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Abstract

Periodic patterns can often be observed in real-world event time data, possibly mixed with non-periodic arrival times. For
modelling purposes, it is necessary to correctly distinguish the two types of events. This task has particularly important
implications in computer network security; there, separating automated polling traffic and human-generated activity in a
computer network is important for building realistic statistical models for normal activity, which in turn can be used for
anomaly detection. Since automated events commonly occur at a fixed periodicity, statistical tests using Fourier analysis can
efficiently detect whether the arrival times present an automated component. In this article, sequences of arrival times which
contain automated events are further examined, to separate polling and non-periodic activity. This is first achieved using a
simple mixture model on the unit circle based on the angular positions of each event time on the p-clock, where p represents
the main periodicity associated with the automated activity; this model is then extended by combining a second source of
information, the time of day of each event. Efficient implementations exploiting conjugate Bayesian models are discussed,
and performance is assessed on real network flow data collected at Imperial College London.

Keywords Circular statistics - Network flow data - Mixture modelling - Periodic arrival times - Periodicity detection -

Statistical cyber-security - Wrapped normal

1 Introduction

Event time data exhibit periodic behaviour in many real-life
applications, for example astrophysics (Cicuttin et al. 1998),
bioinformatics (Kocak et al. 2013), object tracking (Li et al.
2010) and computer networks (Heard et al. 2014; Price-
Williams et al. 2017). The periodic arrival times can often
be mixed with non-periodic events. Therefore, to model the
generating process appropriately, it is required to correctly
distinguish the event types. This article proposes a statis-
tical method for classification of periodic arrivals within a
sequence of event times.
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This work is motivated by important applications in
computer network security. In particular, network flow (Net-
Flow) data are analysed. Network flow (NetFlow) data
provide information about Internet Protocol (IP) connections
between nodes in a computer network and have been suc-
cessfully used to monitor network traffic (Hofstede et al.
2014). These data are routinely collected in bulk at internet
routers, providing large databases of IP address connec-
tions. Commonly, a large proportion of the connections from
a network host can be ascribed to legitimate, automated
polling to various services. It is therefore an important step
in the model-building process to be able to correctly identify
which connections are due to the presence of a human at the
machine, and which others are purely automated. Making
this distinction is crucial for network monitoring and statisti-
cal intrusion detection: anomalies related to the presence of
an intruder within the network will be significantly easier to
detect when the polling connections are filtered out from the
analysis. Realistic modelling strategies seek to treat the two
components separately: Price-Williams and Heard (2020)
show that a nonparametric Wold process with step function
excitation is a suitable choice for modelling human events

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-020-09943-9&domain=pdf
http://orcid.org/0000-0002-4571-6681
http://orcid.org/0000-0002-8767-0810

1242

Statistics and Computing (2020) 30:1241-1254

in computer network traffic data. That model can only be
applied when periodic connections are not present: this arti-
cle provides a statistical framework for filtering automated
traffic when human events are mixed with polling connec-
tions.

A useful network-wide filtering approach for polling
behaviour, based on Fisher’s g-test for periodicities, was pro-
posed in Heard et al. (2014). For each pair of network nodes,
the method looks for strong peaks in the periodogram of the
event series of connections along that edge. The methodology
is specifically developed in the context of computer network
data, but it can be applied to any sequence of arrival times.
A limitation of this approach is that all connections from an
edge are deemed to be automated if the maximal periodicity
for that edge is found to be significant, whereas activity on
some network edges can contain a mixture of both automated
and human activity. For example, connections to an email
server are continuously refreshed with a fixed periodicity,
but the user might also manually ask if new messages have
been received. It is therefore potentially valuable to further
understand which of the events on such edges are actually
associated with the presence of a user. This article aims to
complement the existing methodologies and provide a data
filtering algorithm for network connection records, where
each connection on an edge will be classified as periodic or
non-periodic through a mixture probability model. Note that
the aim of the paper is not to discern malicious automated
activities, such as those generated by botnets, from human
activities, but to provide a statistical technique for separating
purely automated, polling activity, either malicious or legit-
imate, from non-periodic connections, which also include
human activity.

The problem of periodicity detection in computer network
traffic has been extensively studied in the computer science
literature. Common approaches include spectral analysis
(Barbosa et al. 2012; AsSadhan and Moura 2014; Heard et al.
2014; Price-Williams et al. 2017), which are often combined
with thresholding methods (Bartlett et al. 2011; Huynh et al.
2016; Chen et al. 2016). Alternatives include modelling of
inter-arrival times (Bilge et al. 2012; Qiao et al. 2012; Hub-
balli and Goyal 2013), where distributional assumptions are
imposed and the behaviour is tested under the null of no
periodicities (He et al. 2009; McPherson and Ortega 2011).
Finally, some authors identify signals of periodicities in the
autocorrelation function (Gu et al. 2008; Qiao et al. 2013),
using changepoint methods (Price-Williams et al. 2017) or
summary statistics computed sequentially in time windows
(Eslahi et al. 2015). Price-Williams et al. (2017) also use
wrapped distribution for detecting automated subsequences
of events, and their methodology is able to handle changes in
the periodicity and parameters in the model, but the human
activity within a periodic subsequence is not captured. Most
models proposed in the literature are aimed at classifying the
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entire edge as purely periodic or non-periodic. The model
proposed in this article further analyses the edges with domi-
nant periodicities, with the objective of recovering the human
connections, when present; each observation is separately
classified as periodic or non-periodic. The models described
in this article could make a direct contribution to real-world
network analysis, providing an efficient method for sepa-
rating human and polling connections on the same edge,
allowing deployment of the existing methodologies (Price-
Williams and Heard 2020) for analysis of the filtered events.

The remainder of the article is organised as follows: Sect. 2
summarises the use of Fisher’s g-test for identifying the dom-
inant periodicity in event time data. Using that periodicity,
Sect. 3 introduces two transformations of event times which
will be used to classify individual events as periodic or non-
periodic. Models for these two quantities are presented in
Sects. 4 and 5, respectively. Applications on real and syn-
thetic data are discussed in Sect. 6.

2 Fisher’s g-test for detecting periodicities in
event time data

Lett; < tn < --- < ty be a sequence of arrival times,
and N(-) be a counting process recording the number of
events over time. In the computer network application, N (-)
counts connections over time from the client to the server,
for any particular client and server pair. It is most practi-
cal to treat N (-) as a discrete-time process, with connection
counts aggregated within bins of fixed width §. Thus, N(¢)
will denote the number of events after #6 seconds. The
increments of the process are the corresponding bin counts
dN() =N@)— Nt —1).

After T time units of observation, the discrete Fourier
transform for the zero-mean corrected process yields the peri-
odogram

2
Q _ 1 a =2 ft
S(f) = T ;Zl{dN(t) — N(T)/T}e

The fast Fourier transform (FFT) allows efficient computa-
tion of § (fx) at the discrete-time Fourier frequencies f; =
k/T,k=1,...,m wherem = [T /2], in O(T log T) oper-
ations. Peaks in the periodogram values might correspond
to periodic signals in the sequence of arrival times. Fisher
(1929) proposed an exact test for the null hypothesis of no
periodicities using the g-statistic,

maxi<k<m Sv(fk)

g($) = -
Zlfjfm S(fl)
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The test arises in the theory of harmonic time series anal-
ysis and is the uniformly most powerful symmetric invariant
procedure (Anderson 1971) against the alternative hypothe-
sis of a periodicity existing at a single Fourier frequency, for a
null hypothesis of a white noise spectrum (for further details,
see Percival and Walden 1993). Under such a null hypothe-
sis, Fisher (1929) derived an exact p-value for arealised value
gofg (8), for which there also exists a convenient asymptotic
approximation (Jenkins and Priestley 1957):

R min{Ll/glm)
PlgS) >gl= Y (=17 (J) (1—jo"!
j=1
~ 1 — {1 —exp(—mg)}™. (2)

If an sequence of arrival times is found to be periodic at a
given significance level, the corresponding period is

A -1
P= 8 {argmaxfkilkamS(fk)} . 3)

In a Bayesian setting, methods to detect periodicities have
been developed in astrophysics and astrostatistics (Jaynes
1987), or in biostatistics and bioinformatics (de Lichtenberg
et al. 2005; Kocak et al. 2013). None of these methods are
fully scalable and as easy to interpret as the g-test; there-
fore, for the purposes of this work, the periodicities will be
obtained using (1) and the corresponding p-value (2).

In computer network traffic, if the p-value is below a
pre-specified small significance level, then the entire edge
is deemed to be periodic. Otherwise, if an edge is found to be
not significantly periodic, then it is assumed that the majority
of the activity on that edge can be ascribed to non-periodic
events, possibly related to the presence of a human at the
machine. If an edge is classified as periodic using the g-test,
it is also possible that the observed connections contain a
mixture of both polling and human activity. The objective of
this paper is to further refine the classification performance
for such mixed-type edges, classifying not only the entire
edge activity as periodic or non-periodic, but each observed
event on the edge.

The performance of the g-test on mixtures of periodic
and non-periodic event times can be investigated via simula-
tion. A sequence of 1000 events repeating every p = 10s is
generated and mixed with events generated from a Poisson
process on the same time frame, with different rates A. For
each value of A, the simulation is repeated 100 times to esti-
mate the expected p-value (2) from the g-test and the results
are reported in Fig. 1. For interpretability, the mean propor-
tion of periodic events, which is monotonically decreasing
in A, is plotted on the horizontal axis. It is clear from Fig. 1
that the expected p-value decreases when the proportion of
periodic events increases, but the p-value is sufficiently small

100
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Fig.1 Expected p-value for the g-test against the percentage of periodic
events

even when the proportion of automated events is small. For
example, for a 2% percentage of polling arrival times, the
resulting expected p-value of the g-test is ~ 0.0001.

3 Circular statistics for classifying event
times

Lett; < < -+ < ty be asequence of arrival times, and let
z = (z1,...,2N) be a vector of binary indicator variables,
such that z; = 1 if the ith event was periodic, and z; = 0 if it
was non-periodic or human-generated. For each event time
t;, the following circular transformation can be defined

2
x; = —(t; mod p). 4
P

This transformation is particularly suitable for sequences pre-
senting fixed phase polling (Price-Williams et al. 2017): the
event times are expected to occur every p seconds, with a
zero-mean random error. Wrapping the sequence to [0, 27)
also makes the methodology robust to dropouts in the obser-
vations. If the events occur p seconds after the preceding
arrival time, plus error, then the sequence exhibits fixed dura-
tion polling, and a more appropriate transformation might be:

2
Xj = 7{(11‘ —t;—1) mod p},

with x; = 0. This article mostly concerns with fixed phase
polling, but the methodology could be adapted to the case of
fixed duration polling.

The aim of this article is to use the observed vector
x = (x1,...,xy) to estimate z. For the ith event, the first
measurement, x;, will reveal whether it was synchronous with
the polling found to occur on those arrival times.

In some applications, a second known periodic effect will
be present, such as a daily or annual seasonality. Denote this
second periodicity p’, where typically p <« p’. A second
circular transformation can then be defined:
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2
yi = 7(%’ mod p’). )

Within the application in computer networks, it could be
assumed p’ = 86,400s. Such measurement will show the
time of day (which is 86,400s long when there are no clock
changes) at which the event occurred, and can be compared
against an inferred diurnal model corresponding to human
activity. More generally, one could be interested in the esti-
mation of the density of the non-periodic events on the entire
observation period, which yields the generic transformation
lTi =21t / T.

In the next section, a mixture probability model for x is
proposed, which can be used to classify events purely on
their synchronicity with the polling signal. Then, in Sect. 5
the model is extended to incorporate y, to see how much extra
discriminative information can be extracted from the time of
day. Note that the measurements (4) and (5) have both been
scaled to lie on the unit circle with domain [0, 277). This
consistency in scaling will be convenient for specifying the
full probability model (22) for event times in Sect. 5, since
this makes simultaneous use of both quantities.

4 A wrapped normal-uniform mixture model

If asequence of arrival times is classified periodic with period
p (3), then a majority of the wrapped values x from (4)
will be concentrated around a peak. A wrapped normal dis-
tribution WNg 27) (14, 02) model is therefore proposed for
those events, where o > 0 quantifies the variability of event
times around the peak location u € [0, 2). The density of
WNio,27) (1, 0%) is

[0,27)

o
dwn (x5, 0%) = Z ¢ (x 4 27k; 1, 021020 (x),

k=—00

(6)

where ¢(-;/L,02) and later q§{-;u,02} will represent,
respectively, the density and distribution functions of the
Gaussian distribution N(u, o2).

In practical applications, p will usually be relatively small;
hence, it is reasonable to assume that the density of the
non-periodic events is smooth and therefore locally well
approximated by a uniform distribution on the unit circle.
Together, these components imply a density for x; condi-
tional on the latent variable z;,

FGilz) = dn ™ (i 1, 027 Q) Mo omy (). (D)
Let & € [0, 1] be the unknown proportion of events

which are generated automatically and periodically, such that
P(z; = 1) = 6. Finally, let
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¥ = (1, 0%,0)

be the three model parameters which have been introduced.
Then, assuming the individual values of x are drawn inde-
pendently of one another, the likelihood function of the three
model parameters is

N

x 1-6
Lyl =]] {9¢£2£ d(i e o?) + 7} 1j0.2m) ().

i=1

®)

It is not analytically possible to optimise the likelihood in (8)
directly; instead, an expectation—-maximisation (EM) algo-
rithm (Dempster et al. 1977), common for mixture models,
is proposed in the next section.

4.1 An EM algorithm for parameter estimation

In order to develop an EM algorithm for estimating ¥, it
is necessary to introduce additional latent variables k¥ =
(«1, . .., k) for the mixture components in the wrapped nor-
mal model (6). For1 <i < N,ifz; = 0, thenletx; =0
with probability 1; for z; = 1 and k € Z, let

P(; = klzi = 1, i, 0%)
= o2n(k + 1); u, 0%} — P27k; w, o). )

Further, let
xilzi = Lk =k, ju, 0% ~ Ny omy (1 — 270k, 0%),

denoting a normal distribution with mean u — 27k and vari-
ance o2, truncated to [0, 277). Then, the conditional density
for x; given z; is again (7). The role of the latent variable «;
is depicted in Fig. 2.

Using the latent assignments z and k, the revised likeli-
hood function is

N 1 _ 9 l—Zi .
L(Ylx,z,0) 0<]_[( ) {00 (xi + 27iiz o)}
i=1

2

(10)

At iteration m of the EM algorithm, given an estimate
¥ of ¥, the E-step computes the Q-function

QWIY™) =E, .\, yon log L (Flx, z,0)}, (11)

where the expectation is taken with respect to the conditional
distribution of z and «, given x and ¥ . This amounts to
evaluating the so-called responsibilities,
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Fig.2 Interpretation of the
latent variable x. Suppose

x* ~ N(u, 02), x = x* mod 27
and k = (x* — x)/(2m). Then,
X ~ WN[()J,,)(M, 02) and

k = k with probability given

N(37/2,4)
........ WNio,27) (37/2,4)

by (9)
- kr=—1 k=1 >
l | | l
—27 0 12 27 47
z ¥ =x+ 27k
mod
G0 = By e g L0 @iy )1, AN 4.2 A Bayesian formulation
=P = j, ki = klxi, ¥ ™), (12)

since, using (10), the Q-function (11) then simplifies to

N

1 — O
> |ci0.0 log [ ——=
[Q(0,0) Og( . )

i=1

o
+ Z i1,k log {9¢(xi;M(m)—2ﬂk,0(2m))}}- (13)

k=—00

The responsibilities in (12) can be calculated using Bayes
theorem, giving

> i (L= '
Sitjd O (O (s wom) — 2k, 0 )Y | == ’
(14)

where the normalising constant is given by the sum
Oim) D pre—oo ® (Xis () — 27Tk/,0(2m)) + (1 — Ogm)) /27
Finally, maximising (13) with respect to ¥ as the M-step
gives:

. Zf’\,:l Y e oo (Xi 4 27K) i1k
A1) = ,

N
Doint Dohe oo GiCL)

In+1) = f(n+1) mod 27,

2 S R o (i 4 27k — fima1) i1, o
Om+1) =
Zl 1 Zk_—oo gl(l k)
Oim+1) = Z Z o =1—+ ZQ(O 0. (15
i=1 k=—o00

In practical computations, the infinite sums must be truncated
to a suitable level.

Data augmentation (Higdon 1998) can be used to construct
an analogue of the EM algorithm in a Bayesian setting,
with a Gibbs sampler for the latent variables z and k. A
convenient choice of prior distribution assumes a factorisa-
tion p(¥) = p(u, 02)p(H), where 6 ~ Beta(yy, 8o) and
(n, 02) ~ NIG(uo, Ao, @0, Bo) and NIG denotes the normal-
inverse gamma distribution. The chosen prior distributions
are conjugate for the likelihood and therefore allow the infer-
ential process to be analytically tractable (see Bernardo and
Smith 1994, for more details). The prior and posterior prob-
abilities for the latent assignments, conditional on ¥, are the
same as (9) and (14), respectively. Conditional on z, the pos-
terior distribution for the mixing proportion is

61z ~ Beta(yp + N1, 8o + No),

where N; = ZZNZI z; 1s the number of automated events and
No = N — Nj is the number of human and non-periodic
automated events. The conditional posterior distribution of
0 and o?is NIG(un,, Anys Ny, BNy ), Where

X = Z (x; + 2mK;)/ Ny,

iizi=1
Aopo + N1X
= 16
MN, )LO"‘NI ( )
ANy = Ao + Ny,

an, =ag+ Ni/2,

. AN
D @i+ 2k = 07+ ——(F — o)’

Ni

1
Bn, = Bo + 2
iizj=1

7)
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Similar to the case of (15), samples © = & mod 27 from
the posterior for (1, %) should be used, where /i is sampled
from NIG(uun,, Any» any s BNy)-

5 Incorporating time of day

The model presented in Sect. 4 only made use of x, the arrival
times once wrapped onto the unit circle according to the
estimated periodicity p (4); recall that these values reveal
the synchronicity of each event with the automated polling
signal. However, further information might potentially be
obtained from y (5), the times of day at which each event
occurred. In computer networks, this is a reasonable assump-
tion, since any human-generated events should be subjected
to some level of diurnality. This section introduces a model
for the daily distribution of human connections to help extract
this extra information. Following Heard and Turcotte (2014),
a flexible model for the distribution of arrivals of human
events through a typical day will be obtained by assuming
the density to be a step function with £ > 1 segments, written

£—1
+
/:

]llrj r/“)(y) h
1 UH T
(18)

L10,v)uree,2m) (¥) he

SO 6T ) = 2w — T + 11

The segment probabilities h = (hy, ..., hy) € [0, 11¢ sat-
isfy Zﬁ':l hj = 1, and the circular changepoints T =
(t1,...,7),0 <11 < ... < 1y < 27 determine the step
positions.

The number of segments ¢ is treated as unknown and
assigned a geometric prior with parameter v € (0, 1) and
mass function v(1 — v)*~!. The natural prior for h|t, ¢
(Bernardo and Smith 1994) is

Dirichlet[n A{(t1, ©2)}, . .., nA{(Te—1, Te)},
nA{(ze, 2) U (0, T1)}], (19)

where n > 0 is a concentration parameter and A{-} is here
taken to be the Lebesgue measure. The hierarchical specifi-
cation of the model is completed with an uninformative prior
on the segment locations: they are assumed to be the order
statistics of £ draws from the uniform distribution on [0, 277).

Given £ segments defined by changepoints 7, the Dirichlet
probabilities & can be integrated out to yield the marginal
likelihood of observing daily arrival times y, which is given
by

@ Springer

c(N)T{N, +nQ2m — 1 + 11)}
rin@r — o + )2 — 7 + )
o TN (e — 1))

= (20)
j=1 Tn(tjer — )T — Tj)Nj

where Nj’. = ZZN=1 Liz;.z;,1) (i) is the number of observa-
tions in the jthsegment, 1 < j <{—1,N;, = N—Zﬁ;ll NJ’.
andc(N) = I'2nn) /I’ 2w n+ N) is anormalising constant.

In contrast to the human events, automated periodic events
are generated regularly by the underlying polling mechanism,
which is likely to be irrespective of the time of day. Recall
from Sect. 2 that the binary indicator variable z; is defined to
be equal to 1 if the ith event was periodic, and 0 otherwise.
The approach which will now be adopted is to model the con-
ditional density for the unwrapped event time #;, depending
on the value of z;.

For simplicity of presentation, it will be assumed that the
length of the observation period, T, will be both a whole
number of days and an integer multiple of p. Under this
assumption

2r Zi 1—z;
filzi) = _f(xi|zi =D f(yilzi =0)

¢[0 27T)( ,-;/JL,UZ)Z"S()’iQE,th)Iizi’ @

implying the marginal distribution mixture density

P = 2 {00l (i 0% + (1 = 0155 7, )
22)

Figure 3 provides a graphical summary of the full model (22),
and Fig. 4 shows an illustrative example of the mixture den-
sity. Note that relaxing the assumptions of divisibility of 7 by
p or p’ simply requires straightforward calculation of corre-
sponding normalising constants in (21), and this adjustment
will be negligible when |78/ p] is large.

Since most of the prior distributions have been chosen
to be conjugate, it is possible to explicitly integrate out the
segment heights h, see (20), and the mixing proportion 6,
leading to a collapsed Gibbs sampler (Liu 1994) for infer-
ence. This is advantageous, since it reduces the simulation
effort to sampling the latent variables z and k, the parame-
ters 42 and o2 for the wrapped normal component (6), and
the number of circular changepoints £ and their locations
in the human event density (18). The algorithm is described
in detail in Appendix A.

In principle, the model could potentially be further
extended. An even more general framework for density esti-
mation in a Bayesian setting is the Dirichlet process mixture



Statistics and Computing (2020) 30:1241-1254

1247

Geometric

: Uniform
NIG Yo o @—I

Beta
@ Dirichlet i

Ho Ao a0 Bo

1

j=1,.

WN[O,ZTA’) (I‘Lv o? S(yﬁ&‘r»h)

&

Fig. 3 Graphical representation of the extended Bayesian mixture
model for separation of human and automated activity
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Fig. 4 Example of the component densities in (22), with T = 7 x
86,400 (7days), p = 21,600 (6h), u = 7,02 =1,0 = 0.5, £ = 12,
equally spaced segment locations, and step function heights & chosen
to resemble a human daily distribution of arrival times. Upper panel:
density of automated events (4 peaks per day are recorded since p =
6 h). Middle: density of human events (daily distribution repeated each
day). Lower: the resulting mixture density (22)

(Escobar and West 1995). Inference in this case is cumber-
some, but algorithms exist for relatively fast implementation
(Neal 2000).

6 Applications

The algorithms described in the previous sections have been
applied on computer network flow data collected at Impe-
rial College London, for a single client IP address X, setting

' = 86,400. In order to show the efficacy of the meth-
ods for filtering polling traffic, examples are presented using
simulated data, a synthetically fused mixture and some raw
network flow data.

6.1 Simulated data

The performance of the Gibbs sampler in recovering the cor-
rect densities for the model in Sect. 5 is first assessed on simu-
lated data. Non-periodic events were simulated from a range
of densities of increasing complexity, inspired by the test sig-
nals in Donoho and Johnstone (1994), rescaled and shifted to
represent probability distributions on [0, 27). Three distribu-
tions are used: (a) a step function density with 10 segments,
where the changepoints and segment probabilities were
sampled from a Uniform[0, 27r) and Dirichlet(l, ..., 1),
respectively, (b) a heavisine function on [0, 27), f(y) «
6 + 4sin(2y) — sgn(y/2m — 0.3) —sgn(0.72 — y/2x), (c)
afunction f(y) oc Y51, uj(1+|(y/2 — vj)/w;|)~* with
11 bumps, with the same choices of Donoho and Johnstone
(1994) for the parameters u j, v; and w}, scaled to [0, 27).
3000 events are simulated from the chosen distributions
and then assigned to a random day of the week, implying

= 86,400. Those events are mixed with 2000 periodic
events generated from a wrapped normal distribution with
mean 4 = 5 and variance o2 =1on [0, 27), rescaled and
assigned at random to windows of p = 10s over one week.
Note that the variance of the periodic signal is chosen to be
relatively large to make the inferential procedure more com-
plicated. In practical applications, the value of 0% is expected
to be much smaller.

The results of the Gibbs sampling procedure for estima-
tion of the density of non-polling events, using the model in
Sect. 5, are reported in Fig. 5. The algorithm is able to recover
the density with good confidence, even in case of departures
from the step function assumption. Note that it is not possi-
ble to expect the fit of the estimated density to correspond
perfectly to the density used to simulate the data, since the
simulation is repeated only once, for a sample of size 3000,
and the variability for the wrapped normal component was
chosen to be large.

The estimates for the remaining parameters in the sirnula-
tion using the step function density resulted in (i, & 2 0)=
(5.0162, 0.9890, 0.4022). The performance of the classifi-
cation algorithm can be assessed using the area under the
receiver operating characteristic (ROC) curve, commonly
denoted as AUC. For the step function density, the resulting
AUC score is 0.8161. For the heavisine function, the esti-

@ Springer



1248 Statistics and Computing (2020) 30:1241-1254

. |O o meor <] O 99%HPDR| = | O 99% HPDR

= 10 95% HPDR O 95% HPDR O 95% HPDR
B 90% HPDR B 90% HPDR B 90% HPDR

[—— Mean
: Truth =
= ruth g

1 —— Mean
----- Truth

2.5

Mean
Truth

1.0 2.0

0.5

0.0

0.0

LIS, L L
0o 2 4 6 8

(a) Step function with 10 changepoints

10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8

(b) Heavisine function

LIS L
10 12 14 16 18 20 22 24

(¢) Function with 11 bumps

Fig.5 Estimated daily density of non-polling events for the three simulated examples described in Sect. 6.1

Table 1 Elapsed time (s) for 1000 sweeps of the collapsed Gibbs sam-
pler for the model in Sect. 5, as a function of the number of observations
N

N 100 1000 5000

10,000 25,000 50,000

Time 1.82 10.68  52.01 122.58 292.88 729.04

mates of the parameters are (5.0268, 0.9868, 0.3882), and
AUC = 0.8007. Finally, for the function with bumps, the
estimates are (5.0162, 0.9890, 0.4022), and AUC = 0.9337.
The parameter estimates correspond to the values used in the
simulation, and the AUC values are acceptable considering
the complexity of the simulation and the fact that 6> = 1,
much larger than the values expected in applications.

The computational efficiency of the collapsed Gibbs
sampler for the model in Sect. 5 has been evaluated via sim-
ulation. Table 1 reports the elapsed time for 1000 sweeps
of the sampler for different values of N, the number of
observed arrival times. The experiments were performed run-
ning python code on a MacBook Pro 2017 with a 2.3 GHz
Intel Core i5 dual-core processor, and the events were gen-
erated using the same simulation described in this section,
with a step function density with 10 changepoints for the
non-polling events.

6.2 Synthetically labelled data: a mixture of
automated and human connections

A fusion of two different network edges is considered: first,
the activity between the client X and the Dropbox server
108.160.162.98, found to be strongly periodic at period
p ~ 55.66, with associated p-value < 0.0001; and second,
the activity between the client X and the Midasplayer server
addresses 217.212.243.163 and 217.212.243.186, which
exhibits activity exclusively during day, relating to a human
user playing the popular online game Candy Crush. Seven
days of data starting from the first observation time on each
edge were used in the present analysis, resulting in 32, 865
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Dropbox events and 4779 Candy Crush connections. The his-
tograms of daily activity for the two edges are presented in
Fig. 6. Notice that Dropbox is slightly more active at night
than during the day, which makes the analysis more difficult.
This is not an uncommon behaviour for automated edges,
which tend to ‘stand down’ during the day when a human
sits at the machine. On the other hand, Candy Crush events
only happen during working hours.

The uniform-wrapped normal mixture model (cf. Sect. 4)
fitted to the fused data using the EM algorithm quickly con-
verges to the parameter estimates ([, 62, é) = (4.3376,
0.4059, 0.8585). The same results are obtained using differ-
ent initialisation points and comparing different convergence
criteria. Given the output of the EM algorithm, it is possible
to filter the connections, keeping those such that ;,0) >
Z,fi_oo Zi(1,k) at the final iteration, where the infinite sum is
in practice truncated to a suitable level. These filtered events
are those which would be assigned to the uniform (non-
periodic) component of the mixture in (7). In total, 2818
wrapped times were classified as non-periodic, and 2386 of
these are connections to Candy Crush servers, resulting in
a false positive rate FPR = 0.013 and false negative rate
FNR = 0.501. Note that it is not surprising that approxi-
mately 50% of the Candy Crush edges are missed, because
these fall into the high density area of the wrapped normal
by chance, being approximately uniform on the p-clock.

The results from the EM algorithm were then compared
to the inferences obtained from the posterior distribution of
the parameters ¥ using the Bayesian algorithm of Sect. 4.2.
The prior parameters were set to the uninformative values
no = moho = l,a0 = Bo = yo = S = 1, although
given the large quantity of data available, the choice of the
prior is in practice not influential on the results of the pro-
cedure. The resulting mean of the posterior distribution for
¥ is 1} = (1.6%,0) = (4.3375,0.4064, 0.8583), almost
identical to the result obtained using the EM algorithm. This
is expected, since the two methods represent two differ-
ent inferential approaches for the same model. Very similar
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and Dropbox (middle) events (bin size: 5min), and polar histogram of
the daily arrival times for the mixed data (right). Bottom panel: polar

results are also obtained when filtering the data. For event
i, let z; be the Monte Carlo estimate of z;; then, classifying
events as non-periodic if z; < 0.5 yields 2810 events, and
2377 of those are Candy Crush connections, corresponding
to FPR = 0.013 and FNR = 0.502. In practice, for the
uniform-wrapped normal model, it is recommended to use
the EM algorithm, which converges faster than the Bayesian
Markov chain Monte Carlo (MCMC) procedure, providing,
as expected, equivalent results.

Finally, it is of interest to see whether the classification
performance can be improved using the extended model pre-
sented in Sect. 5. The algorithm was initialised from the
output of the EM algorithm, and the additional parameters
were set to the uninformative values v = 0.1 and n = 1,
although again the algorithm is robust to different starting
points. The resulting posterior mean estimates of wrapped
normal distribution parameters are ({1, 6%) = (4.362, 0.376)
and 6 = 0.8506 for the mixing proportion, which are
slightly different from the previous analysis; in particular,
the variance is lower. The estimated daily distribution of
the non-periodic arrival times is plotted in Fig. 6. Note that
its mean almost perfectly reproduces the histogram of the

histogram of the wrapped arrival times x; with period p = 55.66 for
the filtered periodic events and estimated wrapped normal density (left),
estimated daily density of non-periodic events (middle) and histogram
of the daily arrival times for the filtered non-periodic events (right)

daily arrival times of the Candy Crush events. The estimated
density has been obtained by sampling from the posterior dis-
tribution h|t, €, y, z for each iteration of the Gibbs sampler,
which has known form under the conjugate prior (19), and
then averaging the density across the iterations. In this case,
3947 filtered events are labelled as non-periodic (Z; < 0.5),
with 2948 true positives, corresponding to FPR = 0.030 and
FNR = 0.383. The resulting histogram of the filtered data
is plotted in Fig. 6. The posterior distribution for the number
of changepoints in the human density is approximately nor-
mally distributed around the value £ = 28, which roughly
corresponds to one changepoint per hour of the day.

The algorithms proposed in the article can be more effi-
ciently compared for classification purposes using a ROC
curve for different values of the threshold for z;. The plot for
this example is reported in Fig. 7, and it clearly shows that
the proposed methodologies correctly classify a significant
proportion of the events very well, with low false positive
rates for the threshold 0.5. Furthermore, including the daily
arrival times y in the model is clearly beneficial. For prac-
tical applications, it is recommended to choose a threshold
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that guarantees low false positive rates for detection of human
events: in this example, 0.5 seems an appropriate choice.

6.3 Real data: Imperial College NetFlow

In this example, the activity between a client Y and the server
IP 13.107.42.11, used by the software Outlook, is analysed.
The arrival times refer to a time period between August 2017
and November 2017, and 7days of activity after the first
observation were considered. The daily distribution of the
activity on the edge is reported in Fig. 8. A total number of
7583 connections were recorded. It can be observed from
the histogram that the activity on the edge is almost entirely
automatic, but the number of connections slightly increases
during working hours compared to the night (compared with
the dip observed in other automated services like Dropbox).
This suggests a mixture between human activity and polling
behaviour on this edge, which is further supported by the
nature of the software. The arrival times on the edge have
been found to be strongly periodic at period p =~ 8 s, with an
associated g-test p-value < 1077,

The uniform-wrapped normal mixture model (cf. Sect. 4),
with period 8 s, fitted using the EM algorithm converges to
the parameter estimate ({1, 62, 0) = (1.872,0.670,0.714).
In this case study, 1246 of the 7583 events were assigned
to the uniform (non-periodic) category using the criterion
gi0,00 > 0.5. Identical parameter estimates are obtained
using the Bayesian mixture model, and classification of the
connections as periodic or non-periodic is again almost the
same, with 1232 connections classified as non-periodic from
the model. Furthermore, most of the activity in the filtered
events is concentrated in working hours, even though this
is not explicitly encouraged by this model. This is promis-
ing since the algorithm has been able to recover human-like
activity from an edge that apparently seems almost entirely
automated.
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Next, the Gibbs sampler was used to infer the param-
eters of the joint Bayesian model (cf. Sect. 5). The same
prior parameter values as the previous section were used.
The convergence of the sampler to the correct target is again
almost immediate. The number of non-periodic connections
was estimated as 1430. The resulting posterior mean for the
parameters of the wrapped normal distribution for the polling
component is (2, 6%) = (1.885,0.6249) and 6 = 0.6935
for the mixing proportion. The daily distribution of the non-
periodic connections is reported in Fig. 8 and displays a
strong diurnal pattern, suggesting human behaviour has been
classified well.

However, it is also evident that in this example, the
algorithm classifies as human a proportion of connections
occurring during the night. Potential issues that can arise are
multiple periodicities or phase shifts within the same data
stream. A possible solution would be to iteratively repeat the
analysis on the filtered non-periodic events until no signifi-
cant short-term periodicities are obtained using the g-test. In
this example, repeating the analysis with period 8s allows
the residual automated activity to be filtered out, thereby
obtaining an estimated daily distribution which is entirely
consistent with human-like behaviour, shown in Fig. 8e.
After this last stage of the analysis, only 181 events are
retained as human-generated, corresponding to &~ 2.5% of
the initial 7583 events. This proportion is consistent with
results obtained in previous studies on computer network
data (Price-Williams et al. 2017).

The performance of the algorithm for filtering polling
activity can also be assessed by comparing the model fit to
both the filtered and unfiltered event streams when applying
the nonparametric Wold process model of Price-Williams
and Heard (2020), which has been shown to be suitable
for human-like events in computer network traffic. There,
a counting process of human-generated events is modelled
with a conditional intensity represented as a step function
with an inferred number of changepoints. If yi, y2, ... are
the event times of such a counting process Y (), the condi-
tional intensity has the form

4
@) =+ Y Aot = Yy, (23)
j=1

where 0 = 19 < 71 < ... < 71¢ are a finite sequence of
changepoints and A1 > ... > A, are a decreasing sequence
of corresponding step heights, representing the fall in inten-
sity experienced as the waiting time increases between the
current time ¢ and the most recent event yy(,). In contrast,
periodic network events are not self-exciting; their condi-
tional intensity would decrease immediately after an event,
and only increase when the next periodic signal is anticipated.
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Price-Williams and Heard (2020) used predictive p-values
to assess model fit of the intensity model (23); defining yg =
0 and the compensator function A(t) = f;:O Ay (s)ds, a
lower-tail p-value of the ith waiting time is

pi =1—exp[—{AQ) — AQi-D}]. (24)

Figure 9 reports the O—Q plot of the distribution of
predictive p-values (24) obtained using the first 4days of
observations as training data and the remaining days as
test data, for both the unfiltered and filtered non-periodic
events from Fig. 8c. The distribution of the p-values clearly
improves when the filtered non-periodic events are used. The
Kolmogorov—Smirnov (KS) score, based on the maximum
absolute difference between the empirical and theoretical
CDFs, significantly decreases for the filtered events, reaching
a value which is consistent with the results obtained by Price-
Williams and Heard (2020) on Imperial College NetFlow
data.
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(right). Bottom: resulting estimated daily density of non-periodic events
(left) from applying the algorithm once, and then the estimated daily
density of human events (right) obtained from re-applying the algorithm
with the same periodicity on the filtered events from plot (c)
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This example strikingly shows characteristics of real com-
puter network traffic data: the activity on automatic edges
only slightly increases during the day due to the presence
of a human at the machine. Despite these difficulties, the
algorithm was successfully able to derive a reasonable dis-
tribution for the human events.

7 Conclusion

In this article, a statistical framework for classification of
arrival times in event time data has been proposed. The
methodology was motivated by application to computer net-
work modelling for cyber-security. In particular, the filtering
methodology developed in Heard et al. (2014) has been
extended to network edges that present a mixture of human
and automated polling activity, in order to prevent the loss
of information caused by totally removing a seemingly auto-
mated edge from the analysis. This has initially been achieved
using a simple mixture model based on a uniform distribu-
tion and a wrapped normal distribution on the unit circle.
Frequentist and Bayesian algorithms for the estimation of
the parameters have been presented. The model has then been
extended to include available information on the daily arrival
times of the events, demonstrating significant performance
improvements on synthetic data sets with known labels.
Bayesian inference is straightforward since simple conju-
gate distributions are used, and therefore, minimal adaptation
is required from the user. Synthetically fused and real data
examples show that the model is able to successfully recover
a significant amount of the non-periodic activity and its dis-
tribution.

After fitting the model, the estimated values of the param-
eters can be used for instantaneous estimation of z;; for
classification of future arrival times #;;. Depending on the
application, it might be necessary to update the parameter
estimates from time to time as more data become available.
The Bayesian framework naturally allows for prior-posterior
updates, where the estimated posterior parameters can be
used as prior hyperparameters when new data are available
(Bernardo and Smith 1994). In that case, it would be neces-
sary to perform the inferential procedure again, including the
newly observed arrival times, and possibly removing a subset
of the old observations to both fix the overall computational
cost of the inferential procedure, which otherwise grows in
N as shown in Table 1, and allow for any adaptation in the
model.

The methodology proposed in this article generically fits
within the literature on Bayesian model-based clustering
(see Lau and Green 2007, for example), where MCMC meth-
ods are commonly used for inference on the latent allocations
and model parameters (West et al. 1994; Richardson and
Green 1997, for example). The proposed model complements
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and extends this literature, providing a Bayesian framework
for classification of event time data, when a mixture of peri-
odic and non-periodic events is observed.

Further possible extensions of the model could allow
explicit accounting for phase shifts, using mixtures of
wrapped normals with shared variances for the automated
component, or allowing for changepoints in the mean p of
the wrapped normal distribution, accounting for the arrival
order of each x;. Furthermore, the case of multiple period-
icities could be considered, using tests for multiple polling
frequencies, for example Siegel (1980), yielding periodicities
pP1,-.., Pk, and obtaining a mixture with multiple trans-
formations x;;z = (#; mod pi) X 27/pi, k = 1,..., K.
The model could also be adapted to allow for fixed duration
polling, and alternative distributions could also be consid-
ered for the automated component, for example the wrapped
Laplace distribution.

Within the application of computer network security,
improvements might be achieved by including host spe-
cific information; unified data sets of this type have recently
become available (Turcotte et al. 2018). Finally, the algorithm
can be applied independently on multiple computer network
edges, or, in principle, the same human density could be fit-
ted for all edges emanating from the same source node, but
allowing for different periodicities for traffic on each edge.

Supplementary material

The python code and datasets used in this article are pub-
licly available in the repository https://github.com/fraspass/
human_activity.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Bayesian inference

This section describes the collapsed Gibbs sampler used for
Bayesian inference on the model in Sect. 5.

Note that the full conditional distribution for the latent
variable pair (z;, «;) for the ith event factorises as
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P{(zi, ki) = (2, k)|z—i ki b, jt, 0%, €, T) =
=P =klzi =z, ti, pt, 0%)
P(zi = zlz-i, t, i, 02, £, T), (25)

where the subscript —i on a vector denotes the same vector
with the i th element removed. The first term on the right-hand
side of (25) is

P(k; = klzi, ti, i, 0%) o (xi+2k; o, o) Lo (k) 5

For the second term, it is easily seen that

P(zi = zlz—i t, b, 062, £, T)
o« Pz = zlz—i) f(tilt—i, 2,y 0%, £, T). (26)

The first term on the right-hand side of (26) can be rewritten
as the marginalised prior probability ratio P(z) /P(z_;). Note
that:

I'(N1 + yo)I"(Nog + 80) I (0 + d0)
F'(N+yw+38&) I'(yo)I ()

P(z) =

Hence, letting N~ P = Zi,# z;i» be the number of classified
periodic events excluding the ith event,

Nl_i+)/0

Pi=1lz-i)=——"F.
(@ = llz—) N—1+4p+d

and P(z; = 0]z_;) = 1 —P(z; = 1|z_;). For the second term
of 26),forz; = 1, f(tilzi = 1, 11, 02) o pig”™ (i3 11, 02).
For z; = 0, from (20) it follows that

f@ilt—i,zi=0,z_;, ¢, 1) < fily_;,zi =0,2-4,¢,T)

B i 20@iN Uig ez Oi) + 0(Tjrg1 — Tjv) @7
(N +2mm) (tjos1 — Tj) ’

where j* € {1,...,£ — 1} is the segment [z, Tj«y) con-
taining y;. If j* = ¢, then 7+ — 7+ in (27) is substituted
by A{(0, 71) U (¢, 27)} =27 — 70 + 17.

For inference on y and o2 conditional on the samples for
which z; = 1, the results in (16) and (17) still apply. Fur-
thermore, inference for the number and location of circular
changepoints is possible using reversible-jump Markov chain
Monte Carlo (RIMCMC) (Green 1995), with a combination
of birth, death and shift moves for changepoints.
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