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Abstract
Variable clustering is important for explanatory analysis. However, only few dedicated methods for variable clustering with
the Gaussian graphical model have been proposed. Even more severe, small insignificant partial correlations due to noise can
dramatically change the clustering result when evaluating for example with the Bayesian information criteria (BIC). In this
work, we try to address this issue by proposing a Bayesian model that accounts for negligible small, but not necessarily zero,
partial correlations. Based on our model, we propose to evaluate a variable clustering result using the marginal likelihood.
To address the intractable calculation of the marginal likelihood, we propose two solutions: one based on a variational
approximation and another based on MCMC. Experiments on simulated data show that the proposed method is similarly
accurate as BIC in the no noise setting, but considerably more accurate when there are noisy partial correlations. Furthermore,
on real data the proposed method provides clustering results that are intuitively sensible, which is not always the case when
using BIC or its extensions.

Keywords Clustering · Gaussian graphical model · Model selection · Variational approximation

1 Introduction

TheGaussian graphicalmodel (GGM) has become an invalu-
able tool for detecting partial correlations between variables.
Assuming the variables are jointly drawn from a multivari-
ate normal distribution, the sparsity pattern of the precision
matrix reveals which pairs of variables are independent given

B Daniel Andrade
andrade@ism.ac.jp

Akiko Takeda
takeda@mist.i.u-tokyo.ac.jp

Kenji Fukumizu
fukumizu@ism.ac.jp

1 SOKENDAI (The Graduate University for Advanced
Studies), 10-3 Midoricho, Tachikawa, Tokyo 190-8562, Japan

2 Security Research Laboratories, NEC, 1753, Shimonumabe,
Nakahara-ku, Kawasaki 211-8666, Japan

3 Department of Creative Informatics, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

4 RIKEN Center for Advanced Intelligence Project, 1-4-1,
Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

5 The Institute of Statistical Mathematics, 10-3 Midoricho,
Tachikawa, Tokyo 190-8562, Japan

all other variables (Anderson 2004). In particular, we can
find clusters of variables that are mutually independent, by
grouping the variables according their entries in the precision
matrix.

For example, in gene expression analysis, variable clus-
tering is often considered to be helpful for data exploration
(Palla et al. 2012; Tan et al. 2015).

However, in practice, it can be difficult to find a mean-
ingful clustering due to the noise of the entries in the partial
correlations. The noise can be due to the sampling, this is
in particular the case when n the number of observations is
small, or due to small nonzero partial correlations in the true
precision matrix that might be considered as insignificant.
Here in this work, we are particularly interested in the latter
type of noise. In the extreme, small partial correlations might
lead to a connected graph of variables, where no grouping of
variables can be identified. For an exploratory analysis, such
a result might not be desirable.

As an alternative,wepropose to cluster variables, such that
the partial correlation between any two variables in different
clusters is negligibly small, but not necessarily zero. The
open question, which we try to address here, is whether there
is a principled model selection criteria for this scenario.
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For example, the Bayesian information criterion (BIC)
(Schwarz 1978) is a popular model selection criterion for the
Gaussian graphical model. However, in the noise setting it
does not have any formal guarantees. As a solution, we pro-
pose here a Bayesianmodel that explicitly accounts for small
partial correlations between variables in different clusters.

Under our proposed model, the marginal likelihood of the
data can then be used to identify the correct (if there is a
ground truth in theory), or at least a meaningful clustering
(in practice) that helps analysis. Since themarginal likelihood
of our model does not have an analytic solution, we provide
two approximations: the first is a variational approximation,
and the second is based on MCMC.

Experiments on simulated data show that the proposed
method is similarly accurate as BIC in the no noise setting,
but considerably more accurate when there are noisy partial
correlations. The proposed method also compares favorable
to two previously proposed methods for variable clustering
and model selection, namely the Clustered Graphical Lasso
(CGL) (Tan et al. 2015) and the Dirichlet Process Variable
Clustering (DPVC) (Palla et al. 2012) method.

Our paper is organized as follows. In Sect. 2, we dis-
cuss previous works related to variable clustering and model
selection. In Sect. 3, we introduce a basic Bayesian model
for evaluating variable clusterings, which we then extend in
Sect. 4.1 to handle noise on the precision matrix. For the
proposed model, the calculation of the marginal likelihood is
infeasible and we describe two approximation strategies in
Sect. 4.2. Furthermore, since enumerating all possible clus-
terings is also intractable,we describe in Sect. 4.3 an heuristic
based on spectral clustering to limit the number of candidate
clusterings. We evaluate the proposed method on synthetic
and real data in Sects. 5 and 6, respectively. Finally, we dis-
cuss our findings in Sect. 7.

2 Related work

Finding a clustering of variables is equivalent to finding
an appropriate block structure of the covariance matrix.
Recently, Tan et al. (2015) and Devijver and Gallopin (2018)
suggested to detect block diagonal structure by thresholding
the absolute values of the covariance matrix. Their methods
performmodel selection using themean squared error of ran-
domly left-out elements of the covariance matrix (Tan et al.
2015), and a slope heuristic (Devijver and Gallopin 2018).

Also several Bayesian latent variable models have been
proposed for this task (Marlin and Murphy 2009; Sun et al.
2014; Palla et al. 2012). Each clustering, including the num-
ber of clusters, is either evaluated using the variational lower
bound (Marlin and Murphy 2009), or by placing a Dirichlet
process prior over clusterings (Palla et al. 2012; Sun et al.
2014). However, all of the above methods assume that the

partial correlations of variables across clusters are exactly
zero.

An exception is the work in Marlin et al. (2009) which
proposes to regularize the precision matrix such that par-
tial correlations of variables that belong to the same cluster
are penalized less than those belonging to different clusters.
For that purpose they introduce three hyper-parameters, λ1
(for within-cluster penalty), λ0 (for across clusters), with
λ0 > λ1, and λD for a penalty of the diagonal elements. The
clusters do not need to be known a priori and are estimated by
optimizing a lower bound on themarginal likelihood.As such
their method can also find variable clusterings, even when
the true partial correlation of variables in different clusters is
not exactly zero. However, the clustering result is influenced
by three hyper-parameters λ0, λ1, and λD which have to be
determined using cross-validation.

Recently, the work in Sun et al. (2015) and Hosseini and
Lee (2016) relaxes the assumption of a clean block structure
by allowing somevariables to correspond to two clusters. The
model selection issue, in particular, determining the number
of clusters, is either addressedwith some heuristics (Sun et al.
2015) or cross-validation (Hosseini and Lee 2016).

3 The Bayesian Gaussian graphical model for
clustering

Our starting point for variable clustering is the following
Bayesian Gaussian graphical model. Let us denote by d the
number of variables, and n the number of observations. We
assume that each observation x ∈ R

d is generated i.i.d. from
amultivariate normal distributionwith zeromean and covari-
ance matrixΣ . Assuming that there are k groups of variables
that are mutually independent, we know that, after appropri-
ate permutation of the variables, Σ has the following block
structure

Σ =
⎛
⎜⎝

Σ1 0 0

0
. . . 0

0 0 Σk

⎞
⎟⎠ ,

where Σ j ∈ R
d j×d j , and d j is the number of variables in

cluster j .
By placing an inverse Wishart prior over each block Σ j ,

we arrive at the following Bayesian model

p(x1, . . . , xn,Σ |{ν j } j , {Σ j,0} j , C)

=
n∏

i=1

Normal(xi |0,Σ)

k∏
j=1

InvW(Σ j |ν j ,Σ j,0),
(1)

where ν j and Σ j,0, are the degrees of freedom and the scale
matrix, respectively. We set ν j = d j + 1,Σ j = Id j lead-
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ing to a non-informative prior on Σ j . C denotes the variable
clustering which imposes the block structure on Σ . We will
refer to this model as the basic inverse Wishart prior model.

Assuming we are given a set of possible variable cluster-
ings C , we can then choose the clustering Ĉ that maximizes
the posterior probability of the clustering, i.e.,

Ĉ = argmax
C∈C

p(C|X ) = argmax
C∈C

p(X |C) · p(C), (2)

wherewedenote byX the observationsx1, . . . , xn , and p(C)

is a prior over the clusteringswhichwe assume to be uniform.
Here, we refer to p(X |C) as the marginal likelihood (given
the clustering). For the basic inverseWishart prior model, the
marginal likelihood can be calculated analytically, see, e.g.,
(Lenkoski and Dobra 2011).

4 Proposedmethod

In this section, we introduce our proposedmethod for finding
variable clusters.

First, in Sect. 4.1, we extend the basic inverse Wishart
prior model from Eq. (1) in order to account for nonzero
partial correlations between variables in different clusters.
Given the proposed model, the marginal likelihood p(X |C)

does not have a closed form solution anymore. Therefore,
in Sects. 4.2.2 and 4.2.3, we discuss two different methods
for approximating the marginal likelihood. The first method
is based on a variational approximation around the maxi-
mum a posteriori (MAP) solution. The second method is an
MCMC method based on Chib’s method (Chib 1995; Chib
and Jeliazkov 2001). The latter has the advantage of being
asymptotically correct for large number of posterior samples,
but at considerably high computational costs. The former is
considerably faster to evaluate and experimentally produces
solutions similar to the MCMC method (see comparison in
Sect. 5.3).

Finally, in Sect. 4.3,we propose to use a spectral clustering
method to limit the clustering candidates to a set C ∗, where
C ∗ ⊆ C . Based on this subset C ∗, we can then select the
model maximizing the posterior probability [as in Eq. (2)],
or can also calculate approximate posterior distributions over
clusterings. We restrict the hypotheses space to C ∗, since
even for amoderate number of variables, say d = 40, the size
of the hypotheses space |C | is > 1036. Therefore, MCMC
sampling over the hypotheses space could also only explore
a small subset of the whole hypotheses space, but at higher
computational costs [see also Hans et al. (2007), Scott and
Carvalho (2008) for a discussion on related high-dimensional
problems].

4.1 A Bayesian Gaussian graphical model for
clustering under noisy conditions

In this section, we extend the Bayesian model from Eq. (1) to
account for nonzero partial correlations between variables in
different clusters. For that purpose, we introduce the matrix
Σε ∈ R

d×d that models the noise on the precision matrix.
The full joint probability of our model is given as follows:

p(x1, . . . , xn,Σ,Σε |νε,Σε,0, {ν j } j , {Σ j,0} j , C)

=
n∏

i=1

Normal(xi |0, Ξ)

· InvW(Σε |νε,Σε,0)

k∏
j=1

InvW(Σ j |ν j ,Σ j,0),

(3)

where Ξ := (Σ−1 + βΣ−1
ε )−1, and

Σ :=
⎛
⎜⎝

Σ1 0 0

0
. . . 0

0 0 Σk

⎞
⎟⎠ .

As before, the block structure of Σ is given by the clustering
C. The proposed model is the same model as in Eq. (1), with
the main difference that the noise term βΣ−1

ε is added to the
precision matrix of the normal distribution.

1 � β > 0 is a hyper-parameter that is fixed to a small
positive value accounting for the degree of noise on the preci-
sion matrix. Furthermore, we assume non-informative priors
on Σ j and Σε by setting ν j = d j + 1,Σ j = Id j and
νε = d + 1,Σε,0 = Id .
Remark on the parameterization We note that as an alterna-
tive parameterization, we could have defined Ξ := (Σ−1 +
Σ−1

ε )−1, and instead place a prior on Σε that encourages
Σ−1

ε to be small in terms of some matrix norm. For example,
we could have set Σε,0 = 1

β
Id . We chose the parameteriza-

tion Ξ := (Σ−1 + βΣ−1
ε )−1, since it allows us to set β to

0, which recovers the basic inverse Wishart prior model.

4.2 Estimation of themarginal likelihood

Themarginal likelihood of the data given our proposedmodel
can be expressed as follows:

p(x1, . . . , xn|νε,Σε,0, {ν j } j , {Σ j,0} j , C)

=
∫

Normal(x1, . . . , xn|0, Ξ)

·
k∏
j=1

InvW(Σ j |ν j ,Σ j,0)d(Σ j � 0)

· InvW(Σε |νε,Σε,0)d(Σε � 0).
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where Ξ := (Σ−1 + βΣ−1
ε )−1.

Clearly, if β = 0, we recover the basic inverse Wishart
prior model, as discussed in Sect. 3, and the marginal likeli-
hood has a closed form solution due to the conjugacy of the
covariance matrix of the Gaussian and the inverse Wishart
prior. However, if β > 0, there is no analytic solution any-
more. Therefore, we propose to either use an estimate based
on a variational approximation (Sect. 4.2.2) or on MCMC
(Sect. 4.2.3). Both of our estimates require the calculation of
the maximum a posterior (MAP) solution which we explain
first in Sect. 4.2.1.
Remark on BIC type approximation of the marginal likeli-
hoodWe note that for our proposed model an approximation
of the marginal likelihood using BIC is not sensible. To see
this, recall that BIC consists of two terms: the data log-
likelihood under the model with the maximum likelihood
estimate, and a penalty depending on the number of free
parameters. The maximum likelihood estimate is

Σ̂, Σ̂ε = argmax
Σ,Σε

n∑
i=1

logNormal(xi |0, (Σ−1 + βΣ−1
ε )−1),

where S is the sample covariance matrix. Note that without
the specification of a prior, it is valid that Σ̂, Σ̂ε are not pos-
itive definite as long as the matrix Σ̂−1 + βΣ̂−1

ε is positive
definite. Therefore, Σ̂−1+βΣ̂−1

ε = S−1, and the data likeli-
hood under the model with the maximum likelihood estimate
is simply

∑n
i=1 logNormal(xi |0, S), which is independent of

the clustering. Furthermore, the number of free parameters is
(d2 − d)/2 which is also independent of the clustering. That
means, for any clustering we end up with the same BIC.

Furthermore, a Laplacian approximation as used in the
generalized Bayesian information criterion (Konishi et al.
2004) is also not suitable, since in our case the parameter
space is over the positive-definite matrices.

4.2.1 Calculation of maximum a posterior solution

Finding the exact MAP is crucial for the quality of the
marginal likelihood approximation that wewill describe later
in Sects. 4.2.2 and 4.2.3. In this section, we explain in detail
how the corresponding optimization problem can be solved
with a 3-block ADMMmethod, which is guaranteed to con-
verge to the global optimum.

First note that

p(Σ,Σε |x1, . . . , xn, νε,Σε,0, {ν j } j , {Σ j,0} j , C)

∝ Normal(x1, . . . , xn|0, Ξ)

·
k∏
j=1

InvW(Σ j |ν j ,Σ j,0)

· InvW(Σε |νε,Σε,0)

where Ξ := (Σ−1 + βΣ−1
ε )−1.

Therefore,

log p(Σ,Σε |x1, . . . , xn, νε,Σε,0, {ν j } j , {Σ j,0} j , C)

= −n

2
log |Ξ | − n

2
trace(SΞ−1)

− νε + d + 1

2
log |Σε | − 1

2
trace(Σε,0Σ

−1
ε )

+
k∑
j=1

(
−ν j + d j + 1

2
log |Σ j | − 1

2
trace(Σ j,0Σ

−1
j )

)

+ const

= 1

2

(
n · log |Ξ−1| − n · trace(SΞ−1)

+ (νε + d + 1) · log |Σ−1
ε | − trace(Σε,0Σ

−1
ε )

+
k∑
j=1

(
(ν j + d j + 1) · log |Σ−1

j | − trace(Σ j,0Σ
−1
j )

))

+ const,

where the constant is with respect to Σε,Σ1, . . . Σk , and d j

denotes the number of variables in cluster j .
Solution using a 3-Block ADMM Finding the MAP can be
formulated as a convex optimization problem by a change
of parameterization: by defining X := Σ−1, X j := Σ−1

j ,

and Xε := Σ−1
ε , we get the following convex optimization

problem:

minimize
X�0,Xε�0

n · trace(S(X + βXε)) − n · log |X + βXε |
+ trace(AεXε) − aε · log |Xε |

+
k∑
j=1

(
trace(A j X j ) − a j · log |X j |

)
,

(4)

where, for simplifying notation, we introduced the following
constants:

Aε := Σε,0,

aε := νε + d + 1,

A j := Σ j,0,

a j := ν j + d j + 1.

From this form, we see immediately that the problem is
strictly convex jointly in Xε and X .1

1 Since −log|X | is a strictly convex function and trace(XS) is a linear
function.
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We further reformulate the problem by introducing an
additional variable Z:

minimize f (Xε, X1, . . . , Xk, Z)

subject to

Z = X + βXε,

Xε, X1, . . . , Xk, Z � 0,

with

f (Xε, X1, . . . , Xk , Z) := n · trace(SZ) − n · log |Z |
+ trace(AεXε) − aε · log |Xε |

+
k∑
j=1

(
trace(A j X j ) − a j · log |X j |

)
.

It is tempting to use a 2-Block ADMM algorithm, e.g., in
Boyd et al. (2011),which leads to twooptimization problems:
update of X , Xε and update of Z . However, unfortunately,
in our case the resulting optimization problem for updating
X , Xε does not have an analytic solution. Therefore, instead,
we suggest the use of a 3-Block ADMM, which updates the
following sequence:

Xt+1 := argmin
X1,...,Xk�0

k∑
j=1

(
trace(A j X j ) − a j · log |X j |

)

+ trace(Ut (X + βXt
ε − Zt ))

+ ρ

2
||X + βXt

ε − Zt ||2F ,

Xt+1
ε := argmin

Xε�0
trace(AεXε) − aε · log |Xε |

+ trace(Ut (Xt+1 + βXε − Zt ))

+ ρ

2
||Xt+1 + βXε − Zt ||2F ,

Zt+1 := argmin
Z�0

n · trace(SZ) − n · log |Z |

+ trace(Ut (Xt+1 + βXt+1
ε − Z))

+ ρ

2
||Xt+1 + βXt+1

ε − Z ||2F ,

Ut+1 := ρ(Xt+1 + βXt+1
ε − Zt+1) +Ut ,

whereU is the Lagrange multiplier, and Xt , Zt ,Ut , denotes
X , Z ,U at iteration t ; ρ > 0 is the learning rate.2

Each of the above sub-optimization problem can be solved
efficiently via the following strategy. The zero gradient con-
dition for the first optimization problem with variable X is

2 In our experiments, we set the learning rate ρ initially to 1.0, and
increase it every 100 iterations by a factor of 1.1. We found experimen-
tally that this speeds-up the convergence of ADMM.

−X−1
j + ρ

a j
X j = − 1

a j
(A j +Uj + ρ(βXε, j − Z j )).

The zero gradient condition for the second optimization
problem with variable Xε is

−X−1
ε + ρβ2

aε

Xε = − 1

aε

(Aε + βU + ρβ(X − Z)).

The zero gradient condition for the third optimization
problem with variable Z is

−Z−1 + ρ

n
Z = 1

n
(U − nS + ρ(X + βXε)).

Each of the above three optimization problem can be
solved via an eigenvalue decomposition as follows. We need
to solve V such that it satisfies:

−V−1 + λV = R ∧ V � 0

Since R is a symmetric matrix (not necessarily positive or
negative semi-definite), we have the eigenvalue decomposi-
tion:

QLQT = R,

where Q is an orthonormal matrix and L is a diagonal matrix
with real values. Denoting Y := QT V Q, we have

−Y−1 + λY = L, (5)

Since the solution Y must also be a diagonal matrix, we have
Yi j = 0, for j 
= i , and we must have that

−(Yii )
−1 + λYii = Lii . (6)

Then, Eq. (6) is equivalent to

λY 2
i i − LiiYii − 1 = 0,

and therefore, one solution is

Yii =
Lii +

√
L2
i i + 4λ

2λ
.

Note that for λ > 0, we have that Yii > 0. Therefore, we
have that the resulting Y solves Eq. (5) and moreover

V = QY QT � 0.

Thatmeans,we can solve the semi-definite problemwith only
one eigenvalue decomposition, and therefore is in O(d3).
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Finally, we note that in contrast to the 2-block ADMM, a
general 3-block ADMM does not have a convergence guar-
antee for any ρ > 0. However, using a recent result from
(Lin et al. 2018), we can show in “Appendix A” that in our
case the conditions for convergence are met for any ρ > 0.

4.2.2 Variational approximation of the marginal likelihood

Here, we explain our strategy for the calculation of a
variational approximation of the marginal likelihood. For
simplicity, let θ denote the vector of all parameters, X the
observed data, and η the vector of all hyper-parameters.

Let θ̂ denote the posterior mode. Furthermore, let g(θ) be
an approximation of the posterior distribution p(θ |X , η, C)

that is accurate around the mode θ̂ .
Then, we have

p(X |η, C) = p(θ ,X |η, C)

p(θ |X , η, C)

= p(θ̂ ,X |η, C)

p(θ̂ |X , η, C)
≈ p(θ̂ ,X |η, C)

g(θ̂)
.

(7)

Note that for the Laplace approximation we would use
g(θ) = N (θ |θ̂, V ), where V is an appropriate covariance
matrix. However, here the posterior p(θ |X , η, C) is a prob-
ability measure over the positive-definite matrices and not
over Rd , which makes the Laplace approximation inappro-
priate.

Instead, we suggest to approximate the posterior distribu-
tion
p(Σε,Σ1, . . . Σk |x1, . . . , xn, νε,Σε,0, {ν j } j , {Σ j,0} j , C)by
the factorized distribution

g := gε(Σε) ·
k∏
j=1

g j (Σ j ).

We define gε(Σε) and g j (Σ j ) as follows:

gε(Σε) := InvW(Σε |νg,ε,Σg,ε),

with

Σg,ε := (νg,ε + d + 1) · Σ̂ε,

where Σ̂ε is the mode of the posterior probability p(Σε |X ,

η, C) (as calculated in the previous section). Note that this
choice ensures that the mode of gε is the same as the mode
of p(Σε |x1, . . . , xn, η, C). Analogously, we set

g j (Σ j ) := InvW(Σ j |νg, j ,Σg, j ),

with

Σg, j := (νg, j + d j + 1) · Σ̂ j ,

where Σ̂ j is the mode of the posterior probability p(Σ j |X ,

η, C). The remaining parameters νg,ε ∈ R and νg, j ∈ R

are optimized by minimizing the KL-divergence between
the factorized distribution g and the posterior distribution
p(Σε,Σ1, . . . Σk |x1, . . . , xn, η, C). The details of the fol-
lowing derivations are given in “Appendix B”. For simplicity,
let us denote gJ := ∏k

j=1 g j , then we have

K L(g||p) = −
∫

gε(Σε) ·
k∏
j=1

g j (Σ j )

log
p(Σε,Σ1, . . . Σk, x1, . . . , xn |η, C)

gε(Σε) · ∏k
j=1 g j (Σ j )

dΣεdΣ

+ c

= −1

2
n EgJ ,gε [log |Σ−1 + βΣ−1

ε |]

+ 1

2
(νε + d + 1)Egε [log |Σε |]

+ 1

2
trace((Σε,0 + βnS)Egε [Σ−1

ε ])
− Entropy[gε]

+ 1

2

k∑
j=1

(ν j + d j + 1)Eg j [log |Σ j |]

+ 1

2

k∑
j=1

trace((Σ j,0 + nS j )Eg j [Σ−1
j ])

−
k∑
j=1

Entropy[g j ] + c,

where c is a constant with respect to gε and g j . How-
ever, the term EgJ ,gε [log |Σ−1 + βΣ−1

ε |] cannot be solved
analytically; therefore, we need to resort to some sort of
approximation.

We assume that EgJ ,gε [log |Σ−1 + βΣ−1
ε |]

≈ EgJ ,gε [log |Σ−1|]. This way, we get

K L(g||p) ≈ K L(gε || InvW(νε,Σε,0 + βnS))

+
k∑
j=1

K L(g j || InvW(ν j + n,Σ j,0 + nS j ))

+ c′,
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where we used that

EgJ ,gε [log |Σ−1|] = −
k∑
j=1

Eg j [log |Σ j |],

and c′ is a constant with respect to gε and g j .
From the above expression, we see that we can optimize

the parameters of gε and g j independently from each other.
The optimal parameter ν̂g,ε for gε is

ν̂g,ε = argmin
νg,ε

K L(gε || InvW(νε,Σε,0 + βnS))

= argmin
νg,ε

νg,ε

νg,ε + d + 1
trace

((
Σε,0 + βnS

)
Σ̂−1

ε

)

− 2 logΓd

(νg,ε

2

)
− νg,εd + dνε log(νg,ε + d + 1)

+ (νg,ε − νε)

d∑
i=1

ψ

(
νg,ε − d + i

2

)
.

And analogously, we have

ν̂g, j = argmin
νg, j

νg, j

νg, j + d j + 1
trace

((
Σ j,0 + nS j

)
Σ̂−1

j

)

− 2 logΓd j

(νg, j

2

)
− νg, j d j

+ d j (ν j + n) log(νg, j + d j + 1)

+ (νg, j − ν j − n)

d j∑
i=1

ψ

(
νg, j − d j + i

2

)
.

Each is a one-dimensional non-convex optimization problem
that we solve with Brent’s method (Brent 1971).
Discussion: Advantages over full variational approachesWe
described here an approximation to the marginal likelihood
that can be considered as a blending of the ideas of the
Laplace approximation (using the MAP) and a variational
approximation where all parameters are learned byminimiz-
ing the Kullback–Leibler divergence between a variational
distribution and the true posterior distribution. We refer to
the latter as a full variational approximation. For simplic-
ity, here, let us denote by Σ the positive-definite matrix for
which we seek the posterior distribution, and let Σg denote
the parameter matrix of the variational distribution.

An obvious limitation of the full variational approach is
that the expectation involving Σ cannot be calculated ana-
lytically anymore. As a solution, recent works on black-box
variational inference propose to use a Monte Carlo esti-
mate of the expectation of the gradient. In order to address
high variance of the estimator, several techniques have been
proposed (e.g., control variates and Rao–Blackwellization)
among which the reparameterization trick appears to be the
most promising (Ranganath et al. 2014; Kingma andWelling

2013; Kucukelbir et al. 2017). In particular, Stan (Carpen-
ter et al. 2017) provides a readily available implementation
of the reparameterization trick (Kucukelbir et al. 2017)
which is named automatic differentiation variational infer-
ence (ADVI). In ADVI, the transformation is Σg := LT L
with L being a triangular matrix where each component is
sampled from N (0, 1). And the matrix L is the parameter of
the variational distribution that is optimized with stochastic
gradient descent. However, note that this optimization prob-
lem is a stochastic non-convex problem. In contrast, finding
the MAP is a non-stochastic convex optimization problem
and the proposed solution has a guarantee of converging to
the global minima. Apart from that, we note that a full vari-
ational approximation does not have any theoretic quality
guarantees, including the case where β → 0. In the general
case, our approach also does not have such guarantees. How-
ever, in the special case where β → 0, we know that the true
posterior distribution is an inverse Wishart distribution and
therefore matches our choice of the variational distribution.

4.2.3 MCMC estimation of marginal likelihood

As an alternative to the variational approximation, we inves-
tigate an MCMC estimation based on Chib’s method (Chib
1995; Chib and Jeliazkov 2001).

To simplify the description, we introduce the following
notations

θ1 := Σε,

θ2, . . . , θk+1 := Σ1, . . . , Σk .

Furthermore, we define θ<i := {θ1, . . . , θ i−1} and θ>i :=
{θ i+1, . . . , θk+1}. For simplicity, we also suppress in the
notation the explicit conditioning on the hyper-parameters
η and the clustering C, which are both fixed.

Following the strategy of Chib (1995), the marginal like-
lihood can be expressed as

p(X ) = p(θ̂1, . . . , θ̂k+1,X )

p(θ̂1, . . . , θ̂k+1|X )

= p(θ̂1, . . . , θ̂k+1,X )∏k+1
i=1 p(θ̂ i |X , θ̂1 . . . , θ̂ i−1)

(8)

In order to approximate p(X ) with Eq. (8), we need
to estimate p(θ̂ i |X , θ̂1, . . . θ̂ i−1). First, note that we can
express the value of the conditional posterior distribution at
θ̂ i , as follows (see Chib and Jeliazkov (2001), Section 2.3):

p(θ̂ i |X , θ̂1, . . . θ̂ i−1)

=
E

θ≥i∼p(θ≥i |X ,θ̂<i )
[α(θ i , θ̂ i |θ̂<i , θ>i )qi (θ̂ i )]

E
θ≥i∼p(θ>i |X ,θ̂≤i )q(θ i )

[α(θ̂ i , θ i |θ̂<i , θ>i )]
,

(9)
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where qi (θ i ) is a proposal distribution for θ i , and the accep-
tance probability of moving from state θ i to state θ ′

i , holding
the other states fixed is defined as

α(θ i , θ
′
i |θ<i , θ>i ) :=min

{
1,

p(X , θ<i , θ>i , θ
′
i ) · qi (θ i )

p(X , θ<i , θ>i , θ i ) · qi (θ ′
i )

}
.

(10)

Next, using Eq. (9), we can estimate
p(θ̂ i |X , θ̂1, . . . θ̂ i−1) with a Monte Carlo approximation
with M samples:

p(θ̂ i |X , θ̂1, . . . θ̂ i−1)

≈
1
M

∑M
m=1 α

(
θ
i,m
i , θ̂ i |θ̂<i , θ

i,m
>i

)
qi (θ̂ i )

1
M

∑M
m=1 α

(
θ̂ i , θ

q,m
i |θ̂<i , θ

i+1,m
>i

) (11)

where θ
a,m
i ∼ p(θ i |X , θ̂<a), θ

a,m
>i ∼ p(θ>i |X , θ̂<a), and

θ
q,m
i ∼ q(θ i ).

Finally, in order to sample from p(θ≥i |X , θ̂<i ), we pro-
pose to use theMetropolis–Hastings within Gibbs sampler as
shown inAlgorithm 1.MHj (θ

t
j ,ψ) denotes theMetropolis–

Hastings algorithm with current state θ tj , and acceptance

probability α(θ j , θ
′
j |ψ), Eq. (10), and θ0≥i is a sample after

the burn-in. For the proposal distribution qi (θ i ), we use

qi :=

⎧⎪⎪⎨
⎪⎪⎩

InvW(ν, Σ̂ε · (ν + d + 1))
with ν = βκ · n + νε if i = 1,
InvW(ν, Σ̂i−1 · (ν + di−1 + 1))
with ν = (1 − β)κ · n + νi−1 else.

(12)

Here, κ > 0 is a hyper-parameter of the MCMC algo-
rithm that is chosen to control the acceptance probability.
Note that if we choose κ = 1 and β is 0, then the pro-
posal distribution qi (θ i ) equals the posterior distribution
p(θ i |X , θ̂1, . . . θ̂ i−1). However, in practice, we found that
the acceptance probabilities can be too small, leading to
unstable estimates and division by 0 in Eq. (11). Therefore,
for our experiments we chose κ = 10.

Algorithm 1Metropolis–Hastings within Gibbs sampler for
sampling from p(θ≥i |X , θ̂<i ).
for t from 1 to M do

for j from i to k + 1 do
ψ := {θ̂<i , θ

t
i , . . . , θ

t
j−1, θ

t−1
> j }

θ tj := MHj (θ
t−1
j ,ψ)

end for
end for

4.3 Restricting the hypotheses space

The number of possible clusterings follows the Bell num-
bers, and therefore, it is infeasible to enumerate all possible
clusterings, even if the number of variables d is small. It is
therefore crucial to restrict the hypotheses space to a subset
of all clusterings that are likely to contain the true clustering.
We denote this subset as C ∗.

We suggest to use spectral clusteringondifferent estimates
of the precision matrix to acquire the set of clusterings C ∗.
A motivation for this heuristic is given in “Appendix C”.

First, for an appropriate λ, we estimate the precision
matrix using

X∗ := argmin
X�0

− log |X | + trace(XS) + λ
∑
i 
= j

|Xi j |q . (13)

In our experiments, we take q = 1, which is equivalent to the
Graphical Lasso (Friedman et al. 2008) with an 
1-penalty
on all entries of X except the diagonal. In the next step, we
then construct the Laplacian L as defined in the following.

Lii =
∑
k 
=i

|X∗
ik |q ,

Li j = −|X∗
i j |q for i 
= j .

(14)

Finally, we use k-means clustering on the eigenvectors of the
Laplacian L . The details of acquiring the set of clusteringsC ∗
using the spectral clustering method are summarized below:

Algorithm 2 Spectral Clustering for variable clustering with
the Gaussian graphical model.
J := set of regularization parameter values.
Kmax := maximum number of considered clusters.
C ∗ := {}
for λ ∈ J do

X∗ := solve optimization problem from Eq. (13).
(e1, . . . , eKmax ) := determine the eigenvectors corresponding to
the Kmax lowest eigenvalues of the Laplacian L as defined in
Eq. (14).
for k ∈ {2, . . . , Kmax } do

Cλ,k := cluster all variables into k partitions using k-meanswith
(e1, . . . , ek).
C ∗ := C ∗ ∪ Cλ,k

end for
end for
return restricted hypotheses space C ∗

In Sect. 5.1 we confirm experimentally that, even in the
presence of noise, C ∗ often contains the true clustering, or
clusterings that are close to the true clustering.
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Table 1 Evaluation of restricted hypotheses space for d = 40, n ∈ {20, 40, 400, 4000, 40,000, 4,000,000}
20 40 400 4000 40,000 4,000,000

Σ j ∼ InvW(d j + 1, Id j ), no noise

Spectral ANMI 0.77 (0.14) 0.95 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

|C ∗| 140.8 (5.78) 139.0 (8.65) 112.8 (5.64) 99.8 (2.23) 101.4 (7.94) 98.4 (3.61)

Average ANMI 0.38 (0.09) 0.38 (0.06) 0.45 (0.05) 0.45 (0.03) 0.45 (0.07) 0.45 (0.03)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.32 (0.08) 0.34 (0.09) 0.39 (0.08) 0.39 (0.08) 0.42 (0.14) 0.41 (0.08)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.01

Spectral ANMI 0.49 (0.03) 0.9 (0.03) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

|C ∗| 143.2 (7.25) 144.4 (3.32) 108.6 (9.89) 105.4 (9.79) 103.6 (5.0) 97.0 (6.57)

Average ANMI 0.26 (0.05) 0.34 (0.04) 0.46 (0.07) 0.51 (0.08) 0.42 (0.09) 0.45 (0.06)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.16 (0.08) 0.25 (0.08) 0.37 (0.03) 0.4 (0.06) 0.3 (0.12) 0.32 (0.09)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.1

Spectral ANMI 0.34 (0.1) 0.87 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

|C ∗| 121.4 (7.34) 106.4 (18.51) 35.4 (5.12) 33.2 (11.48) 37.4 (5.54) 31.0 (8.65)

Average ANMI 0.1 (0.05) 0.15 (0.03) 0.34 (0.08) 0.37 (0.1) 0.26 (0.11) 0.28 (0.09)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.04 (0.03) 0.08 (0.04) 0.19 (0.11) 0.21 (0.06) 0.11 (0.03) 0.13 (0.02)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ Uniformd j , no noise

Spectral ANMI 0.34 (0.1) 0.87 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

|C ∗| 121.4 (7.34) 106.4 (18.51) 35.4 (5.12) 33.2 (11.48) 37.4 (5.54) 31.0 (8.65)

Average ANMI 0.1 (0.06) 0.26 (0.07) 0.92 (0.11) 1.0 (0.0) 1.0 (0.0) 0.99 (0.03)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.04 (0.02) 0.13 (0.08) 0.82 (0.25) 1.0 (0.0) 1.0 (0.0) 0.99 (0.03)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.01

Spectral ANMI 0.28 (0.06) 0.81 (0.1) 0.94 (0.06) 0.99 (0.03) 0.99 (0.03) 0.97 (0.03)

|C ∗| 127.2 (3.6) 106.0 (5.29) 48.2 (9.77) 50.2 (5.95) 51.0 (8.94) 48.0 (5.69)

Average ANMI 0.14 (0.05) 0.22 (0.04) 0.81 (0.16) 0.89 (0.1) 0.87 (0.12) 0.94 (0.12)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.04 (0.02) 0.1 (0.04) 0.78 (0.13) 0.71 (0.23) 0.78 (0.11) 0.79 (0.17)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.1

Spectral ANMI 0.3 (0.03) 0.72 (0.08) 0.88 (0.07) 0.9 (0.07) 0.87 (0.11) 0.88 (0.04)

|C ∗| 126.2 (2.23) 120.4 (9.35) 74.4 (19.41) 87.2 (7.93) 79.2 (13.61) 77.0 (14.25)

Average ANMI 0.08 (0.04) 0.26 (0.11) 0.83 (0.15) 0.88 (0.12) 0.87 (0.11) 0.94 (0.12)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.05 (0.03) 0.13 (0.07) 0.7 (0.14) 0.69 (0.15) 0.76 (0.12) 0.76 (0.14)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Ground truth contains 4 balanced clusters. Shows the oracle performance measured by ANMI for spectral clustering, average linkage, and single
linkage. Note that that an ANMI score of 1.0 means that the true clustering is contained in the hypotheses space found by the clustering method.
The size of the hypotheses space restricted by each clustering method is denoted by |C ∗|. Average results over 5 runs with standard deviation in
brackets
The best ANMI scores are highlighted in bold
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Table 2 Same setting as in Table 1 but with unbalanced clusters

20 40 400 4000 40,000 4,000,000

Σ j ∼ InvW(d j + 1, Id j ), no noise

Spectral ANMI 0.52 (0.13) 0.85 (0.11) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

|C ∗| 141.2 (6.62) 133.2 (8.03) 80.8 (8.21) 73.4 (8.89) 62.0 (7.38) 62.6 (7.23)

Average ANMI 0.34 (0.06) 0.39 (0.05) 0.37 (0.04) 0.38 (0.07) 0.38 (0.06) 0.44 (0.09)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.33 (0.05) 0.35 (0.03) 0.32 (0.04) 0.32 (0.14) 0.27 (0.13) 0.39 (0.12)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.01

Spectral ANMI 0.55 (0.13) 0.81 (0.07) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

|C ∗| 148.8 (4.62) 136.0 (6.81) 80.4 (9.77) 68.8 (10.3) 67.0 (5.93) 63.0 (14.3)

Average ANMI 0.34 (0.06) 0.37 (0.08) 0.53 (0.12) 0.5 (0.1) 0.46 (0.1) 0.52 (0.1)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.29 (0.07) 0.29 (0.08) 0.41 (0.17) 0.4 (0.14) 0.37 (0.11) 0.32 (0.12)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.1

Spectral ANMI 0.26 (0.04) 0.5 (0.06) 0.93 (0.07) 0.93 (0.07) 0.99 (0.02) 0.91 (0.08)

|C ∗| 144.4 (5.54) 159.2 (1.83) 121.0 (10.43) 120.2 (6.62) 117.0 (3.41) 113.2 (11.91)

Average ANMI 0.2 (0.03) 0.22 (0.06) 0.37 (0.09) 0.36 (0.08) 0.41 (0.13) 0.44 (0.07)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.2 (0.08) 0.2 (0.07) 0.24 (0.04) 0.29 (0.05) 0.33 (0.07) 0.32 (0.05)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ Uniformd j , no noise

Spectral ANMI 0.36 (0.06) 0.72 (0.13) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

|C ∗| 124.0 (7.29) 115.8 (9.89) 40.8 (12.5) 39.4 (5.2) 33.2 (4.79) 38.6 (5.24)

Average ANMI 0.09 (0.04) 0.05 (0.08) 0.12 (0.07) 0.29 (0.07) 0.37 (0.07) 0.34 (0.14)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.01 (0.04) 0.0 (0.0) 0.0 (0.01) 0.06 (0.1) 0.17 (0.19) 0.13 (0.12)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.01

Spectral ANMI 0.39 (0.04) 0.67 (0.11) 0.85 (0.05) 0.89 (0.07) 0.87 (0.07) 0.89 (0.06)

|C ∗| 125.6 (8.06) 115.0 (12.85) 42.6 (7.09) 59.2 (11.55) 53.2 (9.2) 54.0 (6.69)

Average ANMI 0.04 (0.03) 0.06 (0.05) 0.12 (0.06) 0.21 (0.08) 0.18 (0.09) 0.21 (0.13)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.02) 0.01 (0.05) 0.02 (0.05)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.1

Spectral ANMI 0.32 (0.06) 0.68 (0.13) 0.8 (0.09) 0.81 (0.09) 0.79 (0.07) 0.78 (0.09)

|C ∗| 124.2 (9.33) 109.6 (12.63) 66.6 (10.71) 74.2 (7.14) 62.8 (5.11) 65.2 (13.85)

Average ANMI 0.04 (0.03) 0.06 (0.05) 0.09 (0.05) 0.19 (0.05) 0.13 (0.06) 0.2 (0.13)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Single ANMI 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.02)

|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Ground truth is 4 clusters with sizes 20, 10, 5, 5
The best ANMI scores are highlighted in bold
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Fig. 1 The ANMI scores of the clustering selected by the proposed
method (blue), EBIC (orange), and Calinski–Harabasz Index (green)
on synthetic data sets with d = 40 and ground truth being 4 balanced
clusters. Upper row and lower row shows results where the true preci-
sion matrix was generated from an inverse Wishart distribution, and a
uniform distribution, respectively. No noise setting (left column), small

noise (middle column), large noise (right column). ANMI score of 0.0
means correspondence with true clustering at pure chance level and 1.0
means perfect correspondence. In both settings, with and without noise,
the proposedmethod tends to be among the best. In contrast, EBIC tends
to suffer in the noise setting for large n and Calinski–Harabasz Index
performs sub-optimal in the no noise setting. (Color figure online)

4.3.1 Posterior distribution over number of clusters

In principle, the posterior distribution for the number of clus-
ters can be calculated using

p(k|X ) ∝
∑
C∈Ck

p(X |C),

where Ck denotes the set of all clusterings with number of
clusters being equal to k. Since this is computationally infea-
sible, we use the following approximation

P(k|X) ∝
∑
C∈Ck

p(X |C) ≈
∑
C∈C ∗

k

p(X |C),

where C ∗
k is the set of all clusterings with k clusters that are

in the restricted hypotheses space C ∗.

5 Simulation study

In this section,we evaluate the proposedmethodon simulated
data for which the ground truth is available. In Sect. 5.1,
we evaluate the quality of the restricted hypotheses space
C ∗, followed by Sect. 5.2, where we evaluated the proposed
method’s ability to select the best clustering in C ∗.

For the number of clusters, we consider the range from 2
to 15. For the set of regularization parameters of the spec-
tral clustering method, we use J := {0.0001, 0.0005, 0.001,
0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01}
(see Algorithm 2).

In all experiments, the number of variables is d = 40, and
the ground truth is 4 clusters with 10 variables each.

For generating positive-definite covariance matrices, we
consider the following two distributions: InvW(d + 1, Id),
and Uniformd , with dimension d. We denote by U ∼
Uniformd the positive-definite matrix generated in the fol-
lowing way
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Fig. 2 Same settings as in Fig. 1, but ground truth being 4 unbalanced clusters

U = A + (0.001 − λmin(A))Id ,

where λmin(A) is the smallest eigenvalue of A, and A is
drawn as follows:

Ai, j = A j,i ∼ Uniform(−1, 1) , i 
= j

Ai,i = 0.

For generating Σ , we either sample each block j from
InvW(d j + 1, Id j ) or from Uniformd j .

For generating the noisematrixΣε , we sample either from
InvW(d + 1, Id) or from Uniformd . The final data are then
sampled as follows:

x ∼ N (0, (Σ−1 + ηΣ−1
ε )−1),

where η defines the noise level.
For evaluation we use the adjusted normalized mutual

information (ANMI), where 0.0 means that any correspon-
dence with the true labels is at chance level, and 1.0 means
that a perfect one-to-one correspondence exists (Vinh et al.
2010). We repeated all experiments 5 times and report the
average ANMI score.

5.1 Evaluation of the restricted hypotheses space

First, independent of any model selection criteria, we check
here the quality of the clusterings that are found with the
spectral clustering algorithm fromSect. 4.3.Wealso compare
to single and average linkage clustering as used in (Tan et al.
2015).

The set of all clusterings that are found is denoted by C ∗
(the restricted hypotheses space).

In order to evaluate the quality of the restricted hypothe-
ses space C ∗, we report the oracle performance calculated
by maxC∈C ∗ ANMI(C, CT ), where CT denotes the true clus-
tering, and ANMI(C, CT ) denotes the ANMI score when
comparing clustering C with the true clustering. In partic-
ular, a score of 1.0 means that the true clustering is contained
in C ∗.

The results of all experiments with noise level η ∈
{0.0, 0.01, 0.1} are shown in Table 1, for balanced clusters,
and Table 2, for unbalanced clusters.

From these results, we see that the restricted hypothe-
ses space of spectral clustering is around 100, considerably
smaller than the number of all possible clusterings. More
importantly, we also see that that C ∗ acquired by spectral
clustering either contains the true clustering or a clustering
that is close to the truth. In contrast, the hypotheses space
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Table 3 Evaluation of clustering results for d = 40, n ∈ {20, 40, 400, 4000, 40,000, 4,000,000}
20 40 400 4000 40,000 4,000,000

Σ j ∼ InvW(d j + 1, Id j ), no noise

Proposed (β = 0.01) 0.76 (0.14) 0.93 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Proposed (β = 0.02) 0.7 (0.2) 0.92 (0.08) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Proposed (β = 0.03) 0.67 (0.18) 0.88 (0.14) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Basic inverse Wishart prior 0.73 (0.17) 0.93 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 0) 0.12 (0.15) 0.92 (0.08) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 0.5) 0.36 (0.03) 0.51 (0.04) 0.99 (0.03) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 1.0) 0.35 (0.02) 0.39 (0.05) 0.96 (0.05) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

AIC 0.12 (0.15) 0.6 (0.49) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Calinski–Harabasz Index 0.32 (0.03) 0.19 (0.16) 0.84 (0.13) 0.73 (0.0) 0.73 (0.0) 0.73 (0.0)

CGL (ALC) 0.06 (0.05) 0.03 (0.05) 0.11 (0.06) 0.04 (0.04) 0.06 (0.03) 0.06 (0.07)

DPVC 0.53 (0.07) 0.61 (0.17) 0.82 (0.06) 0.93 (0.09) NA NA

Σ j ∼ Uniformd j , no noise

Proposed (β = 0.01) 0.12 (0.04) 0.48 (0.07) 0.94 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Proposed (β = 0.02) 0.12 (0.05) 0.4 (0.04) 0.93 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Proposed (β = 0.03) 0.12 (0.05) 0.39 (0.03) 0.93 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Basic inverse Wishart prior 0.14 (0.05) 0.76 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 0) 0.07 (0.04) 0.87 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 0.5) 0.11 (0.05) 0.48 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 1.0) 0.11 (0.05) 0.38 (0.05) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

AIC 0.07 (0.04) 0.66 (0.34) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Calinski–Harabasz Index 0.15 (0.05) 0.66 (0.16) 0.79 (0.11) 0.46 (0.14) 0.65 (0.23) 0.59 (0.17)

CGL (ALC) 0.03 (0.02) 0.02 (0.02) 0.37 (0.03) 0.39 (0.0) 0.39 (0.0) 0.51 (0.25)

DPVC 0.01 (0.02) 0.03 (0.03) 0.4 (0.2) 0.51 (0.22) NA NA

Ground truth is 4 balanced clusters. Shows the ANMI of the selected models (standard deviation in brackets). No noise is added
The best ANMI scores are highlighted in bold

restricted by single and average linkage is smaller, but more
often misses the true clustering.

5.2 Evaluation of clustering selection criteria

Here, we evaluate the performance of our proposed method
for selecting the correct clustering in the restricted hypothe-
ses spaceC ∗.We compare our proposedmethod (variational)
with several baselines and two previously proposed methods
(Tan et al. 2015; Palla et al. 2012). Except for the two pre-
viously proposed methods, we created C ∗ with the spectral
clustering algorithm from Sect. 4.3.

As a cluster selection criteria, we compare our method to
the extendedBayesian information criterion (EBIC)withγ ∈
{0, 0.5, 1} (Chen and Chen 2008; Foygel and Drton 2010),
Akaike information criteria (Akaike 1973), and the Calinski–
Harabasz Index (CHI) (Caliński and Harabasz 1974). Note
that EBIC and AIC are calculated based on the basic Gaus-
sian graphical model (i.e., the model in Eq. 1, but ignoring

the prior specification).3 Furthermore, we note that EBIC
is model consistent, and therefore, assuming that the true
precision matrix contains nonzero entries in each element,
will choose asymptotically the clustering that has only one
cluster with all variables in it. However, as an advantage for
EBIC, we exclude that clustering. Furthermore, we note that
in contrast to EBIC and AIC, the Calinski–Harabasz Index is
not a model-based cluster evaluation criterion. The Calinski–
Harabasz Index is an heuristic that uses as clustering criterion
the ratio of the variance within and across clusters. As such it
is expected to give reasonable clustering results if the noise
is considerably smaller in magnitude than the within-cluster
variable partial correlations.

We remark that EBIC and AIC is not well defined if the
sample covariance matrix is singular, in particular if n <

d or n ≈ d. As an ad hoc remedy, which works well in

3 As discussed in Sect. 4.2, EBIC (and also AIC) cannot be used with
our proposed model.
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Table 4 Evaluation of clustering results with d = 40, n ∈ {20, 40, 400, 4000, 40,000, 4,000,000}
20 40 400 4000 40,000 4,000,000

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.01

Proposed (β = 0.01) 0.44 (0.07) 0.86 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Proposed (β = 0.02) 0.41 (0.06) 0.86 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.99 (0.03)

Proposed (β = 0.03) 0.38 (0.06) 0.8 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.99 (0.03)

Basic inverse Wishart prior 0.45 (0.07) 0.89 (0.02) 1.0 (0.0) 1.0 (0.0) 0.41 (0.04) 0.39 (0.0)

EBIC (γ = 0) 0.02 (0.02) 0.82 (0.07) 1.0 (0.0) 1.0 (0.0) 0.41 (0.04) 0.39 (0.0)

EBIC (γ = 0.5) 0.25 (0.08) 0.32 (0.07) 0.98 (0.04) 1.0 (0.0) 0.48 (0.13) 0.39 (0.0)

EBIC (γ = 1.0) 0.23 (0.07) 0.32 (0.07) 0.96 (0.06) 1.0 (0.0) 0.66 (0.14) 0.39 (0.0)

AIC 0.0 (0.01) 0.54 (0.44) 1.0 (0.0) 0.39 (0.0) 0.41 (0.04) 0.39 (0.0)

Calinski–Harabasz Index 0.26 (0.09) 0.3 (0.16) 0.93 (0.1) 0.95 (0.11) 0.89 (0.13) 0.84 (0.13)

CGL (ALC) 0.01 (0.02) 0.02 (0.05) 0.04 (0.05) 0.03 (0.02) 0.05 (0.06) 0.02 (0.02)

DPVC 0.33 (0.07) 0.42 (0.08) 0.59 (0.16) 0.21 (0.18) NA NA

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.1

Proposed (β = 0.01) 0.1 (0.1) 0.4 (0.09) 0.93 (0.1) 0.39 (0.0) 0.33 (0.17) 0.29 (0.15)

Proposed (β = 0.02) 0.13 (0.09) 0.41 (0.07) 0.97 (0.04) 0.95 (0.11) 1.0 (0.0) 0.99 (0.03)

Proposed (β = 0.03) 0.13 (0.09) 0.4 (0.09) 0.95 (0.04) 0.99 (0.03) 1.0 (0.0) 0.99 (0.03)

Basic inverse Wishart prior 0.1 (0.1) 0.4 (0.09) 0.93 (0.1) 0.23 (0.19) 0.18 (0.21) 0.23 (0.19)

EBIC (γ = 0) 0.09 (0.09) 0.29 (0.06) 0.94 (0.05) 0.31 (0.15) 0.18 (0.21) 0.23 (0.19)

EBIC (γ = 0.5) 0.12 (0.05) 0.2 (0.02) 0.87 (0.02) 0.41 (0.04) 0.18 (0.21) 0.23 (0.19)

EBIC (γ = 1.0) 0.14 (0.06) 0.2 (0.02) 0.54 (0.07) 0.86 (0.24) 0.18 (0.21) 0.23 (0.19)

AIC 0.0 (0.0) 0.0 (0.01) 0.09 (0.15) 0.23 (0.19) 0.18 (0.21) 0.23 (0.19)

Calinski–Harabasz Index 0.11 (0.05) 0.15 (0.13) 0.94 (0.05) 0.99 (0.03) 1.0 (0.0) 0.99 (0.03)

CGL (ALC) 0.02 (0.03) 0.0 (0.01) 0.01 (0.01) 0.01 (0.02) 0.0 (0.0) 0.0 (0.0)

DPVC 0.11 (0.06) 0.16 (0.06) 0.27 (0.06) 0.04 (0.04) NA NA

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.01

Proposed (β = 0.01) 0.1 (0.04) 0.45 (0.05) 0.92 (0.06) 0.99 (0.03) 0.99 (0.03) 0.93 (0.1)

Proposed (β = 0.02) 0.12 (0.03) 0.43 (0.06) 0.92 (0.06) 0.99 (0.03) 0.99 (0.03) 0.93 (0.1)

Proposed (β = 0.03) 0.13 (0.02) 0.39 (0.03) 0.89 (0.07) 0.99 (0.03) 0.99 (0.03) 0.93 (0.1)

Basic inverse Wishart prior 0.11 (0.06) 0.65 (0.12) 0.94 (0.06) 0.88 (0.12) 0.3 (0.28) 0.46 (0.14)

EBIC (γ = 0) 0.06 (0.04) 0.78 (0.14) 0.92 (0.1) 0.81 (0.23) 0.3 (0.28) 0.46 (0.14)

EBIC (γ = 0.5) 0.1 (0.03) 0.44 (0.06) 0.94 (0.06) 0.99 (0.03) 0.3 (0.28) 0.46 (0.14)

EBIC (γ = 1.0) 0.1 (0.03) 0.39 (0.03) 0.94 (0.06) 0.99 (0.03) 0.3 (0.28) 0.46 (0.14)

AIC 0.06 (0.04) 0.24 (0.33) 0.35 (0.43) 0.44 (0.15) 0.3 (0.28) 0.46 (0.14)

Calinski–Harabasz Index 0.14 (0.06) 0.54 (0.33) 0.57 (0.35) 0.76 (0.21) 0.59 (0.29) 0.66 (0.14)

CGL (ALC) 0.0 (0.01) 0.01 (0.01) 0.24 (0.18) 0.39 (0.0) 0.35 (0.08) 0.39 (0.0)

DPVC 0.0 (0.01) 0.06 (0.07) 0.29 (0.22) 0.44 (0.2) NA NA

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.1

Proposed (β = 0.01) 0.11 (0.02) 0.45 (0.05) 0.88 (0.07) 0.79 (0.21) 0.56 (0.34) 0.64 (0.22)

Proposed (β = 0.02) 0.14 (0.04) 0.4 (0.02) 0.86 (0.07) 0.9 (0.07) 0.56 (0.34) 0.64 (0.22)

Proposed (β = 0.03) 0.14 (0.04) 0.39 (0.03) 0.86 (0.07) 0.9 (0.07) 0.56 (0.34) 0.64 (0.22)

Basic inverse Wishart prior 0.13 (0.04) 0.52 (0.07) 0.88 (0.07) 0.42 (0.33) 0.15 (0.19) 0.23 (0.19)

EBIC (γ = 0) 0.12 (0.06) 0.7 (0.1) 0.78 (0.22) 0.42 (0.33) 0.15 (0.19) 0.16 (0.19)

EBIC (γ = 0.5) 0.13 (0.04) 0.44 (0.05) 0.88 (0.07) 0.48 (0.26) 0.15 (0.19) 0.16 (0.19)
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Table 4 continued

20 40 400 4000 40,000 4,000,000

EBIC (γ = 1.0) 0.12 (0.05) 0.39 (0.03) 0.88 (0.07) 0.6 (0.3) 0.15 (0.19) 0.16 (0.19)

AIC 0.12 (0.06) 0.2 (0.17) 0.06 (0.12) 0.42 (0.33) 0.15 (0.19) 0.16 (0.19)

Calinski–Harabasz Index 0.17 (0.06) 0.48 (0.29) 0.28 (0.34) 0.9 (0.07) 0.49 (0.27) 0.63 (0.22)

CGL (ALC) 0.01 (0.01) 0.07 (0.08) 0.31 (0.15) 0.39 (0.0) 0.33 (0.11) 0.38 (0.02)

DPVC 0.0 (0.0) 0.1 (0.09) 0.35 (0.12) 0.19 (0.18) NA NA

Ground truth is 4 balanced clusters. Shows the ANMI of the selected models (standard deviation in brackets). Noise is added to the precision matrix
The best ANMI scores are highlighted in bold

Table 5 Evaluation of clustering results for d = 40, n ∈ {20, 40, 400, 4000, 40,000, 4,000,000}
20 40 400 4000 40,000 4,000,000

Σ j ∼ InvW(d j + 1, Id j ), no noise

Proposed (β = 0.01) 0.49 (0.15) 0.84 (0.11) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Proposed (β = 0.02) 0.47 (0.17) 0.84 (0.11) 0.99 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Proposed (β = 0.03) 0.42 (0.19) 0.82 (0.13) 0.99 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Basic inverse Wishart prior 0.5 (0.15) 0.84 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 0) 0.2 (0.17) 0.8 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 0.5) 0.24 (0.05) 0.37 (0.05) 0.99 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 1.0) 0.23 (0.06) 0.32 (0.04) 0.99 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

AIC 0.15 (0.19) 0.16 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Calinski–Harabasz Index 0.17 (0.09) 0.17 (0.23) 0.46 (0.27) 0.45 (0.23) 0.47 (0.19) 0.4 (0.14)

CGL (ALC) 0.07 (0.11) 0.03 (0.04) 0.05 (0.07) 0.03 (0.03) 0.07 (0.07) 0.05 (0.06)

DPVC 0.57 (0.13) 0.66 (0.07) 0.64 (0.14) 0.87 (0.17) NA NA

Σ j ∼ Uniformd j , no noise

Proposed (β = 0.01) 0.15 (0.03) 0.33 (0.03) 0.87 (0.1) 0.98 (0.03) 1.0 (0.0) 0.98 (0.03)

Proposed (β = 0.02) 0.15 (0.03) 0.33 (0.03) 0.87 (0.1) 0.97 (0.04) 1.0 (0.0) 0.97 (0.04)

Proposed (β = 0.03) 0.16 (0.03) 0.31 (0.03) 0.67 (0.18) 0.97 (0.04) 0.98 (0.03) 0.97 (0.04)

Basic inverse Wishart prior 0.17 (0.05) 0.33 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 0) 0.08 (0.09) 0.6 (0.23) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 0.5) 0.16 (0.03) 0.33 (0.04) 0.98 (0.03) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

EBIC (γ = 1.0) 0.16 (0.03) 0.31 (0.03) 0.91 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

AIC 0.08 (0.08) 0.52 (0.33) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Calinski–Harabasz Index 0.16 (0.06) 0.53 (0.3) 0.64 (0.15) 0.63 (0.28) 0.88 (0.17) 0.96 (0.08)

CGL (ALC) 0.0 (0.01) 0.0 (0.0) 0.0 (0.01) 0.15 (0.16) 0.15 (0.21) 0.12 (0.06)

DPVC 0.02 (0.01) 0.0 (0.04) 0.23 (0.14) 0.25 (0.13) NA NA

Ground truth is 4 unbalanced clusters with sizes 20, 10, 5, 5. Shows the ANMI of the selected models (standard deviation in brackets). No noise is
added
The best ANMI scores are highlighted in bold

practice,4 we always add 0.001 times the identity matrix to
the covariance matrix (see also Ledoit and Wolf (2004)).

Finally, we also compare the proposed method to two
previous approaches for variable clustering: the Clustered
Graphical Lasso (CGL) as proposed in (Tan et al. 2015), and
the Dirichlet process variable clustering (DPVC) model as

4 In particular for the mutual funds data in the next section, where the
covariance matrix was bad conditioned.

proposed in (Palla et al. 2012), for which the implementa-
tion is available. DPVC models the number of clusters using
a Dirichlet process. CGL uses for model selection the mean
squared error for recovering randomly left-out elements of
the covariance matrix. CGL uses for clustering either the sin-
gle linkage clustering (SLC) or the average linkage clustering
(ALC)method. For conciseness, we show only the results for
ALC, since they tended to be better than SLC.
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Table 6 Evaluation of clustering results with d = 40, n ∈ {20, 40, 400, 4000, 40,000, 4,000,000}
20 40 400 4000 40,000 4,000,000

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.01

Proposed (β = 0.01) 0.45 (0.14) 0.75 (0.15) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Proposed (β = 0.02) 0.39 (0.09) 0.75 (0.15) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.98 (0.03)

Proposed (β = 0.03) 0.39 (0.09) 0.7 (0.18) 1.0 (0.0) 0.97 (0.06) 1.0 (0.0) 0.98 (0.03)

Basic inverse Wishart prior 0.48 (0.15) 0.8 (0.09) 1.0 (0.0) 0.91 (0.11) 0.39 (0.13) 0.42 (0.12)

EBIC (γ = 0) 0.12 (0.08) 0.67 (0.12) 1.0 (0.0) 0.91 (0.11) 0.48 (0.17) 0.42 (0.12)

EBIC (γ = 0.5) 0.19 (0.08) 0.32 (0.04) 0.97 (0.03) 1.0 (0.0) 0.54 (0.26) 0.42 (0.12)

EBIC (γ = 1.0) 0.17 (0.07) 0.28 (0.07) 0.96 (0.03) 1.0 (0.0) 0.68 (0.24) 0.42 (0.12)

AIC 0.06 (0.09) 0.3 (0.34) 1.0 (0.0) 0.4 (0.1) 0.39 (0.13) 0.42 (0.12)

Calinski–Harabasz Index 0.2 (0.06) 0.13 (0.2) 0.45 (0.27) 0.59 (0.17) 0.7 (0.21) 0.77 (0.03)

CGL (ALC) 0.08 (0.06) 0.05 (0.03) 0.04 (0.03) 0.03 (0.02) 0.03 (0.02) 0.04 (0.04)

DPVC 0.28 (0.04) 0.35 (0.07) 0.57 (0.08) 0.4 (0.12) NA NA

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.1

Proposed (β = 0.01) 0.09 (0.11) 0.42 (0.12) 0.84 (0.1) 0.42 (0.16) 0.18 (0.22) 0.24 (0.18)

Proposed (β = 0.02) 0.09 (0.11) 0.42 (0.13) 0.88 (0.11) 0.85 (0.15) 0.99 (0.02) 0.9 (0.09)

Proposed (β = 0.03) 0.15 (0.06) 0.42 (0.13) 0.89 (0.09) 0.92 (0.07) 0.99 (0.02) 0.9 (0.09)

Basic inverse Wishart prior 0.11 (0.14) 0.42 (0.13) 0.84 (0.1) 0.2 (0.2) 0.0 (0.01) 0.1 (0.17)

EBIC (γ = 0) 0.04 (0.05) 0.24 (0.06) 0.88 (0.11) 0.2 (0.2) 0.0 (0.01) 0.1 (0.17)

EBIC (γ = 0.5) 0.05 (0.02) 0.19 (0.04) 0.74 (0.19) 0.44 (0.17) 0.0 (0.01) 0.1 (0.17)

EBIC (γ = 1.0) 0.05 (0.02) 0.19 (0.04) 0.41 (0.06) 0.78 (0.12) 0.0 (0.01) 0.1 (0.17)

AIC 0.0 (0.01) 0.15 (0.21) 0.19 (0.2) 0.2 (0.2) 0.0 (0.01) 0.1 (0.17)

Calinski–Harabasz Index 0.06 (0.03) 0.17 (0.11) 0.68 (0.25) 0.67 (0.2) 0.83 (0.17) 0.76 (0.04)

CGL (ALC) 0.04 (0.04) 0.03 (0.02) 0.05 (0.06) 0.1 (0.11) 0.05 (0.07) 0.08 (0.09)

DPVC 0.13 (0.05) 0.16 (0.05) 0.3 (0.13) 0.07 (0.03) NA NA

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.01

Proposed (β = 0.01) 0.11 (0.02) 0.32 (0.04) 0.74 (0.15) 0.83 (0.1) 0.59 (0.32) 0.5 (0.33)

Proposed (β = 0.02) 0.11 (0.02) 0.32 (0.04) 0.61 (0.17) 0.83 (0.1) 0.59 (0.32) 0.59 (0.32)

Proposed (β = 0.03) 0.11 (0.02) 0.32 (0.04) 0.43 (0.06) 0.83 (0.1) 0.59 (0.32) 0.59 (0.32)

Basic inverse Wishart prior 0.11 (0.02) 0.32 (0.04) 0.84 (0.05) 0.28 (0.0) 0.11 (0.14) 0.17 (0.23)

EBIC (γ = 0) 0.18 (0.13) 0.43 (0.05) 0.76 (0.13) 0.22 (0.12) 0.11 (0.14) 0.06 (0.11)

EBIC (γ = 0.5) 0.11 (0.02) 0.32 (0.04) 0.84 (0.05) 0.51 (0.3) 0.11 (0.14) 0.06 (0.11)

EBIC (γ = 1.0) 0.11 (0.02) 0.32 (0.04) 0.79 (0.13) 0.67 (0.24) 0.11 (0.14) 0.06 (0.11)

AIC 0.14 (0.05) 0.16 (0.28) 0.17 (0.23) 0.22 (0.12) 0.09 (0.12) 0.06 (0.11)

Calinski–Harabasz Index 0.14 (0.08) 0.32 (0.3) 0.34 (0.33) 0.68 (0.22) 0.25 (0.27) 0.41 (0.32)

CGL (ALC) 0.0 (0.0) 0.0 (0.0) 0.01 (0.04) 0.0 (0.01) 0.02 (0.02) 0.01 (0.01)

DPVC 0.01 (0.01) 0.03 (0.06) 0.2 (0.05) 0.01 (0.02) NA NA

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.1

Proposed (β = 0.01) 0.1 (0.02) 0.34 (0.07) 0.68 (0.18) 0.6 (0.31) 0.09 (0.12) 0.06 (0.11)

Proposed (β = 0.02) 0.11 (0.02) 0.34 (0.07) 0.65 (0.21) 0.7 (0.13) 0.21 (0.21) 0.28 (0.26)

Proposed (β = 0.03) 0.11 (0.02) 0.32 (0.06) 0.58 (0.2) 0.7 (0.13) 0.32 (0.22) 0.28 (0.26)

Basic inverse Wishart prior 0.14 (0.03) 0.37 (0.08) 0.78 (0.1) 0.0 (0.02) 0.09 (0.12) 0.06 (0.11)

EBIC (γ = 0) 0.16 (0.05) 0.49 (0.21) 0.71 (0.14) 0.0 (0.02) 0.09 (0.12) 0.06 (0.11)

EBIC (γ = 0.5) 0.11 (0.01) 0.36 (0.08) 0.77 (0.13) 0.06 (0.11) 0.09 (0.12) 0.06 (0.11)

EBIC (γ = 1.0) 0.11 (0.01) 0.31 (0.05) 0.7 (0.16) 0.12 (0.14) 0.09 (0.12) 0.06 (0.11)

AIC 0.15 (0.05) 0.05 (0.12) 0.06 (0.11) 0.0 (0.02) 0.09 (0.12) 0.06 (0.11)
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Table 6 continued

20 40 400 4000 40,000 4,000,000

Calinski–Harabasz Index 0.16 (0.05) 0.29 (0.26) 0.42 (0.23) 0.45 (0.38) 0.09 (0.12) 0.33 (0.31)

CGL (ALC) 0.0 (0.01) 0.0 (0.01) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.01)

DPVC 0.0 (0.04) 0.03 (0.05) 0.11 (0.13) 0.02 (0.03) NA NA

Ground truth is 4 unbalanced clusters with sizes 20, 10, 5, 5. Shows the ANMI of the selected models (standard deviation in brackets). Noise is
added to the precision matrix
The best ANMI scores are highlighted in bold

Fig. 3 Posterior distribution of the number of clusters of the proposed method (top row) and the basic inverse Wishart prior model (bottom row).
Ground truth is 4 clusters; there is no noise on the precision matrix

Fig. 4 Posterior distribution of the number of clusters of the proposed method (top row) and the basic inverse Wishart prior model (bottom row).
Ground truth is 4 clusters; noise was added to the precision matrix

A summary of the experiments, with noise level η ∈
{0.0, 0.01, 0.1}, limited to the proposed method, EBIC, and
Calinski–Harabasz Index, is shown in Figs. 1 and 2, for bal-
anced and unbalanced clusters, respectively. Detailed results
of all experiments are shown in Tables 3 and 4, for balanced
clusters, and Tables 5 and 6, for unbalanced clusters. The
tables also contain the performance of the proposed method
for β ∈ {0, 0.01, 0.02, 0.03}. Note that β = 0.0 corresponds
to the basic inverse Wishart prior model for which we can
calculate the marginal likelihood analytically.

Comparing the proposed method with different β, we see
that β = 0.02 offers good clustering performance in the no
noise and noisy setting. In contrast, model selection with

EBIC and AIC performs, as expected, well in the no noise
scenario; however, in the noisy setting they tend to select
incorrect clusterings. In particular, for large sample sizes
EBIC tends to fail to identify correct clusterings.

The Calinski–Harabasz Index performs well in the noisy
settings, whereas in the no noise setting it performs unsatis-
factory.

In Figs. 3 and 4, we show the posterior distribution with
and without noise on the precision matrix, respectively.5 In
both cases, given that the sample size n is large enough, the

5 Same setting as before, d = 40, Σ j ∼ InvW(d j + 1, Id j ). Noise is
Σε ∼ InvW(d + 1, Id ), η = 0.01. Proposed method β = 0.02.
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Table 7 Comparison of
variational and MCMC
estimate. Evaluation of
clustering results for d = 12,
n ∈ {12, 120, 1200, 1,200,000}

12 120 1200 1,200,000

Σ j ∼ InvW(d j + 1, Id j ), no noise

Proposed, variational 0.39 (0.23) 0.89 (0.09) 0.96 (0.07) 0.82 (0.11)

Proposed, MCMC 0.37 (0.23) 0.89 (0.09) 0.96 (0.07) 0.9 (0.14)

Basic inverse Wishart prior 0.39 (0.23) 0.89 (0.09) 1.0 (0.0) 1.0 (0.0)

Σ j ∼ Uniformd j , no noise

Proposed, variational 0.76 (0.17) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Proposed, MCMC 0.66 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Basic inverse Wishart prior 0.76 (0.17) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.01

Proposed, variational 0.42 (0.27) 0.8 (0.16) 1.0 (0.0) 0.96 (0.07)

Proposed, MCMC 0.17 (0.24) 0.8 (0.16) 1.0 (0.0) 0.96 (0.07)

Basic inverse Wishart prior 0.42 (0.27) 0.94 (0.12) 0.93 (0.13) 0.34 (0.04)

Σ j ∼ InvW(d j + 1, Id j ),Σε ∼ InvW(d + 1, Id ), η = 0.1

Proposed, variational 0.11 (0.16) 0.57 (0.07) 0.55 (0.26) 0.78 (0.2)

Proposed, MCMC 0.09 (0.06) 0.61 (0.13) 0.61 (0.23) 0.78 (0.2)

Basic inverse Wishart prior 0.16 (0.15) 0.54 (0.1) 0.28 (0.15) 0.21 (0.18)

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.01

Proposed, variational 0.79 (0.12) 0.82 (0.26) 0.73 (0.33) 0.96 (0.07)

Proposed, MCMC 0.82 (0.11) 0.96 (0.09) 0.75 (0.31) 0.96 (0.07)

Basic inverse Wishart prior 0.79 (0.12) 0.48 (0.15) 0.28 (0.09) 0.28 (0.09)

Σ j ∼ Uniformd j ,Σε ∼ Uniformd , η = 0.1

Proposed, variational 0.67 (0.22) 0.24 (0.24) 0.32 (0.0) 0.35 (0.18)

Proposed, MCMC 0.68 (0.17) 0.24 (0.24) 0.46 (0.27) 0.35 (0.18)

Basic inverse Wishart prior 0.69 (0.21) 0.13 (0.11) 0.26 (0.13) 0.28 (0.09)

Ground truth is 4 balanced clusters. β = 0.02. Shows the ANMI of the selected models (standard deviation
in brackets)
The best ANMI scores are highlighted in bold

proposed method is able to estimate correctly the number of
clusters. In contrast, the basic inverse Wishart prior model
underestimates the number of clusters for large n and exis-
tence of noise in the precision matrix.

5.3 Comparison of variational andMCMC estimate

Here,wecompareour variational approximationwithMCMC
on a small scale simulated problem where it is computation-
ally feasible to estimate themarginal likelihoodwithMCMC.
We generated synthetic data as in the previous section, only
with the difference that we set the number of variables d to
12.

The number of samples M for MCMC was set to 10,000,
where we used 10% as burn-in. For two randomly picked
clusterings for n = 12, and n = 1,200,000, we checked
the acceptance rates and convergence using the multivariate
extension of the Gelman–Rubin diagnostic (Brooks and Gel-
man 1998). The average acceptance rates were around 80%,
and the potential scale reduction factor was 1.01.

The runtimeofMCMCwas around40minutes for evaluat-
ing one clustering, whereas for the variational approximation
the runtime was around 2 seconds.6 The results are shown in
Table 7, suggesting that the quality of the selected clusterings
using the variational approximation is similar to MCMC.

6 Real data experiments

In this section, we investigate the properties of the proposed
model selection criterion on three real data sets. In all cases,
we use the spectral clustering algorithm from “Appendix
C” to create cluster candidates. All variables were nor-
malized to have mean 0 and variance 1. For all methods,
except DPVC, the number of clusters is considered to be in
{2, 3, 4, . . . ,min(p − 1, 15)}. DPVC automatically selects
the number of clusters by assuming a Dirichlet process prior.
We evaluated the proposed method with β = 0.02 using the
variational approximation.

6 Runtime on one core of Intel(R) Xeon(R) CPU 2.30GHz.

123



Statistics and Computing (2020) 30:351–376 369

Table 8 Evaluation of selected clusterings of the mutual funds data

Colors highlight the type of fund. Numbers denote the cluster id assigned by the respective method. Here, the size of the restricted hypotheses space
|C ∗| found by spectral clustering was 128

6.1 Mutual funds

Here, we use the mutual funds data, which has been pre-
viously analyzed in (Scott and Carvalho 2008; Marlin
et al. 2009). The data contain 59 mutual funds (d =59)
grouped into 4 clusters: US bond funds, US stock funds,
balanced funds (containing US stocks and bonds), and
international stock funds. The number of observations is
86.

The results of all methods are visualized in Table 8. It is
difficult to interpret the results produced by EBIC (γ = 1.0),
AIC, and the Calinski–Harabasz Index. In contrast, the pro-
posed method and EBIC (γ = 0.0) produce results that are
easier to interpret. In particular, our results suggest that there

is a considerable correlation between the balanced funds and
the US stock funds which was also observed in Marlin et al.
(2009).

In Fig. 5, we show a two-dimensional representation
of the data, that was found using Laplacian eigenmaps
(Belkin and Niyogi 2003). The figure supports the claim that
balanced funds and the US stock funds have similar behav-
ior.

6.2 Gene regulations

We tested our method also on the gene expression data that
was analyzed in (Hirose et al. 2017). The data consist of
11 genes with 445 gene expressions. The true gene reg-
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Fig. 5 Two-dimensional representation of the mutual funds data sug-
gesting that balanced funds and US stock funds are difficult to separate
(one cluster), whereas US bond funds and international stock funds
appear to form mostly separate clusters

Fig. 6 Gene regulations of E. coli as given in (Hirose et al. 2017;
Albersts et al. 2014) suggesting that the gene groups {lexA, uvrA, uvrB,
uvrC, uvrD, recA} and {crp, lacl, lacZ, lacY, lacA} should be separated

ularizations are known in this case and shown in Fig. 6,
adapted from (Hirose et al. 2017). The most important
fact is that there are two independent groups of genes and
any clustering that mixes these two can be considered as
wrong.

We show the results of all methods in Fig. 7, where
we mark each cluster with a different color superimposed
on the true regularization structure. Here, only the clus-
tering selected by the proposed method, EBIC (γ = 1.0)
and Calinski–Harabasz correctly divides the two group of
genes.

6.3 Aviation sensors

As a third data set, we use the flight aviation data set
from NASA.7 The data set contains sensor information
sampled from airplanes during operation. We extracted
the information of 16 continuous-valued sensors that were

7 https://c3.nasa.gov/dashlink/projects/85/ where we use all records
from Tail 687.

recorded for different flights with in total 25,032,364 sam-
ples.

The clustering results are shown in Table 9. The data set
does not have any ground truth, but the clustering result of
our proposed method is reasonable: Cluster 9 groups sensors
that measure or affect altitude,8 Cluster 8 correctly clusters
the left and right sensors for measuring the rotation around
the axis pointing through the noise of the aircraft, in Clus-
ter 2 all sensors that measure the angle between chord and
flight direction are grouped together. It also appears reason-
able that the yellow hydraulic system of the left part of the
plane has little direct interaction with the green hydraulic
system of the right part (Cluster 1 and Cluster 4). And
the sensor for the rudder, influencing the direction of the
plane, is mostly independent of the other sensors (Cluster
5).

In contrast, the clustering selected by the basic inverse
Wishart prior, EBIC, andAIC is difficult to interpret.We note
that we did not compare to DPVC, since the large number
of samples made the MCMC algorithm of DPVC infeasi-
ble.

7 Discussion and conclusions

We have introduced a new method for evaluating vari-
able clusterings based on the marginal likelihood of a
Bayesian model that takes into account noise on the preci-
sion matrix. Since the calculation of the marginal likelihood
is analytically intractable, we proposed two approximations:
a variational approximation and an approximation based
on MCMC. Experimentally, we found that the variational
approximation is considerably faster than MCMC and also
leads to accurate model selection.

We compared our proposed method to several standard
model selection criteria. In particular, we compared to BIC
and extended BIC (EBIC) which are often the method of
choice for model selection in Gaussian graphical models.
However, we emphasize that EBIC was designed to han-
dle the situation where d is in the order of n, and has
not been designed to handle noise. As a consequence,
our experiments showed that in practice its performance
depends highly on the choice of the γ parameter. In con-
trast, the proposed method, with fixed hyper-parameters,
shows better performance on various simulated and real
data.

We also compared our method to other two previously
proposed methods, namely Cluster Graphical Lasso (CGL)
(Tan et al. 2015) and Dirichlet Process Variable Clustering
(DPVC) (Palla et al. 2012) that performs jointly clustering

8 The elevator position of an airplane influences the altitude, and the
static pressure system of an airplane measures the altitude.
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Proposed and EBIC (γ = 1.0)

EBIC (γ = 0.0), basic inverse Wishart prior, AIC,
CGL

EBIC (γ = 0.5)

Calinski-Harabaz Index

DPVC

Fig. 7 Clusterings of gene regulations network of E. coli. The clus-
tering results are visualized by different colors. Here, the size of the
restricted hypotheses space |C ∗| found by spectral clustering was 18.

Only the proposed method, EBIC (γ = 1.0), and Calinski–Harabasz
correctly divide the gene groups {lexA, uvrA, uvrB, uvrC, uvrD, recA}
and {crp, lacl, lacZ, lacY, lacA}

and model selection. However, it appears that in many situ-
ations the model selection algorithm of CGL is not able to
detect the true model, even if there is no noise. On the other
hand, the Dirichlet process assumption by DPVC appears to
be very restrictive, leading again to many situations where
the true model (clustering) is missed. Overall, our method
performs better in terms of selecting the correct clustering

on synthetic data with ground truth, and selects meaningful
clusters on real data.

The python source code for variable clustering and model
selection with the proposed method and all baselines is avail-
able at https://github.com/andrade-stats/robustBayesCluste
ring.
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Table 9 Evaluation of selected
clusterings of the Aviation
Sensor Data with 16 variables

Proposed

Cluster 1 BRAKE PRESSURE LH YELLOW

Cluster 2 INDICATED ANGLE OF ATTACK, ANGLE OF
ATTACK 2, ANGLE OF ATTACK 1

Cluster 3 ROLL SPOILER RIGHT

Cluster 4 BRAKE PRESSURE RH GREEN

Cluster 5 RUDDER POSITION

Cluster 6 AILERON POSITION RH, AILERON POSITION
LH

Cluster 7 ROLL SPOILER LEFT

Cluster 8 PITCH TRIM POSITION

Cluster 9 STATIC PRESSURE LSP, TOTAL PRESSURE LSP,
AVARAGE STATIC PRESSURE LSP, ELEVATOR
POSITION LEFT,ELEVATOR POSITION RIGHT

Basic inverse Wishart prior, EBIC (γ ∈ {0.0, 0.5, 1.0}), AIC
Cluster 1 STATIC PRESSURE LSP, INDICATED ANGLE

OF ATTACK, TOTAL PRESSURE LSP, RUDDER
POSITION, AILERON POSITION RH, AVARAGE
STATIC PRESSURE LSP, ELEVATOR POSITION
LEFT, ELEVATOR POSITION RIGHT, PITCH
TRIM POSITION, ANGLE OF ATTACK 2, ANGLE
OF ATTACK 1, AILERON POSITION LH, ROLL
SPOILER LEFT, BRAKE PRESSURE LH YEL-
LOW, ROLL SPOILER RIGHT

Cluster 2 BRAKE PRESSURE RH GREEN

Calinski–Harabasz Index

Cluster 1 STATIC PRESSURE LSP, TOTAL PRESSURE LSP,
AILERON POSITION RH, AVARAGE STATIC
PRESSURE LSP, ELEVATOR POSITION LEFT,
ELEVATOR POSITION RIGHT, BRAKE PRES-
SURE RH GREEN, AILERON POSITION LH,
BRAKE PRESSURE LH YELLOW

Cluster 2 INDICATED ANGLE OF ATTACK, ANGLE OF
ATTACK 2, ANGLE OF ATTACK 1

Cluster 3 RUDDER POSITION, PITCH TRIM POSITION,
ROLL SPOILER LEFT, ROLL SPOILER RIGHT

CGL (ALC)

Cluster 1 STATIC PRESSURE LSP, TOTAL PRESSURE LSP,
AVARAGE STATIC PRESSURE LSP, ELEVATOR
POSITION LEFT, ELEVATOR POSITION RIGHT,
BRAKE PRESSURE LH YELLOW

Cluster 2 INDICATED ANGLE OF ATTACK, RUDDER
POSITION, AILERON POSITION RH, PITCH
TRIM POSITION, BRAKE PRESSURE RH
GREEN, ANGLE OF ATTACK 2, ANGLE OF
ATTACK 1, AILERON POSITION LH, ROLL
SPOILER LEFT, ROLL SPOILER RIGHT

Here, the size of the restricted hypotheses space |C ∗| found by spectral clustering was 28

123



Statistics and Computing (2020) 30:351–376 373
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Appendix A Convergence of 3-block ADMM

We can write the optimization problem in (4) as

minimize f1(Xε) + f2(X1, . . . , Xk) + f3(Z)

subject to

− X − βXε + Z = 0,

Xε, X1, . . . , Xk � 0,

with

f1(Xε) := trace(AεXε) − aε · log |Xε |,

f2(X1, . . . , Xk) :=
k∑
j=1

(
trace(A j X j ) − a j · log |X j |

)
,

f3(Z) := n · trace(SZ) − n · log |Z |.

First note that the functions f1, f2, and f3 are convex
proper closed functions. Since Xε, X1, . . . , Xk � 0, we have
due to the equality constraint that Z � 0. Assuming that the
global minima is attained, we can assume that Z � σ I , for
some large enough σ > 0. As a consequence, we have that
∇2 f3(Z) = Z−1 ⊗ Z−1 � σ−2 I , and therefore f3 is a
strongly convex function. Analogously, we have that f1 and
f2 are strongly convex functions, and therefore also coercive.
This allows us to applyTheorem3.2 in (Lin et al. 2018)which
guarantees the convergence of the 3-block ADMM.

Appendix B Derivation of variational
approximation

Here, we give more details of the KL-divergence minimiza-
tion from Sect. 4.2.2. Recall, that the remaining parameters
νg,ε ∈ R and νg, j ∈ R are optimized by minimizing the KL-
divergence between the factorized distribution g and the pos-
terior distribution p(Σε,Σ1, . . . Σk |x1, . . . , xn, η, C). We
have

K L(g||p) = −
∫

gε(Σε) ·
k∏
j=1

g j (Σ j )

log
p(Σε, Σ1, . . . Σk , x1, . . . , xn |η, C)

gε(Σε) · ∏k
j=1 g j (Σ j )

dΣεdΣ + c

= −1

2
EgJ ,gε [n · log |(Σ−1 + βΣ−1

ε )|]

− 1

2
Egε [(νε + d + 1) · log |Σ−1

ε |
− trace((Σε,0 + βnS)Σ−1

ε )] − Entropy[gε ]

+
k∑
j=1

(
−1

2
Eg j [(ν j + d j + 1) · log |Σ−1

j |

−trace((Σ j,0 + nS j )Σ
−1
j )] − Entropy[g j ]

)
+ c

= −1

2
n EgJ ,gε [log |Σ−1 + βΣ−1

ε |]

+ 1

2
(νε + d + 1)Egε [log |Σε |]

+ 1

2
trace((Σε,0 + βnS)Egε [Σ−1

ε ]) − Entropy[gε ]

+ 1

2

k∑
j=1

(ν j + d j + 1)Eg j [log |Σ j |]

+ 1

2

k∑
j=1

trace((Σ j,0 + nS j )Eg j [Σ−1
j ])

−
k∑
j=1

Entropy[g j ] + c,

where c is a constant with respect to gε and g j . How-
ever, the term EgJ ,gε [log |Σ−1 + βΣ−1

ε |] cannot be solved
analytically; therefore, we need to resort to some sort of
approximation. Assuming that

EgJ ,gε [log |Σ−1 + βΣ−1
ε |] ≈ EgJ ,gε [log |Σ−1|],

we get

K L(g||p) ≈ −1

2
n EgJ ,gε [log |Σ−1|]

+ 1

2
(νε + d + 1)Egε [log |Σε |]

+ 1

2
trace((Σε,0 + βnS)Egε [Σ−1

ε ]) − Entropy[gε ]

+ 1

2

k∑
j=1

(ν j + d j + 1)Eg j [log |Σ j |]

+ 1

2

k∑
j=1

trace((Σ j,0 + nS j )Eg j [Σ−1
j ])

−
k∑
j=1

Entropy[g j ] + c

= −Egε

[
log

(
|Σε |− 1

2 (νε+d+1)

e− 1
2 trace((Σε,0+βnS)Σ−1

ε )
)]

− Entropy[gε ] −
k∑
j=1

Eg j

[
log

(
|Σ j |−

1
2 (ν j+n+d j+1)

e−
1
2 trace((Σ j,0+nS j )Σ

−1
j )

)]
+ Entropy[g j ] + c
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= −Egε [log InvW(νε,Σε,0 + βnS)]
− Entropy[gε ]

−
k∑
j=1

Eg j [log InvW(ν j + n, Σ j,0 + nS j )]

+ Entropy[g j ] + c′

= K L(gε || InvW(νε, Σε,0 + βnS))

+
k∑
j=1

K L(g j || InvW(ν j + n, Σ j,0 + nS j ))

+ c′,

where we used that EgJ ,gε [log |Σ−1|]
= −∑k

j=1 Eg j [log |Σ j |], and c′ is a constant with respect
to gε and g j .

From the above expression, we see that we can optimize
the parameters of gε and g j independently from each other.
The optimal parameter ν̂g,ε for gε is

ν̂g,ε = argmin
νg,ε

K L(gε || InvW(νε,Σε,0 + βnS))

= argmin
νg,ε

(νε + d + 1)Egε [log |Σε |]

+ trace((Σε,0 + βnS)Egε [Σ−1
ε ]) − 2 · Entropy[gε]

= argmin
νg,ε

(νε + d + 1)
(−d log 2 + d log(νg,ε + d + 1)

+ log |Σ̂ε | −
d∑

i=1

ψ

(
νg,ε − d + i

2

))

+ νg,ε

νg,ε + d + 1
trace((Σε,0 + βnS)Σ̂−1

ε )

− 2 logΓd(
νg,ε

2
) − νg,εd − d(d + 1) log(νg,ε + d + 1)

+ (νg,ε + d + 1)
d∑

i=1

ψ

(
νg,ε − d + i

2

)

= argmin
νg,ε

p(νε + d + 1) log(νg,ε + d + 1)

− (νε + d + 1)
d∑

i=1

ψ

(
νg,ε − d + i

2

)

+ νg,ε

νg,ε + d + 1
trace((Σε,0 + βnS)Σ̂−1

ε )

− 2 logΓd(
νg,ε

2
) − νg,εd − d(d + 1) log(νg,ε + d + 1)

+ (νg,ε + d + 1)
d∑

i=1

ψ

(
νg,ε − d + i

2

)

= argmin
νg,ε

νg,ε

νg,ε + d + 1
trace((Σε,0 + βnS)Σ̂−1

ε )

− 2 logΓd(
νg,ε

2
) − νg,εd + dνε log(νg,ε + d + 1)

+ (νg,ε − νε)

d∑
i=1

ψ

(
νg,ε − d + i

2

)
.

And analogously, we have

ν̂g, j = argmin
νg, j

νg, j

νg, j + d j + 1
trace((Σ j,0 + nS j )Σ̂

−1
j )

− 2 logΓd j (
νg, j

2
) − νg, j d j

+ d j (ν j + n) log(νg, j + d j + 1)

+ (νg, j − ν j − n)

d j∑
i=1

ψ

(
νg, j − d j + i

2

)
.

Appendix C Spectral clustering for variable
clustering with the Gaussian
graphical model

Let S ∈ R
d×d denote the sample covariance matrix of the

observed variables. Under the assumption that the observa-
tions are drawn i.i.d. from a multivariate normal distribution,
with mean 0 and precision matrix X + βXε , the log-
likelihood9 of the data is given by

n

2
(log |X + βXε | − trace((X + βXε)S)),

where n is the number of observations. We assume that X
is block sparse, i.e., a permutation matrix P exists such that
PT X P is block diagonal. If we knew the number of blocks
k, then we could estimate the block matrix X (and thus the
variable clustering) by the following optimization problem.
Optimization Problem 1

minimize
X�0

− log |X + βXε | + trace((X + βXε)S)

subject to

X is block sparse with exactly k blocks,

where βXε is assumed to be a constant matrix with small
entries.We claim that this can be reformulated, for anyq > 0,
as following.
Optimization Problem 2

minimize
X�0

− log |X + βXε | + trace((X + βXε)S)

subject to

Lii =
∑
k 
=i

|Xik |q ,

Li j = −|Xi j |q for i 
= j,

rank(L) = p − k.

9 Up to a constant that does not depend on X .
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Proposition 1 Optimization problems 1 and 2 have the same
solution. Moreover, the k-dimensional null space of L can be
chosen such that each basis vector is the indicator vector for
one variable block of X.

Proof First let us define the matrix X̃ , by X̃i j := |Xi j |q .
Then clearly, iff X is block sparse with k blocks, so is X̃ .
Furthermore, X̃i j ≥ 0, and L is the unnormalized Laplacian
as defined in (Von Luxburg 2007). We can therefore apply
Proposition (2) of (VonLuxburg 2007), to find that the dimen-
sion of the eigenspace of L corresponding to eigenvalue 0, is
exactly the number of blocks in X̃ . Also from Proposition (2)
of (Von Luxburg 2007) it follows that each such eigenvector
ek ∈ R

d can be chosen such that it indicates the variables
belonging to the same block, i.e., ek(i) 
= 0, iff variable i
belongs to block k. ��

Using the nuclear norm as a convex relaxation for the rank
constraint, we have

minimize
X�0

−log |X + βXε |+trace((X + βXε)S) + λk ||L||∗
subject to

Lii =
∑
k 
=i

|Xik |q ,

Li j = −|Xi j |q for i 
= j .

with an appropriately chosen λk . By the definition of L , we
have that L is positive semi-definite, and therefore ||L||∗ =
trace(L). As a consequence, we can rewrite the above prob-
lem as

X∗ := argmin
X�0

− log |X + βXε | + trace((X + βXε)S)

+ λk
∑
i 
= j

|Xi j |q .

Finally, for the purpose of learning the Laplacian L , we
ignore the term βXε and set it to zero. This will necessarily
lead to an estimate of X∗ that is not a clean block matrix,
but has small nonzero entries between blocks. Nevertheless,
spectral clustering is known to be robust to such violations
(Ng et al. 2002). This leads to Algorithm 2 in Sect. 4.3.
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