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Abstract Automatic cubatures approximate integrals to user-specified error tol-
erances. For high dimensional problems, it is difficult to adaptively change the
sampling pattern, but one can automatically determine the sample size, n, given a
reasonable, fixed sampling pattern. We take this approach here using a Bayesian
perspective. We postulate that the integrand is an instance of a Gaussian stochas-
tic process parameterized by a constant mean and a covariance kernel defined by
a scale parameter times a parameterized function specifying how the integrand
values at two different points in the domain are related. These hyperparameters
are inferred or integrated out using integrand values via one of three techniques:
empirical Bayes, full Bayes, or generalized cross-validation. The sample size, n, is
increased until the half-width of the credible interval for the Bayesian posterior
mean is no greater than the error tolerance.

The process outlined above typically requires a computational cost ofO(Noptn
3),

where Nopt is the number of optimization steps required to identify the hyperpa-
rameters. Our innovation is to pair low discrepancy nodes with matching covari-
ance kernels to lower the computational cost to O(Noptn logn). This approach is
demonstrated explicitly with rank-1 lattice sequences and shift-invariant kernels.
Our algorithm is implemented in the Guaranteed Automatic Integration Library
(GAIL).
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1 Introduction

Cubature is the problem of inferring a numerical value for an integral, µ :=∫
Rd g(x) dx, where µ has no closed form analytic expression. Typically, g is ac-

cessible as a black-box algorithm. Cubature is a key component of many problems
in scientific computing, finance, statistical modeling, and machine learning.

The integral may often be expressed as

µ := E[f(X)] =

∫
[0,1]d

f(x) dx, (1)

where f : [0, 1]d → R is the integrand, and X ∼ U [0, 1]d. The process of transform-
ing the original integral into the form of (1) is not addressed here. See [Dick et al.,
2013, Section 2.11] for a discussion of variable transformations. The cubature may
be an affine function of integrand values:

µ̂ := w0 +
n∑
i=1

f(xi)wi, (2)

where the weights, w0, and w = (wi)
n
i=1 ∈ Rn, and the nodes, {xi}ni=1 ⊂ [0, 1]d,

are chosen to make the error, |µ− µ̂|, small. The integration domain [0, 1]d is
convenient for the low discrepancy node sets [Dick et al., 2013, Sloan and Joe,
1994] that we use. The nodes are assumed to be deterministic.

Users of cubature algorithms typically want the error to be no greater than
their specified error tolerance, denoted by ε. That is, they want

|µ− µ̂| ≤ ε. (3)

Some stopping criteria for choosing n are heuristic. Rigorous algorithms satisfying
(3) typically require strong a priori assumptions about the integrand, such as an
upper bound on its variance (for simple Monte Carlo) or total variation (for quasi-
Monte Carlo). We take a Bayesian approach by constructing a stopping criterion
that is based on a credible interval. We build upon the work of Diaconis [1988],
O’Hagan [1991], Ritter [2000], Rasmussen and Ghahramani [2003], Briol et al.
[2018+], and others. Our algorithm is an example of probabilistic numerics.

Our primary contribution is to demonstrate how the choice of a family of
covariance kernels that match the low discrepancy sampling nodes facilitates fast
computation of the cubature and the data-driven stopping criterion. Our Bayesian
cubature requires a computational cost of

O
(
n$(f) +Nopt[n$(C) + n log(n)]

)
, (4)

where $(f) is the cost of one integrand value, $(C) is the cost of a single covariance
kernel value, O(n log(n)) is the cost of a fast Fourier transform, and Nopt is an
upper bound on the number of optimization steps required to choose the hyperpa-
rameters. If function evaluation is expensive, e.g., the output of a computationally
intensive simulation, or if $(f) = O(d) for large d, then $(f) might be similar
in magnitude to Nopt log(n) in practice. Typically, $(C) = O(d). Note that the
O(n log(n)) contribution is d independent.

By contrast to our fast algorithm, the typical computational cost for Bayesian
cubature is

O
(
n$(f) +Nopt[n

2$(C) + n3]
)
, (5)

which is explained in Section 2.3. Note that aside from evaluating the integrand,
the computational cost in (5) is much larger than that in (4).
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Hickernell [2018] compares different approaches to cubature error analysis de-
pending on whether the rule is deterministic or random and whether the integrand
is assumed to be deterministic or random. Error analysis that assumes a determin-
istic integrand lying in a Banach space leads to an error bound that is typically
impractical for deciding how large n must be to satisfy (3). The deterministic error
bound includes a (semi-) norm of the integrand, often called the variation, which
is often more complex to compute than the original integral.

Hickernell and Jiménez Rugama [2016] and Jiménez Rugama and Hickernell
[2016] have developed stopping criteria for cubature rules based on low discrepancy
nodes by tracking the decay of the discrete Fourier coefficients of the integrand.
The algorithm proposed here also relies on discrete Fourier coefficients, but in a
different way. Although we only explore automatic Bayesian cubature for absolute
error tolerances, the recent work by Hickernell et al. [2018] suggests how one might
accommodate more general error criteria, such as relative error tolerances.

Section 2 explains the Bayesian approach to estimating the posterior cubature
error and defines our automatic Bayesian cubature. Although much of this mate-
rial is known, it is included for completeness. We end Section 2 by demonstrating
why Bayesian cubature is typically computationally expensive. Section 3 intro-
duces the concept of covariance kernels that match the nodes, which expedites the
computations required by our automatic Bayesian cubature. Section 4 implements
this concept for shift-invariant kernels and rank-1 lattice nodes. This section also
describes how to avoid cancellation error for covariance kernels of product form.
Numerical examples are provided in Section 5 to demonstrate our new algorithm.
We conclude with a brief discussion.

2 Bayesian Cubature

2.1 Bayesian posterior cubature error

We assume that the integrand, f , is an instance of a Gaussian stochastic process
i.e., f ∼ GP(m, s2Cθ) [Diaconis, 1988, O’Hagan, 1991, Ritter, 2000, Rasmussen
and Ghahramani, 2003, Briol et al., 2018+]. Specifically, f is a real-valued random
function with constant mean m and covariance kernel s2Cθ:

m = E[f(x)] ∀x ∈ Rd,

E{[f(t)−m][f(x)−m]} = s2Cθ(t,x) ∀t,x ∈ Rd.
Here s is a positive scale factor, and Cθ : [0, 1]d × [0, 1]d → R is a symmetric,
positive-definite function and parameterized by the vector θ:

CTθ = Cθ, a
TCθa > 0, where Cθ = (Cθ(xi,xj))

n
i,j=1 ,

∀a 6= 0, n ∈ N, distinct x1, . . . ,xn ∈ [0, 1]d. (6)

Procedures for estimating or integrating out the hyperparameters m, s, and θ are
explained later in this section.

Furthermore, for a Gaussian process, all vectors of linear functionals of f have
a multivariate Gaussian distribution. For any deterministic sampling scheme with
distinct nodes, {xi}ni=1, and defining f := (f(xi))

n
i=1 as the multivariate Gaussian

vector of function values, it follows from the definition of a Gaussian process that

f ∼ N (m1, s2Cθ), where 1 is a vector of all ones, (7a)
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µ ∼ N (m, s2c0θ), (7b)

where c0θ :=

∫
[0,1]d×[0,1]d

Cθ(t,x) dt dx, and (7c)

cov(f , µ) =

(∫
[0,1]d

Cθ(t,xi) dt

)n
i=1

=: cθ. (7d)

Here, c0θ and cθ depend explicitly on θ. We assume that Cθ is simple enough
that the integrals in these definitions can be computed analytically. We need the
following lemma pertaining to a conditional Gaussian distribution to derive the
distribution of the posterior error of our cubature.

Lemma 1 [Rasmussen and Williams, 2006, (A.6), (A.11–13)] If Y = (Y 1,Y 2)T ∼
N (m,Σ), where Y 1 and Y 2 are random vectors of arbitrary length, and

m =

(
m1

m2

)
=

(
E(Y 1)
E(Y 2)

)
,

Σ =

(
Σ11 ΣT21
Σ21 Σ22

)
=

(
var(Y 1) cov(Y 1,Y 2)

cov(Y 2,Y 1) var(Y 2),

)
then

Y 1|Y 2 ∼ N
(
m1 + ΣT21Σ−1

22 (Y 2 −m2), Σ11 − ΣT21Σ−1
22 Σ21

)
.

Moreover, the inverse of the matrix Σ may be partitioned as

Σ−1 =

(
A11 AT21
A21 A22

)
,

A11 = (Σ11 − Σ12Σ−1
22 Σ21)−1, A21 = −Σ−1

22 Σ21A11,

A22 = Σ−1
22 + Σ−1

22 Σ21A11ΣT21Σ−1
22 .

It follows from Lemma 1 that the conditional distribution of the integral given
observed function values, f = y is also Gaussian:

µ|(f = y) ∼ N
(
m(1− cTθ Cθ

−11) + cTθ Cθ
−1y, s2(c0θ − cTθ Cθ

−1cθ)
)
. (8)

The natural choice for the cubature is the posterior mean of the integral, namely,

µ̂|(f = y) = m(1− cTθ Cθ
−11) + cTθ Cθ

−1y, (9)

which takes the form of (2). Under this definition, the cubature error has zero
mean and a variance depending on the choice of nodes:

(µ− µ̂)|(f = y) ∼ N
(

0, s2(c0θ − cTθ Cθ
−1cθ)

)
.

A credible interval for the integral is given by

Pf [|µ− µ̂| ≤ errCI] = 99%, (10a)

errCI = 2.58s
√
c0θ − cTθ Cθ

−1cθ. (10b)

Naturally, 2.58 and 99% can be replaced by other quantiles and credible levels.

2.2 Hyperparameter estimation

The credible interval in (10) suggests how our automatic Bayesian cubature pro-
ceeds. Integrand data is accumulated until the width of the credible interval, errCI,
is no greater than the error tolerance. As n increases, one expects c0θ−cTθ Cθ

−1cθ
to decrease for well-chosen nodes, {xi}ni=1.
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Note that errCI has no explicit dependence on the integrand values, even though
one would intuitively expect that a larger integrand should imply a larger errCI.
This is because the hyperparameters, m, s, and θ, have not yet been inferred from
integrand data. After inferring the hyperparameters, errCI does reflect the size of
the integrand values. This section describes three approaches to hyperparameter
estimation.

Theorem 1 There are at least three approaches to estimating or integrating out
the hyperparameters defining the Gaussian process from which the integrand is
drawn: empirical Bayes, full Bayes, and generalized cross-validation. Under these
three approaches, we have the following:

mEB =
1TC−1

θ y

1TC−1
θ 1

, mGCV =
1TC−2

θ y

1TC−2
θ 1

, (11)

s2EB =
1

n
yT
[

C−1
θ −

C−1
θ 11TC−1

θ

1TC−1
θ 1

]
y, (12)

σ̂2
full =

1

n− 1
yT
[

C−1
θ −

C−1
θ 11TC−1

θ

1TC−1
θ 1

]
y

×

[
(1− cTθ C−1

θ 1)2

1TC−1
θ 1

+ (c0θ − cTθ C−1
θ cθ)

]
, (13)

s2GCV = yT
[

C−2
θ −

C−2
θ 11TC−2

θ

1TC−2
θ 1

]
y
[
trace(C−1

θ )
]−1

,

θEB = argmin
θ

{
log

(
yT
[

C−1
θ −

C−1
θ 11TC−1

θ

1TC−1
θ 1

]
y

)
+

1

n
log(det(Cθ))

}
, (14)

θGCV = argmin
θ

{
log

(
yT
[

C−2
θ −

C−2
θ 11TC−2

θ

1TC−2
θ 1

]
y

)
− log

(
trace(C−2

θ )
)}

, (15)

µ̂EB = µ̂full =

(
(1− 1TC−1

θ cθ)1

1TC−1
θ 1

+ cθ

)T
C−1
θ y, (16)

µ̂GCV =

(
(1− 1TC−1

θ cθ)C−1
θ 1

1TC−2
θ 1

+ cθ

)T
C−1
θ y. (17)

The credible intervals widths, errCI, are given by

errx = 2.58sx

√
c0θ − cTθ C−1

θ cθ, x ∈ {EB,GCV}, (18)

errfull = tn−1,0.995σ̂full > errEB. (19)

The resulting credible intervals are then

Pf [|µ− µ̂x| ≤ errx] = 99%, x ∈ {EB, full,GCV}. (20)

Here tn−1,0.995 denotes the 99.5 percentile of a standard Student’s t-distribution
with n− 1 degrees of freedom. In the formulas above, θ is assumed to take on the
values θEB or θGCV as appropriate.

In the theorem above, note that if the original covariance kernel, Cθ, is replaced
by bCθ for some positive constant b, the cubature, µ̂, the estimates of θ, and the
credible interval half-widths, errx for x ∈ {EB, full,GCV}, all remain unchanged.
The estimates of s2 are multiplied by b−1, as would be expected.
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2.2.1 Proof for Empirical Bayes

The empirical Bayes approach estimates the parameters, m, s, and θ via maxi-
mum likelihood estimation. The log-likelihood function of the parameters given
the integrand data y is:

l(s,m, θ|y) = −1

2
s−2(y −m1)TC−1

θ (y −m1)

− 1

2
log(det(Cθ))− n

2
log(s2) + constants.

Maximizing the log-likelihood first with respect to m and then with respect to s
yields the values given in Theorem 1. To obtain θEB, we substitute mEB and sEB

into l(s,m, θ|y), which leads directly to the optimization problem in (14).
The empirical Bayes estimate of θ balances minimizing the covariance scale

factor, s2EB, against minimizing det(Cθ). Under these estimates of the parameters,
the cubature (9) and the credible interval (10) are explicitly written as in Theorem
1. The quantities c0θ, cθ, and Cθ are assumed implicitly to be based on θ = θEB.

2.2.2 Proof for Full Bayes

Rather than use maximum likelihood to determine m and s, one can treat them
as hyperparameters with a non-informative, conjugate prior, namely ρm,s2(ξ, λ) ∝
1/λ. We want to compute ρµ|f (z|y), the conditional posterior density of µ given
the data f = y. This may be expressed as

ρµ|f (z|y) =

∫ ∞
0

∫ ∞
−∞

ρµ|m,s2,f (z|ξ, λ,y)ρm,s2|f (ξ, λ|y) dξdλ,

where ρm,s2|f is the posterior density of the hyperparameters given the integrand
data. Bayes Theorem tells us that ρm,s2|f ∝ ρf |m,s2 ρm,s2 , so

ρµ|f (z|y) =

∫ ∞
0

∫ ∞
−∞

ρµ|m,s2,f (z|ξ, λ,y)ρf |m,s2(y|ξ, λ)ρm,s2(ξ, λ) dξdλ

∝
(

1 +
(z − µ̂EB)2

(n− 1)σ̂2
full

)−n/2
,

where σ̂2
full is given in Theorem 1, and the result above is derived in Appendix A.

This means that µ|(f = y), properly centered and scaled, has a Student’s t-
distribution with n−1 degrees of freedom. The estimated integral is the same as in
the empirical Bayes case, µ̂full = µ̂EB, but the credible interval is wider, as stated
in the Theorem 1.

Because the shape parameter, θ, enters the definition of the covariance kernel
in a non-trivial way, the only way to treat it as a hyperparameter and assign a
tractable prior would be for the prior to be discrete. We believe that choosing such
a prior in practice involves too much guesswork, so we choose to use either θEB or
θGCV.

2.2.3 Proof for Generalized Cross-Validation

A third parameter selection technique is leave-one-out cross-validation (CV). Let
ẙi = E[f(xi)|f−i = y−i], where the subscript −i denotes the vector excluding the

ith component. This is the conditional expectation of f(xi) given the parameters
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m, s, and θ, and all data but the function value at xi. The cross-validation cri-
terion, which is to be minimized, is the sum of squares of the difference between
these conditional expectations and the observed values:

CV =
n∑
i=1

(yi − ẙi)2. (21)

Let A = C−1
θ , let ζ = A(y −m1), and partition Cθ, A, and ζ as

Cθ =

(
cii CT−i,i
C−i,i C−i,−i

)
, A =

(
aii AT−i,i
A−i,i A−i,−i

)
, ζ =

(
ζi
ζ−i

)
,

where the subscript i denotes the ith row or column, and the subscript −i denotes
all rows or columns except the ith. Following this notation, Lemma 1 implies that

ẙi = m+CT−i,iC
−1
−i,−i(y−i −m1)

ζi = aii(yi −m) +AT−i,i(y−i −m1)

= aii[(yi −m)−CT−i,iC−1
−i,−i(y−i −m1)]

= aii(yi − ẙi).
Thus, (21) may be re-written as

CV =
n∑
i=1

(
ζi
aii

)2

, ζ = C−1
θ (y −m1).

The generalized cross-validation criterion (GCV) replaces the ith diagonal element
of A in the denominator by the average diagonal element of A [Craven and Wahba,
1979, Golub et al., 1979, Wahba, 1990]:

GCV =

∑n
i=1 ζ

2
i(

1
n

∑n
i=1 aii

)2 =
(y −m1)TC−2

θ (y −m1)(
1
n trace(C−1

θ )
)2 .

The loss function GCV depends on m and θ, but not on s. Minimizing the
GCV yields the formulae in Theorem 1 for mGCV and θGCV. Plugging the value
of mGCV into (9) yields the formulae in Theorem 1 for µ̂GCV.

An estimate for s may be obtained by noting that by Lemma 1,

var[f(xi)|f−i = y−i] = s2a−1
ii .

Thus, we may estimate s using an argument similar to that used in deriving the
GCV and then substituting mGCV for m:

s2 = var[f(xi)|f−i = y−i]aii

≈ 1

n

n∑
i=1

(yi − ẙi)2aii =
1

n

n∑
i=1

ζ2i
aii

≈
1
n

∑n
i=1 ζ

2
i

1
n

∑n
i=1 aii

=
(y −m1)TC−2

θ (y −m1)

trace(C−1
θ )

≈
(y −mGCV1)TC−2

θGCV
(y −mGCV1)

trace(C−1
θGCV

)
=: s2GCV.

After simplification, s2GCV defined above becomes the formula in Theorem 1.

The credible interval based on GCV corresponds to (10) with the estimated
m, s, and θ. This completes the proof of Theorem 1.
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2.3 The automatic Bayesian cubature algorithm

The previous section presents three credible intervals, (20), for µ, the desired
integral. Each credible interval is based on different assumptions about the hyper-
parameters m, s, and θ. We stress that one must estimate these hyperparameters
or assume a prior distribution on them because the credible intervals are used as
stopping criteria for our cubature rule. Since a credible interval makes a state-
ment about a typical function—not an outlier—one must try to ensure that the
integrand is a typical draw from the assumed Gaussian stochastic process.

Our Bayesian cubature algorithm increases the sample size until the width of
the credible interval is small enough. This is accomplished through successively
doubling the sample size. The steps are detailed in Algorithm 1.

We recognize that multiple applications of our credible intervals in one run
of the algorithm is not strictly justified. However, if our integrand comes from
the middle of the sample space and not the extremes, we expect our automatic
Bayesian cubature to approximate the integral within the desired error tolerance
with high probability. The example in the next subsection and the examples in
Section 5 support that expectation. We also believe that an important factor
contributing to the occasional failure of our algorithm is unreasonable parameter-
izations of the stochastic process from which the integrand is hypothesized to be
drawn. Overcoming this latter challenge is a topic for future research.

Algorithm 1 Automatic Bayesian Cubature

Require: a generator for the sequence x1,x2, . . .; a black-box function, f ; an absolute error
tolerance, ε > 0; the positive initial sample size, n0; the maximum sample size nmax

1: n← n0, n′ ← 0, errCI ←∞
2: while errCI > ε and n ≤ nmax do
3: Generate {xi}ni=n′+1

and sample {f(xi)}ni=n′+1

4: Compute θ by (14) or (15)
5: Compute errCI according to (18) or (19)
6: n′ ← n, n← 2n′

7: end while
8: Update sample size to compute µ̂, n← n′

9: Compute µ̂, the approximate integral, according to (16) or (17)
10: return µ̂, n, and errCI

As described above, the computational cost of Algorithm 1 is the sum of the
following:

– O
(
n$(f)

)
for the integrand data, where $(f) is the computational cost of a

single f(x); $(f) may be large if it is the result of an expensive simulation;
$(f) is typically proportional to d;

– O
(
Noptn

2$(Cθ)
)

for the evaluation of the Gram matrix Cθ, Nopt is the number
of optimization steps required, and $(Cθ) is the computational cost of a single
Cθ(t,x); $(Cθ) is typically proportional to d; and

– O
(
Noptn

3
)

for the matrix inversions and determinant calculations; this cost is
independent of d.

As we see in the example in the next section, this cost increases quickly as the n
required to meet the error tolerance increases. This motivates the fast Bayesian
cubature algorithm presented in Section 3.



Fast Automatic Bayesian Cubature Using Lattice Sampling 9

2.4 Example with the Matérn kernel

To demonstrate the automatic Bayesian cubature Algorithm 1, consider a Matérn
covariance kernel:

Cθ(x, t) =
d∏
k=1

exp(−θ|xk − tk|)(1 + θ|xk − tk|),

and Sobol’ points as the nodes. (Sobol’ points are a typical space-filling design.)
Also, consider the integration problem of evaluating multivariate Gaussian proba-
bilities:

µ =

∫
(a,b)

exp
(
−1

2 t
TΣ−1t

)√
(2π)d′ det(Σ)

dt, (22)

where (a, b) is a finite, semi-infinite or infinite box in Rd
′
. This integral does not

have an analytic expression for general Σ, so cubatures are required.

Genz [1993] introduced a variable transformation to transform (22) into an
integral on the unit cube. Not only does this variable transformation accommodate
domains that are (semi-)infinite, it also tends to smooth out the integrand better,
which expedites the cubature. Let Σ = LLT be the Cholesky decomposition where
L = (ljk)dj,k=1 is a lower triangular matrix. Iteratively define

α1 = Φ(a1), β1 = Φ(b1),

αj(x1, . . . , xj−1) = Φ

(
1

ljj

(
aj −

j−1∑
k=1

ljkΦ
−1(αk + xk(βk − αk))

))
,

j = 2, . . . , d,

βj(x1, . . . , xj−1) = Φ

(
1

ljj

(
bj −

j−1∑
k=1

ljkΦ
−1(αk + xk(βk − αk))

))
,

j = 2, . . . , d,

fGenz(x) =
d∏
j=1

[βj(x)− αj(x)], (23)

where Φ is the univariate cumulative standard Gaussian distribution function.
Then, µ =

∫
[0,1]d′−1 fGenz(x) dx. This approach transforms a d′ dimensional inte-

gral into a d = d′ − 1 dimensional integral.

We use the following parameter values in the simulation:

d′ = 3, a =

−6
−2
−2

 , b =

5
2
1

 , L =

4 1 1
0 1 0.5
0 0 0.25

 .

The node sets are randomly scrambled Sobol’ points [Dick et al., 2013, Dick and
Pillichshammer, 2010]. The results are for 400 randomly chosen ε in the interval
[10−5, 10−2] as shown in Figure 2. In each run, the nodes are randomly scrambled.
The empirical Bayes credible intervals are used for stopping criteria. We observe
that the algorithm meets the error criterion 95% of the time even though we used
99% credible intervals. One possible explanation is that the matrix inversions in the
algorithm are ill-conditioned leading to numerical inaccuracies. Another possible
explanation is that this Matérn covariance kernel is not a good match for the
integrand.
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Fig. 1: The d′ = 3 multivariate Gaussian probability transformed to an integral of
fGenz of d = 2. This plot can be reproduced using IntegrandPlots.m in GAIL.

As shown in Figure 2, the computation time increases rapidly with n. The
empirical Bayes estimation of θ, which requires repeated evaluation of the objective
function, is the most time consuming of all. It takes tens of seconds to compute µ̂n
with ε = 10−5. In contrast, this example in Section 5 take less than a hundredth
of a second to compute µ̂n with the same ε using our new algorithm. Not only is
the Bayesian cubature with the Matérn kernel slow, but also Cθ becomes highly
ill-conditioned as n increases. So, Algorithm 1 in its current form is impractical
when n must be large.

3 Fast Automatic Bayesian Cubature

The generic automatic Bayesian cubature algorithm described in the previous sec-
tion requires O

(
n$(f) +Nopt[n

2$(Cθ) +n3]
)

operations to compute the cubature.
Now we explain how to speed up the calculations. A key is to choose covariance
kernels that match the nodes, {xi}ni=1, so that the vector-matrix operations re-
quired by Bayesian cubature can be accomplished using fast Bayesian transforms
at a computational cost of O

(
n$(f) +Nopt[n$(Cθ) + n log(n)]

)
.

3.1 Fast Bayesian Transform Kernel

We make some assumptions about the relationship between the covariance kernel
and the nodes. In Section 4 these assumptions are shown to hold for rank-1 lattices
and shift-invariant kernels. Although the integrands and covariance kernels are
real, it is convenient to allow related vectors and matrices to be complex. A relevant
example is the fast Fourier transform (FFT) of a real-valued vector, which is a
complex-valued vector.



Fast Automatic Bayesian Cubature Using Lattice Sampling 11

Fig. 2: Multivariate Gaussian probability in d = 2 estimated using Matérn
kernel and empirical Bayes stopping criterion. Top: Ratio of the integration
error to the error-tolerance versus execution time. Bottom: Execution time
rapidly increases with increasing n. These figures can be reproduced using
matern guaranteed plots.m in GAIL.

We introduce some further notation:

C = Cθ =
(
Cθ(xi,xj)

)n
i,j=1

= (C1, . . . ,Cn) =
1

n
VΛVH , VH = nV−1, (24)

V = (v1, . . . , vn)T = (V 1, . . . ,V n), Cp =
1

n
VΛpVH , ∀p ∈ Z.

In this and later sections, we drop the θ dependence of various quantities for
simplicity of notation. Here, VH is the Hermitian of V, C1, . . . ,Cn are columns of
C, V 1, . . . ,V n are columns of V, and v1, . . . , vn are rows of V. The normalization
of V assumed in (24) conveniently allows the first eigenvector, V 1, to be the vector
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of ones in (25b) below. The columns of V are eigenvectors of C, and Λ is a diagonal

matrix of eigenvalues of C. For any n× 1 vector b, define the notation b̃ := VHb.

We make three assumptions that facilitate fast computation:

V may be identified analytically, (25a)

v1 = V 1 = 1, (25b)

VHb requires only O(n log(n)) operations ∀b. (25c)

We call the transformation b 7→ VHb a fast Bayesian transform and Cθ a fast
Bayesian transform kernel.

Under assumptions (25) the eigenvalues may be identified as the fast Bayesian
transform of the first column of C:

λ =

λ1...
λn

 = Λ1 = Λv∗1 =

(
1

n
VHV

)
︸ ︷︷ ︸

I

Λv∗1 = VH
(

1

n
VΛv∗1

)
= VHC1 = C̃1, (26)

where I is the identity matrix and v∗1 is the complex conjugate of the first row of
V. Also note that the fast Bayesian transform of 1 has a simple form

1̃ = VH1 = VHV 1 = (n, 0, . . . , 0)T .

Many of the terms that arise in the calculations in Algorithm 1 take the form
aTCpb for real a and b, and integer p. These can be calculated via the transforms
ã = VHa and b̃ = VHb as

aTCpb =
1

n
aTVΛpVHb =

1

n
ãHΛpb̃ =

1

n

n∑
i=1

λpi ã
∗
i b̃i.

Note that ã∗ appears on the right side of this equation because aTV = (VHa)∗ =
ã∗. In particular,

1TC−p1 =
n

λp1
, 1TC−py =

ỹ1
λp1
,

yTC−py =
1

n

n∑
i=1

|ỹi|2

λpi
, cTC−11 =

c̃1
λ1
,

cTC−1y =
1

n

n∑
i=1

c̃∗i ỹi
λi

, cTC−1c =
1

n

n∑
i=1

|c̃i|2

λi
,

where ỹ = VHy and c̃ = VHc. For any real b, with b̃ = VHb, it follows that b̃1 is
real since the first row of VH is 1.

The covariance kernel used in practice also may satisfy an additional assump-
tion: ∫

[0,1]d
Cθ(t,x) dt = 1 ∀x ∈ [0, 1]d, (27)

which implies that c0θ = 1 and cθ = 1. Under (27), the expressions above may be
further simplified:

cTC−11 = cTC−1c =
n

λ1
.

The assumptions and derivations above lead to the following theorem.

Theorem 2 Under assumptions (25), the parameters and credible interval half-
widths in Theorem 1 may be expressed in terms of the fast Bayesian transforms of
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the integrand data, the first column of the Gram matrix, and cθ as follows:

mEB = mfull = mGCV =
ỹ1
n

=
1

n

n∑
i=1

yi,

s2EB =
1

n2

n∑
i=2

|ỹi|2

λi
,

σ̂2
full =

1

n(n− 1)

n∑
i=2

|ỹi|2

λi
×

[
λ1
n

(
1− c̃1

λ1

)2

+

(
c0 −

1

n

n∑
i=1

|c̃i|2

λi

)]
,

s2GCV =
1

n

n∑
i=2

|ỹi|2

λ2i

[
n∑
i=1

1

λi

]−1

,

θEB = argmin
θ

[
log

(
n∑
i=2

|ỹi|2

λθ,i

)
+

1

n

n∑
i=1

log(λθ,i)

]
, (28a)

θGCV = argmin
θ

[
log

(
n∑
i=2

|ỹi|2

λ2θ,i

)
− 2 log

(
n∑
i=1

1

λθ,i

)]
, (28b)

µ̂EB = µ̂full = µ̂GCV =
ỹ1
n

+
1

n

n∑
i=2

c̃∗i ỹi
λi

,

errEB =
2.58

n

√√√√ n∑
i=2

|ỹi|2

λi

(
c0 −

1

n

n∑
i=1

|c̃i|2

λi

)
,

errfull = tn−1,0.995σ̂full,

errGCV =
2.58

n

{
n∑
i=2

|ỹi|2

λ2i

[
1

n

n∑
i=1

1

λi

]−1(
c0 −

1

n

n∑
i=1

|c̃i|2

λi

)}1/2

.

Under the further assumption (27), it follows that

µ̂EB = µ̂full = µ̂GCV =
ỹ1
n

=
1

n

n∑
i=1

yi, (29)

and so µ̂ is simply the sample mean. Also, under assumption (27), the credible
interval half-widths simplify to

errEB =
2.58

n

√√√√ n∑
i=2

|ỹi|2

λi

(
1− n

λ1

)
, (30a)

errfull = tn−1,0.995

√√√√ 1

n(n− 1)

n∑
i=2

|ỹi|2

λi

(
λ1
n
− 1

)
, (30b)

errGCV =
2.58

n

{
n∑
i=2

|ỹi|2

λ2i

[
1

n

n∑
i=1

1

λi

]−1 (
1− n

λ1

)}1/2

.

In the formulas for the credible interval half-widths, λ depends on θ, and θ is
assumed to take on the values θEB or θGCV as appropriate.
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4 Integration Lattices and Shift Invariant Kernels

The preceding sections lay out an automatic Bayesian cubature algorithm whose
computational cost is drastically reduced. However, this algorithm relies on covari-
ance kernel functions, Cθ and node sets, {xi}ni=1 that satisfy assumptions (25). We
also want to satisfy assumption (27). To conveniently facilitate the fast Bayesian
transform, it is assumed in this section and the next that n is power of 2.

4.1 Extensible Integration Lattice Node Sets

We choose a set of nodes defined by a shifted extensible integration lattice node
sequence, which takes the form

xi = hφ(i− 1) +∆ mod 1, i ∈ N. (31)

Here, h is a d-dimensional generating vector of positive integers, ∆ is some point
in [0, 1)d, often chosen at random, and {φ(i)}∞i=0 is the van der Corput sequence,
defined by reflecting the binary digits of the integer about the decimal point, i.e.,

i 0 1 2 3 4 5 6 7 · · ·
i 02 12 102 112 1002 1012 1102 1112 · · ·

φ(i) 2.0 2.1 2.01 2.11 2.001 2.101 2.011 2.111 · · ·
φ(i) 0 0.5 0.25 0.75 0.125 0.625 0.375 0.875 · · ·

(32)

Note that

nφ : {0, . . . , n− 1} → {0, . . . , n− 1} is one-to-one, (33)

assuming n is a power of 2.

An example of 64 nodes is given in Figure 3. The even coverage of the unit
cube is ensured by a well chosen generating vector, h. The choice of generating
vector is typically done offline by computer search. See Hickernell and Niederreiter
[2003] and Dick et al. [2013] for more on extensible integration lattices.

Fig. 3: Example of a shifted integration lattice node set in d = 2. This figure can
be reproduced using PlotPoints.m in GAIL
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4.2 Shift Invariant Kernels

The covariance kernels Cθ that match integration lattice node sets have the form

Cθ(t,x) = Kθ(t− x mod 1). (34a)

This is called a shift-invariant kernel because shifting both arguments of the covari-
ance kernel by the same amount leaves the value unchanged. Here, Kθ is periodic
and must be of the form that ensures that Cθ is symmetric and positive definite,
as assumed in (6).

A family of shift-invariant kernels is constructed via even degree Bernoulli
polynomials:

Kθ(x) =
d∏
l=1

[
1− (−1)rηB2r(xl)

]
,

∀t,x ∈ [0, 1]d, θ = (r, η), r ∈ N, η > 0. (34b)

Symmetric, periodic, positive definite kernels of this form appear in Hickernell
[1996] and Dick et al. [2013]. Bernoulli polynomials are described in [Olver et al.,
2018, Chapter 24].

Larger r implies a greater degree of smoothness of the covariance kernel. Larger
η implies greater fluctuations of the output with respect to the input. Plots of
Cθ(·, 0.3) are given in Figure 4 for various θ = (r, η) values.

Lattice cubature rules are known to have convergence rates that depend on
the smoothness of the integrands, but that are rather independent of the choice
of the integration lattice [Dick et al., 2013]. Thus, we expect integration lattice
node sets to perform well regardless of the smoothness of the covariance kernel.
The bigger concern is whether the derivatives of the integrand are as smooth as
the covariance kernel implies. This topic is touched upon again in Section 5.1.

4.3 The Gram Matrix as the Permutation of a Circulant Matrix

For general shift-invariant covariance kernels, the Gram matrix takes the form of
a permutation of the rows and columns of a circulant matrix. By the properties of
φ in (33), it follows that

P =
(
δnφ(i−1),j−1

)n
i,j=1

(35)

is a permutation matrix, where δ·,· is the Kronecker delta function. Then,

Cθ =
(
Cθ(xi,xj)

)n
i,j=1

=
(
Kθ
(
h(φ(i− 1)− φ(j − 1)

)
mod 1)

)n
i,j=1

by (31) and (34a)

=

( n∑
i′,j′=1

δnφ(i−1),i′−1Kθ
(
h(i′ − j′)/n mod 1

)
δj′−1,nφ(j−1)

)n
i,j=1

= PKθPT , (36)

where

Kθ =
(
Kθ
(
h(i− j)/n mod 1

))n
i,j=1

. (37)

Because Kθ is circulant, we know the form of it’s eigenvector-eigenvalue de-
composition:

Kθ =
1

n
WΛθWH , W =

(
e2π
√
−1(i−1)(j−1)/n

)n
i,j=1

. (38)
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Fig. 4: Shift invariant kernel in 1D shifted by 0.3 to show the discontinuity. This
figure can be reproduced using plot fourier kernel.m in GAIL.

By (36) we then have the eigenvector-eigenvalue decomposition for Cθ assumed in
(24), namely

Cθ =
1

n
VΛθVH , V = PWPT , (39)

where the eigenvalues of Cθ and Kθ are identical.
Fast Bayesian transform assumptions (25a) and (25b) can be verified by (35),

(38), and (39). Assumption (25c) is satisfied because VHb = WHPT b is just the
discrete Fourier transform of a vector whose rows have been permuted. This can
be performed in O(n log(n)) operations by the FFT. A proper scaling of the kernel
Kθ, such as the one given by (34b), ensures that assumption (27) is satisfied.

4.4 Overcoming Cancellation Error

For the covariance kernels used in our computation, it may happen that n/λ1 is
close to 1. Thus, the term 1 − n/λ1, which appears in the credible interval half-
widths, errEB, errfull, and errGCV, may suffer from cancellation error and even
become negative. We have observed this phenomenon. We can avoid this cancel-
lation error by modifying how we compute the Gram matrix and its eigenvalues.

Any shift-invariant covariance kernel satisfying (27) can be written as Cθ = 1+
C̊θ, where C̊θ is also symmetric and positive definite. The associated Gram matrix
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for C̊θ is then C̊θ = Cθ−11T , and the eigenvalues of C̊θ are λ̊1 = λ1−n, λ2, . . . , λn,
which follows because 1 is the first eigenvector of both Cθ and C̊θ. Then,

1− n

λ1
=
λ1 − n
λ1

=
λ̊1

λ̊1 + n
,

where now the right hand side is free of cancellation error.

The covariance kernels that we use are of product form, namely,

Cθ(t,x) =
d∏
`=1

[
1 + C̊θ,`(t`, x`)

]
, C̊θ,` : [0, 1]2 → R.

Direct computation of C̊θ(t,x) = Cθ(t,x)− 1 introduces cancellation error if the
C̊θ,` are small. So, we employ the iteration

C̊
(1)
θ (t,x) = C̊θ,1(t1, x1),

C̊
(`)
θ (t,x) = C̊

(`−1)
θ (t,x)[1 + C̊θ,`(t`, x`)] + C̊θ,`(t`, x`),

` = 2, . . . , d,

C̊θ(t,x) = C̊
(d)
θ (t,x).

In this way, the Gram matrix C̊θ, whose i, j-element is C̊θ(xi,xj) can be con-
structed in a way that avoids significant cancellation error.

Computing the eigenvalues of C̊ via the procedure given in (26) yields λ̊1 =
λ1 − n, λ2, . . . , λn. The widths of the credible intervals in (30) become

errEB =
2.58

n

√√√√ λ̊1
λ1

n∑
i=2

|ỹi|2

λi
, (40a)

errfull =
tn−1,0.995

n

√√√√ λ̊1
n− 1

n∑
i=2

|ỹi|2

λi
, (40b)

errGCV =
2.58

n

√√√√ λ̊1
λ1

n∑
i=2

|ỹi|2

λ2i

[
1

n

n∑
i=1

1

λi

]−1

. (40c)

For large n, λ1 ∼ n and it follows that λ̊1/λ1 ≈ λ̊1/(n− 1) is small. Moreover, for
large n, the credible intervals via empirical Bayes and full Bayes are similar, since
tn−1,0.995 ≈ 2.58. The computational steps for the improved, faster, automatic
Bayesian cubature are detailed in Algorithm 2.

We summarize the results of this section and the previous one in the theorem
below. In comparison to Algorithm 1, the second and third components of the
computational cost of Algorithm 2 are substantially reduced.

Theorem 3 Let Cθ be any symmetric, positive definite, shift-invariant covariance
kernel of the form (34a), where Kθ has period one in every variable. Furthermore,
let Kθ be scaled to satisfy (27). When matched with rank-1 lattice data sites, Cθ
must satisfy fast Bayesian transform assumptions (25). The cubature, µ̂, is just
the sample mean. The fast Fourier transform (FFT) can be used to expedite the
estimates of θ in (28) and the credible interval half-widths (40) so that Algorithm
2 has a computational cost which is the sum of the following:

– O
(
n$(f)

)
for the integrand data, where $(f) is the computational cost of a

single f(x);
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Algorithm 2 Fast Automatic Bayesian Cubature

Require: a generator for the rank-1 Lattice sequence x1,x2, . . .; a shift-invariant kernel, Cθ ;
a black-box function, f ; an absolute error tolerance, ε > 0; the positive initial sample size,
n0, that is a power of 2; the maximum sample size nmax

1: n← n0, n′ ← 0, errCI ←∞
2: while errCI > ε and n ≤ nmax do
3: Generate {xi}ni=n′+1

and sample {f(xi)}ni=n′+1

4: Compute θ by (28a) or (28b)
5: Compute errCI according to (40a), (40b), or (40c)
6: n′ ← n, n← 2n′

7: end while
8: Update sample size to compute µ̂, n← n′

9: Compute µ̂, the approximate integral, according to (29)
10: return µ̂, n and errCI

– O
(
Noptn$(Cθ)

)
for the evaluations of the vector C1, where Nopt is the number

of optimization steps required, and $(Cθ) is the computational cost of a single
Cθ(t,x); and

– O
(
Noptn log(n)

)
for the FFT calculations; there is no d dependence in these

calculations.

Although the third part of the computational cost has the largest dependence
on n, in practice it need not be the largest contributor to the computational cost.
If function values are the result of an expensive simulation, then the first part may
consume most of the computation time.

We have implemented the fast adaptive Bayesian cubature algorithm in MAT-
LAB as part of the Guaranteed Adaptive Integration Library (GAIL) [Choi et al.,
2013–2019] as cubBayesLattice g. This algorithm uses the covariance kernel de-
fined in (34) with r = 1 and 2, and the periodizing variable transforms in Sec-
tion 5.1. The rank-1 lattice node generator is taken from Nuyens [2017]
(exod2 base2 m20).

5 Numerical Experiments

5.1 Periodizing Variable Transformations

The shift-invariant covariance kernels underlying our Bayesian cubature assume
that the integrand has a degree of periodicity, with the smoothness assumed de-
pending on the smoothness of the covariance kernel. While integrands arising in
practice may be smooth, they might not be periodic. Variable transformations can
be used to ensure periodicity.

Suppose that the original integral has been expressed as

µ :=

∫
[0,1]d

g(t) dt,

where g has sufficient smoothness, but lacks periodicity. The goal is to transform
the integral above to the form of (1), where the integrand f—and perhaps its
derivatives—are periodic.

The baker’s transform, also called the tent transform,

Ψ : x 7→ (Ψ(x1), . . . , Ψ(xd)), Ψ(x) = 1− 2 |x− 1/2| , (41)
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allows us to write µ in the form of (1), where f(x) = g(Ψ(x)). Since Ψ ′(x) is not
continuous, f does not have continuous derivatives.

A family of variable transforms that can also preserve continuity of the deriva-
tives from the original integrand g takes the form

Ψ : x 7→ (Ψ(x1), . . . , Ψ(xd)), Ψ : [0, 1] 7→ [0, 1].

This allows us to write µ in the form of (1) with

f(x) = g(Ψ(x))
d∏
`=1

Ψ ′(xl).

For r ∈ N0, if the following hold:

– Ψ ∈ Cr+1[0, 1],
– limx↓0 x

−r−1Ψ ′(x) = limx↑1(1− x)−r−1Ψ ′(x) = 0, and

– g ∈ C(r,...,r)[0, 1]d,

then f has continuous, periodic mixed partial derivatives of up to order r in each
direction. Examples of this kind of transform include [Sidi, 2008]:

Sidi’s C1 : Ψ(x) = x− sin(2πx)

2π
, Ψ ′(x) = 1− cos(2πx),

Sidi’s C2 : Ψ(x) =
8− 9 cos(πx) + cos(3πx)

16
, Ψ ′(x) =

3π[3 sin(πx)− sin(3πx)]

16
.

Periodizing variable transforms are used in the numerical examples below. In
some cases, they can speed the convergence of the Bayesian cubature because they
allow one to take advantage of smoother covariance kernels. However, there is a
trade-off. Smoother periodizing transformations tend to give integrands f with
larger inferred s values and thus wider credible intervals.

5.2 Test Results and Observations

Three integrals were evaluated using the GAIL algorithm cubBayesLattice g: a
multivariate Gaussian probability, Keister’s example, and an option pricing ex-
ample. These three integrands are defined below. The sequences {xi}∞i=1 are the
randomly shifted lattice node sequences supplied by GAIL. For each integral and
each of our stopping criteria—empirical Bayes, full Bayes, and generalized cross-
validation—our algorithm was run for 400 different randomly chosen error toler-
ances. The error tolerances were chosen randomly in an interval depending on the
difficulty of the problem. In each run, the nodes were also randomly shifted with
U [0, 1] shifts independent of each other and the error tolerances. The accuracy of
the algorithm depends mildly on the shift; there is no universally optimal shift. For
each test, the execution times are plotted against |µ− µ̂| /ε. We expect |µ− µ̂| /ε
to be no greater than one, but hopefully not too much smaller than one, which
would indicate a stopping criterion that is too conservative. Figures 5 to 13 can
be reproduced using the script cubBayesLattice guaranteed plots.m in GAIL.

Ideally, we would optimize both r and η simultaneously in the definition of our
Cθ in (34). However, in these examples we fix r and optimize η only. This is a
technical challenge, not a limitation of our theory.

Multivariate Gaussian Probability. This example was already introduced in Sec-
tion 2.4, where we used the Matérn covariance kernel. Here we apply Sidi’s C2
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periodization to fGenz (23) and choose d′ = 3, d = 2, and r = 2. The simulation
results for this example are summarized in Figures 5, 6, and 7. In all cases, the
Bayesian cubature returns an approximation within the prescribed error tolerance.
We used the same setting as before with generic slow Bayesian cubature in Sec-
tion 2.4 for comparison. For error tolerance ε = 10−5 with the empirical Bayes
stopping criterion, our fast algorithm takes just under 0.01 seconds as shown in
Figure 5 whereas the generic algorithm takes over 20 seconds as shown in Figure 2.

Amongst the three stopping criteria, GCV achieves the desired tolerance faster
than the others. One can also observe from the figures, the credible intervals are
in general much wider than the true error. This could be due to the periodized
integrand being smoother than the r = 2 covariance kernel assumes. Perhaps one
should consider smoother covariance kernels.

Keister’s Example. This multidimensional integral function comes from Keister
[1996] and is inspired by a physics application:

µ =

∫
Rd

cos(‖t‖) exp(−‖t‖2) dt =

∫
[0,1]d

fKeister(x) dx,

where fKeister(x) = πd/2 cos
(∥∥∥Φ−1(x)/2

∥∥∥) ,
and again Φ is the standard Gaussian distribution. The true value of µ can be
calculated iteratively in terms of a quadrature as follows:

µ =
2πd/2Ic(d)

Γ (d/2)
, d = 1, 2, . . .

where Γ denotes the gamma function, and

Ic(1) =

√
π

2 exp(1/4)
,

Is(1) =

∫ ∞
x=0

exp(−xTx) sin(x) dx = 0.4244363835020225,

Ic(2) =
1− Is(1)

2
, Is(2) =

Ic(1)

2

Ic(j) =
(j − 2)Ic(j − 2)− Is(j − 1)

2
, j = 3, 4, . . .

Is(j) =
(j − 2)Is(j − 2)− Ic(j − 1)

2
, j = 3, 4, . . . .

Figures 8, 9, and 10 summarize the numerical tests for this integral. We used
Sidi’s C1 periodization, dimension d = 4, and r = 2. As we can see, the GCV
stopping criterion achieves results faster than the other stopping criteria, simi-
lar to the multivariate Gaussian case. The credible intervals are narrower than
the multivariate Gaussian case since the covariance kernel is smoother than the
periodization transform used.

Option Pricing. The price of financial derivatives can often be modeled by high
dimensional integrals. If the underlying asset is described in terms of a discretized
geometric Brownian motion, then the fair price of the option is:

µ =

∫
Rd

payoff(z)
exp(1

2z
TΣ−1z)√

(2π)d det(Σ)
dz =

∫
[0,1]d

f(x) dx,
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Fig. 5: Multivariate Gaussian probability example using the empirical Bayes stop-
ping criterion.

Fig. 6: Multivariate Gaussian probability example using the full Bayes stopping
criterion.

Fig. 7: Multivariate Gaussian probability example using the GCV stopping crite-
rion.
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Fig. 8: Keister’s example using the empirical Bayes stopping criterion.

Fig. 9: Keister’s example using the full Bayes stopping criterion.

Fig. 10: Keister’s example using the GCV stopping criterion.
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where payoff(·) defines the discounted payoff of the option,

Σ = (T/d)
(
min(j, k)

)d
j,k=1

= LLT ,

f(x) = payoff

L

Φ
−1(x1)

...
Φ−1(xd)


 .

The Asian arithmetic mean call option has a payoff of the form

payoff(z) = max

1

d

d∑
j=1

Sj(z)−K, 0

 e−RT ,

where Sj(z) = S0 exp
(
(R− σ2/2)j(T/d) + σ

√
(T/d)zj

)
.

Here, T denotes the time to maturity of the option, d the number of time steps,
S0 the initial price of the stock, R the interest rate, σ the volatility, and K the
strike price.

Figures 11, 12, and 13 summarize the numerical results for this example using
T = 1/4, d = 13, S0 = 100, R = 0.05, σ = 0.5, K = 100. Moreover, L is
chosen to be the matrix of eigenvectors of Σ times the square root of the diagonal
matrix of eigenvalues of Σ. Because the integrand has a kink caused by the max
function, it does not help to use a periodizing transform that is very smooth. We
choose the baker’s transform (41) and r = 1.

In summary, the Bayesian cubature algorithm computes the integral within the
user-specified tolerance in nearly all of the test cases. The rare exceptions occurred
in the option pricing example for ε ≤ 10−4. Our algorithm used the maximum
allowed sample size and still did not reach the stopping criterion errCI ≤ ε, due
to the complexity and high dimension of the integrand. Those cases are shown as
hollow stars in Figures 11, 12, and 13.

One may question whether an integrand with non-negative values is well rep-
resented by a Gaussian process. Since we allow a nonzero mean, this assumption is
somewhat more palatable. Bayesian algorithms assuming non-Gaussian processes
are more difficult to execute, but this is an area for further research.

A noticeable observation from the plots in all three examples is how the ratio
of the true error to the error tolerance varies from nearly one all the way down
to 10−7. Since the credible interval half-widths are not much smaller than ε, this
means that the credible intervals are quite conservative in many cases. For option
pricing example, this is less of an issue than for the multivariate Gaussian and
Keister’s examples. The reason that the credible intervals wildy overestimate the
true error for the multivariate Gaussian and Keister’s examples may be that these
integrands are significantly smoother than the assumed covariance kernel. This is
a matter for further investigation.

6 Discussion and Further Work

We have developed a fast, automatic Bayesian cubature that estimates a multi-
dimensional definite integral within a user defined error tolerance. The stopping
criteria arise from assuming the integrand to be an instance of a Gaussian process.
There are three approaches: empirical Bayes, full Bayes, and generalized cross-
validation. The computational cost of the automatic Bayesian cubature can be
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Fig. 11: Option pricing using the empirical Bayes stopping criterion.

Fig. 12: Option pricing using the full Bayes stopping criterion.

Fig. 13: Option pricing using the GCV stopping criterion.
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dramatically reduced if the covariance kernel matches the nodes. One such match
in practice is rank-1 lattice nodes and shift-invariant kernels. The matrix-vector
multiplications can be accomplished using the fast Fourier Transform. The perfor-
mance of our automatic Bayesian cubature is illustrated using three integration
problems.

Digital sequences and digital shift and/or scramble invariant kernels have the
potential of being another match that satisfies the conditions in Section 3. The
fast Bayesian transform would correspond to a fast Walsh transform.

One should be able to adapt our Bayesian cubature to control variates, i.e.,
assuming

f = GP
(
β0 + β1g1 + · · ·+ βpgp, s

2Cθ

)
,

for some choice of g1, . . . , gp whose integrals are known, and some parameters
β0, . . . , βp in addition to s and Cθ. The efficacy of this approach has not yet been
explored.
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Appendix A Details of the Full Bayes Posterior Density for µ

To simplify, we drop the dependence of c0θ, cθ, and Cθ on θ in the notation below.
Starting from the Bayesian formula for the posterior density for µ at the beginning
of Section 2.2.2 with the non-informative prior, it follows that

ρµ|f (z|y) ∝
∫ ∞
0

∫ ∞
−∞

ρµ|m,s2,f (z|ξ, λ,y)ρf |m,s2(y|ξ, λ)ρm,s2(ξ, λ) dξdλ

∝
∫ ∞
0

1

λ(n+3)/2

∫ ∞
−∞

exp

(
− 1

2λ

{
[z − ξ(1− cTC−11)− cTC−1y]2

c0 − cTC−1c

+ (y − ξ1)TC−1(y − ξ1)

})
dξdλ

by (7), (8) and ρm,s2(ξ, λ) ∝ 1/λ

∝
∫ ∞
0

1

λ(n+3)/2

∫ ∞
−∞

exp

(
− αξ2 − 2βξ + γ

2λ(c0 − cTC−1c)

)
dξdλ,

where

α = (1− cTC−11)2 + 1TC−11(c0 − cTC−1c),

β = (1− cTC−11)(z − cTC−1y) + 1TC−1y(c0 − cTC−1c),

γ = (z − cTC−1y)2 + yTC−1y(c0 − cTC−1c).

In the derivation above and below, factors that are independent of ξ, λ, or z
can be discarded since we only need to preserve the proportion. But, factors that
depend on ξ, λ, or z must be kept. Completing the square, αξ2 − 2βξ + γ =
α(ξ−β/α)2− (β2/α) +γ, allows us to evaluate the integrals with respect to ξ and
λ:

ρµ|f (z|y) ∝
∫ ∞
0

1

λ(n+3)/2
exp

(
− γ − β2/α

2λ(c0 − cTC−1c)

)
×
∫ ∞
−∞

exp

(
− α(ξ − β/α)2

2λ(c0 − cTC−1c)

)
dξdλ

∝
∫ ∞
0

1

λ(n+2)/2
exp

(
− γ − β2/α

2λ(c0 − cTC−1c)

)
dλ

∝
(
γ − β2

α

)−n/2
∝
(
αγ − β2

)−n/2
.

Finally, we simplify the key term via straightforward calculations to the following:

αγ − β2 ∝ 1 +
(z − µ̂EB)2

(n− 1)s2full
,

where

σ̂2
full :=

1

n− 1
yT
[

C−1 − C−111TC−1

1TC−11

]
y

[
(1− cTC−11)2

1TC−11
+ (c0 − cTC−1c)

]
.

This completes the derivation of (13).


	1 Introduction
	2 Bayesian Cubature
	3 Fast Automatic Bayesian Cubature
	4 Integration Lattices and Shift Invariant Kernels
	5 Numerical Experiments
	6 Discussion and Further Work
	Appendix A Details of the Full Bayes Posterior Density for 

