coded so that an iteration terminates as soon as it becomes inconsistent with
the observation and the other constraints, which results in the optimal performance. For example,
if a realisation matches the observation, but E + Is + Ip = 0 (so the disease has faded out) then
the weight of the realisation was set to 0. Thus the estimate of the likelihood at each time step are
(on average) the same from both filters. The particle filter using importance sampling, re-sampled
the particles after each time step; no advantage was found by re-sampling less frequently. We
assume informative priors on both 1/γ and 1/σ, of Gam(10, 1/10), with lower bounds of 0.5 and 0.1
respectively. This is done as without extra information, either from more data or other observations,
these parameters are unidentifiable. For the other parameters,R0, q and κ, we assume uninformative
priors of U(0.1, 8), U(0.5, 1), U(0, 1) respectively.

The resulting marginal posterior distributions are shown in Figure 5 and effective sample sizes
(ESS) per second of CPU time are given in Table 1. Complete run times and statistics are given in
the Supplementary material. Firstly we see that there is excellent agreement between the alive filter
and importance sampling. As the data sets grow in size, both versions slow down due to increasing
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number of particles being used and the increasing number of events that have to be simulated. The
speed up of the importance sampling filter over the alive filter, quantified in terms of the ESS per
second of CPU time, increases as the size of the datasets also increases. No attempt was made to
tune the number of particles for either algorithm beyond attaining reasonable performance, so it is
likely slightly better results could be obtained for both. The slight deviation between the posteriors
for the parameter κ for the N = 500 and 1000 datasets is the result of the error introduced by too
small a value of K in the alive filter (see above).
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Fig. 5 Marginal posterior distributions from performing inference using a particle filter with importance sampling
(solid line) and using the alive filter (dots). N = 150 (red), N = 350 (yellow), N = 500 (green) and N = 1000 (blue).
The true values of the parameters used to generate the data are marked by the grey lines.

N NF particles ESS s−1 speed-up
150 121 20 4.1 8.5
350 288 40 2.0 10
500 383 60 0.77 18
1000 790 100 0.30 21

Table 1 Inference statistics: N is the population size, NF the total number of detected cases. The effective sample
size per second of computing time (for the parameter q) is given along with the speed up over the alive filter. The
ESS s−1 for the other parameters are slightly different but follow the same pattern. All raw ESS values and running
times are given in the Supplementary material.
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5 Discussion

We have shown how importance sampling can be used to produce weighted realisations of a model
that exactly matches data on the number of a given event over some interval of time. We can
visualise the basic SSA and the exact matching algorithm as two ends of a continuous spectrum
of potential importance sampling schemes. The SSA is essentially blind, sampling the transition
density without regard to the observed data—a simple form of rejection sampling. Conversely, the
exact-matching algorithm is guided at each state to ensure that the realisation is consistent with
all the observations. The importance sampling can be used to construct a particle filter for use in
pmMH, providing a large speed-up in terms of ESS per unit time compared to bootstrap sampling
using the alive filter.

The importance sampling builds on the work of McKinley et al. (2014), but differs in two major
respects. Firstly, the algorithms in McKinley et al. are tailored explicitly to the SIR and SEIR
models where recovery events are observed. In contrast, the algorithm presented here (summarised
in Section 3.3) is general in that it can be applied to any continuous-time Markov chain where a
single event is observed. The other key difference is how the current algorithm forces extra events
to maintain the consistency of a realisation. In the older algorithm, when it was detected that an
extra event had to be forced, and there is more than one event possible, then the algorithm chooses
the event in proportion to the relative rates of the two. This implicitly incorporates the consistency
requirements but is prone to numerical instabilities as many events can occur in the interval, in
effect reducing the size of the interval until the next forced event, but without actually making the
state consistent. Hence the algorithm attempts to correct for this by putting events into smaller
and smaller time intervals, where at some point errors in floating point arithmetic can arise. In
contrast, the current algorithm explicitly forces particular events, in a specific order, (the type of
which is encoded by the decision tree) and does not automatically update the current time to these
as the original algorithm does. This has two effects; firstly, other events can be simulated in the
intervening time periods, which may reduce the need to force further events later on. Secondly,
consistency is ensured without undue forcing and is less likely to produce realisations that deviate
from expected behaviour that would then be assigned a low weight. The knock on effect of this that
numerical instabilities are reduced, as the need to force events into very small intervals is reduced.

Still, numerical instabilities can arise in this algorithm. Generating truncated exponential ran-
dom variables on small intervals has inherent instabilities due to the exponentiating required in
calculating the cdf. This source of error could be circumvented by instead generating times from a
uniform distribution when the size of the interval is below some threshold value (also taking into
account the different contribution to the weight). Another workaround is to simply set the weight of
realisations that become inconsistent to zero. Such an egregious realisation is likely to have a very
small weight anyway, so this is unlikely to result in any error overall (as long as some remaining
particles have a positive weight).

Another standard approach for epidemic inference problems is data-augmentedMCMC (Gibson and Renshaw
1998; O’Neill and Roberts 1999). In contrast to pmMH, which marginalises over this missing data
in the calculation of the likelihood, data-augmented MCMC infers the missing data (the exact times
of the events) as part of the overall Markov chain. When all event times are known, the likelihood
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is trivial to write down and conditional distributions for the parameters can often be derived, al-
lowing for efficient Gibbs sampling. The greatest strength of the data-augmented approach is its
flexibility; non-Markov models are handled as easily as Markov ones along with potentially large
amounts of heterogeneity in the population and spreading process (Jewell et al. 2009; Lau et al.
2015; Stockdale et al. 2017). The downside is that there is strong dependence between the missing
data and the parameters that means mixing can become very slow and convergence can become an
issue as the amount of missing data increases (McKinley et al. 2014; Pooley et al. 2015; Walker et al.
2017).

In contrast, particle filters marginalises over the missing data in estimating the likelihood. This
means that the MCMC scheme targeting the parameter posterior is much simpler and easy to tune.
Another important difference between data-augmented MCMC and pmMH is how they deal with
increasing amounts of data, collected from independent outbreaks. One aspect of data-augmented
MCMC is that it is essentially a serial algorithm. Thus performing inference over many independent
outbreaks becomes challenging for the same reasons mentioned above; the state space becomes so
large that convergence becomes a problem. Parallel chains can be run, but if convergence is an issue,
this is not that useful. In contrast, because they marginalise over missing data, particle filters can
easily be parallelised and hence take advantage of modern computing hardware. For the particle
filter this is most easily accomplished by running a number of independent filters on separate CPU
cores and averaging the the results to obtain an estimate of the likelihood with lower variance
(Drovandi 2014). The SMC2 approach described below takes this parallelism even further as all
parameter particles at a particular iteration can be updated independently.

The main drawback of pmMH is that the mixing of the main chain depends strongly on the
variance of the likelihood estimate. There is a trade off between decreasing the variance of the
log-likelihood and increasing the number of particles and hence the computational expense. Thus
a higher variance estimate resulting in worse mixing can be offset by reduced computational ex-
pense and hence more samples from the posterior. For idealised models, the optimal performance
is achieved by tuning the variance to be in a particular range (Pitt et al. 2012; Doucet et al. 2015;
Sherlock et al. 2015), which in turn maximises the effective sample size (ESS) per unit of computa-
tional time (Sherlock et al. 2015). In this paper we have not attempted to tune either of the particle
filters employed herein, so it is likely better performance can be obtained for both. Recently, SMC2

algorithms have been proposed to ameliorate these tuning issues (Drovandi and McCutchan 2016;
Golightly and Kypraios 2017). These use sequential Monte Carlo to target both the parameter pos-
terior as well as the states of the system. The importance sampling developed in this paper can be
easily used in these approaches.

The primary weakness of the importance sampling presented in this paper is that although the
algorithm is general, it is not a black box. The implementation depends on the model structure,
the rates of the events, as well as the event observed and other constraints. Details and edge cases
are important for the algorithm to be correct, and testing is not always simple as we are working
with rare events. As an example of an edge case, if calculating the likelihood for the last point in a
time series, the simulation will depend on whether the disease is allowed to fade out after all forced
events have been implemented. It should be clear that models where we observe the first event in
a longer chain are much easier to handle than those where we observe later events and multiple
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events may need to be forced to maintain consistency. This is unavoidable when using a forward
simulation approach.

Another weakness of the importance sampling scheme is that it breaks down if the rate of the
observed event become too large. For example in the SEIR model, if 1/σ → 0 then the model
effectively becomes an SIR model as an individual leaves the exposed class almost immediately
after entering it. In this case the times of the infection events and the observed events become
highly correlated and the importance sampling process is no longer a good approximation to the
true process. This limitation also applies to the algorithms presented in McKinley et al. (2014).
This problem essentially stems from attempting to do model selection (between an SIR and SEIR
model) at the same time as parameter inference. To avoid this when running the pmMH algorithm
we simply set priors that disallow such large rates, meaning that the SEIR model cannot become
an SIR model. In the example in Section 4.1, there was a lower bound on the parameter 1/γ of 0.5,
i.e., the latent period must be at least half a day. It is natural that there be a trade-off between the
speed of a method and generality of the problems that it can be applied to. The alive filter does
not have any restrictions on the parameters, but is much slower.

We have provided MATLAB code for all of the models presented in this paper (EpiStruct 2017).
This code is somewhat unoptimised, to keep it simple to follow. The particle filters used in the
inference example (Section 4.1) were coded in C as this gives an order of magnitude improvement
in speed. There is some redundancy in how we have specified the algorithms. For example, the
modified rates of the observed event are always zero. This was done for readability and is easily
factored out for some performance gains. This can be done by simply relabelling the events such
that the observed event is the last. For example, in the SEIAR model, we would relabel

(1, 2, 3, 4, 5)→ (1, 2, 5, 3, 4).

Then, in the vector of propensities, (ai), the event with rate zero is always as the end and hence is
never iterated over when generating the next event type. It is also possible to re-factor the algorithm
to remove the need for a stack to hold the forced event times, which would allow further optimisation
when in specific states. Such optimisation comes at the expense of generality and clarity, so we have
not presented this here.

The importance sampling algorithm described in this paper is state dependent, but we do not
alter the underlying parameters of the model. Other schemes for rare event simulation (Roh et al.
2010) are based on altering the parameters of the process to create more matches and the use of
cross-entropymethods to guide this. Similar ideas could be implemented here, but the computational
expense would probably outweigh the benefit. The exact-matching algorithm is easily extended to
the situations where the observations are noisy rather than exact. Instead, some number of events
is sampled from the observation density (consistent with the observation) and then the simulation
algorithm is run for that value. Noisy observations increase the performance of a bootstrap particle
filter using the SSA for sampling because it allows a particle to match a larger set of states. No gain
would be seen using the algorithm presented in this paper, as the number of observed events is set
exactly for each realisation generated. Note that the SEEIIR model described in the Supplementary
material could be written using a binomial observation process, instead or observed and unobserved
events, but this would still benefit from using importance sampling to produce realisations more
likely to match the observations.
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In this paper we have assumed observation of a single event type, which is natural when modelling
epidemics, but not necessarily for other systems. In ecology, the Lokta-Volterra model often assumes
there are observations of two population numbers (predators and prey). In this case there are a
range of numbers of events that could give rise to an observation. In principle, we can use similar
ideas to those presented here to construct realisations that match these types of observations. The
difficulty arises in generating the times of the forced events such that they are ordered correctly,
and then also calculating the order statistics. Such approaches are currently under investigation.
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