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Abstract

Quantile regression models are a powerful tool for studying different points

of the conditional distribution of univariate response variables. Their multi-

variate counterpart extension though is not straightforward, starting with the

definition of multivariate quantiles. We propose here a flexible Bayesian quantile

regression model when the response variable is multivariate, where we are able

to define a structured additive framework for all predictor variables. We build

on previous ideas considering a directional approach to define the quantiles of

a response variable with multiple-outputs and we define noncrossing quantiles

in every directional quantile model. We define a Markov Chain Monte Carlo

(MCMC) procedure for model estimation, where the noncrossing property is ob-

tained considering a Gaussian process design to model the correlation between

several quantile regression models. We illustrate the results of these models us-

ing two data sets: one on dimensions of inequality in the population, such as

income and health; the second on scores of students in the Brazilian High School

National Exam, considering three dimensions for the response variable.
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1 Introduction

Quantiles can be easily defined for univariate probability distributions, providing mean-

ingful information about location and also about dispersion of the data. Considering its

representation in a regression framework, one can say that quantile regression models

are a great mechanism to describe how a set of predictors might influence a response

variable differently depending on the quantile of interest. Take the linear quantile

regression, for example, as we assume the following for the conditional quantile of Y

QY (τ |X = x) = ητ = x
′
βτ ,

where x is a vector of predictor variables and βτ is the vector of quantile regression

parameters, both of same dimension size. This idea was fully systematized by Koenker

and Bassett (1978) and since its inception has been applied in several areas, from

Economy to Ecology (see, for instance, Koenker, 2005; Yu et al., 2003). Its main use

has been for continuous response variables, though there are proposals in the literature

for count data (Machado and Silva, 2005) and binary response variables (Ji et al., 2012)

as well. Estimation is carried out with linear programming algorithms and inferential

procedures, such as confidence intervals, can be achieved via asymptotic results or

bootstrap, for instance. The Bayesian approach was first proposed by Yu and Moyeed

(2001), where an asymmetric Laplace distribution is proposed for the likelihood. A

more efficient representation for this distribution was given by Kozumi and Kobayashi

(2011), which we will be considered here as well for our estimation purposes. Later,

Sriram et al. (2013) proved posterior consistency for these models, when considering

an asymmetric Laplace distribution, even when the true data generating process is

another probability distribution.

Despite the great attention received for quantile regression models over the years,

extensions considering multivariate response variables are more complicated. Given

the advantages one has when using quantile regression models, such as the lack of a

parametric probability assumption for the response variable, a similar approach for a

multiple-output response variable is certainly appealing. Likewise the interest would

be identical, for instance, trying to explore the multivariate conditional probability

distribution, but taking into account the possible related effects of predictors not on

average, but rather in different parts of this distribution, namely different quantiles.

A first challenge though presents itself in the definition of ordering mechanisms for
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more than one dimension, in the same sense as quantiles. While one can easily define

such measures for univariate probability distributions, a definition for similar quantities

can be done in different ways for multivariate data. Serfling (2002) gives a good

introduction in the topic, describing some properties that might be important to these

type of measures. One interesting definition relates to the idea of depth in the data and

it can be traced back to Tukey (1975). In the univariate case one can characterize the

depth of a point y ∈ R as min(F (y), 1−F (y)), where F is the cumulative distribution

function of Y. Regarding multivariate depth, Mosler (2013) summarizes several options

for these functions based either on distances, such as Mahalanobis depth and Oja

depth, or weighted distances or also on halfspaces. This latter can be connected to

the multiple-output quantile regression framework which is the interest of this paper.

This linkage between these two ideas was established by Hallin et al. (2010), although

a similar effort was pursued by Kong and Mizera (2012) with a related definition

for multivariate quantiles. We focus here on the former definition and will not give

more details on the latter. For more information on depth functions and multivariate

quantiles, we also refer to Chernozhukov et al. (2017) and Carlier et al. (2016, 2017)

for a more recent discussion on the topic.

The same way as one is interested in taking into consideration the multivariate

nature of the response variable, one should also acknowledge more flexible structures for

the predictor variables. A possible way of achieving this goal is considering structured

additive models in the context of quantile regression. In this situation, the predictor

ητ for the τth conditional quantile can be expressed as

ητ = f1τ (z1) + · · ·+ fqτ (zq) + x
′
βτ ,

where fjτ , j = 1, . . . , q, are nonlinear functions related to covariates z1, . . . , zq and

x
′
βτ is the typical linear quantile regression part, using the covariates vector x. These

nonlinear functions might represent time trends for continuous variables, varying coef-

ficient for terms cluster data or even spatial effects. If we drop the index τ to ease the

notation, we can write each fj(.) as a linear combination of basis such as

fj(zj) =
K∑
k=1

γjkBjk(zj), (1)

where γj = (γj1, . . . , γjK) is the vector of unknown coefficients and the Bjk are known
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basis functions. This type of scheme was considered for studying copula models by

Klein and Kneib (2016), for instance. Furthermore, Lang et al. (2014) used this design

in the analysis of multilevel hierarchical models. Waldmann et al. (2013) considered

this approach for Bayesian quantile regression and we use their results in this directional

quantile method for multiple-output response variables.

Moreover, when estimating these conditional quantiles separately often there is a

problem of crossing quantiles, which violates a basic probability law, that defines that

quantiles are nondecreasing functions with respect to τ for any given covariate. One

possible solution for this problem is to estimate these models jointly, defining con-

straints that guarantee the monotonicity assumption, as it was done by Tokdar and

Kadane (2011) for one explanatory variable and by Yang and Tokdar (2017) for the

multivariate case, in a Bayesian setting. Similar approaches to estimating simultane-

ously several quantile regression models were proposed by Bondell et al. (2010) and

Reich et al. (2011). The former used a weight function to write a constrained mini-

mization problem and the latter considered Bernstein basis polynomials to define the

quantile process. Reich et al. (2011) specified this approach in the light of spatial

data problems, but its likelihood evaluation might be impractical for datasets with a

larger number of observations. Moreover, Rodrigues et al. (2019a) define a new method

for joint quantile regression modeling based on quantile pyramids, where the quantile

parameters are ensured to respect a noncrossing constraint. Rodrigues et al. (2019b)

extended this idea of pyramid quantile regression in the context of a spline regression

setting. He (1997) proposed restricted regression quantiles imposing constraints in the

space of solutions for the conditional quantiles, attaining the noncrossing property as

the result. In a frequentist scenario, Chernozhukov et al. (2009) proposes reordering of

the estimated quantiles to obtain monotonic results. Rodrigues and Fan (2017) pro-

posed a rearrangement of the estimated Bayesian quantile regression coefficients via a

Gaussian process algorithm, which connects the different quantile through its correla-

tion function. This last approach is the one we consider for our method in order to

produce noncrossing quantiles in this multiple-output context.

In this article, we consider a Bayesian framework for the directional method pro-

posed by Hallin et al. (2010), where we are able to use prior information whenever this

is available. Furthermore, we add the possibility of using of nonlinear functions to ex-

plain the effect of covariates in the response variable, in the form of structured additive

predictors. Finally, we are concerned with the problem of crossing quantiles, to which
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we adapt solutions in the literature for the univariate case to this multiple-output

setting.

This rest of the article is organized in the following way. Section 2 defines the Tukey

depth concept and its connection to the important results of the multiple-output quan-

tile regression model defined by Hallin et al. (2010). Following, Section 3 introduces

the extension to a Bayesian scheme, which was proposed by Guggisberg (2019), and

presents our contributions to the literature regarding the necessary adjustments to

obtain noncrossing conditional quantiles. We discuss the methods proposed in this

paper with an application to two real datasets in Section 4. We finish with our last

considerations in Section 5.

2 Multiple-output Bayesian quantile regression

Considering a response variable defined as Y ∈ Rk, then a first challenge becomes how

one can define an ordering measure for this variable. This definition is important if we

are interested in studying how changes in explanatory variables might affect different

locations of the response variable, which is one of the goals of quantile regression mod-

els, for instance. In fact, this ordering can be achieved in different ways, as discussed

by Serfling (2002) considering quantile functions. We focus here on the definitions

of depth for multivariate data. We refer to Mosler (2013) and Chernozhukov et al.

(2017), and references therein, for a review on properties and definitions of different

depth functions. We concentrate on the Tukey depth, which is connected to the quan-

tile regression approach for the multivariate data we pursue here. One can define the

Tukey depth, also known as halfspace depth, of an observation z ∈ Rk with respect to

some probability distribution P as

HD(z, P ) := inf{P (H) : H is a closed halfspace containing z},

where halfspace is one of the parts when the space is divided in two parts by a hyper-

plane. This definition allows one to describe a region of points with depth at least τ ,

D(τ), as

D(τ) := {z ∈ Rk : HD(z, P ) ≥ τ}.

For discrete or continuous random variables with compact support, D(τ) determines

the probability distribution of Y (Struyf and Rousseeuw, 1999). In particular, these
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regions provide a good feature to use in a regression setting. For instance, one can

be interested in relating the measure P to different values of the predictor variables

and then checking how these depth regions D(τ) vary. This certainly can be a good

indication on how the predictor variables affect the conditional distribution of this

multiple-output response variable. But though we are able to define this depth regions

for different values of k, visualization of these variations might be an issue for k > 3.

Regarding the multiple-output quantile regression approach proposed by Hallin

et al. (2010), we need to delineate a few terms. Let a directional index be τ ∈ Bk :=

{v ∈ Rk : 0 < ||v||2 < 1}, which is a collection of vectors encompassed in the unit ball

of Rk. This directional index can be split into two parts, τ = τu, where u ∈ Sk−1 :=

{z ∈ Rk : ||z|| = 1}, represents the direction and τ ∈ (0, 1) constitutes the magnitude.

Now let Γu be an arbitrary k×(k−1) matrix of unit vectors, where (u
... Γu) establishes

an orthonormal basis of Rk. Lastly, let ρτ (u) be the usual check loss function often

used in quantile regression analysis, i.e., ρτ (u) = u(τ − I(u < 0)), where I(.) is the

indicator function. Now we can restate Definition 2.1 by Hallin et al. (2010) as the

following

DEFINITION 2.1. The τ th quantile of Y is any element of the collection Λτ of

hyperplanes λτ := {y ∈ Rk : u
′
y = b̂τΓ

′

uy + âτ} such that (âτ , b̂τ ) are the solutions of

the minimization problem

min
(aτ ,bτ )∈Rk

E[ρτ (u
′
y − bτΓ

′

uy − aτ )]. (2)

These directional quantiles are related to the usual quantile regression estimator of

Koenker and Bassett (1978) given the minimization problem in (2). In fact, Definition

2.1 does not mention predictor variables, but its addition is trivial in the sense that

will create new levels of the collection of hyperplanes Λτ , which will be conditional on

the values of X, i.e.

λτ (X) = {u′y = b̂τΓ
′

uy + x
′
β̂τ + âτ},

where x is vector of dimension p with the values of the explanatory variables and β̂τ

is the quantile regression estimate in the minimization problem similar as in (2), the

coefficient related to X.

We also can give the empirical version of this approach. For the sake of brevity

in the notation consider the following terms, Yu := u
′
Y , Y ⊥ := Γu

′
Y . Taking a
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sample of n observations of (Y i,X i) one can find the directional multivariate quantile

regression parameters as the solution of the minimization problem

min
ατ ,βτY ,βτX

1

n

n∑
i=1

ρτ (Yiu − β
′

τYY
⊥
iu − β

′

τXX i − ατ ), (3)

where X i is the vector of predictor variables, ατ is an intercept term, βτY is a direc-

tional quantile regression coefficient and βτX is the usual quantile regression coefficient

vector.

For every direction u taking into consideration, its relative hyperplane as in Defini-

tion 2.1 characterize a region which connects the notions of Tukey depth and directional

quantiles. We can say that each element (âτ , b̂τ , β̂τ ) define an upper closed quantile

halfspace

H+
τu = H+

τu(âτ , b̂τ , β̂τ ) = {y ∈ Rk : u
′
y ≥ b̂τΓ

′

uy + x
′
β̂τ + âτ} (4)

and an analogous lower open quantile halfspace switching ≥ for < in (4). Moreover,

fixing τ we are able to define the τ quantile region R(τ) as

R(τ) =
⋂

u∈Sk−1

H+
τu, (5)

where the term H+
τu might be stated slightly different, as ∩{H+

τu}, if the solution of the

minimization problem is not unique. These quantile regions are important as they can

be used to study the effect of the predictor variables in the conditional distribution of

Y .

Moreover, these quantile regions are related to the Tukey depth definition described

earlier in this section. Hallin et al. (2010) proved that indeed R(τ) = D(τ), under cer-

tain conditions. This is certainly noteworthy given that the computation of the Tukey

depth has been a point of discussion in the literature (see, for instance, Dyckerhoff and

Mozharovskyi, 2016). Now due to this directional quantile approach one can obtain

the Tukey depth region D(τ) through the analysis of R(τ). For an algorithm on how

to compute those regions, see Paindaveine and Šiman (2012). The boundary of the

quantile region is called quantile contour and usually it is the one information more

appropriate to make comparisons, instead of the whole quantile region. One might be

interested in comparing different quantile contours given different sets of the predictor
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variables, for example. Regarding the regression case for the computation of these

quantile contours, Hallin and Šiman (2017) argues that one needs severe assumptions

in order for these quantities to be the depth contours of the conditional distribution

of Y given X. An alternative would be to consider the local bilinear quantile con-

tour method proposed by Hallin et al. (2015). Despite that, here we will consider the

boundary of the quantile regions defined in (5) obtained by the halfspaces defined in

(4), as these can be considered an averaged version of the Tukey depth contour. Also,

when we write conditional quantiles in this paper, we refer to the fact that these quan-

tities are conditional on the covariate values. Guggisberg (2019) discusses this issue

and the difference to the approach proposed by Hallin et al. (2015), indicating that the

latter method could be named in fact conditional quantiles, instead of our approach.

Regardless of this we continue with the former description, as we believe this does not

cause confusion.

Finally, the minimization problem stated in (3) can be solved using algorithms

provided by the univariate quantile regression models. This is true considering that

one may see this minimization as a regression problem of Yu = u
′
Y on explanatory

variables X and Y ⊥u with an intercept term. The same path will be considered in the

next section to define a Bayesian scheme to estimate these models, while also adding

structured additive predictors and controlling for crossing quantiles.

3 Bayesian estimation with structured additive pre-

dictors and noncrossing conditional quantiles

A Bayesian quantile regression model was first proposed by Yu and Moyeed (2001) and

it considers in the likelihood the assumption of the asymmetric Laplace distribution.

The association of quantile regression and this distribution was first noted by Koenker

and Machado (1999), with a likelihood ratio test for the quantile regression parameters.

Let the density of a variable with asymmetric Laplace distribution, say Y ∼ AL(µ, σ, τ),

as

f(y;µ, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ

(
y − µ
σ

)}
, (6)

where µ ∈ R, σ > 0 and τ ∈ [0, 1]. Then the connection between these two ideas

becomes clear as one can see that minimization in (3) is equivalent to maximizing a

likelihood given n observations with density as in (6) for Yu, replacing µ by a specific
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linear predictor including a directional axis Y ⊥u .

Moreover, a more efficient representation for this distribution was proposed by

Kozumi and Kobayashi (2011), which allows for more extensions of these Bayesian

quantile regression models. This mixture location-scale representation of this distribu-

tion can be stated as follows

Yi|vi ∼ N(µ+ θvi, ψ
2σvi), vi ∼ Exp(σ)⇔ Y ∼ AL(µ, σ, τ), (7)

where θ = (1− 2τ)/(τ(1− τ)), ψ2 = 2/(τ(1− τ)) and Exp(σ) denotes the exponential

distribution with mean σ. For the multiple-output response variable, one would have

to make the assumption of the asymmetric Laplace distribution for the transformed

variable Yu while adding the regression term Y ⊥u . This was discussed by Guggisberg

(2019), where the author showed posterior consistency for this directional quantile ap-

proach. The technique was similar to the one considered in Sriram et al. (2013), where

taking into consideration misspecified models, then one can still show how the posterior

distribution still converges to the neighborhood of the true parameters. This is valid

even when the true data generating process is not the asymmetric Laplace distribution,

under certain conditions (see Sriram et al., 2013). This is also correct considering this

multiple-output Bayesian quantile regression model according to Guggisberg (2019).

Similar to the single-output method, small sample sizes also do not present good cov-

erage probabilities in our experience. In our applications though we consider only data

sets with moderate sample sizes, for which we can have more confidence for consistency

properties.

One problem which is present for quantile regression models for single-output re-

sponse variables is crossing quantiles. This issue is important because it violates a

simple probabilistic assumption, which states that the quantile function is nondecreas-

ing for τ . Hallin et al. (2010) defines the multidimensional version of this problem when

the quantile regions in (5) are nonnested. One possible solution for this difficulty is to

use the methods proposed for single-output quantile regression models to fix crossing

quantiles. In our case, this rearrangement could be made in the quantile hyperplanes

λτ (X). Though by definition these hyperplanes could cross each other, as pointed

out by one referee, we argue in the next section that their rearrangement is sufficient

to produce nested quantile regions. For instance, let us consider the application of

Section 4, where interest lies in analyzing inequality in both dimensions of income and

health, considering data from Germany. If we take the direction u = (3/
√

10, 1/
√

10),
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then we would arrive in the plots portrayed in the left side of Figure 1, for the direc-

tional quantile hyperplanes at τ = 0.10, 0, 20, . . . , 0.90, when we do not consider any

predictor variable. One can notice that the obtained hyperplanes cross in a sparse re-

gion of the data. In the application section, we show that in the presence of covariates

we arrive at nonnested quantile regions for some combination of variables. We propose

then applying methods aimed at fixing crossing quantiles for single-output response

variables for these directional quantile hyperplanes. Within the Bayesian framework,

Rodrigues and Fan (2017) proposed an adjustment based on a Gaussian process that

considers a connection between all quantiles of interest through a correlation function.

The same directional quantiles after this adjustment are depicted on the right side of

Figure 1. We show empirically that this modification is able to produce nested quantile

regions indeed.
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Figure 1: Directional quantile hyperplanes for τ = 0.10, 0.20, . . . , 0.90 for u =
(3/
√

10, 1/
√

10) before (left) and after the Gaussian process regression adjustment
(right).

3.1 Gaussian process regression adjustment for all directions

Let τ = {τ1, . . . , τL} be the set of quantiles of interest for each direction. Then, if we

assume the asymmetric Laplace distribution for the transformed variable Yu we can

use the information from neighboring quantiles to correct the crossing problem using

the approach proposed by Rodrigues and Fan (2017). For that, first remember that we

can write the conditional quantile function of Yu|X ∼ AL(µ, σ, τ) as a function of the
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parameter vector θ = (µ, σ, τ) (see Yu and Zhang, 2005) as

QYu(p|θ) = F−1(p; θ)

=


µ+

σ

1− τ
log
(p
τ

)
, if 0 ≤ p ≤ τ

µ− σ

τ
log

(
1− p
1− τ

)
, if τ ≤ p ≤ 1

,

which can be seen as the induced quantile function for all p ∈ (0, 1) given a particular

fixed τ . If we substitute µ by its linear predictor, for instance, and take every posterior

sample t obtained in MCMC procedure, then we can have a sequence of induced con-

ditional quantile values for each fixed τ and each direction u, Q
(t)
Yu

(p|θ). An important

result from Rodrigues and Fan (2017) states that one can consider only the mean of

the pth quantile from each model τ ∈ τ , as

Q̂s(p|θ) =
1

T

T∑
t=1

Q(t)(p|θ),

where T is the number of posterior samples. Then to smooth the information between

quantiles, one can assume a Gaussian process to these induced posterior means, as

Q̂s(p|θ) = g(τ) + ε, with g(τ) ∼ GP (0, K), (8)

ε ∼ N(0,Σ),

where Σ is a L × L covariance diagonal matrix, with entries σ2(p|τ), posterior vari-

ances of the corresponding Q(t)(p|θ), and K is a L× L covariance matrix with entries

calculated by the squared exponential kernel

k(τ, τ
′
) = σ2

k exp

{
− 1

2b2
(τ − τ ′)2

}
,

which controls the correlation between the estimated quantiles, where b is the band-

width parameter and σ2
k is a variance hyperparameter of the prior. The authors of

the method suggests that σ2
k can be set to 100, for example, without causing perfor-

mance issues and also resulting in a noninformative prior. Though one must be careful

with larger values for this parameter, as it might create computational problems while

inverting matrices involved in the process.

The Gaussian process in (8) allows one to model the correlation structure between
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the quantiles of interest for a given direction, making it possible to use the information

from all quantiles to obtain a final quantile estimate. The final pth estimate is then

the adjusted posterior mean, Q̂a(p|θ), which is obtained from the posterior predictive

distribution at τ = p. Let g(τ = p) ∼ N(µ∗, σ
2
∗) be the posterior predictive distribution,

then we have the following

µ∗ = Q̂a(p|θ) =
L∑
l=1

ωlQ̂s(p|θl) and

σ2
∗ = σ2

′

+ σ2(p|τ = p),

where σ2
′

= k(p, p)−WK(., p) and W = K(., p)T (K + Σ)−1, and ωl is a term of the

row vector of weights W .

Rodrigues and Fan (2017) show that for any τ1 ≤ · · · ≤ τL, it always exist a band-

width b such that Q̂a(θ1|θ) ≤ · · · ≤ Q̂a(θL|θ), solving the problem of noncrossing quan-

tiles, which might affect quantiles when these are estimated separately. The authors

also proved that posterior consistency is achieved, if the initial model is consistent.

Given these results, they suggest an algorithm, for which we suggest a modification,

given the ordered vector of directions U = {u1, . . . , uD}.

1. Fit L separate quantile regression models, τ = {τ1, . . . , τL};

2. Obtain induced quantile posterior means Q̂s(τ |θ), for all X and τ = {τ1, . . . , τL};

3a. For the first direction u1, initialize the algorithm with b ≈ 0 and keep increasing

b by appropriate values until there are no quantile estimates crossing. Do this

check for X positioned in the hull of the sample space and τ = {τ1, . . . , τL}.

3b. For uk, 1 < k ≤ D, initialize the algorithm with b = bk−1, the bandwidth of

the previous direction and decide whether to increase or decrease b, given the

presence or absence of crossing quantiles, respectively.

For our directional model, the only difference between our approach and the one

proposed by Rodrigues and Fan (2017) is the possibility of using the bandwidth of

neighboring directions, which borrows the information along the different directions and

could improve the performance of the algorithm. This adjustment for each direction u

allows us to define the quantile region as in (5) based on halfspaces determined after
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the Gaussian process regression adjustment, as

Ra(τ) =
⋂

u∈Sk−1

H+
τua , (9)

where the regression adjustment is performed for every u ∈ Sk−1. Then by sequentially

applying the results obtained by Rodrigues and Fan (2017), one can check that the τ -

quantile regions are nested

Ra(τ1) ⊆ Ra(τ2),

for τ1 < τ2. In practice, one defines a set of directions u1, . . . , uD, then for every

direction the Gaussian process regression adjustment is used in case of quantiles cross-

ing. Therefore, quantile regions based on these new estimates will preserve the nesting

property.

As correctly pointed out by one referee, it should be noted that this Gaussian

process regression adjustment for each direction is not a necessary condition to obtain

nested quantile regions, though it is a sufficient one. Taking into account that often

this adjustment is needed in sparse regions of the covariate space, which is usually also

the case for single-output models, one can expect that this modification will not lead to

false statistical properties. One of the properties regarding these directional quantile

regression is defined by Hallin et al. (2010) as a subgradient condition. This states that

P (Y ∈ H−τu)− τ = 0, (10)

which relates this directional multiple-output method to the same probability nature

of single-output quantiles. In order for this Gaussian process adjustment to be valid,

one needs to check whether this is still valid after the adjustment, i.e, whether P (Y ∈
H−τua) = τ is still true. We suggest that this check should be made whenever one

considers this approach and in fact this can be easily verified in the data. We show

these results in our application.

3.2 Structured additive predictors

While the approach proposed by Hallin et al. (2010) provides a way of analyzing these

directional quantiles of response variables of dimension greater than one, extensions to

allow for more different type of predictors, e.g., nonlinear functions, spatial or even ran-

dom effects, might not be so direct. This is due to the linear programming algorithm,
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which is necessary for estimation, and related inferential procedures attached to this

technique. Yet, it would be interesting to not only model this type of multiple-output

response, but also to add some flexibility in the structure of the predictor variables.

Hallin et al. (2015) provide the option of estimating nonlinear quantile contours, but

their approach would not be able to consider also spatial effects. For instance, when

modeling data about income and health inequalities in the next section, we could be

interested in adding not only nonlinear effects, but also spatial terms.

Taking that into consideration, we follow the proposal of Waldmann et al. (2013)

for Bayesian semiparametric quantile regression models. For presentation purposes,

here we make the necessary adjustments for our multiple-output response variable

scenario. In this case, we assume that given a sample of n observations of Y each

Yiu ∼ AL(ηiu, σu, τ). Then we can write the predictor for the location parameter as

ηiu =

q∑
j=1

fju(zi) + x
′

iβτ + y⊥iubτ , (11)

where function fj in (11) can be defined according to specific cases. For example, a

nonlinear function for a continuous variable could be considered using fj(zi) = f(zi),

where f could be approximated with p-splines or other basis functions; spatial effects

could be studied through a proper definition of fj, as well. Taking into account the

basis definition in (1), then one can write the predictor vector using a matrix notation,

ηu = Z1γ1τ + · · ·+Zqγqτ +Xβτ + Y ⊥u bτ ,

where we consider suitable basis expansions for each Zj and γjτ contain its relative

coefficients, for j = 1, . . . , q.

If we consider the mixture defined in (7), we have the following

Yu|bτ ,βτ ,γτ , σ,v ∼ N(ηu + θv, ψ2σV ), (12)

where γτ = (γ1τ , . . . ,γqτ ), V = diag(v1, . . . , vn) and βτ contains an intercept. Then

one needs to define priors distributions for ξ = (bτ ,βτ ,γτ , σ) to complete the specifica-

tion of the model. Guggisberg (2019) discusses prior elicitation for bτ and an intercept

term aτ , in which the author relates this prior to Tukey depth of the data. Waldmann

et al. (2013) show how one can setup the priors for γτ accordingly for different type

of predictors. Different from Guggisberg (2019) we do not fix the σ parameter to 1,
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instead we consider a gamma distribution as in Waldmann et al. (2013). In fact, all

prior distributions and related full posterior conditional distributions are similar to the

ones presented in the latter, with the only difference being the transformed variable Yu

of (12). Due to this, we refer to Waldmann et al. (2013) to these results.

It is important to mention that the addition of the additive terms to the estimation

does not change the innovation regarding noncrossing quantiles. What might increase

is only the computational cost, as these additive should increase the number of coef-

ficients, which increases the dimension of the Gaussian process considered in (8). In

this case, the search for a bandwidth b that fixes the quantile crossing problem might

become more troublesome.

4 Applications

4.1 Inequality data in Germany

In order to illustrate how this directional approach can shed new light to the analysis

of quantile regression models, we consider data from the Socio Economic Panel (SOEP,

2014) collected in Germany in the year of 2012, which was also analyzed by Silbersdorff

et al. (2018). For this exercise, we are interested in two dimensions of inequality in the

population, namely health and income. For the former, we use a standardized health

score which gives a good approximation of the physical well being of each person,

while for the latter we consider the logarithm of the income of the household. In

their analysis, the authors considered income as one of the explanatory variables to

try to correlate these two variables, while controlling for other variables. Here we

are interested in checking how other variables such as age, education, marital status

might affect jointly these two response variables, considering this directional Bayesian

quantile regression concept.

In order to explain the conditional distribution of these two variables, we select a

few variables to estimate these directional bivariate quantile regression models. These

are age, sex, educational level (edu: elementary education or less [1], secondary educa-

tion [2], higher vocational training [3], completed higher education [4]), family status

(FamStat: married [1], separated or divorced [2], single [3] or widowed [4]), and a

dummy variable to differentiate the West from the East part of Germany (EW). Both

responses variables were scaled, i.e., divided to its standard deviation, in order to make

comparisons easier. The following model was then estimated for 99 equally spaced vec-
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tors in the unit circle in R2 starting with u = (1, 0), where the x coordinate is the

health score and the y coordinate is log income,

QY u(τ |X) = βu0τ + βu1τY
⊥
u + fuτ (age) + βu1τedu2 + βu2τedu3 + βu3τedu4

+ βu4τFamStat2 + βu5τFamStat3 + βu6τFamStat4 + βu7τEW + βu8τ sex,

where the indexes u and τ are used to indicate the dependence of the regression param-

eters on the direction and the quantile for every model. For variable age is modeled its

effect through a nonlinear function fuτ (.), which for this example we considered cubic

P-splines with 20 equidistant knots. Estimation was done with the BayesX software

(Belitz et al., 2015) calling its routines through a wrapper function in the software R.

The prior distributions used in this application are mainly noninformative distri-

butions. For the nonlinear effect, the coefficients γ were given a second order random

walk, i.e.,

γk ∼ N

(
2γk−1 − γk−1,

1

ν

)
k = 3, . . . , K,

where ν ∼ Ga(a, b), with a = b = 0.001. For the fixed effects, a normal prior distribu-

tion is defined centred at zero, with precision parameter ζ, where ζ is given a gamma

distribution, with hyperparameters equal to 0.001 as well. The latent variables vi have

an exponential distribution with parameter σ, for which is given a gamma prior distri-

bution with a = b = 0.001. We have tried different values for the hyperparameters in

this application, but the posterior estimates did not present any meaningful variation.

All results were obtained with chain size of 55000 samples, after discarding the first

5000 draws and recording every 50th value. All estimates are based on the posterior

means. We considered different values for τ to showcase the different features of the

model and each figure in this application have the values of τ that were used.

When we analyze this directional method, a first challenge is to visualize all the

results, taking into considerations all these chosen directions. Possibly the easier way

to compare estimates is calculating conditional quantile contours for different combi-

nations of the covariates and different quantiles. As we discussed previously about the

crossing problem for quantile regression models, here we select a combination in this

application which displays the crossing problem. For instance, in Figure 2, one can

see the estimated quantile contours for a 20 years old widowed man with vocational

training from the Western part of Germany, for τ = 0.01, 0.02 and 0.03. The plot on

the left side shows the crossing of the quantile contours in the direction of lower health
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status and higher income and also for higher income and higher health status, for

τ = 0.02 and τ = 0.03. The locations where crossing of conditional quantiles happens

are highlighted in red. And the plot on the right side presents the estimates for the

same quantiles, after using the Gaussian process regression adjustment for each direc-

tion estimate. In this second plot, the problem of crossing vanishes as proposed by this

method. One should also take notice that this issue takes place in distinct directions.

Regarding the subgradient condition in (10), we check these values for this appli-

cation before and after the Gaussian process regression adjustment. We obtained the

mean over the different and the results are presented in Table 1. First, given that

these are very extreme quantiles, it is not surprising that the subgradient conditions

are not exactly met. Though one can certainly notice that for quantiles 0.02 and 0.03,

their values actually improve after the adjustment. Overall one cannot notice a big

difference between before and after the Gaussian process regression adjustment, which

should just emphasize that this modification does not lead to a statistical dilemma.

Table 1: Estimates for the subgradient condition, averaging over the different direc-
tions, in the application before and after the Gaussian process regression adjustment.

τ Before After
0.01 0.0170 0.0208
0.02 0.0316 0.0303
0.03 0.0447 0.0404

For this application, the bandwidths obtained to fix the crossing probem were on

average equal to 139.41, but this value is influenced by the fact that in several directions

there are no crossing quantiles. Rodrigues and Fan (2017) recommend some caution

for extreme quantiles and large values for the bandwidth, which could lead to biased

estimates. Here, the largest value in one of the directions was equal 1200.50, which

could be a cause for concern. Given the previously mentioned subgradient conditions

for even these extreme quantiles, we consider that these adjustments still give a proper

representation of the conditional quantiles.

The nonlinear effect of age assumed in this application can also be displayed with the

help of quantile contours. In this case, we plot the values for the quantile contours for

values of age between 25 and 60 years old, in intervals of 2.5 years. The result is shown

in Figure 3 for τ = 0.1, 0.25. Though the clear nonlinear behavior is straightforward

to be identified checking the estimated curve as function of age for each direction, one

can still observe the variation of the quantile contours is definitely not linear. Overall,
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Figure 2: Quantile contour before and after using the Gaussian process regression
adjustment for τ = 0.01, 0.02 and 0.03. The red lines indicate where the crossing
happens in the plot on the left side.

one can say that the effect of age is increasing for the income dimension, while having

a negative impact on the health income. Additionally, variance for older ages seems to

be greater for quantile 0.1.

For instance, in the first row of Figure 4, we can compare the quantile contours of

distinct levels of education. We have that the contrast between the elementary school

or less is much stronger compared to completed higher education than compared to

secondary education. While one can definitely notice the differences in the income

dimension between the Tukey depths in the first plot, the difference in the health

dimension is not so stark. A different result we get when we analyze the second plot

concerning education levels. When we consider people with higher education then the

differences to people with elementary education or less are evident in both dimensions

for all quantiles.

Moreover, we can also study the Tukey depth divergences along the marital status

variable, as shown in the second row of Figure 4. In this case, we are interested in

checking similarities between married, separated or divorced and widowed. The first

category is the reference, with which we make the comparisons regarding the other

two levels of the variable. The dissimilarities married and separated or divorced are

more clear in the directions between u1 = (−1, 0) and u2 = (0,−1), which means for

people with lower income and lower health status. As for widowed people, it is a more
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Figure 3: Quantile contours to show the nonlinear effect of age considering a sequence
of values from 25 to 60 years old for every 2.5 years, and τ ∈ {0.1, 0.25}

complicated to specify a kind of pattern of differences in regards to the reference levels,

as that different directions or quantiles show different ordering for this pair of values

for the predictor variable.

Additionally, on one hand we can say that the differences between men and women

are not as evident, given the last row of Figure 4. On the other hand, there are clear

distinctions between East and West of Germany. Though those differences are also

more evident in the income dimension. Overall, for different combination of predictor

variables, we are able to identify different type of divergences between the quantile

contours. This shows how this approach is really able to discuss in more detail the

conditional inequalities of income and health status jointly given a set of predictor

variables. This certainly helps in a considerable way when one wants to have a more

complete picture of conditional distribution of these two response variables.
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Figure 4: Quantile contours for τ = 0.1, 0.2, 0.3, 0.4, considering average values for
variable age. First row, comparison with quantile contours between different levels of
education: elementary education or less (blue), secondary education (red left), com-
pleted higher education (red right). Second row, comparison with quantile contours
between different levels of family status: married (blue), separated or divorced (red
left), widowed (red right). Third row, left side: comparison between men (red) and
woman (blue). Third row, right side: comparison between West part of Germany (red)
and East part of Germany (blue). The τ = 0.1 quantile contour is the innermost in
the figure, while τ = 0.4 is the outermost for each scenario.
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4.2 Application to exam scores in Brazil

For a second application, we use data from the Brazilian High School National Exam

(ENEM, in Portuguese), from 2017, which is available at http://portal.inep.gov.

br/web/guest/microdados. This exam is specially important because it is used for

selecting students for admission in public universities in Brazil and it gives the scores

for each student for different disciplines, such as natural sciences, languages or math-

ematics. This allows the analysis of the multivariate conditional distribution of these

scores given other interesting covariates, such as sex, income and education levels of the

parents, high school enrollment (private/public), among others. For this illustration,

we have selected only students from the state of São Paulo, which were present for all

days of the exam, from public and private schools, who had a positive score for all

disciplines and were between age of 16 and 21 years old. After applying these filters

we have 19912 observations.

For our response variable, we use the scores in three different subjects: y1, natural

sciences ; y2, human sciences ; y3, mathematics. Our multiple output response is then

Y = (Y1, Y2, Y3) and one can see a 3D scatterplot of the data in Figure 5. Given its 3

dimensional nature of the data, it becomes harder to visualize the whole variation in

space. Due to this, for all plots in this subsection, we show the same plot in three ways,

rotating the plot to improve the analysis. We consider the angles θ as the azimuthal

direction and φ as the colatitude, fixing φ = 10◦ and using values for θ = {0◦, 45◦, 90◦}.

Figure 5: Scatterplots of the multiple-output response variable, which is the score
in the Brazilian High School National Exam for three different disciplines: y1, natural
sciences ; y2, human sciences ; y3, mathematics.

For the covariates in this application we consider sex (x1: 0 = male, 1 = female),

race (x2: 0 = non-white, 1 = white), type of school (x3: 0 = public, 1 = private),
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father1 education (x4: 0 = with at least university degree, 1 = otherwise), mother

education (x5: 0 = with at least university degree, 1 = otherwise), income level (x6: 0

= household income less than R$2811, 1 = otherwise), score on writing test (x7), and

score on languages test (x8). It was considered 512 directions in the unit ball S2 and a

plot with all the directions considered can be seen in the supplementary material. The

following model was then estimated for τ = 0.05, 0.10, and 0.20,

QY u(τ |X) = βu0τ + γu1τY
⊥
u + βu1τx1 + βu2τx2 + βu3τx3 + βu4τx4 + βu5τx5 + βu6τx6 + βu7τx7+,

for every u direction. All parameters estimates were obtained from the posterior means

for each parameter after running the MCMC chains for 22000 iterations, discarding the

first 2000 as the burn-in period and keeping every 20th draw. All prior distributions

are analogous to the ones discussed in the first application, where we have specified

noninformative prior distributions, with the exception of the nonlinear term, which is

not used in this application. For this reason, we do not repeat this information here.

Guggisberg (2019) discusses prior choices for this multiple-output problem, where the

author show how one can define a prior belief that the response variable has spherical

Tukey depth contours, which is the case for this application.

Given the posterior estimates, we are able to obtain quantile contours for a com-

bination of covariates. These regions enable us to measure the effect of the covariates

in different directions of the conditional distribution of the scores. Here we show these

estimated effects for type of school and sex, but the same plots for all variables are

available in the supplementary material. We also show an algorithm that one can use

to produce these plots.

Regarding the results, one can see how scores for private schools are higher for

most directions, in comparison with public schools, which is depicted in Figure 6.

This difference explains, in part, why there was a necessity for creation of quotas on

universities, in order to cope with these social inequalities (see e.g. McCowan, 2007).

This difference can be seen specially in the mathematics and natural sciences scores,

for all quantiles. But this disparity is less pronounced for the human sciences scores

for smaller quantiles and those students with lower scores. This indicates that between

those students with a lower score in this discipline one cannot distinguish between

public and private schools. This is another testament for this approach considering

1Here it was possible to answer the questionnaire based on the education of the man in charge of
the person taking the exam. The same applies for mother education.
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this multiple-output response variable, where one is able to view these multifaceted

conclusions.

Figure 6: Quantile contours for a comparison between private (blue) and public (red)
for different values of τ . In each row, the left plot shows the quantile contour for
colatitude angle φ = 0◦, the middle plot φ = 45◦ and the right plot φ = 90◦.

Moreover, similar remarks can be made about the differences between men and

women, which is shown in Figure 7. Particularly, there is a great difference in the

scores in mathematics between these two groups in all quantiles presented here. In

addition, in the Supplementary Material one can see other interesting results, as we do

not show the comparison for all covariates here for the sake of brevity. For instance,

the education of the mother, in this case of the dummy variable for those who have a
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university degree, has a bigger impact on the student scores than the father education,

with a similar coding. Also, variables such as income levels and race, which usually are

important to describe social differences in Brazil, do not seem to impact these scores,

when all the other variables are taken into account.

Figure 7: Quantile contours for a comparison between women (blue) and men (red)
for different values of τ . In each row, the left plot shows the quantile contour for
colatitude angle φ = 0◦, the middle plot φ = 45◦ and the right plot φ = 90◦.

Finally, this application presents some interesting conclusions when one considers

this multiple-output approach. Specifically for the multivariate distribution of the

score in these three different disciplines, as presented in Figure 5. With this directional

approach, one is able to illustrate the variation of its conditional distribution, identi-
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fying for which disciplines some differences can be considered more evident. While we

made an effort to provide a more complete visualization of the quantile contours in

this example, we emphasize that a better way of examine the effects of each variable

is by having an interactive plot. With this kind of feature, one has the possibility of

checking with more details the conclusions we briefly discuss here.

5 Conclusion and discussion

With multivariate data comes the need to have methods that explore its dependences

between variables in a reasonable way. In a regression setting, when the response

variable has more than one dimension, it becomes harder to study its conditional dis-

tribution. Directional quantile regression models for multiple-output response variables

is one option when one is interested in studying the conditional distribution of the re-

sponse variables beyond central measurements, such as the conditional mean. This

approach is directly connected to the notion of Tukey depth, which gives an idea of

ordering for multidimensional random variables. This important result of this shared

connection is specially exciting, given the usually complex nature of the algorithms

proposed to calculate the Tukey depth.

Here in this article we add the possibility of one taking a more flexible approach

to defining how the predictor variables affect this multivariate response. This is pos-

sible considering structured additive predictors in the modeling process. This idea

is accompanied by a Gaussian process regression adjustment, which guarantees non-

crossing quantiles. Both ideas considered here were proposed in the literature for the

univariate case, for which we made the necessary adjustments in the multivariate case.

In an illustration, we showed how it might be important to take into account nonlinear

functions to model certain types of predictor variables, such as age, due to the inter-

est in estimation for several directions. Besides that, in this example we were able to

identify how different combination of predictor variables might lead to very distinct

comparison for the quantile contours. We also illustrated conditional quantile contours

when the response variable has 3 dimensions, in the case of score exams in Brazil.

Moreover, the ready access to information such as quantile contours shows that

this method could be able to identify observations which lie more distant to others

even in higher dimensions, when visualization becomes an issue, for instance. What is

even more interesting is that this possible assignment is conditional on the predictor
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variables. This kind of check can be performed for every combination of predictor

variables given a set of quantiles and respective quantile contours. The only problem

when dealing with more dimensions is the necessity of choosing the directions u for

which the model is estimated. An option for this complication was proposed by Carlier

et al. (2016), where the authors define a conditional vector quantile function, aimed

for this multivariate outcome. This is done without the need to define a fixed set of

directions and this approach could be a rich material for research in the future.

Finally, with the advent of more models to deal with multivariate data comes the

responsibility of visualizing and reporting the results. As we tried to discuss throughout

the article, this is still a difficulty for more than 3 dimensions. We believe that this

could be a focus for research as well and we are currently working to propose ideas in

this direction.
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