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Abstract Recent work on overfitting Bayesian mix-

tures of distributions offers a powerful framework for

clustering multivariate data using a latent Gaussian

model which resembles the factor analysis model. The

flexibility provided by overfitting mixture models yields

a simple and efficient way in order to estimate the un-

known number of clusters and model parameters by

Markov chain Monte Carlo (MCMC) sampling. The

present study extends this approach by considering a

set of eight parameterizations, giving rise to parsimo-

nious representations of the covariance matrix per clus-

ter. A Gibbs sampler combined with a prior parallel

tempering scheme is implemented in order to approx-

imately sample from the posterior distribution of the

overfitting mixture. The parameterization and number

of factors is selected according to the Bayesian Infor-
mation Criterion. Identifiability issues related to la-

bel switching are dealt by post-processing the simu-

lated output with the Equivalence Classes Represen-

tatives algorithm. The contributed method and soft-

ware are demonstrated and compared to similar mod-

els estimated using the Expectation-Maximization al-

gorithm on simulated and real datasets. The software

is available online at https://CRAN.R-project.org/

package=fabMix.
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1 Introduction

Factor Analysis (FA) explains relationships among a set

of observed variables using a set of latent variables. This

is typically achieved by expressing the observed multi-

variate data as a linear combination of a smaller set

of unobserved and uncorrelated variables known as fac-

tors. Let x = (x1, . . . ,xn) denote a random sample of

p dimensional observations with xi ∈ Rp; i = 1, . . . , n.

Let Np(µ,Σ) denotes the p-dimensional normal distri-

bution with mean µ and covariance matrix Σ and also

denote by Ip the p × p identity matrix. The following

equations summarize the typical FA model.

xi = µ+Λyi + εi, i = 1, . . . , n (1)

(yi, εi) ∼ Nq(0, Iq)Np(0,Σ), iid for i = 1, . . . , n (2)

Σ = diag(σ2
1 , . . . , σ

2
p) (3)

xi|yi ∼ Np(µ+Λyi,Σ), ind. for i = 1, . . . , n (4)

Before proceeding note that we are not differentiating

the notation between random variables and their corre-

sponding realizations. Bold upper-case letters are used

for matrices, bold lower-case letters are used for vectors

and normal text for scalars.

In Equation (1) we assume that xi is expressed as a

linear combination of a latent vector of factors yi ∈ Rq.
The p × q dimensional matrix Λ = (λrj) contains the

factor loadings, while µ = (µ1, . . . , µp) contains the

marginal mean of xi. The unobserved vector yi lies on a

lower dimensional space, that is, q < p and it consists of

uncorrelated features yi1, . . . , yiq as shown in Equation

(2), where 0 denotes a vector of zeros. Note that the

error terms εi are independent from yi. Furthermore,

the errors are consisting of independent random vari-

ables εi1, . . . , εip, as implied by the diagonal covariance

matrix Σ in Equation (3). As shown in Equation (4),

the knowledge of the missing data (yi) implies that the
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conditional distribution of xi has a diagonal covariance

matrix. The previous assumptions lead to

xi ∼ Np(µ,ΛΛT +Σ), iid for i = 1, . . . , n. (5)

According to Equation (5), the covariance matrix of

the marginal distribution of xi is equal to ΛΛT + Σ.

This is the crucial characteristic of factor analytic mod-

els, where they aim to explain high-dimensional depen-

dencies using a set of lower-dimensional uncorrelated

factors (Kim and Mueller, 1978; Bartholomew et al.,

2011).

Mixtures of Factor Analyzers (MFA) are generaliza-

tions of the typical FA model, by assuming that Equa-

tion (5) becomes

xi ∼
K∑
k=1

wkNp(µk,ΛkΛ
T
k +Σk), iid i = 1, . . . , n (6)

where K denotes the number of mixture components.

The vector of mixing proportions w := (w1, . . . , wK)

contains the weight of each component, with 0 6 wk 6
1; k = 1, . . . ,K and

∑K
k=1 wk = 1. Note that the mix-

ture components are characterized by different param-

eters µk,Λk,Σk, k = 1, . . . ,K. Thus, MFAs are partic-

ularly useful when the observed data exhibits unusual

characteristics such as heterogeneity. That being said,

this approach aims to capture the behaviour of each

cluster within a component of the mixture model. A

comprehensive perspective on the history and devel-

opment of MFA models is given in Chapter 3 of the

monograph by McNicholas (2016).

Early works applying the Expectation-Maximization

(EM) algorithm (Dempster et al., 1977) for estimating

MFA are the ones from Ghahramani et al. (1996); Tip-

ping and Bishop (1999); McLachlan and Peel (2000).

McNicholas and Murphy (2008, 2010) introduced the

family of parsimonious Gaussian mixture models (PGMM)

by considering the case where the factor loadings and/or

error variance may be shared or not between the mix-

ture components. These models are estimated by the

alternating expectation-conditional maximization algo-

rithm (Meng and Van Dyk, 1997) and have superior

performance compared to other approaches (McNicholas

and Murphy, 2008). Under a Bayesian setup, Fokoué

and Titterington (2003) estimate the number of mix-

ture components and factors by simulating a continuous-

time stochastic birth-death point process using a Birth-

Death MCMC algorithm (Stephens, 2000). More re-

cently, Papastamoulis (2018b) estimated Bayesian MFA

models with an unknown number of components using

overfitting mixtures.

In recent years there is a growing progress on the

usage of overfitting mixture models in Bayesian analy-

sis (Rousseau and Mengersen, 2011; van Havre et al.,

2015). An overfitting mixture model consists of a num-

ber of components which is much larger than its true

(and unknown) value. Under suitable prior assump-

tions (see Appendix A) introduced by Rousseau and

Mengersen (2011), it has been shown that asymptoti-

cally the redundant components will have zero posterior

weight and force the posterior distribution to put all its

mass in the sparsest way to approximate the true den-

sity. Therefore, the inference on the number of mixture

components can be based on the posterior distribution

of the “alive” components of the overfitted model, that

is, the components which contain at least one allocated

observation.

Other Bayesian approaches to estimate the num-

ber of components in a mixture model include the Re-

versible jump MCMC (RJMCMC) (Green, 1995; Richard-

son and Green, 1997; Dellaportas and Papageorgiou,

2006; Papastamoulis and Iliopoulos, 2009), Birth-death

MCMC (BDMCMC) (Stephens, 2000) and allocation

sampling (Nobile and Fearnside, 2007; Papastamoulis

and Rattray, 2017) algorithms. However, overfitting mix-

ture models are straightforward to implement, while the

rest approaches require either careful design of various

move types that bridge models with different number

of clusters, or analytical integration of parameters.

The overall message is that there is a need for de-

veloping an efficient Bayesian method that will combine

the previously mentioned frequentist advances on par-

simonious representations of MFAs and the flexibility

provided by the Bayesian viewpoint. This study aims

at filling this gap by extending the Bayesian method of

Papastamoulis (2018b) to the family of parsimonious

Gaussian mixtures of McNicholas and Murphy (2008).

Furthermore, we illustrate the proposed method using

the R (Ihaka and Gentleman, 1996; R Core Team, 2016)

package fabMix (Papastamoulis, 2018a) available as a

contributed package from the Comprehensive R Archive

Network at https://CRAN.R-project.org/package=

fabMix. The proposed method efficiently deals with

many inferential problems (see e.g. Celeux et al. (2000a))

related to mixture posterior distributions, such as (i)

inferring the number of non-empty clusters using over-

fitting models, (ii) efficient exploration of the posterior

surface by running parallel heated chains and (iii) in-

corporating advanced techniques that succesfully deal

with the label switching issue (Papastamoulis, 2016).

The rest of the paper is organized as follows. Section

2 reviews the basic concepts of parsimonious MFAs.

Identifiability problems and corresponding treatments

are detailed in Section 2.1. The Bayesian model is intro-

duced in Section 2.2. Section 3 presents the full condi-

tional posterior distributions of the model. The MCMC

algorithm is described in Section 3.2. A detailed presen-
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tation of the main function of the contributed R package

is given in Section 4. Our method is illustrated and com-

pared to similar models estimated by the EM algorithm

in Sections 5.1 and 5.2 using an extended simulation

study and 4 publicly available datasets, respectively.

We conclude in Section 6 with a summary of our find-

ings and directions for further research. An Appendix

contains further discussion on overfitting mixture mod-

els (Appendix A), details of the MCMC sampler (Ap-

pendix B) and additional simulation results (Appendix

C).

2 Parsimonious Mixtures of Factor Analyzers

Consider the latent allocation variables zi which assign

observation xi to a component k = 1, . . . ,K for i =

1, . . . , n. A-priori each observation is generated from

component k with probability equal to wk, that is,

P(zi = k) = wk, k = 1, . . . ,K, (7)

independent for i = 1, . . . , n. Note that the allocation

vector z := (z1, . . . , zn) is not observed, so it should be

treated as missing data. We assume that zi and yi are

independent, thus Equation (2) is now written as:

(yi, εi|zi = k) ∼ Nq(0, Iq)Np(0,Σk), (8)

and conditional on the cluster membership and latent

factors we obtain that

(xi|zi = k,yi) ∼ Np(µk +Λkyi,Σk). (9)

Consequently,

(xi|zi = k) ∼ Np(µk,ΛkΛ
T
k +Σk), (10)

independent for i = 1, . . . , n. From Equations (7) and

(10) we derive that the marginal distribution of xi is

the finite mixture model in Equation (6).

Following McNicholas and Murphy (2008), the fac-

tor loadings and error variance per component may be

common or not among the K components in Equation

(6). If the factor are constrained, then:

Λ1 = . . . = ΛK = Λ. (11)

If the error variance is constrained, then:

Σ1 = . . . = ΣK = Σ. (12)

Furthermore, the error variance may be isotropic (i.e. pro-

portional to the identity matrix) or not and depending

on whether contstraint (12) is disabled or enabled:

Σk = σ2
kIp; k = 1, . . . ,K or (13)

Σk = σ2Ip; k = 1, . . . ,K. (14)

We note that under constraint (13), the model is re-

ferred to as a mixture of probabilistic principal compo-

nent analyzers (Tipping and Bishop, 1999).

Depending on whether a particular constraint is present

or not, the following set of 8 parameterizations arises.

UUU: xi ∼
∑K

k=1
wkNp(µk,ΛkΛ

T
k +Σk)

UCU: xi ∼
∑K

k=1
wkNp(µk,ΛkΛ

T
k +Σ)

UUC: xi ∼
∑K

k=1
wkNp(µk,ΛkΛ

T
k + σ2

kIp)

UCC: xi ∼
∑K

k=1
wkNp(µk,ΛkΛ

T
k + σ2Ip)

CUU: xi ∼
∑K

k=1
wkNp(µk,ΛΛ

T +Σk)

CCU: xi ∼
∑K

k=1
wkNp(µk,ΛΛ

T +Σ)

CUC: xi ∼
∑K

k=1
wkNp(µk,ΛΛ

T + σ2
kIp)

CCC: xi ∼
∑K

k=1
wkNp(µk,ΛΛ

T + σ2Ip)

independent for i = 1, . . . , n. Following the pgmm nomen-

clature (McNicholas and Murphy, 2008): the first, sec-

ond and third letter denotes whetherΛk,Σk = diag(σ2
k1,

. . . , σ2
kp) and σ2

kj , k = 1, . . . ,K; j = 1, . . . , p, are con-

strained (C) or unconstrained (U), respectively. A nov-

elty of the present study is to offer a Bayesian frame-

work for estimating the whole family of the previous

parameterizations (note that Papastamoulis (2018b) es-

timated the UUU and UCU parameterizations).

2.1 Label switching and other identifiability problems

Let L(w,θ,φ|x) =
∏n
i=1

∑K
k=1 wkf(xi|θk,φ), (w,θ,φ) ∈

PK−1×ΘK×Φ denote the likelihood function of a mix-

ture of K densities, where PK−1 denotes the parameter

space of the mixing proportions w, θ = (θ1, . . . ,θK)

are the component-specific parameters and φ denotes

a (possibly empty) collection of parameters that are

common between all components. For instance, con-

sider the UCU parameterization where θk = (µk,Λk)

for k = 1, . . . ,K and φ = Σ. For any permutation

τ = (τ1, . . . , τK) of the set {1, . . . ,K}, the likelihood of

mixture models is invariant to permutations of the com-

ponent labels: L(w,θ,φ|x) = L(τw, τθ,φ|x). Thus,

the likelihood surface of a mixture model with K com-

ponents will exhibit K! symmetric areas. If (w∗,θ∗,φ∗)

corresponds to a mode of the likelihood, the same will

hold for any permutation (τw∗, τθ∗,φ∗).

Label switching (Redner and Walker, 1984) is the

commonly used term to describe this phenomenon. Un-

der a Bayesian point of view, in the case that the prior
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distribution is also invariant to permutations (which is

typically the case, see e.g. Marin et al. (2005); Papas-

tamoulis and Iliopoulos (2013)), the same invariance

property will also hold for the posterior distribution

f(w,θ,φ|x). Consequently, the marginal posterior dis-

tributions of mixing proportions and component-specific

parameters will be coinciding, i.e.: f(w1|x) = . . . =

f(wK |x) and f(θ1|x) = . . . = f(θK |x). Thus, when

approximating the posterior distribution via MCMC

sampling, the standard practice of ergodic averages for

estimating quantities of interest (such as the mean of

the marginal posterior distribution for each parame-

ter) becomes meaningless. In order to deal with this

identifiability problem we post-process the simulated

MCMC output using a deterministic relabelling algo-

rithm, that is, the Equivalence Classes Representatives

(ECR) algorithm (Papastamoulis and Iliopoulos, 2010;

Papastamoulis, 2014), as implemented in the R package

label.switching (Papastamoulis, 2016).

A second source of identifiability problems is related

to orthogonal transformations of the matrix of factor

loadings. A popular practice (Geweke and Zhou, 1996;

Fokoué and Titterington, 2003; Mavridis and Ntzoufras,

2014; Papastamoulis, 2018b) to overcome this issue, is

to preassign values to some entries of Λ, in particular

we set the entries of the upper diagonal of the first q×q
block matrix of Λ equal to zero:

Λ =



λ11 0 · · · 0

λ21 λ22 · · · 0
...

...
. . .

...

λq1 λq2 · · · λqq
...

...
. . .

...

λp1 λp2 · · · λpq


.

Another problem is related to the so-called “sign

switching” phenomenon, see e.g. Conti et al. (2014).

Simultaneously switching the signs of a given row r of

Λ; r = 1, . . . , p and yi does not alter the likelihood.

Thus, Λ and yi; i = 1, . . . , n are not marginally iden-

tifiable due to sign-switching across the MCMC trace.

However, this is not a problem in our implementation,

since all parameters of the marginal density of xi in (6)

are identified (see also the discussion for sign-invariant

parametric functions in Papastamoulis (2018b)).

Parameter expanded approaches are preferred in the

recent literature (Bhattacharya and Dunson, 2011; Mc-

Parland et al., 2017), because the mixing of the MCMC

sampler is improved. In our implementation, we are able

to obtain excellent mixing using the popular approach

of restricting elements of Λ: the reader is referred to

Figure 2 of Papastamoulis (2018b), where it is obvious

that our MCMC sampler has the ability to rapidly move

between the multiple modes of the target posterior dis-

tribution of Λ (more details on convergence diagnostics

are also presented in Appendix A.4 of Papastamoulis

(2018b)).

2.2 Prior assumptions

We assume that the number of mixture components

(K) has a sufficiently large value so that it overesti-

mates the “true” number of clusters. Unless otherwise

stated, the default choice is K = 20. All prior assump-

tions of the overfitting mixture models are discussed

in detail in Papastamoulis (2018b). For ease of presen-

tation we repeat them in this section. Let D(· · · ) de-

note the Dirichlet distribution and G(α, β) denote the

Gamma distribution with mean α/β. Let also Λkr· de-

note the r-th row of the matrix of factor loadings Λk;

k = 1, . . . ,K; r = 1, . . . , p. The following prior assump-

tions are imposed on the model parameters:

w ∼ D (γ, . . . , γ) , γ =
1

K
(15)

µk ∼ Np(ξ,Ψ), iid for k = 1, . . . ,K (16)

Λkr· ∼ Nνr (0,Ω), iid. for r = 1, . . . , p (17)

σ−2
kr ∼ G(α, β), iid for k = 1, . . . ,K; r = 1, . . . , p (18)

ω−2
` ∼ G(g, h), iid for ` = 1, . . . , q (19)

where all variables are assumed mutually independent

and νr = min{r, q}; r = 1, . . . , p; ` = 1, . . . , q; j =

1, . . . ,K. In Equation (17) Ω = diag(ω2
1 , . . . , ω

2
q ) de-

notes a q × q diagonal matrix, where the diagonal en-

tries are distributed independently according to Equa-

tion (19). A graphical representation of the hierarchi-

cal model is given in Figure 1 of Papastamoulis (2018b).

The default values of the remaining fixed hyper-parameters

are given in Appendix B.

The previous assumptions refer to the case of the

unconstrained parameter space, that is, the UUU para-

materization. Clearly, they should be modified accord-

ingly when a constrained model is used. Under con-

straint (11), the prior distribution in Equation (17) be-

comes Λr· ∼ Nνr (0,Ω), independent for r = 1, . . . , p.

Under constraints (12) and (13), the prior distribution

in Equation (18) becomes σ−2
r ∼ G(α, β), independent

for r = 1, . . . , p. Finally, under constraints (12) and

(14), the prior distribution in Equation (18) becomes

σ−2 ∼ G(α, β).

3 Inference

This section describes the full conditional posterior dis-

tributions of model parameters and the corresponding
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MCMC sampler. Due to conjugacy, all full conditional

posterior distributions are available in closed forms.

3.1 Full conditional posterior distributions

Let us define the following quantities:

nk =

K∑
k=1

I(zi = k)

Ak = nkΣ
−1
k + Ψ−1

Bk = Σ−1
k

K∑
k=1

I(zi = k) (xi −Λkyi) + ξΨ−1

τ kr =

∑n
i=1 I(zi = k)(xir − µkr)yTi

σ2
kr

∆kr =

∑n
i=1 I(zi = k)yiy

T
i

σ2
kr

skr =

n∑
i=1

I(zi = k) (xir − µkr −Λkr·yi)
2

T =

K∑
k=1

p∑
r=1

Λkr·Λ
T
kr·

Mk = Iq +ΛTkΣ
−1
k Λ

T
k

for k = 1, . . . ,K; r = 1, . . . , p. For a generic sequence

of the form {Grc; r ∈ R, c ∈ C} we also define G•c =∑
r Grc and Gr• =

∑
cGrc. Finally, (x| · · · ) denotes

the conditional distribution of x given the value of all

remaining variables.

From Equations (6) and (7) it immediately follows

that for k = 1, . . . ,K

P(zi = k| · · · ) ∝ wkf
(
xi;µk,ΛkΛ

T
k +Σk

)
, (20)

independent for i = 1, . . . , n, where f(·;µ,Σ) denotes

the probability density function of the multivariate nor-

mal distribution with mean µ and covariance matrixΣ.

Note that in order to compute the right hand side of the

last equation, inversion of the p×pmatrixΛkΛ
T
k +Σk is

required. Using the Sherman–Morrison–Woodbury for-

mula (see e.g. Hager (1989)), the inverse matrix is equal

to Σ−1
k −Σ

−1
k ΛkM

−1
k Λ

T
kΣ

−1
k , for k = 1, . . . ,K. The

full conditional posterior distribution of mixing propor-

tions is a Dirichlet distribution with parameters

w| · · · ∼ D(γ + n1, . . . , γ + nK). (21)

The full conditional posterior distribution of the

marginal mean per component is

µk| · · · ∼ Np
(
A−1
k Bk,A

−1
k

)
, (22)

independent for k = 1 . . . ,K.

The full conditional posterior distribution of the fac-

tor loadings without any restriction is

Λkr·| · · · ∼ Nνr
([
Ω−1 +∆kr

]−1
τ kr,

[
Ω−1 +∆kr

]−1
)
,

(23)

independent for k = 1, . . . ,K; r = 1, . . . , p. Under con-

straint (11) we obtain that

Λr·| · · · ∼ Nνr
([
Ω−1 +∆•r

]−1
τ •r,

[
Ω−1 +∆•r

]−1
)
,

(24)

independent for r = 1, . . . , p.

The full conditional distribution of error variance

without any restriction is

σ−2
kr | · · · ∼ G (α+ nk/2, β + skr/2) , (25)

independent for k = 1, . . . ,K; r = 1, . . . , p. Under con-

straint (12) we obtain that

σ−2
r | · · · ∼ G(α+ n/2, β + s•r/2), (26)

independent for r = 1, . . . , p. Under constraints (12)

and (13) we obtain that

σ−2
k | · · · ∼ G(α+ nkp/2, β + sk•/2), (27)

independent for k = 1, . . . ,K. Under constraints (12)

and (14) we obtain that

σ−2| · · · ∼ G(α+ np/2, β + s••/2). (28)

The full conditional distribution of latent factors is given

by

yi| · · · ∼ Nq
(
M−1

zi Λ
T
ziΣ

−1
zi (xi − µzi),M

−1
zi

)
, (29)

independent for i = 1, . . . , n. Finally, the full condi-

tional distribution for ω` is

ω−2
` | · · · ∼ G (g +Kp/2, h+ T``/2) , (30)

while under constraint (11) we obtain that

ω−2
` | · · · ∼ G (g + p/2, h+ T``/2K) , (31)

independent for ` = 1, . . . , q.
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3.2 MCMC sampler

Given the number of factors (q) and a model parame-

terization, a Gibbs sampler (Geman and Geman, 1984;

Gelfand and Smith, 1990) coupled with a prior parallel

tempering scheme (Geyer, 1991; Geyer and Thompson,

1995; Altekar et al., 2004) is used in order to produce

a MCMC sample from the joint posterior distribution.

Each heated chain (j = 1, . . . , nChains) corresponds to

a model with identical likelihood as the original, but

with a different prior distribution. Although the prior

tempering can be imposed on any subset of parameters,

it is only applied to the Dirichlet prior distribution of

mixing proportions (van Havre et al., 2015). The infer-

ence is based on the output of the first chain (j = 1) of

the prior parallel tempering scheme (van Havre et al.,

2015). The number of factors and model parameteri-

zation is selected according to the Bayesian Informa-

tion Criterion (BIC) (Schwarz, 1978), conditional on

the most probable number of alive clusters per model

(see Papastamoulis (2018b) for a detailed comparison

of BIC with other alternatives).

Let M and Q denote the set of model parameter-

izations and number of factors. In the following pseu-

docode, x ← [y|z] denotes that x is updated from a

draw from the distribution f(y|z) and θ
(t)
j denotes the

value of θ at the t-th iteration of the j-th chain.

1. For (m, q) ∈M×Q
(a) Obtain initial values (Ω

(0)
j ,Λ

(0)
m;j , µ

(0)
j , z

(0)
j ,Σ

(0)
m;j ,

w
(0)
j , y

(0)
j ) by running the overfitting initialization

scheme, for j = 1, . . . , nChains.

(b) For MCMC iteration t = 1, 2, . . . update

i. For chain j = 1, . . . , nChains

A. Ω
(t)
j ←

[
Ω|Λ(t−1)

mj

]
.

If m ∈ {UUU,UCU,UUC, UCC} use (30)

else use (31).

B. Λ
(t)
m;j ←

[
Λ|Ω(t)

j ,µ
(t−1)
j ,Σ

(t−1)
m;j ,x,y

(t−1)
j , z

(t−1)
j

]
If m ∈ {UUU,UCU,UUC, UCC} use (23)

else use (24).

C. µ
(t)
j ←

[
µ|Λ(t)

m ,Σ(t−1)
m ,x,y(t−1), z

(t−1)
j

]
accord-

ing to (22).

D. z
(t)
j ←

[
z|w(t−1)

j ,µ
(t)
j ,Λ

(t)
m;j ,Σ

(t−1)
m;j ,x

]
accord-

ing to (20).

E. w
(t)
j ←

[
w|z(t)j

]
according to (21) with prior

parameter γ = γ(j).

F. Σ
(t)
m;j ←

[
Σ|x, z(t)j ,µ

(t)
j ,Λ

(t)
m;j ,y

(t−1)
j

]
If m ∈ {UUU,CUU} use (25)

else if m ∈ {UCU,CCU} use (26)

else if m ∈ {UUC,CUC} use (27)

else use (28).

G. y
(t)
j ←

[
y|x, z(t)j ,µ

(t)
j ,Σ

(t)
m;j ,Λ

(t)
m;j

]
according to

(29).

ii. Select randomly 1 6 j∗ 6 nChains − 1 and pro-

pose to swap the states of chains j∗ and j∗ + 1.

(c) For chain j = 1 compute BIC conditionally on the

most probable number of alive clusters.

2. Select the best (m, q) model corresponding to chain

j = 1 according to BIC and reorder the simulated

output of the selected model according to ECR algo-

rithm, conditional on the most probable number of

alive clusters.

The MCMC algorithm is initialized using random

starting values arising from the “overfitting initializa-

tion” procedure introduced by Papastamoulis (2018b).

For further details on steps 1.(a) (MCMC initialization)

and 1.(b).ii (prior parallel tempering scheme) the reader

is referred to Appendix B (see also Sections 2.6, 2.7 and

2.9 of Papastamoulis (2018b)).

4 Using the fabMix package

The main function of the fabMix package is fabMix(),

with its arguments shown in Table 1. This function

takes as input a matrix rawData of observed data where

rows and columns correspond to observations and vari-

ables of the dataset, respectively. The parameters of the

Dirichlet prior distribution (γ(j); j = 1, . . . ,nChains) of

the mixing proportions are controlled by dirPriorAlphas.

The range for the number of factors is specified in the

q argument. Valid input for q is any positive integer

vector between 1 and the Leddermann bound (Leder-

mann, 1937) implied by the number of variables in the

dataset. By default, all 8 parameterizations are fitted,

however the user can specify in model any non-empty

subset of them.

The fabMix() function simulates a total number

of nChains × length(models) × length(q) MCMC

chains. For each parameterization and number of fac-

tors, the (nChains) heated chains are processed in par-

allel while swaps between pairs of chains are proposed.

Parallelization is possible in the parameterization level

as well, using the argument parallelModels. This means

that parallelModels are running in parallel where each

one of them runs nChains chains in parallel, provided

that the number of available threads is at least equal

to nChains × parallelModels. In order to parallelize

our code, the doParallel (Revolution Analytics and

Steve Weston, 2015), foreach (Revolution Analytics

and Steve Weston, 2014) and doRNG (Gaujoux, 2018)

packages are imported.

The prior parameters g, h, α, β in Equations (18)

and (19) correspond to g, h,alpha sigma and beta sigma,
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Table 1 Arguments of the fabMix() function.

Argument Description

model Any non-empty subset of c("UUU", "CUU", "UCU", "CCU", "UCC", "UUC", "CUC", "CCC"),
indicating the fitted models. By default, all models are fitted.

Kmax Number of components in the overfitted mixture (integer, at least equal to two). Default:
20.

nChains Number of parallel (heated) chains. When dirPriorAlphas is supplied, this argument can
be ignored.

dirPriorAlphas vector of length nChains in the form of an increasing sequence of positive scalars. Each
entry contains the (common) prior Dirichlet parameter for the corresponding chain. Default:
dirPriorAlphas = c(1, 1 + dN*(2:nChains - 1))/Kmax, where dN = 1, for nChains > 1.
Otherwise, dirPriorAlphas = 1/Kmax.

rawData The observed data in the form of an n × p matrix. Clustering is performed on the rows of
the matrix.

outDir Name of the output folder. An error is thrown if the directory already exists inside the
current working directory. Note: it should not correspond to an absolute path, e.g.: outDir
= ‘example‘ is acceptable, but outDir = ‘C:\User\Documents\example‘ is not.

mCycles Number of MCMC cycles. Each cycle consists of nIterPerCycle MCMC iterations. At the
end of each cycle a swap of the state of two randomly chosen adjacent chains is attempted.

burnCycles Number of cycles that will be discarded as burn-in period.
g Prior parameter g. Default value: g = 0.5.
h Prior parameter h. Default value: g = 0.5.
alpha sigma Prior parameter α. Default value: alpha sigma = 0.5.
beta sigma Prior parameter β. Default value: beta sigma = 0.5.
q A vector of strictly positive integers, containing the number of factors to be fitted.
normalize Logical value indicating whether the observed data will be normalized. Default value: TRUE

(recommended)
nIterPerCycle Number of iteration per MCMC cycle. Default value: 10.
warm up overfitting Number of iterations for the overfitting initialization scheme. Default value: 500.
warm up Number of iterations that will be used to initialize the models before starting proposing

switchings. Default value: 5000.
overfittingInitialization Logical value indicating whether the chains are initialized via the overfitting initialization

scheme. Default: TRUE (recommended).
rmDir Logical value indicating whether to delete the outDir directory. Default: TRUE.
parallelModels Model-level parallelization: An optional integer specifying the number of cores that will

be used in order to fit in parallel each member of model. Default: NULL (no model-level
parallelization).

respectively, with a (common) default value equal to
0.5. It is suggested to run the algorithm using normalize

= TRUE, in order to standardize the data before run-

ning the MCMC sampler. The default behaviour of our

method is to normalize the data, thus, all reported es-

timates refer to the standardized dataset. In the case

that the most probable number of mixture components

is larger than 1, the ECR algorithm is applied in order

to undo the label switching problem. Otherwise, the

output is post-processed so that the generated parame-

ters of the (single) alive component are switched to the

first component of the overfitting mixture.

The sampler will first run for warm up iterations be-

fore starting to propose swaps between pairs of chain.

By default, this stage consists of 5000 iterations. After

that, each chain will run for a series of mCycles MCMC

cycles, each one consisting of nIterPerCycle MCMC

iterations (steps A, B, . . ., G of the pseudocode). The

updates of factors loadings according to (23) and (24) at

step B of the pseudocode are implemented using object-

oriented programming using the Rcpp and RcppArmadillo

libraries (Eddelbuettel and François, 2011; Eddelbuet-

tel and Sanderson, 2014). At the end of each cycle, a

swap between a pair of chains is proposed.

Obviously, the total number of MCMC iterations is

equal to warm up + mCycles× nIterPerCycle and the

first warm up+burnCycles×nIterPerCycle iterations

are discarded as burn-in. Given the default values of

nIterPerCycle, warm up and overfittingInitialization,

choices between 50 6 burnCycles 6 500 < mCycles 6
1500 are typical in our implementation (see also the

convergence analysis in Papastamoulis (2018b)).

While the function runs, some basic information is

printed either on the screen (if parallelModels is not

enabled) or in separate text files inside the output folder

(in the opposite case), such as the progress of the sam-

pler as well as the acceptance rate of proposed swaps

between chains. The output which is returned to the

user is detailed in Table 2. The full MCMC output

of the selected model is returned as a list (named as
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Table 2 Output returned to the user of the fabMix() function.

Object Description

bic Bayesian Information Criterion per model and number of factors.
class The estimated single best clustering of the observations according to the selected model.
n Clusters per model The most probable number of clusters (number of non-empty components of the overfitting

mixture) per model and number of factors
posterior probability The posterior probability of the estimated allocations according to the selected model
covariance matrix The estimated posterior mean of the covariance matrix per cluster according to the selected

model
mu The estimated posterior mean of the mean per cluster according to the selected model
weights The estimated posterior mean of the mixing proportions according to the selected model
mcmc A list containing the MCMC draws for the parameters of the selected model.
Kmap prob The posterior probability of the Maximum A Posteriori number of alive clusters for each

parameterization and factor level.

mcmc) consisting of mcmc objects, a class imported from

the coda package (Plummer et al., 2006). In particular,

mcmc consists of the following:

• y: object of class mcmc containing the simulated fac-

tors.

• w: object of class mcmc containing the simulated mix-

ing proportions of the alive components, reordered

according to ECR algorithm.

• Lambda: list containing objects of class mcmc with

the simulated factor loadings of the alive compo-

nents, reordered according to ECR algorithm. Note

that this particular parameter is not identifiable due

to sign-switching across the MCMC trace.

• mu: list containing objects of class mcmc with the

simulated marginal means of the alive components,

reordered according to ECR algorithm.

• z: matrix of the simulated latent allocation variables

of the mixture model, reordered according to ECR

algorithm.

• Sigma: list containing objects of class mcmc with the

simulated variance of errors of the alive components,

reordered according to ECR algorithm.

• K all chains: matrix of the simulated values of the

number of alive components per chain.

The user can call the print, summary and plot

methods of the package in order to easily retrieve and

visualize various summaries of the output, as exempli-

fied in the next section.

5 Examples

This section illustrates our method. At first we demon-

strate a typical implementation on two single simulated

datasets and explain in detail the workflow. Then we

perform an extensive simulation study for assesing the

ability of the proposed method to recover the correct

clustering and compare our findings to the pgmm pack-

age (McNicholas and Murphy, 2008, 2010; McNicholas

et al., 2010, 2015). Application to four publicly avail-

able datasets is provided next.

5.1 Simulation study

We simulated synthetic data of p = 30 variables consist-

ing of n = 300 observations and K = 6 clusters (dataset

1) and n = 200, K = 2 (dataset 2), as shown in Figure

1. Both of them were generated using MFA models with

q = 2 (dataset 1) and q = 3 (dataset 2) factors. The

two datasets exhibit different characteristics: the vari-

ance of errors per cluster (Σk) is significantly larger in

dataset 2 compared to dataset 1. In addition, the se-

lection of factor loadings in dataset 2 result to more

complex covariance structure. The generating mecha-

nism, described in detail in Papastamoulis (2018b), is

available in the fabMix package via the simData() and

simData2() functions, as shown below.

> library(’fabMix’)

# dataset 1

> set.seed(1)

> n = sample(100*(1:10), 1) # sample size

> q = sample(1:3, 1) # number of factors

> K = sample(1:10, 1) # number of clusters

# results to n = 300, q = 2, K = 6

> p = 30 # number of variables

# inverse variance of errors

> sINV <- array(data = NA, dim = c(K,p))

> for(k in 1:K){sINV[k,] <- 1/(1+20*log(k+1))}

> dataset1 <- simData(sameSigma=FALSE, K.true=K,

+ n = n, q = q, p = p, sINV_values=sINV)

# synthetic dataset 2

> set.seed(30)

> n = 200; q = 3; K = 2; p = 30

# inverse variance of errors

> sINV <- array(data = NA, dim = c(K,p))

> for(k in 1:K){sINV[k,] <- 1/(1+1000*log(k+1))}

> dataset2 <- simData2(sameSigma=FALSE, K.true=K,
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(a) Dataset 1 (b) Dataset 2

Fig. 1 Simulated datasets of p = 30 variables consisting of n = 300 observations and K = 6 clusters (dataset 1) and n = 200,
K = 2 (dataset 2). The colors display the ground truth classification of the data.

+ n = n, q = q, p = p, sINV_values = sINV)

Next we estimate the 8 overfitting Bayesian MFA mod-

els with Kmax = 20 mixture components assuming

that the number of factors ranges in the set 1 6 q 6 5.

The MCMC sampler runs nChains = 4 heated chains,

each one consisting of mCycles = 700 cycles, while the

first burnCycles = 100 are discarded. Recall that each

MCMC cycle consists of nIterPerCycle = 10 usual

MCMC iterations and that there is an additional warm

up period of the MCMC sampler (before starting to pro-

pose chain swaps) corresponding to 5000 usual MCMC

iterations.

> Kmax <- 20 # number of components

> nChains <- 4 # number of chains

> qRange <- 1:5 # number of factors

# Run fabMix() for dataset 1

set.seed(1)

> fm1 <- fabMix(nChains = nChains,

+ rawData = dataset1$data, outDir = "tmp1",

+ Kmax = Kmax, mCycles = 700, burnCycles = 100,

+ q = qRange, parallelModels = 4)

# Run fabMix() for dataset 2

set.seed(1)

> fm2 <- fabMix(nChains = nChains,

+ rawData = dataset2$data, outDir = "tmp2",

+ Kmax = Kmax, mCycles = 700, burnCycles = 100,

+ q = qRange, parallelModels = 4)

The argument parallelModels = 4 implies that 4 pa-

rameterizations will be processed in parallel. In addi-

tion, each model will use nChains = 4 threads to run

in parallel the specified number of chains. Our jobscript

used 16 threads so in this case the parallelModels ×
nChains = 16 jobs are efficiently allocated.

5.1.1 Methods for printing, summarizing and plotting

the output

The print method for a fabMix.object displays some

basic information for a given run of the fabMix func-

tion. The following output corresponds to the first dataset.

> print(fm1)

* Run information:

Number of fitted models:

(5 factor levels) x (8 parameterizations)

= 40 models.

Selected model: UUC model with K = 6

clusters and q = 2 factors.

* Maximum A Posteriori (MAP) number of ‘alive’

clusters and selected number of factors (BIC)

per model:

model K_MAP K_MAP_prob q BIC_q chain_swap

1 UUU 4 1.00 3 4295.0 8.43%

2 CUU 5 0.70 3 4248.9 13.29%

3 UCU 7 0.71 2 3345.8 25.86%

4 CCU 13 0.70 2 3410.5 93.71%

5 UCC 7 0.55 2 3270.7 22.71%

6 UUC 6 1.00 2 2274.5 19.43%

7 CUC 10 0.41 3 2868.3 78.43%

8 CCC 13 0.52 2 3378.3 92.43%

* Estimated number of observations per cluster

(selected model):

label

4 7 13 14 15 17

60 55 41 72 50 22

The following output corresponds to the print method

for the fabMix function for the second dataset.

> print(fm2)

* Run information:

Number of fitted models:
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(5 factor levels) x (8 parameterizations)

= 40 models.

Selected model: UUC model with K = 2

clusters and q = 2 factors.

* Maximum A Posteriori (MAP) number of ‘alive’

clusters and selected number of factors (BIC)

per model:

model K_MAP K_MAP_prob q BIC_q chain_swaps

1 UUU 2 1.00 2 14776.6 4.86%

2 CUU 2 1.00 2 14676.0 3%

3 UCU 2 0.64 3 15043.1 4.57%

4 CCU 3 0.48 3 14836.2 12.71%

5 UCC 3 0.64 2 15141.9 4.29%

6 UUC 2 0.95 2 14558.5 3.14%

7 CUC 3 0.85 3 14598.7 4.14%

8 CCC 4 0.44 3 14851.6 11.14%

* Estimated number of observations per cluster

(selected model):

label

6 20

113 87

We conclude that the selected models correspond

to the UUC parameterization with K = 6 clusters and

q = 2 factors for dataset 1 and K = 2, q = 2 for

dataset 2. The selected number of clusters and factors

for the whole range of 8 models is displayed next, along

with the estimated posterior probability of the num-

ber of alive clusters per model (K MAP prob), the value

of the BIC for the selected number of factors (BIC q)

as well as the proportion of the accepted swaps be-

tween the heated MCMC chains in the last column.

The frequency table of the estimated single best clus-

tering of the datasets is displayed in the last field. We

note that the labels of the frequency table correspond

to the labels of the alive components of the overfitting

mixture model, that is, components 4, 7, 13, 14, 15, and

17 for dataset 1 and components 6 and 20 for dataset

2. Clearly, these labels can be renamed to 1, 2, 3, 4, 5, 6

and 1, 2 respectively, but we prefer to retain the raw

output of the sampler as a reminder of the fact that it

corresponds to the alive components of the overfitted

mixture model.

The summary method of the fabMix package sum-

marizes the MCMC output for the selected model by

calculating posterior means and quantiles for the mix-

ing proportions, marginal means and the covariance

matrix per (alive) cluster. A snippet of the output for

dataset 2 is shown below.

> s <- summary(fm2)

* ‘Alive’ cluster labels:

[1] "6" "20"

* Posterior mean of the mixing proportions:

6 20

0.58 0.42

* Posterior mean of the marginal means:

Cluster label

Variable 6 20

V1 -0.06 0.08

V2 -0.02 0.02

...............

V30 -0.01 0.00

* Posterior mean of the covariance matrix:

Covariance matrix for cluster ‘6’:

V1 V2 ... V30

V1 1.12 0.53 ... -0.18

V2 0.53 1.11 ... -0.14

..........................

V30 -0.18 -0.14 ... 1.27

Covariance matrix for cluster ‘20’:

V1 V2 ... V30

V1 0.66 0.39 ... -0.05

V2 0.39 0.88 ... -0.03

..........................

V30 -0.05 -0.03 ... 0.57

Quantiles for each parameter:

quantile

parameter 2.5% 25% 50% 75% 97.5%

weight_6 0.51 0.55 0.58 0.51 0.65

weight_20 0.35 0.40 0.42 0.45 0.50

mean_6_V1 -0.27 -0.13 -0.06 0.01 0.13

mean_20_V1 -0.09 0.03 0.08 0.14 0.25

mean_6_V2 -0.22 -0.09 -0.02 0.04 0.15

mean_20_V2 -0.17 -0.05 0.02 0.08 0.19

...........................................

mean_6_V30 -0.21 -0.08 -0.01 0.07 0.20

mean_20_V30 -0.16 -0.06 0.00 0.06 0.17

cov_6_V1_V1 0.89 1.03 1.10 1.19 1.46

cov_20_V1_V1 0.50 0.59 0.64 0.72 0.85

cov_6_V1_V2 0.37 0.46 0.52 0.59 0.78

cov_20_V1_V2 0.24 0.32 0.38 0.44 0.56

...........................................

cov_6_V1_V30 -0.37 -0.24 -0.18 -0.12 0.01

cov_20_V1_V30 -0.16 -0.08 -0.05 -0.01 0.06

...........................................

cov_6_V2_V30 -0.34 -0.21 -0.13 -0.08 0.04

cov_20_V2_V30 -0.17 -0.07 -0.03 0.03 0.12

...........................................
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Fig. 2 BIC values per parameterization and factor level us-
ing the plot(fabMix.object) method.

cov_6_V30_V30 1.03 1.18 1.26 1.37 1.62

cov_20_V30_V30 0.45 0.51 0.56 0.61 0.73

The printed output is also returned to the user via

s$posterior means and s$quantiles.

The plot() method of the package generates the

following types of graphics output:

(1) Plot of the BIC values per factor level and parame-

terization.

(2) Plot of the posterior means of marginal means (µk)

per (alive) cluster and Highest Density Intervals of

the corresponding normal distribution along with its

assigned data.

(3) The coordinate projection plot of the mclust pack-

age (Fraley and Raftery, 2002; Fraley et al., 2012),

that is, a scatterplot of the assigned data per cluster

for each pair of variables.

(4) Visualization of the posterior mean of the correla-

tion matrix per cluster using the corrplot package.

(5) The MAP estimate of the factor loadings (Λk) per

(alive) cluster.

The following commands produce plot (1) for datasets

1 and 2.

> plot(fm1, what = ’BIC’)

> plot(fm2, what = ’BIC’)

The produced plots are shown in Figure 2. Note that

each point in the plot is labeled by an integer, which

corresponds to the MAP number of alive components

for the specific combination of factors and parameteri-

zation.
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Fig. 3 Marginal mean with 95% Highest Density Interval
and the corresponding assigned data per alive cluster using
the plot(fabMix.object) method.

The following commands produce plot (2) for datasets

1 and 2.

> plot(fm1, what = ’classification_matplot’,

+ class_mfrow = c(3,2), confidence = 0.95)

> plot(fm2, what = ’classification_matplot’,

+ class_mfrow = c(2,1), confidence = 0.95)

The created plots are shown in Figure 3. The class mfrow

arguments control the rows and columns of the layout

and it should consists of 2 integers with their product

equal to the selected number of (alive) clusters. In addi-

tion, a legend is placed on the bottom of the layout. The

value(s) in the confidence argument draws the Highest

Density Interval(s) of the estimated normal distribu-

tion. Note that these plots display the original and not

the scaled dataset which is used in the MCMC sampler.

Therefore, the central curve and confidence limits dis-

played in the specific plot correspond to the mean and

variance (multiplied by the appropriate quantile of the

standard Normal distribution) of the random variables

arising by applying the inverse of the z-transformation

on the MCMC estimates reported by the fabMix func-

tion.
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Figure 4 visualizes the correlation matrix for the

first cluster of each dataset, using the corrplot pack-

age. The argument sig correlation = α is used for

marking cases where the equally tailed (1−α) Bayesian

credible interval contains zero. The following commands

generate the plots in Figure 4.

> plot(fm1, what = ’correlation’,

+ sig_correlation = 0.05)

> plot(fm2, what = ’correlation’,

+ sig_correlation = 0.05)
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Fig. 4 Correlation matrix for the first (alive) cluster of each
dataset.

5.1.2 Assessing clustering accuracy and comparison

with pgmm

In this section we compare our findings against the

ground-truth in simulated datasets and also compare

against the pgmm package, considering the same range

of clusters and factors per dataset. For each combina-

tion of number of factors, components and parameteri-

zation, the pgmmEM() algorithm was initialized using 3

random starting values as well as the K-means cluster-

ing algorithm, that is, 4 different starts in total. Note

that the number of different starts of the EM algorithm

is set equal to number of parallel chains in the MCMC

algorithm. The input data is standardized in both al-

gorithms.

As shown in Table 3, the adjusted Rand index (ARI)

(Rand, 1971) between fabMix and the ground-truth

classification is equal to 1 and 0.98 for simulated dataset

1 and 2, respectively. The corresponding ARI for pgmm

equals to 0.98 and 0.88, respectively. In both cases our

method finds the correct number of clusters, however

pgmm overestimates K in dataset 1. Both methods select

the UUC parameterization in dataset 1, but in dataset

Table 3 Selected number of clusters, factors, parameteriza-
tion and adjusted rand index for simulated data 1 and 2.

Data (K, q)
fabMix pgmm

K̂ q̂ model ARI K̂ q̂ model ARI

1 (6, 2) 6 2 UUC 1 7 2 UUC .95
2 (2, 3) 2 2 UUC .98 2 2 CUC .88

2 different models are selected (UUC by fabMix and

CUC by pgmm).

The selected number of factors equals 2, however in

dataset 2 the “true” number of factors equals 3. The

underestimation of the number of factors in dataset 2

remains true for a wide range of similar data: in par-

ticular we generated synthetic datasets with identical

parameter values as the ones in dataset 2 but each time

the sample size was increasing by 200 observations. We

observed that the correct number of factors is returned

when n > 1600 for fabMix and n > 1800 for pgmm.

Next we replicate the two distinct simulation pro-

cedures (according to the simData() and simData2()

functions of the package) used to generate the pre-

viously described datasets, but considering that 1 6
K 6 10 (true number of clusters) and 1 6 q 6 3

(true number of factors). The number of variables re-

mains the same as before, that is, p = 30 and the

sample size is drawn uniformly at random in the set

{100, 200, . . . , 1000}. We will use the terms ’Scenario

1’ and ’Scenario 2’ to label the two different simula-

tion procedures. In Scenario 1 the diagonal of the vari-

ance of errors is generated as σ2
kr = 1 + 20 log(k + 1),

r = 1, . . . , p, whereas in Scenario 2: σ2
kr = 1+ur log(k+

1), where ur ∼ Uniform(500, 1000), r = 1, . . . , p; k =

1, . . . ,K. In general, Scenario 1 generates datasets with

well separated clusters. On the other hand, the amount

of error variance in Scenario 2 makes the clusters less

separated. For a given simulated dataset with Ktrue
clusters and qtrue factors, we are considering that the

total number of components in the overfitting mixture

model (fabMix) as well as the maximum number of

components fitted from pgmm is set equal to Kmax =

Ktrue + 6 and that the number of factors ranges be-

tween 1 6 q 6 qtrue + 2. These bounds are selected in

order to speed up computation time without introduc-

ing any bias in the resulting inference (as confirmed by

a smaller pilot study). For each scenario 500 datasets

were simulated.

The main findings of the simulation study are il-

lustrated in Figure 5. Note that in Scenario 1 fabMix

almost always finds the correct clustering structure: the

boxplots of the adjusted Rand Index are centered at 1

and, on the second row, the boxplots of the estimated

number of clusters are centered at the corresponding
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Fig. 5 Adjusted Rand Index (first row), estimated number of clusters (second row), estimated number of factors (third row)
and selected parameterization (last row) for various replications of Scenarios 1 and 2 with varying number of clusters and
factors. In all cases the sample size is drawn randomly in the set {100, 200, . . . , 1000}.
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true value. On the other hand, observe that for K > 6

pgmm has the tendency to overestimate the number of

clusters. In the more challenging Scenario 2 the esti-

mates of the number of cluster exhibit larger variability.

However note that for K = 8, 9, 10 the number of clus-

ters selected by fabMix is closer to the true value than

pgmm, a fact which is also reflected in the ARI where

fabMix tends to have larger values than pgmm. For both

scenarios, the estimation of the number of factors is in

strong agreement between the two methods, as shown

in the third row of Figure 5. In the last row, the selected

parameterization is shown. Observe that the results are

fairly consistent between the two methods.

Finally, we note that in the presented simulation

study, the generated clusters have equal sizes (on aver-

age). The reader is referred to Appendix C for exploring

the performance of the compared methods in the pres-

ence of small and large clusters with respect to the size

of the available data (n).

5.2 Publicly available datasets

Table 4 Selected number of clusters, factors, parameteriza-
tion and adjusted rand index for the publicly available data.

Data (K)
fabMix pgmm

K̂ q̂ model ARI K̂ q̂ model ARI

Coffee (2) 2 1 CUU 1 4 4 CUU .29
Wave (3) 3 1 UCU .61 3 1 UCU .61
Wine (3) 5 4 CUU .83 3 4 CUU .97
Yeast (5) 5 6 CUU .50 20 10 CUC .20

In this section we analyze 4 publicly available datasets:

a subset of the wave dataset (Breiman et al., 1984;

Lichman, 2013) available at the fabMix package, the

wine dataset (Forina et al., 1986) available at the pgmm

package, the coffee dataset (Streuli, 1973) available at

the pgmm package, and the standardized yeast cell cycle

data (Cho et al., 1998) available at http://faculty.

washington.edu/kayee/model/. Note that Papastamoulis

(2018b) analyzed the first three datasets but only con-

sidering the UUU and UCU parameterizations for fabMix.

The coffee dataset consists of n = 43 coffee samples

of p = 12 variables, collected from beans correspond-

ing to the Arabica and Robusta species (thus, K = 2).

The wave dataset consists of a randomly sampled subset

of 1500 observations from the wave dataset (Breiman

et al., 1984), available from the UCI machine learning

repository (Lichman, 2013). According to the available

ground-truth classification of the dataset, there are 3

equally weighted underlying classes of 21-dimensional

continuous data. The wine dataset (Forina et al., 1986),

available at the pgmm package (McNicholas et al., 2015),

contains p = 27 variables measuring chemical and phys-

ical properties of n = 178 wines, grouped in three types

(thus, K = 3). The reader is referred to McNicholas

and Murphy (2008); Papastamoulis (2018b) for more

detailed descriptions of the the data.

The yeast cell cycle data (Cho et al., 1998) quanti-

fies gene expression levels over two cell cycles (17 time

points). The dataset has previously been used for eval-

uating the effectiveness of model-based clustering tech-

niques (Yeung et al., 2001). We used the standardized

subset of the 5-phase criterion, containing n = 384

genes measured at p = 17 time points. The expression

levels of the n = 384 genes peak at different time points

corresponding to the five phases of cell cycle, so this five

class partition of the data is used as the ground-truth

classification.

We applied our method using the 8 parameteriza-

tions of overfitting mixtures with Kmax = 20 compo-

nents for 1 6 q 6 qmax factors using nChains = 4

heated chains. We set qmax = 5 for the coffee, wave

and wine datasets, while qmax = 10 for the yeast cell

cycle dataset.The number of MCMC cycles was set to

mCycles = 1100, while the first burnCycles = 100 were

discarded as burn-in. The 8 parameterizations are pro-

cessed in parallel on parallelModels = 4 cores, while

each heated chain of a given parameterization is also

running in parallel. All other prior parameters were

fixed at their default values.

We have also applied pgmm considering the same

range of clusters and factors per dataset. For each com-

bination of number of factors, components and param-

eterization, the EM algorithm was initialized using 5

random starting values as well as the K-means cluster-

ing algorithm, that is, 6 different starts in total. For

the coffee dataset a larger number of different starts is

required as discussed in Papastamoulis (2018b).

Table 4 summarizes the results for each of the pub-

licly available data. We conclude that fabMix performs

better than pgmm at the coffee and yeast datasets. In the

wine dataset, on the other hand, pgmm performs better

than fabMix, but we underline the improved perfor-

mance of our method compared to the one reported by

Papastamoulis (2018b) where only the UUU and UCU

parameterizations were fitted. The two methods are in

agreement on the wave dataset. The plot command of

the fabMix package displays the estimated clusters ac-

cording to the CUU model with 6 factors for the yeast

dataset, as shown in Figure 6.
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cell cycle data.
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Fig. 7 Total time needed for fitting the 8 parameterizations considering q = 1, . . . , 5 (40 models in total) for various levels of
sample size (n) and number of variables (p). We considered Kmax = 20 components in fabMix and 1 6 K 6 20 in pgmm. Each
parameterization is fitted in parallel using 8 threads. No multiple runs (pgmm) or parallel chains (fabMix) are considered. The
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6 Discussion and further remarks

This study offered an efficient Bayesian methodology

for model-based clustering of multivariate data using

mixtures of factor analyzers. The proposed model ex-

tended the ideas of Papastamoulis (2018b) building upon

the previously introduced set of parsimonious Gaussian

mixture models (McNicholas and Murphy, 2008; McNi-

cholas et al., 2010). The additional parameterizations

improved the performance of the proposed method com-

pared to Papastamoulis (2018b) where only two out

of eight parameterizations were available. Furthermore,

our contributed R package makes the proposed method

available to a wider audience of researchers.

The computational cost of our MCMC method is

larger than the EM algorithm, as shown in Figure 7.

But of course, when a point estimate is required, the

EM algorithm is the quickest solution. When a point

estimate is not sufficient, our method offers an attrac-

tive Bayesian treatment of the problem. Clearly, the

Bayesian approach does show further advantages (as in

the simulated datasets according to Scenario 1, as well

as in the coffee and yeast datasets), where the multi-

modality of the likelihood potentially causes the EM to

converge to local maxima.

A direction for future research is to generalize the

method in order to automatically detect the number of

factors in a fully Bayesian manner. This is possible by

e.g. treating the number of factors as a random vari-

able and implementing a reversible jump mechanism

in order to update it inside the MCMC sampler. An-

other possibility would be to incorporate strategies for

searching the space of sparse factor loading matrices

allowing posterior inference for factor selection (Bhat-

tacharya and Dunson, 2011; Mavridis and Ntzoufras,

2014; Conti et al., 2014). Recent advances on infinite

mixtures of infinite factor models (Murphy et al., 2019)

also allow for direct inference of the number of clus-

ters and factors and could boost the flexibility of our

modelling approach.
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A Overfitted mixture model

Assume that the observed data has been generated from a
mixture model with K0 components

fK0
(x) =

K0∑
k=1

wkfk(x|θk),

where fk ∈ FΘ = {f(·|θ) : θ ∈ Θ}; k = 1, . . . ,K0 denotes
a member of a parametric family of distributions. Consider
that an overfitted mixture model fK(x) with K > K0 com-
ponents is fitted to the data. Rousseau and Mengersen (2011)
showed that the asymptotic behaviour of the posterior distri-
bution of the K−K0 redundant components depends on the
prior distribution of mixing proportions (w). Let d denote the
dimension of free parameters of the distribution fk. For the
case of a Dirichlet prior distribution,

w ∼ D (γ1, . . . , γK) (A.32)

if

max{γk; k = 1, . . . ,K} < d/2

then the posterior weight of the extra components converges
to zero (Theorem 1 of Rousseau and Mengersen (2011)).

Let fK(θ, z|x) denote the joint posterior distribution of
model parameters and latent allocation variables for a model
withK components. When using an overfitted mixture model,
the inference on the number of clusters reduces to (a): choos-
ing a sufficiently large value of mixture components (K),
(b): running a typical MCMC sampler for drawing samples
from the posterior distribution fK(θ, z|x) and (c) inferring
the number of “alive” mixture components. Note that at
MCMC iteration t = 1, 2, . . . (c) reduces to keeping track
of the number of elements in the set K0

(t) = {k = 1, . . . ,K :∑n
i=1 I(z

(t)
i = k) > 0}, where z

(t)
i denotes the simulated

allocation of observation i at iteration t.

In our case the dimension of free parameters in the k-

th mixture component is equal to d = 2p + pq − q(q−1)

2
.

Following Papastamoulis (2018b), we set γ1 = . . . = γK =
γ
K

, thus the distribution of mixing proportions in Equation
(A.32) becomes

w ∼ D
(
γ

K
, . . . ,

γ

K

)
(A.33)

where 0 < γ < d/2 denotes a pre-specified positive num-
ber. Such a value is chosen for two reasons. At first, it is
smaller than d/2 so the asymptotic results of Rousseau and
Mengersen (2011) ensure that extra components will be emp-
tied as n → ∞. Second, this choice can be related to stan-
dard practice when using Bayesian non-parametric clustering
methods where the parameters of a mixture are drawn from a
Dirichlet process (Ferguson, 1973), that is, a Dirichlet process
mixture model (Neal, 2000).

B Details of the MCMC sampler

Data normalization and prior parameters Before run-
ning the sampler, the raw data is standardized by applying
the z-transformation

xir − x̄r√
s2r

, i = 1, . . . , n; r = 1, . . . , p

where x̄r =
∑n
i=1

xir
n

and s2r = 1
n−1

∑n
i=1 (xir − x̄r)2. The

main reason for using standardized data is that the sampler
mixes better. Furthermore, it is easier to choose prior param-
eters that are not depending on the observed data, that is,
using the data twice. In any other case, one could use empiri-
cal prior distributions as reported in Fokoué and Titterington
(2003), see also Dellaportas and Papageorgiou (2006). For the
case of standardized data, the prior parameters are specified
in Table B.5. Standardized data is also used as input to pgmm.

Table B.5 Prior parameter specification for the case of stan-
dardized data.

α β γ g h ξ = (ξ1, . . . , ξp)T Ψ

value 0.5 0.5 1 0.5 0.5 (0, . . . , 0)T Ip

Prior parallel tempering It is well known that the pos-
terior surface of mixture models can exhibit many local modes
(Celeux et al., 2000b; Marin et al., 2005). In such cases sim-
ple MCMC algorithms may become trapped in minor modes
and demand a very large number of iterations to sufficiently
explore the posterior distribution. In order to produce a well-
mixing MCMC sample and improve the convergence of our
algorithm we utilize ideas from parallel tempering schemes
Geyer (1991); Geyer and Thompson (1995); Altekar et al.
(2004), where different chains are running in parallel and they
are allowed to switch states. Each chain corresponds to a dif-
ferent posterior distribution, and usually each one represents
a “heated” version of the target posterior distribution. This
is achieved by raising the original target to a power T with
0 6 T 6 1, which flattens the posterior surface, thus, easier
to explore when using an MCMC sampler.

In the context of overfitting mixture models, van Havre
et al. (2015) introduced a prior parallel tempering scheme,
which is also applied by Papastamoulis (2018b). Under this
approach, each heated chain corresponds to a model with
identical likelihood as the original, but with a different prior
distribution. Although the prior tempering can be imposed on
any subset of parameters, it is only applied to the Dirichlet
prior distribution of mixing proportions (van Havre et al.,
2015). Let us denote by fi(ϕ|x) and fi(ϕ); i = 1, . . . , J , the
posterior and prior distribution of the i-th chain, respectively.

Obviously, fi(ϕ|x) ∝ f(x|ϕ)fi(ϕ). Let ϕ
(t)
i denote the state

of chain i at iteration t and assume that a swap between
chains i and j is proposed. The proposed move is accepted
with probability min{1, A} where

A =
fi(ϕ

(t)
j |x)fj(ϕ

(t)
i |x)

fi(ϕ
(t)
i |x)fj(ϕ

(t)
j |x)

=
fi(ϕ

(t)
j )fj(ϕ

(t)
i )

fi(ϕ
(t)
i )fj(ϕ

(t)
j )

=
f̃i(w

(t)
j )f̃j(w

(t)
i )

f̃i(w
(t)
i )f̃j(w

(t)
j )

,

(B.34)

and f̃i(·) corresponds to the probability density function of
the Dirichlet prior distribution related to chain i = 1, . . . , J .
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According to Equation (A.33), this is

w ∼ D
(
γ(j)

K
, . . . ,

γ(j)

K

)
, (B.35)

for a pre-specified set of parameters γ(j) > 0 for j = 1, . . . , J .
In our examples we used a total of J = 4 parallel chains

where the prior distribution of mixing proportions for chain
j in Equation (B.35) is selected as

γ(j) = γ + δ(j − 1), j = 1, . . . , J,

where δ > 0. For example, when the overfitting mixture model
uses K = 20 components and γ = 1 (the default value shown
in Table B.5), it follows from Equation (A.33) that the pa-
rameter vector of the Dirichlet prior of mixture weights which
corresponds to the target posterior distribution (j = 1) is
equal to (0.05, . . . , 0.05). Also in our examples we have used
δ = 1, but in general we strongly suggest to tune this parame-
ter until a reasonable acceptance rate is achieved. Each chain
runs in parallel and every 10 iterations we randomly select
two adjacent chains (j, j + 1), j ∈ {1, . . . , J − 1} and propose
to swap their current states. A proposed swap is accepted
with probability A in Equation (B.34).

“Overfitting initialization” strategy We briefly de-
scribe the “overfitting initialization” procedure introduced
by Papastamoulis (2018b). We used an initial period of 500
MCMC iterations where each chain is initialized from totally
random starting values, but under a Dirichlet prior distri-
bution with large prior parameter values. These values were
chosen in a way that the asymptotic results of Rousseau
and Mengersen (2011) guarantee that the redundant mixture
components will have non-negligible posterior weights. More
specifically for chain j we assume w ∼ D(γ′j , . . . , γ

′
j) with

γ′(j) = d
2

+(j−1) d
2(J−1)

, for j = 1, . . . , J . Then, we initialize

the actual model by this state. According to Papastamoulis
(2018b), this specific scheme was found to outperform other
initialization procedures.

C Additional simulations

In the simulation section of the manuscript, the weights of
the simulated datasets have been randomly generated from a
Dirichlet distribution with mean equal to 1/K, conditional on
the number of clusters (K). Thus, on average, the true cluster
sizes are equal. In this section we examine the performance of
the proposed method in the presence of unequal cluster sizes
with respect to the size (n) of the observed data.

We replicate the simulation mechanism for scenarios 1
and 2 presented in the main text, but now we consider un-
equal (true) cluster sizes, as detailed in Table B.6. For each
case, the sample size is increasing (as shown in the last col-
umn of Table B.6) while keeping all others parameters (that
is, the true values of marginal means and factor loadings)
constant. As shown in Table B.6, in scenario 1 there are 5
clusters and 2 factors, whereas in scenario 2 there are 2 clus-
ters and 3 factors. In total 3 different examples per scenario
are considered: for a given scenario, the component-specific
parameters are different in each example but the weights are
the same. An instance of our three examples (per scenario)
using n = 200 simulated observations is shown at Figure B.8.
Observe that in all cases the “true clusters” are not easily
distinguishable, especially in scenario 2 where there is a high
degree of cluster overlapping.

We applied fabMix and pgmm using the same number (4)
of parallel chains (for fabMix) and different starts (for pgmm)

as in the simulations presented in the main paper. The results
are summarized in Figures C.9 and C.10 for scenarios 1 and
2, respectively. The adjusted Rand Index is displayed in the
first line of each Figure, where the horizontal axis denotes the
sample size (n) of the synthetic data. The dotted black line
corresponds to the adjusted Rand index between the ground-
truth and the cluster assignments arising when applying the
Maximum A Posteriori rule using the true parameter values
that generated the data, that is,

zi = max
k∈{1,...,K∗}

{
w∗kfk(xi|θ∗k)∑K∗

j=1 w
∗
j fj(xi|θ∗j )

}
, i = 1, . . . , n

(C.36)

where K∗, (w∗1 , . . . , w
∗
K∗) and (θ∗1 , . . . , θ

∗
K∗) denote the values

of number of components, mixing proportions and parameters
of the multivariate normal densities of the mixture model
used to generate the data. Observe that in all three examples
of Scenario 1 the dotted black line is always equal to 1, but
this is not the case in the more challenging Scenario 2 due to
enhanced levels of cluster overlapping.

The adjusted Rand index between the ground truth clus-
tering and the estimated cluster assignments arising from
fabMix and pgmm are shown in the the first row of Figures
C.9 and C.10. Clearly, the compared methods have similar
performance as the sample size increases, but for smaller val-
ues of n the proposed method outperforms the pgmm package.

The estimated number of clusters, shown at the second
row of Figures C.9 and C.10 agree (in most cases) with the
true number of clusters, but note that our method is capable
of detecting the right value earlier than pgmm. Two exceptions
occur at n = 200 for example 2 of scenario 1 where fabMix

(red line at 2nd row of Figure C.9) inferred 6 alive clusters
instead of 5, as well as at n = 800 for example 1 of scenario
2 where fabMix (red line at 2nd row of Figure C.10) inferred
3 alive clusters instead of 2.

Finally, the last row in Figures C.9 and C.10 displays the
inferred number of factors for Scenarios 1 and 2, respectively.
In every single case, the estimate arising from fabMix is at
least as close as the estimate arising from pgmm to the cor-
responding true value. Note however that in example 1 of
scenario 2 both methods detect a smaller number of factors
(2 instead of 3 factors). In all other cases we observe that
as the sample size increases both methods infer the “true”
number of factors.
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Fig. C.9 Adjusted Rand index (1st row), estimated number of clusters (2nd row) and estimated number of factors (3rd row)
for simulated data according to scenario 1 with unequal cluster sizes and increasing sample size. The dotted line in the first row
corresponds to the adjusted Rand index between the ground-truth and the clustering of the data when applying the Maximum
A Posteriori rule using the parameter values that generated the data (C.36). For all examples, the true number of clusters and
factors is equal to 5 and 2, respectively.
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Fig. C.10 Adjusted Rand index (1st row), estimated number of clusters (2nd row) and estimated number of factors (3rd
row) for simulated data according to scenario 2 with unequal cluster sizes and increasing sample size. The dotted line in the
first row corresponds to the adjusted Rand index between the ground-truth and the clustering of the data when applying the
Maximum A Posteriori rule using the parameter values that generated the data (C.36). For all examples, the true number of
clusters and factors is equal to 2 and 3, respectively.
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