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Abstract

This paper tackles the challenge presented by small-data to the task of Bayesian

inference. A novel methodology, based on manifold learning and manifold sam-

pling, is proposed for solving this computational statistics problem under the fol-

lowing assumptions: 1) neither the prior model nor the likelihood function are

Gaussian and neither can be approximated by a Gaussian measure; 2) the number

of functional input (system parameters) and functional output (quantity of inter-

est) can be large; 3) the number of available realizations of the prior model is

small, leading to the small-data challenge typically associated with expensive nu-

merical simulations; the number of experimental realizations is also small; 4) the

number of the posterior realizations required for decision is much larger than the

available initial dataset. The method and its mathematical aspects are detailed.

Three applications are presented for validation: The first two involve mathemati-

cal constructions aimed to develop intuition around the method and to explore its

performance. The third example aims to demonstrate the operational value of the

method using a more complex application related to the statistical inverse identi-

fication of the non-Gaussian matrix-valued random elasticity field of a damaged

biological tissue (osteoporosis in a cortical bone) using ultrasonic waves.
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1. Introduction

1.1. Overview of the Bayesian approach

The Bayesian approach is a very powerful statistical tool that provides a rig-

orous formulation for statistical inverse problems and about which numerous pa-

pers and treatises have been published [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In

general, this approach requires the use of variants of the Markov Chain Monte

Carlo (MCMC) methods [13] for generating realizations (samples) of the poste-

rior model given a prior model and data typically derived either from numerical

simulations or from experimental measurements. This probabilistic approach is

extensively used in many fields of physical and life sciences, computational and

engineering sciences, and also in machine learning [14, 15, 16] and in algorithms

devoted to artificial intelligence [17, 18].

In the supervised case, the most popular Bayesian approach consists in con-

structing the likelihood function using a Gaussian model. For instance, using the

output predictive error, the conditional probability density function (pdf) of the

random quantity of interest, Q, given a value w of the random parameter W, is

constructed using the equation Q = f(W) + B in which B is a Gaussian ran-

dom vector that accounts for modeling errors introduced during the construction

of the mathematical/computational model of the system (represented by the de-

terministic mapping f) and/or the experimental measurements errors. Although

generally more efficient than their alternatives, MCMC generators for sampling

from the posterior distribution [19, 12], still require a large number of calls to the

computational model, which can present insurmountable difficulties for expen-

sive models, specially when dealing with high-dimensional problems (functional

inputs/outputs). Generally, this situation requires the introduction of a surrogate

model for f in order to decrease the numerical cost such as the Gaussian-process

surrogate model including Gaussian-process regression and linearization tech-

niques (see for instance [20, 21, 22] for calibration of computer models, [23, 24]

for formulations using Gaussian processes, and [25, 26, 27, 28, 29] for algorithms

adapted to large-scale inverse problems in the Gaussian likelihood framework).

Nevertheless, the additive Gaussian noise model for the likelihood is not al-

ways sufficient and embedded models have to be considered for the likelihood.

Consequently, the Bayesian approach becomes much more computationally tax-

ing, in particular for high-dimension where it can become outright prohibitive.

This is the case if Q = f(W) is replaced by Q = f(W,U) in which U is a random
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vector. For instance, U corresponds to the spatial discretization of a non-Gaussian

tensor-valued random field appearing as a coefficient in a partial differential oper-

ator. In such a case, the conditional probability density function of Q = f(w,U),
given W = w, involves solving the forward problem for a several realizations of

U. A number of procedures have been proposed in recent to tackle this challenge,

ranging from adapted representations [30, 31], to reduced-order models, and sur-

rogate models (see for instance, [32, 33, 34, 35, 36] for reduced-order models and

[37, 38, 39, 40] for stochastic reduced-order models). Many methods based on the

use of polynomial chaos expansions have also been developed (see for instance,

[41, 42, 43, 12] for the identification of stochastic system parameters and ran-

dom fields in stochastic boundary value problems, [44, 45, 46, 31] for Bayesian

inference in inverse problems, and [47, 48] for explicit construction of surrogate

models).

The Bayesian approach for parameter estimation in the non-Gaussian embed-

ded likelihood case has significantly been developed for low dimension [49, 50]

and using filtering techniques and functional approximations [51, 52, 53, 54].

Recently, a nonparametric Bayesian approach for non-Gaussian cases has been

proposed [55] for which the invertible covariance matrix of the Gaussian kernel-

density estimation is optimized by taking into account the unknown block depen-

dence structure.

1.2. Framework of the developments and difficulties involved

This paper is devoted to the Bayesian inference for the small-data challenge

using probabilistic learning on manifolds. We consider the case Q = f(W,U)
in which W, U, Q are random variables with values in Rnw , Rnu , Rnq , and

where (w, u) 7→ f(w, u) is a nonlinear mapping. In addition to the mapping f,

only two pieces of information are available. The first one consists of an initial

dataset (the training set), DNd
, made up of Nd independent realizations (sam-

ples) {(qj,wj), j = 1, . . . , Nd} of random variables (Q,W). The second piece

of information consists of an experimental dataset, Dexp
nr

, used for updating, and

consisting of nr given independent experimental realizations (measures or simu-

lations) {(qexp,r, r = 1, . . . , nr} of Q. The objective then is to construct, using the

Bayesian approach, a set of νpost realizations, {wpost,ℓ, ℓ = 1, . . . , νpost} of the poste-

rior random variable, denoted by Wpost. The following requirements have guided

the development of the proposed methodology.

1. The non-Gaussian case is considered. The conditional probability distri-

bution of Q given W = w is not Gaussian. For instance, mapping f is not
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additive with respect to the Gaussian random vector U, contrarily to the case

for which the output-predictive-error formulation is used, which consists in

adding to Q = f(W) a Gaussian noise U.

2. The problem is in high dimension, either of nq and nw can be large.

3. The number Nd of realizations of the prior model is small, which means

that we are in the context of the small-data challenge. This situation can be

induced, for instance, by the use of an expensive computer code for gener-

ating the set DNd
of realizations.

4. The number nr of experimental realizations is small.

5. The number νpost of the posterior realizations required for decision is large.

1.3. Outline of the proposed method

In order to improve numerical conditioning, the initial dataset DNd
is scaled

using an adapted affine transformation into a dataset DNd
made up of the Nd in-

dependent realizations {(qj ,wj), j = 1, . . . , Nd} of the scaled random variables

(Q,W) with values in Rnq × Rnw . Using this same affine transformation, exper-

imental dataset Dexp
nr

is transformed into a scaled experimental dataset Dexp
nr

made

up of the nr independent realizations {qexp,r, r = 1, . . . , nr}.

Each of the requirements listed in Section 1.2 presents its own significant chal-

lenges which are addressed throughout the paper.

(i)- For addressing the small-data challenge, the probabilistic learning on mani-

folds (PLoM), which has been introduced in [56], is used. This PLoM allows for

generating a learned dataset (big dataset) Dνar of νar additional realizations of the

prior model of the scaled random vector (Q,W) in which the number νar can be

arbitrarily large (νar ≫ Nd), using only information defined by the scaled initial

dataset DNd
. The convergence of the learning with respect to Nd is investigated.

This learned dataset Dνar allows for constructing an accurate estimate of the pos-

terior distribution.

(ii)- For addressing the high-dimension data challenge, two reduced-order repre-

sentations are separately constructed, one for random vector Q and another one

for random vector W, using for each one a principal component analysis (PCA)

based on their covariance matrix estimated with the νar additional realizations that

are extracted from the learned dataset Dνar . Random vector Q (resp. W) is then

transformed into a random vector Q̂ (resp. Ŵ) with values in Rνq (resp. in Rνw).
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In general, but depending on the application, the reduced dimensions are such that

νq ≪ nq and νw ≪ nw. It should be noted that a direct construction by PCA of

a reduced-order representation of random vector X = (Q,W) cannot be done be-

cause we need to have a separate representation for the projected random variable

Q̂ and for its counterpart Ŵ in order to be able to write Bayes formula. Conse-

quently, the random vector Q̂ (resp. Ŵ) is centered with an empirical-estimated

covariance matrix that is the identity matrix [Iνq ] (reps. [Iνw ]). The centered ran-

dom variables Q̂ and Ŵ, which are statistically dependent, are then correlated.

This means that the empirical-estimated covariance matrix [CX̂ ] of random vector

X̂ = (Q̂, Ŵ) is not a diagonal matrix. The (2 × 2) block writing of [CX̂ ] (with

respect to Q̂ and Ŵ) exhibits two block diagonal identity matrices, namely [Iνq ]
and [Iνw ], but there are extradiagonal block matrices that, in general, are not equal

to zero. At this stage, there is an additional difficulty that is related to the fact that,

in general, matrix [CX̂ ] is not invertible or is not sufficiently well conditioned to

carry out the algebraic manipulations necessary for the construction of the poste-

rior pdf based on the use of the Gaussian kernel-density estimation method, using

the learned dataset Dνar . Most often, in the literature, either the rank of [CX̂ ] is

assumed to be less than ν = νq+νw (in this case, adapted algebraic methods have

been proposed) or matrix [CX̂ ] is assumed to be invertible (in that case, there is

no difficulty). However, no adapted method seems to have been proposed for the

”intermediate” case. Therefore, we had to develop a novel regularization [Ĉε] of

[CX̂ ] in order to achieve the required robustness.

(iii)- To ensure the robustness of proposed methodology, several ingredients have

been analyzed, tested, and validated.

- The first one (as explained above) is related, if necessary, to the construction

of a regularization [Ĉε] in M+
ν of [CX̂ ] in order to obtain a positive-definite inverse

matrix [Ĉε]
−1 whose condition number is of order 1 and for which the value of the

hyperparameter ε can be set, independently of applications.

- The second one is related to the construction of the MCMC generator for

obtaining a robust algorithm for the computation of the νpost realizations of Wpost

whose posterior pdf is ppost

Ŵ
. This pdf is explicitly deduced from the Gaussian

kernel-density representation of the joint pdf p
Q̂,Ŵ using the νar additional realiza-

tions of (Q̂, Ŵ) and the nr experimental realizations of Q̂. This MCMC generator

is the one (but adapted to the posterior model) used for the PLoM. However, it has

been seen through many numerical experiments that a normalization with respect

to the covariance matrix of the posterior model Ŵ
post

of Ŵ had to be made in order
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to improve the robustness of the algorithm. Unfortunately, although the expres-

sion of ppost

Ŵ
is explicitly known, the algebraic calculation of this covariance matrix

is not possible and, as it will be explained in the following, an approximation has

to be constructed. Finally, a statistical reduction along the data axis is performed

using a diffusion maps basis in order to avoid a possible scattering of the posterior

realizations generated, which then allows for preserving the concentration of the

posterior probability measure (when such a concentration exists).

1.4. Organization of the paper

In order to discuss and motivate the intricate interplay between the requirements

presented in Section 1.2 necessary details concerning PMoL and the various mod-

eling choices are included in the paper, which is organized as follows.

Section 2 is devoted to the mathematical statement of the problem. In Section 3,

we introduce the scaling of the initial dataset. Section 4 deals with the generation

of additional realizations for the prior probability model using the probabilistic

learning on manifolds while the reduced-order representations for Q and W are

constructed in Section 5 using the learned dataset. Section 6 is devoted to the

Bayesian formulation for the posterior model and Section 7 deals with the non-

parametric statistical estimation of the posterior pdf using the learned dataset, for

which a regularization model is proposed. The dissipative Hamiltonian MCMC

generator is detailed in Section 8 for the posterior pdf. The question relative to

the choice of a value of the regularization parameter is analyzed in Section 9.

Three applications are presented in Sections 10 and 11. The first two are rela-

tively simple and can easily be reproduced. The third application is devoted to

the ultrasonic wave propagation in biological tissues for which W is the random

vector corresponding to the spatial discretization of a non-Gaussian tensor-valued

random elasticity field of a cortical bone exhibiting osteoporosis. In order to retain

clarity throughout the paper, several of the mathematical and algorithmic details

have been relegated to 6 appendices. Appendix A is a summary of the algorithm

of the probabilistic learning on manifolds. In Appendix B, we give the proof of

the convergence of the random sequence X(νq ,νw) related to the introduction of the

reduced-order representations of Q and W. The proof of the range of the values of

the covariance matrix of X̂ = (Q̂, Ŵ) is detailed in Appendix C. In Appendix D,

we give the proof of the consistency of the estimator of the regularized pdf of

X̂, for which an upper bound is constructed as a function of ε, νar, and ν. The

construction of the diffusion-maps basis for the posterior model is detailed in Ap-

pendix E. Finally, the Störmer-Verlet scheme for solving the reduced-order ISDE

is given in Appendix F.
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Notations

Lower-case letters such as q or η are deterministic real variables.

Boldface lower-case letters such as q or η are deterministic vectors.

Lower-case letters q, w, and x are deterministic vectors.

Upper-case letters such as Y or H are real-valued random variables.

Boldface upper-case letters such as Y or H are vector-valued random variables.

Upper-case letters Q, U, W, and X are vector-valued random variables.

Lower-case letters between brackets such as [y] or [η] are deterministic matrices.

Boldface upper-case letters between brackets such as [Y] or [H] are matrix-valued

random variables.

n: dimension (n = nq + nw) of vector x or X.

nq: dimension of vectors q, q, Q, and Q.

nr: number of independent experimental realizations.

nw: dimension of vectors w, w, W, and W.

ν: dimension (ν = νq + νw) of vectors x̂ and X̂.

νar: number of additional realizations computed with the PLoM.

νpost: number of independent realizations for the posterior model.

νq: dimension of vectors q̂ and Q̂ coming from the PCA of Q.

νw: dimension of vectors ŵ and Ŵ coming from the PCA of W.

νx: dimension of vector H coming from the PCA of X (Appendix A).

[In]: identity matrix in Mn.

Mn,N : set of all the (n×N) real matrices.

Mn: set of all the square (n× n) real matrices.

M+
n : set of all the positive-definite symmetric (n× n) real matrices.

M+0
n : set of all the positive-semidefinite symmetric (n× n) real matrices.

R: set of all the real numbers.

Rn: Euclidean vector space on R of dimension n.

[y]kj: entry of matrix [y].
[y]T : transpose of matrix [y].
δkk′: Kronecker’s symbol such that δkk′ = 0 if k 6= k′ and = 1 if k = k′.
E: Mathematical expectation.

‖x‖: usual Euclidean norm in Rn.

<x, y>: usual Euclidean inner product in Rn.

‖[A]‖F : Frobenius norm of a real matrix [A].
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δkk′: Kronecker’s symbol.

2. Formulation

In this paper, any Euclidean space E (such as Rnw) is equipped with its Borel

field BE , which means that (E ,BE) is a measurable space on which a probability

measure can be defined. In this section, we first detail the mathematical formula-

tion of the problem introduced in Section 1 and we state the objective.

Defining the stochastic mapping F and the initial dataset DNd
. Let w 7→ F(w) be

a stochastic mapping from Rnw into the space L2(Θ,Rnq) of all the second-order

random variables defined on a probability space (Θ, T ,P) with values in Rnq . The

vector w (the input) belongs to an admissible set C
w
⊂ Rnw and is modeled by a

second-order random variable W = (W1, . . . ,Wnw) defined on (Θ, T ,P) with

values in Rnw , for which the support of its probability distribution PW(dw) is C
w

,

and which is assumed to be statistically independent of F. The quantity of interest

(the output) is a random variable Q = (Q1, . . . ,Qnq) defined on (Θ, T ,P) with

values in Rnq , which is written as Q = F(W), which is statistically dependent

of F and W, and which is assumed to be of second order. For the problem con-

sidered, the only available information consists of a given initial dataset (training

set) constituted of Nd independent realizations {(qjq,wj
d), j = 1, . . . , Nd} of ran-

dom variable (Q,W) with values in Rnq × Rnw .

Example of stochastic mapping F and origin of the given initial dataset DNd
. The

stochastic nature of the mapping F deserves a clarification. It is induced by the di-

vision of the input random parameters of a computational model into two separate

subsets only one of which is initially observed, and the influence of the other sub-

set is manifested as uncertainty about the mapping. Thus consider, for instance,

a large-scale stochastic computational model of a discretized stochastic physical

system for which the random quantity of interest is written as Q = f(W,U). The

random variable U = (U1, . . . ,Unu) is construed as a hidden variable defined on

(Θ, T ,P), with values in Rnu , with probability distribution PU(du), and which

is statistically independent of W. The function (w, u) 7→ f(w, u) is a measurable

mapping from Rnw ×Rnu into Rnq , which is a representation of the solution of the

stochastic computational model. Consequently, the joint probability distribution

PW,U(dw, du) of W and U is PW(dw)⊗PU(du). For all w in Rnw , stochastic map-

ping F is such that F(w) = f(w,U). The origin of the initial dataset DNd
can come

from the computation of Nd independent realizations {qjd, j = 1, . . . , Nd} such
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that q
j
d = f(wj

d,U(θj)), in which {wj
d = W(θj)}j are Nd independent realizations

of W generated with PW(dw), and where {U(θj)}j are Nd independent realiza-

tions of U generated with PU(du). It should be noted that realizations {U(θj)}j
are not explicitly included in the initial dataset.

Introducing the random variable X and its realizations. We then introduce the

random variable X = (Q,W) defined on (Θ, T ,P), with values in Rn (n =
nq + nw), and for which the probability distribution, PX(dx), on Rn is unknown,

and for which the initial dataset defined by

DNd
= {xjd = (qjd,w

j
d), j = 1, . . . , Nd} , (1)

is the only available information.

Existence hypothesis of probability density function for X. It is assumed that the

unknown probability distribution PX(dx) admits a density pX(x) with respect to

the Lebesgue measure dx on Rn. Therefore, the joint probability distribution

PQ,W(dq, dw) on Rn of Q and W admits a density pQ,W(q,w) with respect to

the Lebesgue measure dq dw on Rn. The probability distributions PQ(dq) and

PW(dw) of Q and W admit the densities pQ(q) =
∫
pQ,W(q,w) dw and pW(w) =∫

pQ,W(q,w) dq with respect to the Lebesgue measures dq on Rnq and dw on Rnw ,

respectively. The conditional pdf q 7→ pQ|W(q|w) on Rnq of Q given W = w

in C
w
⊂ Rnw is such that pQ,W(q,w) = pQ|W(q|w) pW(w). Since the support of

pW is C
w
⊂ Rnw , if w is given in Rnw\C

w
, then pW(w) = 0, and consequently,

q 7→ pQ,W(q,w) is the zero function. It should be noted that hypothesis PX(dx) =
pX(x) dx would not be satisfied if F was a deterministic mapping, F(w) = f(w)
independent of U, because the support, Snw = {(w, f(w)),w ∈ C

w
⊂ Rnw} of

PX(dx) on Rn, would be the manifold of dimension nw in Rn, consisting of the

graph of the deterministic mapping f.

Specifying the experimental dataset Dexp
nr

. An experimental dataset Dexp
nr

is given

and is constituted of nr independent experimental realizations of Q,

Dexp

nr
= {qexp,r, r = 1, . . . , nr} , (2)

that are also assumed to be independent of realizations {qjd}j .

Objective. As explained in Section 1, the objective is to generate realizations
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{wpost,ℓ, ℓ = 1, . . . , νpost} of the posterior model of W for which the only available

information consist of the initial dataset DNd
associated with a prior model of W

and of the experimental dataset Dexp
nr

.

3. Scaling the initial dataset

Initial dataset DNd
can be made up of heterogeneous numerical values and

must be scaled for performing computational statistics. Let xmax = maxj{xjd},

xmin = minj{xjd}, and βx = xmin be a vector in Rn. The diagonal (n × n) real

matrix [αx]kk′ = (xmax
k − xmin

k )δkk′ is invertible. The scaling of random vector X

with values in Rn is the random vector X with values in Rn such that

X = [αx]X + βx , X = [αx]
−1(X− βx) . (3)

From Eq. (3), the scaled random variables Q and W with values in Rnq and Rnw

can directly be deduced,

Q = [αq]Q + βq , Q = [αq]
−1(Q− βq) , (4)

W = [αw]W + βw , W = [αw]
−1(W− βw) . (5)

The Nd realizations of X are then {x
j
d}j with x

j
d = [αx]

−1(xjd − βx). The scaled

initial dataset is then defined by

DNd
= {x

j
d = (qj

d,w
j
d), j = 1, . . . , Nd} , (6)

in which q
j
d = [αq]

−1(qjd − βq) and w
j
d = [αw]

−1(wj
d − βw). The collection of

these Nd vectors {x
j
d}j in Rn is represented by the matrix [xd] such that

[xd] = [x1
d . . . x

Nd
d ] ∈ Mn,Nd

. (7)

In the following, we will use the scaled random variable X = (Q,W) with values

in Rn = Rnq × Rnw . The experimental dataset Dexp
nr

defined in Section 2 is scaled

using Eq. (4), yielding the scaled experimental dataset,

Dexp
nr

= {qexp,r, r = 1, . . . , nr} , qexp,r = [αq]
−1(qexp,r − βq) . (8)

If Q = f(W,U) (see the example of stochastic function F presented in Section 2),

then Q can be rewritten as

Q = f(W,U) , (9)
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in which f corresponds to the induced transformation of mapping f.

4. Generating additional realizations for the prior probability model using

the probabilistic learning on manifolds

As explained in Section 1.2, the framework of this paper is the Bayesian ap-

proach for the small-data challenge because Nd is assumed to be small. The

Bayesian method allows for updating the prior pdf pW on Rnw of W using ex-

perimental dataset Dexp
nr

relative to Q with values in Rnq in order to obtain the

posterior pdf ppost

W on Rnw . Clearly, the posterior pdf strongly depends on the joint

pdf pQ,W on Rnq × Rnw . Consequently, a bigger dataset Dνar (that we have called

”learned dataset” in Section 1.3),

Dνar = {xℓ
ar = (qℓ

ar,w
ℓ
ar), ℓ = 1, . . . , νar} , (10)

which is made up of νar ≫ Nd independent realizations of X = (Q,W), is re-

quired for the two following reasons:

- a better estimate of prior pdf pW has to be constructed usingDνar instead ofDNd
.

- the non-Gaussian conditional pdf q 7→ pQ|W(q|w) on Rnq of Q for given W = w

in Rnw has to be correctly estimated thus requiring a big dataset such as Dνar . The

use of DNd
for such an estimation would not be sufficiently ”good” because Nd is

assumed to be small.

In this paper, only DNd
and Dexp

nr
are known. In addition, DNd

is assumed

to be constituted of numerical simulations performed with a large-scale compu-

tational model represented by Q = f(W,U) (see Eq. (9)) in which U is not an

”observation noise and model discrepancy”, but is for instance (as explained in

Section 1.1), the spatial discretization of a non-Gaussian tensor-valued random

field that appears as a coefficient in a partial differential operator in a stochastic

boundary value problem. In this framework, it is important to preserve the non-

Gaussian character of the conditional pdf pQ|W(·|w), which is the pdf of random

vector f(w,U). Since f and U are unknown (only DNd
is assumed to be known),

we propose to construct the big dataset (learned dataset) Dνar of additional real-

izations using the probabilistic learning on manifolds [56]. In order to facilitate

the reading of this paper, a summary of this algorithm is given in Appendix A in

which we propose numerical values and identification methods for the parameters

involved in the algorithm.
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5. Reduced-order representations for Q and W using the learned dataset

As explained in Section 1.2, dimensionn = nq+nw of random vector X can be

high. It is thus necessary to decrease the numerical cost of the MCMC generator

of ppost

W . For that and as explained in Section 1.3-(ii), a statistical reduction of Q

and W is performed using a PCA for which the learned dataset Dνar is used.

5.1. PCA of random vector Q

Let q
ar
∈ Rnq and [CQ,ar] ∈ M+0

nq
be the empirical estimates of the mean vec-

tor and the covariance matrix of Q, constructed using the additional realizations

{qℓ
ar, ℓ = 1, . . . , νar}. The PCA representation, Q(νq), of Q at order 1 ≤ νq ≤ νar

is written as

Q(νq) = q
ar
+ [ϕq] [µq]

1/2 Q̂ , (11)

in which [ϕq] ∈ Mnq,νq is the matrix of the eigenvectors of [CQ,ar] associated with

its νq largest eigenvalues µq,1 ≥ µq,2 ≥ . . . ≥ µq,νq > 0, represented by the

diagonal matrix [µq] ∈ Mνq . The value of νq is classically calculated in order that

the L2-error function νq 7→ errQ(νq) defined by

errQ(νq) =
E{‖Q − Q(νq)‖2}
E{‖Q − q

ar
‖2} = 1−

∑νq
α=1 µq,α

tr [CQ,ar]
, (12)

be smaller than εq > 0. In Eq. (12), Q stands for Q(nq). Since [ϕq]
T [ϕq] = [Iνq ],

the random variable Q̂ with values in Rνq and its νar independent realizations are

written as

Q̂ = [µq]
−1/2 [ϕq]

T (Q − q
ar
) , (13)

q̂
ℓ
= [µq]

−1/2 [ϕq]
T (qℓ

ar − q
ar
) , ℓ = 1, . . . , νar . (14)

It can then be deduced that the empirical estimate q̂ ∈ Rνq of the mean vector of

Q̂, and the empirical estimate [C
Q̂
] ∈ M+

νq of its covariance matrix are such that

q̂ = 0 , [C
Q̂
] = [Iνq ] . (15)

Therefore, the components Q̂1, . . . , Q̂νq of Q̂ are centered and uncorrelated but

they are statistically dependent because, in general, Q̂ is not a Gaussian vector.
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5.2. Projection of experimental dataset Dexp
nr

Using the representation of Q (at convergence) defined by Eq. (11), the exper-

imental dataset Dexp
nr

is transformed into the data set D̂exp
nr

such that

D̂exp

nr
= {q̂

exp,r
, r = 1, . . . , nr} , (16)

in which q̂
exp,r ∈ Rνq is given by

q̂
exp,r

= [µq]
−1/2 [ϕq]

T (qexp,r − q
ar
). (17)

5.3. PCA of random vector W

Similarly to the PCA of Q, let war ∈ Rnw and [CW,ar] ∈ M+0
nw

be the em-

pirical estimates of the mean vector and the covariance matrix of W, which are

constructed using the additional realizations {wℓ
ar, ℓ = 1, . . . , νar}. The PCA rep-

resentation, W(νw), of W at order 1 ≤ νw ≤ νar is written as

W(νw) = war + [ϕw] [µw]
1/2 Ŵ , (18)

in which [ϕw] ∈ Mnw,νw is the matrix of the eigenvectors of [CW,ar] associated

with its νw largest strictly positive eigenvalues µw,1 ≥ µw,2 ≥ . . . ≥ µw,νw > 0,

represented by the diagonal matrix [µw] ∈ Mνw . The value of νw is calculated in

order that the L2-error function νw 7→ errW(νw) defined by

errW(νw) =
E{‖W − W(νw)‖2}
E{‖W − war‖2}

= 1−
∑νw

α=1 µw,α

tr [CW,ar]
, (19)

be smaller that εw > 0. As previously, in Eq. (19), W stands for W(nw). Since

[ϕw]
T [ϕw] = [Iνw ], the random variable Ŵ with values in Rνw and its νar indepen-

dent realizations are written as

Ŵ = [µw]
−1/2 [ϕw]

T (W − war) , (20)

ŵ
ℓ = [µw]

−1/2 [ϕw]
T (wℓ

ar − war) , ℓ = 1, . . . , νar . (21)

Therefore, as previously, the empirical estimate ŵ ∈ Rνw of the mean vector of

Ŵ, and the empirical estimate [C
Ŵ
] ∈ M+

νw of its covariance matrix are such that

ŵ = 0 , [C
Ŵ
] = [Iνw ] . (22)
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As for Q̂, the components Ŵ1, . . . , Ŵνw of Ŵ are centered, uncorrelated, and

statistically dependent (in the general case).

5.4. Convergence of the sequence of random sequence {X(νq ,νw)}νq,νw
Let X(νq,νw) = (Q(νq),W(νw)) be the random variable with values in Rn =

Rnq × Rnw . Let errX(νq, νw) = E{‖X−X(νq ,νw)‖2}/E{‖X−xar‖2} be the L2-

error function in which xar = (q
ar
,war) ∈ Rn = Rnq × Rnw . Taking into account

Eqs. (12) and (19), if νq and νw are such that errQ(νq) ≤ εq and errW(νw) ≤ εw,

then

errX(νq, νw) ≤ εq + εw . (23)

The proof of this result is given in Appendix B.

5.5. Learned dataset for the random vector X̂ = (Q̂, Ŵ) and methodology remark

For a fixed level of convergence defined by εq + εw, we introduce the learned

dataset D̂νar constituted of the νar independent realizations defined by Eqs. (14)

and (21) for the random vector X̂ = (Q̂, Ŵ) with values in Rν (ν = νq+νw), such

that

D̂νar = {x̂
ℓ = (q̂

ℓ
, ŵℓ) , ℓ = 1, . . . , νar} . (24)

The methodology proposed consists in constructing a MCMC generator of inde-

pendent realizations {ŵ
post,ℓ

, ℓ = 1, . . . , νpost} (for a given νpost as big as we want)

of the posterior model Ŵ
post

of Ŵ, for which the pdf is ppost

Ŵ
, using the learned

dataset D̂νar defined by Eq. (24) and the experimental dataset D̂exp
nr

defined by

Eq. (16). As soon as these νpost realizations have been generated, the correspond-

ing independent realizations {ŵpost,ℓ , ℓ = 1, . . . , νpost} of Wpost, given experimental

dataset Dexp
nr

for Q, are calculated using Eq. (18) and (5), by

wpost,ℓ = war + [ϕw] [µw]
1/2 ŵ

post,ℓ
, (25)

wpost,ℓ = [αw]wpost,ℓ + βw . (26)

6. Bayesian formulation for the posterior model Ŵ
post

of Ŵ given D̂exp

nr

The classical Bayes formula is used for constructing the pdf ppost

Ŵ
of the pos-

terior model Ŵ
post

of Ŵ with values in Rνw given the datasets D̂νar defined by

Eq. (24) and D̂exp
nr

defined by Eq. (16). It is assumed that the convergence level

of X(νq ,νw) is sufficient for substituting X(νq,νw) by X or equivalently, substituting

14



Q(νq) by Q and W(νw) by W. The pdf p
X̂

of X̂ with respect to the Lebesgue mea-

sure dx̂ on Rν is replaced by its nonparametric estimate using the learned dataset

D̂νar . The use of Eqs. (11) and (18) allows for deducing the measurable mapping

f̂ from Rνw × Rnu into Rνq such that

Q̂ = f̂(Ŵ,U) , (27)

in which U is the Rnu-valued random variable defined in Section 2, which is

statistically independent of Ŵ. Let w 7→ ŵ = h(w) be the continuous map-

ping from Rnw into Rνw defined by Eqs. (5) and (20), that is to say, h(w) =
[µw]

−1/2 [ϕw]
T (w−war) with w = [αw]

−1(w−βw). Let Cŵ = h(C
w
) be the subset

of Rνw such that

Cŵ = {ŵ ∈ Rνw ; ŵ = h(w) , w ∈ C
w
⊂ Rnw} . (28)

Consequently, the support of the prior pdf ŵ 7→ pŴ(ŵ) on Rνw of random variable

Ŵ is Cŵ ⊂ Rνw . The conditional pdf q̂ 7→ p
Q̂|Ŵ(q̂|ŵ) of Q̂ given Ŵ = ŵ is defined

for ŵ ∈ Cŵ. Taking into account all the hypotheses previously introduced, pdf ppost

Ŵ

is given by the Bayes formula that is written, for all ŵ in Cŵ, as

ppost

Ŵ
(ŵ) = c0 {

nr∏

r=1

p
Q̂|Ŵ(q̂

exp,r|ŵ)} p
Ŵ
(ŵ) , (29)

in which c0 is a positive constant of normalization. Let p
Q̂,Ŵ be the joint pdf of Q̂

and Ŵ with respect to the Lebesgue measure dq̂ dŵ on Rνq × Rνw . Then, for all

ŵ in Cŵ, Eq. (29) can be rewritten as

ppost

Ŵ
(ŵ) = c0 {

nr∏

r=1

p
Q̂,Ŵ(q̂

exp,r
, ŵ)} p

Ŵ
(ŵ)1−nr . (30)

7. Nonparametric statistical estimation of the posterior pdf of Ŵ using the

learned dataset D̂νar

Many works have been published concerning the multidimensional Gaussian

kernel-density estimation method [57, 58, 59, 60]. However, for the high dimen-

sional case, we propose to use a constant covariance matrix that is parameterized

by the Silverman bandwidth.
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7.1. Formulation proposed and its difficulties

Taking into account Eq. (30), we have to characterize the joint pdf p
Q̂,Ŵ that

can be deduced from an estimation of the pdf p
X̂

of X̂ = (Q̂, Ŵ). The estimate

of p
X̂

is constructed using the Gaussian kernel-density estimation method with the

learned dataset D̂νar defined by Eq. (24). The construction proposed involves the

empirical covariance matrix [C
X̂
] of X̂ given by

[CX̂] =
1

νar − 1

νar∑

ℓ=1

(x̂
ℓ − x̂) (x̂

ℓ − x̂)T , x̂ =
1

νar

νar∑

ℓ=1

x̂
ℓ
. (31)

Taking int account Eqs. (15) and (22), it can be deduced that x̂ = (q̂, ŵ) = 0.

Matrix [CX̂] is an element of M+0
ν or in M+

ν , and can be expressed in block de-

composition as,

[C
X̂
] =

[
[ Iq ] [Cqw]

[Cqw]
T [Iw]

]
, (32)

in which [Cqw] ∈ Mνq,νw is the covariance matrix of random vectors Q̂ and Ŵ. By

the Cauchy-Schwarz inequality, we have

| [Cqw]jk | ≤ 1 , j ∈ {1, . . . , νq} , k ∈ {1, . . . , νw} . (33)

Random vectors Q̂ and Ŵ are statistically dependent and are also correlated be-

cause we have introduced independent PCA decompositions for Q and W. The

following two comments are appropriate at this point.

(i)- If [C
X̂
] was invertible, the estimate p

(νar)

X̂
of p

X̂
would be written, for all x̂ in

Rν , as [61, 62],

p
(νar)

X̂
(x̂) = c1

1

νar

νar∑

ℓ=1

exp{− 1

2s2ar

< [C
X̂
]−1(x̂ − x̂

ℓ), (x̂ − x̂
ℓ)>} , (34)

in which c1 = ((2π)ν/2sνar

√
det[C

X̂
])−1 and where sar is the Silverman bandwidth

that is written as

sar =

(
4

νar(ν + 2)

)1/(ν+4)

. (35)

With such a hypothesis, from Eq. (34), it is easy to deduce p
(νar)

Q̂|Ŵ
and p

(νar)

Ŵ
.
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(ii)- Unfortunately, in high dimensions, matrix [C
X̂
] can sometimes be not invert-

ible. More critically, and also more commonly, [C
X̂
] is invertible in the computa-

tional sense but it is slightly ill-conditioned. All the numerical experiments that

have been conducted have shown that, if [C
X̂
] is slightly ill-conditioned (for in-

stance, with a condition number of the order 103 or 104, which is much smaller

that the usual tolerance on the condition number for computing the inverse of a

matrix), and if its inverse [C
X̂
]−1 is still used, then the estimate of p

(νar)

X̂
defined by

Eq. (34) induces some difficulties for the MCMC generator of the posterior pdf

defined by Eq. (29). Consequently, we propose to introduce a regularization of

[CX̂] that should be viewed as an essential part of the construction of the estima-

tion p
(νar)

X̂
of p

X̂
.

7.2. Construction of a regularization model of [CX̂]

Let [Ĉε] be a regularization model in M+
ν of [CX̂] such that its condition num-

ber is of order 1. Therefore, [Ĉε]
−1 is in M+

ν and its condition number is also of

order 1. The proposed regularization is constructed as follows. Let us consider

the following classical spectral representation of matrix [CX̂],

[CX̂] = [Φ] [λ] [Φ]T , (36)

in which the real eigenvalues are in decreasing order, λ1 ≥ λ2 ≥ . . . ≥ λν ≥ 0
and where [Φ] is the matrix in Mν of the corresponding eigenvectors. Due to of

Eqs. (32) and (33), it is proven in Appendix C that these eigenvalues are such that

0 ≤ λj ≤ 2 , j ∈ {1, . . . , ν} . (37)

If [Cqw] was the zero matrix in Mνq,νw , then matrix [C
X̂
] would be the identity

matrix and therefore, all the eigenvalues would be equal to 1. Since [Cqw] is not

the zero matrix and taking into account Eq. (37), there exists and we define (by

construction of the regularization model) the integer ν1, such that,

λν1 ≥ 1 , λν1+1 < 1 , ν1 + 1 ≤ ν . (38)

The regularization, [Ĉε] of [C
X̂
] is defined by

[Ĉε] = [Φ] [Λε] [Φ]
T , (39)
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in which the diagonal matrix [Λε] is such that

[Λε]jj = λj , 1 ≤ j ≤ ν1 ; [Λε]jj = ε2 λν1 , ν1 + 1 ≤ j ≤ ν , (40)

in which ε ∈ [εmin, 1[ were εmin > 0 is a hyperparameter that controls the regular-

ization and whose value will be of close to 0.5. The methodology for choosing

the value of ε will be presented in Section 9. The following properties can then

easily be deduced:

[Ĉε] ∈ M+
ν , [Ĉε]

−1 = [Φ] [Λε]
−1 [Φ]T ∈ M+

ν . (41)

The condition numbers of [Ĉε] and [Ĉε]
−1 are thus equal to cond([Ĉε]) = λ1/(ε

2λν1)

and cond([Ĉε]
−1) = {1/(ε2λν1)}/{1/λ1}, respectively. They clearly satisfy the

following equation,

cond([Ĉε]) = cond([Ĉε]
−1) ≤ 2

ε2
. (42)

For ε close to 0.5, the condition number is less that 8. We next make four obser-

vations relevant to the proposed regularization.

(i) Remark concerning the Tikhonov regularization. The Tikhonov regularization

[Ĉγ] of [C
X̂
] with respect to its inverse (see for instance [63]), would be such

that ŷγ = [Ĉγ]
−1 x̂, in which ŷγ is the unique solution in Rν of the optimization

problem,

ŷγ = min
ŷ∈Rν

{‖[C
X̂
] ŷ − x̂‖2 + γ2‖x̂‖2} , (43)

for any given x̂ in Rν , where γ > 0 is the regularization parameter. The unique

solution is such that ([C
X̂
]2+γ2 [Iν ]) ŷγ = [C

X̂
] x̂, which yields [Ĉγ]

−1 = ([C
X̂
]2+

γ2 [Iν ])
−1 [CX̂]. Therefore, for j = 1, . . . , ν, the eigenvalues of [Ĉγ ]

−1 are λj/(λ
2
j+

γ2) while those of [Ĉγ ]
−1 are λj + γ2/λj . This regularization shows that [Ĉγ]

−1

is not positive definite if the rank of [C
X̂
] is less that ν, and that, if the rank of

[C
X̂
] were ν, then the condition number cond([Ĉγ]

−1) of [Ĉγ]
−1, which is equal

to {λ1/λν} × {(λν + γ2)/λ1 + γ2}, goes to infinity as λν goes to zero, which is

antinomic with the property sought. Consequently, the regularization constructed

with Eq. (43) cannot be used.

(ii) Interpretation of the proposed regularization model as a Tikhonov regulariza-

tion. Let us assume that the eigenvalues λ1, . . . , λν of [C
X̂
] are such that, for ε ∈
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[εmin, 1[ with εmin > 0, and for ν1 defined by Eq. (38), we have ε2 λjλν1 − λ2j ≥ 0
for all j ≥ ν1 + 1. Let γ1, . . . , γν be the real numbers defined by γj = 0 for

j = 1, . . . , ν1 and by γj = (ε2 λjλν1 − λ2j )
1/2 for j = ν1 +1, . . . , ν. Let [Γ] be the

matrix in M+0
ν defined by [Γ] = [Φ] [γ] [Φ]T in which [γ] is the diagonal matrix

such that [γ]jk = γjδjk. It can then be seen that the regularization [Ĉε] defined by

Eq. (39) is such that, for all x̂ in Rν , ŷε = [Ĉε] x̂ in which ŷε is given by

ŷε = min
ŷ∈Rν

{‖ [CX̂] ŷ − x̂ ‖2 + ‖ [Γ] x̂ ‖2} .

(iii) Choice of the value of hyperparameter ε that controls the regularization. The

choice of the value of hyperparameter ε is presented in Section 9.

(iv) Other remarks concerning the possible regularization models. Other types of

regularization models could a priori be used.

(1) If the rank of [C
X̂
] is less than ν, the generalized inverse (or pseudo-inverse)

of [C
X̂
] (see for instance Chapter 6, pp. 163-226 in [64]) could be used. Such an

approach would lead us to introduce a new parameterization of a submanifold for

X̂ whose dimension would be the rank of [C
X̂
]. The estimation p

(νar)

X̂
of pdf p

X̂

could then be constructed by using, for instance, the approach proposed in [65].

Nevertheless, not only the construction of the pdf p
(νar)

Ŵ
of W would require an

integration on the submanifold, which would induce difficulties, but above all,

the ”separation” of the representations of Q̂ and Ŵ would be lost, and such a

”separation” is necessary for our purpose. Moreover, this approach would be

equivalent to doing a PCA of random vector X instead of two PCAs, one on Q

and the other one on W, a method that cannot be done as we have explained in

Section 5.

(2) A more classical regularization of [C
X̂
] would consist in taking [Ĉη] =

[C
X̂
] + [Cη] with [Cη] a covariance matrix in M+

ν . A choice could be [Cη] =
η2 [Iν ]. Such a model corresponds to the introduction of an additional Gaussian

noise represented by the random vector B̂η independent of X̂, such that X̂η =

X̂ + B̂η (taking into account the Gaussian kernel-density estimation used for the

estimate p
(νar)

Ŵ
of p

X̂
defined by Eq. (34)). The numerical evaluation of such a

regularization has been used for the applications presented in Sections 10 and 11,

and has demonstrated a lack of robustness when used with the MCMC generator

of ppost

Ŵ
.

(3) A regularization of the probability measure p
(νar)

X̂
(x̂) dx̂ could also be con-

structed using the Rao metric between two probability distributions [66], which
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involves the Fisher information matrix. Nevertheless, the algebraic expression of

p
(νar)

X̂
given by Eq. (34) is not easy due to the presence of the summation over

the νar realizations. In a similar framework, another way would have been to use

the Riemann metric related to the geodesic distance on the manifold related to

the positive-definite matrices [67], which is particularly well adapted to the Gaus-

sian case as proposed, for instance in [28], but which induces difficulties for the

non-Gaussian probability measure p
(νar)

X̂
(x̂) dx̂.

7.3. Construction of the regularized estimate p
(νar)

X̂
of the pdf pX̂ of X̂

The regularized estimate of p
(νar)

X̂
defined by Eq. (34) is obtained by using the

procedures detailed in Section 7.2. For ε fixed in [εmin, 1[, let [G] be the (ν × ν)
real matrix such that

[G] = [Ĉε]
−1 ∈ M+

ν , [G]−1 = [Ĉε] ∈ M+
ν , (44)

in which [Ĉε] is defined by Eqs. (39) and (40). In these conditions, the regularized

expression of p
(νar)

X̂
defined by Eq. (34) is written (keeping the same notation) as

p
(νar)

X̂
(x̂) = c2

1

νar

νar∑

ℓ=1

exp

{
− 1

2s2ar

< [G](x̂ − x̂
ℓ), (x̂ − x̂

ℓ)>

}
, (45)

in which sar is the Silverman bandwidth defined by Eq. (35) and where

c2 =

√
det[G]

sνar (2π)
ν/2

. (46)

In Eqs. (44) and (46), matrix [G] and pdf p
(νar)

X̂
depend on ε, which will be omit-

ted for notationa clarity. Let X̂
1
, . . . , X̂

νar
be νar independent copies of random

variable X̂ whose pdf is p
X̂

. For all x̂ fixed in Rν , let Pνar(x̂) be the estimator

(positive-valued random variable) corresponding to the estimation p
(νar)

X̂
(x̂) de-

fined by Eq. (45), such that

Pνar(x̂) = c2
1

νar

νar∑

ℓ=1

exp

{
− 1

2s2ar

< [G](X̂
ℓ − x̂), (X̂

ℓ − x̂)>

}
. (47)
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It is proved in Appendix D that,

E{(Pνar(x̂)− P νar
(x̂))2} ≤

{
1

νar

}4/(ν+4){
ν+2

4

}ν/(ν+4)
√
det[G]

(2π)ν/2
P νar

(x̂) , (48)

in which P νar
(x̂) = E{Pνar(x̂)}, as defined by Eq. (D.5) of Appendix D, is the

mean value that tends to p
X̂
(x̂) when νar goes to infinity and consequently, the

estimator is asymptotically unbiased and consistent. Due to the mean-square con-

vergence of the sequence of random variables {Pνar(x̂)}νar , as implied by Eq. (48),

this sequence of estimators converges in probability to p
X̂
(x̂).

Remark. Below, for notational clarity, p
(νar)

X̂
(x̂) will simply be denoted by p

X̂
(x̂),

which also means that νar is chosen sufficiently large for writing that p
(νar)

X̂
≃ pX̂.

The νar-dependence of p
Q̂,Ŵ, p

Q̂|Ŵ, and p
Ŵ

will also be omitted.

7.4. Deducing the pdf p
Q̂,Ŵ of (Q̂, Ŵ) and the pdf pŴ of Ŵ

Vector x̂ and realization x̂
ℓ

in Rν can be decomposed as x̂ = (q̂, ŵ) and x̂
ℓ
=

(q̂
ℓ
, ŵℓ) in which (q̂, ŵ) and (q̂

ℓ
, ŵℓ) belong to Rνq ×Rνw with ν = νq + νw. The

(νq × νw) block notation of matrix [G] is introduced as

[G] =

[
[Gq] [Gqw]

[Gqw]
T [Gw]

]
. (49)

Since [G] ∈ M+
ν , we have

[Gq] ∈ M+
νq , [Gw] ∈ M+

νw . (50)

From Eq. (45) and taking into account Eqs. (49)-(50), the joint pdf p
Q̂,Ŵ of Q̂ and

Ŵ (with respect to the Lebesgue measure dq̂ dŵ on Rνq ×Rνw) can be written, for

all q̂ ∈ Rνq and ŵ ∈ Rνw , as

p
Q̂,Ŵ(q̂, ŵ) = c2

1

νar

νar∑

ℓ=1

exp

{
− 1

2s2ar

ψ(q̂ − q̂
ℓ
, ŵ − ŵ

ℓ)

}
, (51)

in which the real-valued function (q̂, ŵ) 7→ ψ(q̂, ŵ) defined on Rνq × Rνw is

defined as

ψ(q̂, ŵ) =<[Gq] q̂ , q̂> +2 <[Gqw]
T q̂ , ŵ> + <[Gw] ŵ , ŵ> . (52)
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Moreover, the prior pdf p
Ŵ

of Ŵ (with respect to dŵ) can be expressed as,

p
Ŵ
(ŵ) =

∫

Rνq

p
Q̂,Ŵ(q̂, ŵ) dq̂ . (53)

From Eqs. (51) to (53), since matrix [G] is positive definite, the right-hand side of

Eq. (53) can be explicitly calculated [64],

pŴ(ŵ) = c3
1

νar

νar∑

ℓ=1

exp

{
− 1

2s2ar

< [G0](ŵ − ŵ
ℓ
), (ŵ − ŵ

ℓ
)>

}
, (54)

in which c3 is the constant of normalization and where [G0] is a positive-definite

matrix that is constructed as the following Schur complement,

[G0] = [Gw]− [Gqw]
T [Gq]

−1 [Gqw] ∈ M+
νw . (55)

8. Dissipative Hamiltonian MCMC generator for the posterior pdf of Ŵ

In Section 8.1, an MCMC generator of the posterior model Ŵ
post

of Ŵ is pre-

sented, which is based on a nonlinear Itô stochastic differential equation (ISDE)

corresponding to a stochastic dissipative Hamiltonian dynamical system for a

stochastic process {[U(t)], t ∈ R+} with values in Mνw,Ns . The number, Ns,

of columns of [U(t)] is chosen sufficiently large (but such that Ns ≤ νar) in order

to increase the exploration of space Rνw by the MCMC algorithm and to facili-

tate the construction of a reduced-order nonlinear ISDE using the diffusion-maps

basis.

The posterior pdf ppost

Ŵ
defined by Eq. (54) could require a large number of

increments in the MCMC generator if the ”distance” of experimental dataset Dexp
nr

to initial dataset DNd
is too large. For decreasing the computational burden, the

nonlinear ISDE has to be adapted with respect to the covariance matrix of Ŵ
post

.

Nevertheless, this covariance matrix is unknown and consequently, an appropriate

method has to be developed for estimating an approximation of it. Such a rela-

tively classical problem has been addressed for the case of Gaussian likelihoods

(see for instance [25]) and more recently, for non-Gaussian likelihoods in [50]

within the parametric framework. In the present work devoted to the non-Gaussian

likelihood in high dimension and in a nonparametric framework, the proposed ap-

proach consists in constructing a nonlinear ISDE adapted to the mean value and

to the covariance matrix of Ŵ
post

, which we will call, adapted nonlinear ISDE.

22



The use of an affine transformation, Ŵ
post

= uT + [A]−T Spost (constructed in Sec-

tion 8.2), which introduces the matrix-valued stochastic process {[S(t)], t ∈ R+}
such that [U(t)] = [uT ] + [A]−T [S(t)], will transform the adapted nonlinear ISDE

related to the MCMC generator of Ŵ
post

into a nonlinear ISDE for the MCMC

generator of Spost that is a non-Gaussian Rνw-valued random variable Spost, ”close

to” a centered random vector with an identity covariance matrix.

Finally, in order to avoid the data scattering during the generation of indepen-

dent realizations of [S], in Section 8.3, the nonlinear ISDE related to stochastic

process {[S(t)], t ∈ R+} will be projected on an diffusion-maps basis similarly

to the methodology of probabilistic learning on manifolds summarized in Ap-

pendix A. The final generation of realizations Ŵ
post

is summarized in Section 8.4.

8.1. Criteria for choosing a value of Ns

A natural choice would be Ns = νar. Nevertheless, in general, the number

νar of additional realizations generated by the PLoM is chosen very large in or-

der to obtain a good convergence of the statistical estimate of the probability

distribution of the posterior model. Although such a choice is always possible,

it will always induce a significant increase in computational requirements, of-

ten without attaining commensurate gains for the MCMC generator. The choice,

Ns = Nd, is logical and efficient because the generation of the additional real-

izations is done with this value by the PLoM (see Appendix A). The choice can

also be highlighted by the following criterion. The empirical estimate [C
Ŵ
] of

the covariance matrix of Ŵ, performed with {ŵ
ℓ, ℓ = 1, . . . , νar}, is the iden-

tity matrix (see Eq. (22)). Let [CNs

Ŵ
] be the empirical covariance matrix esti-

mated with {ŵ
νar−j+1, j = 1, . . . , Ns}. Integer Ns can then be chosen such

that ‖[CNs

Ŵ
] − [Iνw ]‖F/‖[Iνw ]‖F < εNs . It can easily be seen that there exists

0 < εNs < 1 such that Ns = Nd (for instance when Nd = 200 and νar = 30 000,

εNs = 0.05). Alternatively, a value of Ns can be assessed, using this same crite-

rion, for a predetermined value of εNs .

8.2. Adapted nonlinear ISDE as the MCMC generator of Ŵ
post

The nonlinear ISDE of the MCMC generator of Ŵ
post

is constructed as pro-

posed in [68, 69], which is based on the works [70] (in which more general

stochastic Hamiltonian dynamical systems are analyzed, in particular with a gen-

eral mass operator that we use hereinafter). The adapted nonlinear ISDE is de-

duced from it using a similar normalization as the one proposed by Arnst [50].

Nevertheless, in the present non-Gaussian case, the drift vector of the nonlinear
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ISDE is completely different and the affine transformation for centering and nor-

malizing the posterior model is not the same. We then introduce the matrix [A]

that appears in the affine transformation Ŵ
post

= uT + [A]−T S mentioned above.

The method presented in Section 8.2 for constructing [K] (and thus, [A]) is also

different.

Let [K] be a given matrix in M+
νw and let us consider its Cholesky factorization

[K] = [A] [A]T . (56)

Consequently, the inverse matrices [K]−1 and [A]−1 exist. As explained above,

matrix [K], which is constructed in Section 8.2, will be an approximation of the

inverse of the covariance matrix of Ŵ
post

. We consider, for t > 0, the nonlinear

stochastic dissipative Hamiltonian dynamical system represented by the following

nonlinear ISDE,

d[U(t)] = [K]−1 [V(t)] dt , (57)

d[V(t)] = [L([U(t)])] dt− 1

2
f post

0 [V(t)] dt+
√
f post

0 [A] d[Wwien(t)] , (58)

with the initial condition at t = 0,

[U(0)] = [ŵ0] , [V(0)] = [v̂0] , a.s. , (59)

in which:

(i) f post

0 > 0 is a free parameter allowing the dissipation to be controlled in the

stochastic dynamical system. This parameter is chosen such that f post

0 < 4.

The value, 4, of the upper bound corresponds to the critical damping rate for

the linearized ISDE in terms of stochastic process [S] (see Section 8.3.3).

(ii) {[Wwien(t)], t ∈ R+} is the stochastic process, defined on (Θ, T ,P), in-

dexed by R+, with values in Mνw,Ns , for which the columns of [Wwien(t)]
are Ns independent copies of the Rνw-valued normalized Wiener process

{Wwien(t), t ∈ R+} whose matrix-valued autocorrelation function is such

that [RWwien(t, t′)] = E{Wwien(t)Wwien(t′)T} = min(t, t′) [Iνw ].

(iii) [u] 7→ [L([u])] is a mapping from Mνw,Ns into Mνw,Ns , which depends on

ppost

Ŵ
and which is defined as follows. The posterior pdf ppost

Ŵ
defined by
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Eq. (30) is written as

ppost

Ŵ
(ŵ) = c0 p(ŵ) , p(ŵ) = {

nr∏

r=1

p
Q̂,Ŵ(q̂

exp,r
, ŵ)} pŴ(ŵ)1−nr . (60)

Let ŵ 7→ V(ŵ) be the potential function on Rνw such that

p(ŵ) = e−V(ŵ) , V(ŵ) = − log p(ŵ) . (61)

The matrix [u] is written as [u1 . . .uNs] with uj = (uj1, . . . u
j
νw) ∈ Rνw .

Thus, mapping [L] is defined, for all [u] in Mνw,Ns , as

[L([u])]kj = − ∂

∂ujk
V(uj) , k = 1, . . . , νw , j = 1, . . . , Ns , (62)

which can be rewritten as

[L([u])]kj =
1

p(uj)
{∇ujp(uj)}k . (63)

For j fixed in {1, . . . , Ns}, the Hamiltonian of the associated conservative

homogeneous dynamical system related to stochastic process {(Uj(t),Vj(t)),
t ∈ R+} is thus written as H(uj, vj) = 1

2
< [K]−1vj, vj> +V(uj).

(iv) [ŵ0] ∈ Mνw,Ns is defined by [ŵ0] = [ŵνar . . . ŵνar−Ns+1], in which the

Ns columns correspond to the Ns last additional realizations {ŵ
νar−j+1,

j = 1, . . . , Ns} generated by the probabilistic learning on manifolds (See

Section 4).

(v) [v̂0] ∈ Mνw,Ns is any realization of a random matrix [V̂0] independent of

process [Wwien], for which the columns {V̂
j

0, j = 1, . . . , Ns} are Ns inde-

pendent Gaussian centered Rνw-valued random variables such that the co-

variance matrix of V̂
j

0 is [K]−1 for all j.

It can be proven (see Theorems 4 to 7 in Pages 211 to 216 and the invariant

measure Page 240 of [70]) that the nonlinear ISDE defined by Eqs. (57) to (59)

admits the unique invariant measure,

⊗Ns
j=1 {ppost

Ŵ
(uj) p

V̂
(vj) duj dvj} , (64)
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in which p
V̂
(vj) = (2π)−νw/2 exp{−1/2 < [K]−1vj , vj >}. In addition, these

Theorems can be used to show that Eqs. (57) to (59) have a unique solution

{([U(t)], [V(t)]), t ∈ R+}, which is a second-order diffusion stochastic process

that is asymptotic for t→ +∞ to the stationary stochastic process {([Ust(tst)], [Vst(tst)]),
tst ∈ R+} for the right-shift semi-group on R+. For all fixed tst, the joint prob-

ability distribution of the random matrices [Ust(tst)] and [Vst(tst)] is the invariant

measure defined by Eq. (64) and the probability distribution of random matrix

[Ust(tst)] is

⊗Ns
j=1 p

post

Ŵ
(uj) duj , (65)

that is to say, is the probability distribution of the random matrix [Ŵ
post

] with

values in Mνw,Ns , for which the columns Ŵ
post,1

, . . . , Ŵ
post,Ns

are Ns independent

copies of random vector Ŵ
post

whose pdf is ppost

Ŵ
defined by Eq. (60). It can then

be deduced that, for any fixed tst,

[Ŵ
post

] = [Ust(tst)] = lim
t→+∞

[U(t)] . (66)

Equation (66) implies that Eqs. (57) to (59) represent an MCMC generator for

ppost

Ŵ
. The free parameter f0 allows for controlling the transient response generated

by the initial condition for quickly reaching the stationary solution (note that the

invariant measure is independent of f0). It can also be proven that the asymptotic

stationary solution is ergodic [71].

Expression of the mapping [L] adapted to computation. An explicit algebraic ex-

pression is constructed for the mapping [u] 7→ [L([u])] defined by Eq. (63), using

Eqs. (60) for p, Eqs. (51) and (52) for p
Q̂,Ŵ, and Eqs. (54) and (55) for p

Ŵ
. These

equations show the presence of a summation of exponential terms (summation

over the number νar of realizations q̂
ℓ

and ŵ
ℓ

of Q̂ and Ŵ). Consequently, an

adapted algebraic representation must be developed in order to minimize the nu-

merical cost for each evaluation of [L([u])] and to avoid numerical noise, overflow,

and underflow during the computation. Several expressions have been developed

and evaluated. We present the most efficient one with respect to the above criteria.

For k = 1, . . . , νw, for j = 1, . . . , Ns, and for [u] = [u1, . . . , uNs] in Mνw,Ns ,

[L([u])]kj =
1

s2ar

{−[G0w] uj − bexp + (1− nr) a0(u
j) +

nr∑

r=1

ar
1(u

j)}k , (67)
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where a0(u
j) = (a0,1(u

j), . . . , a0,νw(u
j)) and ar

1(u
j) = (ar1,1(u

j), . . . , ar1,νw(u
j))

are vectors in Rνw such that

a0(u
j) =

(
νar∑

ℓ=1

w̃
ℓ
0 ζ

ℓ
0(u

j)

) (
νar∑

ℓ=1

ζℓ0(u
j)

)−1

, (68)

and for r ∈ {1, . . . , nr},

ar
1(u

j) =

(
νar∑

ℓ=1

w̃
ℓ
1 ζ

rℓ
1 (uj)

) (
νar∑

ℓ=1

ζrℓ1 (uj)

)−1

. (69)

- In Eq. (67), the symmetric (νw × νw) real matrix [G0w] is given by

[G0w] = (1− nr) [G0] + nr [Gw] . (70)

From Eqs. (50) and (55), it can be deduced that [G0w] ∈ M+
νw for nr ≥ 2. The

vector bexp ∈ Rνw is given by

bexp = [Gqw]
T

nr∑

r=1

q̂
exp,r . (71)

- In Eq. (68), for all ℓ ∈ {1, . . . , νar}, we have

w̃
ℓ
0 = [G0] ŵ

ℓ ∈ Rνw , (72)

ζℓ0(u
j) = exp

{
− 1

2s2ar

‖ [L0] (u
j − ŵ

ℓ)‖2
}

∈ R+ , (73)

in which the upper triangular (νw×νw) real matrix [L0] follows from the Cholesky

factorization, [G0] = [L0]
T [L0].

- In Eq. (69), for all ℓ ∈ {1, . . . , νar}, we have

w̃
ℓ
1 = [Gw] ŵ

ℓ
+ [Gqw]

T q̂
ℓ ∈ Rnw , (74)

and for r ∈ {1, . . . , nr},

ζrℓ1 (uj) = exp

{
− 1

2s2ar

(prℓ0 + prℓ1 (u
j))

}
∈ R+ , (75)
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in which the positive real number prℓ0 is expressed as

prℓ0 = ‖ [Lq] (q̂
exp,r − q̂

ℓ
)‖2 , (76)

with [Lq] the real upper triangular (νq × νq) Cholesky factor, [Gq] = [Lq]
T [Lq],

and where

prℓ1 (u
j) = ‖ [Lw] (u

j − ŵ
ℓ)‖2 + 2 < [Gqw]

T (q̂
exp,r − q̂

ℓ} , uj − ŵ
ℓ> , (77)

where the upper triangular (νw×νw) real matrix [Lw] is obtained from the Cholesky

factorization, [Gw] = [Lw]
T [Lw].

- The numerical experiments that have been carried out have shown that, for the

computation of ζrℓ1 (uj) defined by Eq. (75), the term in the exponential must be

computed before exponentiation in order to avoid underflow and numerical noise.

8.3. Transformation of the adapted nonlinear ISDE for the generation of Ŵ
post

In this section, we construct the transformation introduced at the beginning of

Section 8, we deduce the nonlinear ISDE from the adapted nonlinear ISDE, we

verify that the construction proposed satisfies the criteria, and finally, we present

the numerical aspects for the computation.

8.3.1. Construction of the transformation

The covariance matrix of Ŵ
post

can neither explicitly be calculated using pdf

ppost

Ŵ
nor estimated by computational statistics. Indeed such an estimation would

require an integration on Rnw , integration that has to be estimated using the Monte

Carlo method [19, 12] with respect to a pdf for which a large number of realiza-

tions would be drawn (for instance using the νar additional realizations of the

prior model of W, or using a uniform pdf). The use of ppost

Ŵ
is not possible since

the generator is under construction and as of yet unknown. Even in relatively high

dimension, this approach can be prohibitive since the normalization constant c0
of ppost

Ŵ
is unknown and has to be numerically estimated. Consequently, an ap-

proximation of the covariance matrix of Ŵ
post

is performed using a linearization

of mapping [u] 7→ [L([u])] around an approximation, denoted by ŵ
exp

, of the mean

value E{Ŵ
post} of Ŵ

post

that is also unknown (because only experimental realiza-

tions {q̂
exp,r

, r = 1, . . . , nr} of Q̂ are assumed to be available. Let us assume that

ŵ
exp

is a given vector in Rnw , which will be identified in Section 8.3.5. For given
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vector u in Rνw , let L(u) = (L1(u), . . . , Lνw(u)) be the vector in Rνw such that,

for k = 1, . . . , νw and for j = 1, . . . , Ns, the component Lk(u
j) of L(uj) is

Lk(u
j) = [L([u])]kj , [u] = [u1 . . .uNs] , (78)

in which [L([u])] is defined by Eq. (62). Matrix [K] ∈ M+
νw introduced in Sec-

tion 8.2, for which the factorization [K] = [A] [A]T is given by Eq. (56), is then

defined for all k and k′ in {1, . . . , νw}, as

[K]kk′ =

{
∂2V(u)
∂uk∂uk′

}

u=ŵ
exp

= −
{

∂

∂uk′
Lk(u)

}

u=ŵ
exp

. (79)

From this definition, matrix [K] is symmetric, but there is not necessarily positive

definite for any value of ŵ
exp

, because function u 7→ V(u) defined by Eq. (61),

is not, a priori, convex on Rνw for the non-Gaussian pdf ppost

Ŵ
. However, it can

be assumed that u 7→ V(u) is locally convex in the neighborhood of u = ŵ
exp

if this vector is correctly estimated (see Section 8.3.5). Therefore, [K] will be in

M+
νw (this property will effectively be checked numerically in the algorithm (see

Section 8.3.4)). The first-order Taylor development of u 7→ L(u) around u = ŵ
exp

is written as

L(u) = L(ŵexp) + [∇uL(u)]u=ŵ
exp(u − ŵ

exp) + o(‖u − ŵ
exp‖) ,

which yields the following linearized expression,

Llin(u) = L(ŵexp)− [K] (u − ŵ
exp) , [K] = −[∇uL(u)]u=ŵ

exp . (80)

Let uT ∈ Rνw be the solution of the equation Llin(uT ) = 0, which is such that

uT = ŵ
exp + [K]−1 L(ŵexp) . (81)

The transformation of stochastic process {[U(t)], [V(t)], t ∈ R+}, involved in the

adapted nonlinear ISDE defined by Eqs. (57) to (59), is written as

[U(t)] =[uT ] + [A]−T [S(t)] , (82)

[V(t)] =[A] [R(t)] , (83)

in which [uT ] = [uT . . .uT ] ∈ Mνw,Ns , where [A] is defined by Eq. (56), and where

{([S(t)], [R(t)]), t ∈ R+} is the new stochastic process with values in Mνw,Ns ×
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Mνw,Ns , such that

[S(t)] =[A]T ([U(t)]− [uT ]) , (84)

[R(t)] =[A]−1 [V(t)] . (85)

8.3.2. Nonlinear ISDE for stochastic process {([S(t)], [R(t)]), t ∈ R+}
Substituting Eqs. (82) and (83) into Eqs. (57) and (58), using Eqs. (84) and

(85) for transforming the initial conditions defined by Eq. (59), simple algebraic

manipulations yield, for t > 0, the following nonlinear ISDE,

d[S(t)] = [R(t)] dt , (86)

d[R(t)] = [L̃([S(t)])] dt− 1

2
f post

0 [R(t)] dt+
√
f post

0 d[Wwien(t)] , (87)

with the almost-sure initial condition at t = 0,

[S(0)] = [s0] , [R(0)] = [r0] . (88)

The matrices [s0] and [r0] in Mνw,Ns are given by

[s0] =[A]T ([ŵ0]− [uT ]) , (89)

[r0] =[A]−1 [v̂0] . (90)

The mapping [s] 7→ [L̃([s])] from Mνw,Ns into Mνw,Ns is written as

[L̃([s])] = [A]−1 [L([uT ] + [A]−T [s])] . (91)

8.3.3. Verifying that the linearized ISDE is well adapted for stochastic process

{([S(t)], [R(t)]), t ∈ R+}
Using Eqs. (80) and (81), the linearization [L̃lin([s])] of [L̃([s])] defined by

Eq. (91) is such that [L̃lin([s])] = −[s]. From Eqs. (86) and (87), it can be deduced

that the linearized ISDE is written as

d[Slin(t)] = [Rlin(t)] dt ,

d[Rlin(t)] = −[Slin(t)])] dt− 1

2
f post

0 [Rlin(t)] dt+
√
f post

0 d[Wwien(t)] .

Let us write [Slin(t)] = [Slin,1(t) . . .Slin,Ns(t)] whose columns are statistically de-

pendent for t > 0 due to the coupling by the initial conditions defined by Eqs. (89)
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and (90). Nevertheless, for the asymptotic solution (t → +∞), denoted as

{([Slin(tst)], [R
lin(tst)]), tst ∈ R+}, these are statistically independent and it is known

(see for instance Page 241 of [70]) that each column {Slin,j(tst), tst ∈ R+} of

{[Slin(tst)], tst ∈ R+} is a Gaussian, stationary, centered stochastic process whose

covariance matrix [C lin] = E{Slin,j(tst) Slin,j(tst)
T} is independent of j and such

that [C lin] = [Iνw ]. This result shows that the nonlinear ISDE defined by Eqs. (86)

to (91) is well adapted to the covariance matrix of the asymptotic stochastic pro-

cess {[S(tst)], tst ∈ R+} and therefore, to the covariance of [Wpost] via the transfor-

mation defined by Eqs. (82) and (83). It can be seen that f post

0 = 4 corresponds to

the critical damping rate of the linearized dynamical system.

8.3.4. Numerical aspects for computing matrix [K]

Assuming that ŵ
exp

is given in Rνw , we must calculate [K] defined by Eq. (79).

Although the algebraic calculation can actually be carried out, the corresponding

numerical implementation carries a numerical cost that is greater than the direct

numerical calculation of the gradient. This last approach will thus be pursued. Let

{∆tα, α = 1, 2, . . .} be a decreasing sequence of positive real numbers that goes

to zero. Let [Kα] be the sequence of matrices in Mνw such that

[Kα]kk′ = − 1

∆tα
(Lk(ŵ

exp +
∆tα
2

ek
′

)− Lk(ŵ
exp − ∆tα

2
ek

′

)) , (92)

in which {e1, . . . , eνw} is the canonical basis of Rνw . Matrix [K] is then defined

as [Kαopt ] in which, for all α > αopt, the symmetrization error is sufficiently small

for the Frobenius norm and all the eigenvalues are strictly positive.

8.3.5. Estimating ŵ
exp

The algorithm proposed for estimating ŵ
exp

is based on a predictor-corrector

method. The predictor is based on the fact that the size νar of the learned dataset,

Dνar , constructed in Section 4 using the PLoM, can be chosen as large as required.

(i)- Predictor. The predictor of ŵ
exp

is the vector ŵ
exp,pred ∈ Rνw such that

ŵ
exp,pred = E{Ŵ | Q̂ = q̂

exp} , (93)

in which q̂
exp = (1/nr)

∑nr

r=1 q̂
exp,r

is the vector in Rνq where q̂
exp,r

is defined by
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Eq. (17). Therefore, we have

ŵ
exp,pred =

∫
Rνw ŵ p

Q̂,Ŵ(q̂
exp
, ŵ) dŵ∫

Rνw pQ̂,Ŵ(q̂
exp
, ŵ) dŵ

, (94)

where p
Q̂,Ŵ is defined by Eqs. (51) and (52). The calculation of the integrals in

Eq. (94) can be explicitly evaluated yielding,

ŵ
exp,pred =

∑νar
ℓ=1 w̃

ℓ
2 ζ

ℓ
2∑νar

ℓ=1 ζ
ℓ
2

, (95)

in which w̃
ℓ
2 belongs to Rνw and is written as

w̃
ℓ
2 = ŵ

ℓ − [Gw]
−1 [Gqw]

T (q̂
exp − q̂

ℓ
) , (96)

and where ζℓ2 is positive and such that

ζℓ2 = exp

{
− 1

2s2ar

< [G1] (q̂
exp − q̂

ℓ
) , q̂

exp − q̂
ℓ
>

}
. (97)

The matrix [G1] is the Schur complement defined by

[G1] = [Gq]− [Gqw] [Gw]
−1 [Gqw]

T ∈ M+
νq . (98)

(ii)- Corrector. We introduce the maximum log-likelihood of the posterior model,

ŵ
exp = max

ŵ∈Rνw
log ppost

Ŵ
(ŵ) . (99)

Using Eq. (60) for ppost

Ŵ
with Eqs. (51) and (52) for p

Q̂,Ŵ, and Eq. (54) for p
Ŵ

, the

non convex optimization problem can be rewritten as

ŵ
exp = max

ŵ∈Rνw
J(ŵ) , (100)

in which J(ŵ) is written as

J(ŵ) = (1− nr) log

{
νar∑

ℓ=1

ζℓ0(ŵ)

}
+

nr∑

r=1

log

{
νar∑

ℓ=1

ζrℓ1 (ŵ)

}
, (101)
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where ζℓ0(ŵ) is defined by Eq. (73) and where ζrℓ1 (ŵ) is defined by Eq. (75). The

corrector of ŵ
exp,pred

is the vector ŵ
exp

that is constructed by solving the nonconvex

optimization problem defined by Eq. (100) using the interior-point algorithm for

which the initial point is chosen as ŵ0 = ŵ
exp,pred

that is computed using Eq. (95).

8.4. Projection of the nonlinear ISDE for stochastic process {([S(t)], [R(t)]), t ∈
R+} using a diffusion-maps basis

In order to avoid a possible scattering of the generated realizations constructed

by solving the nonlinear ISDE defined by Eqs. (86) to (91) and in order to preserve

a possible concentration of the measure P
Ŵ

post(dŵ) = p
Ŵ

post(ŵ) dŵ on Rνw , a

projection of the ISDE is carried out using the diffusion-maps basis following the

methodology of the PLoM that is summarized in Appendix A. We then obtain a

reduced-order nonlinear ISDE.

8.4.1. Construction of the diffusion-maps basis for the posterior model

The diffusion-maps basis is represented by the matrix

[gs] = [g1
s . . . g

mpost
s ] ∈ MNs,mpost

with 1 < mpost ≤ Ns ≤ νar , (102)

which is constructed using the set of independent realizations {sj , j = 1, . . . , Ns}
that result from the transformation defined by Eq. (84) of the set {ŵ

νar−j+1, j =

1, . . . , Ns} extracted form the learned dataset D̂νar (see Eq. (24)). We then have,

sj = [A]T (ŵνar−j+1 − uT ) ∈ Rνw , j = 1, . . . , Ns , (103)

in which uT ∈ Rνw is defined by Eq. (81). The construction of this diffusion-maps

basis is summarized in Appendix E.

8.4.2. Reduced-order nonlinear ISDE

The reduced-order nonlinear ISDE is obtained by projection on diffusion-

maps basis [gs] ∈ MNs,mpost
of the nonlinear ISDE relative to the (Mνw,Ns ×

Mνw,Ns)-valued stochastic process {([S(t)], [R(t)]), t ∈ R+} defined by Eqs. (86)

to (91). We then introduced the (Mνw,mpost
×Mνw,mpost

)-valued stochastic process

{([Z(t)], [Y(t)]), t ∈ R+} such that,

[S(t)] = [Z(t)] [gs]
T , [R(t)] = [Y(t)] [gs]

T , t ≥ 0 . (104)
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Stochastic process {([Z(t)], [Y(t)]), t ∈ R+} is then the solution of the reduced-

order nonlinear ISDE (obtained by projection) such that, for all t > 0,

d[Z(t)] = [Y(t)] dt , (105)

d[Y(t)] = [L̃([Z(t)])] dt− 1

2
f post

0 [Y(t)] dt+
√
f post

0 d[Wwien(t)] , (106)

with the almost-sure initial condition at t = 0,

[Z(0)] = [z0] , [Y(0)] = [y0] . (107)

The matrices [z0] and [y0] in Mνw,mpost
are written as

[z0] = [s0] [as] , [y0] = [r0] [as] , (108)

in which matrices [s0] and [r0] in Mνw,Ns are defined by Eqs. (89) and (90), and

where [as] is the matrix such that

[as] = [gs] ([gs]
T [gs])

−1 ∈ MNs,mpost
. (109)

In Eq. (106), [L̃([Z(t)])] is such that

[L̃([Z(t)])] = [L̃([Z(t)] [gs]
T )] [as] , (110)

in which [L̃([s])] is defined by Eq. (91), and where

[Wwien(t)] = [Wwien(t)] [as] . (111)

8.5. Construction of realizations of Ŵ
post

The independent realizations {ŵ
post,ℓ, ℓ = 1, . . . , νpost} (used in Eq. (25)) of

Ŵ
post

whose pdf is ppost

Ŵ
defined by Eq. (60), are constructed using the discretization

of the reduced-order ISDE defined by Eqs. (105) to (107). The number, νpost, of

realizations is reparameterized as

νpost = npost

MC
×Ns , (112)

in which npost
MC is a given integer. Let [Wwien(·; θ)] with θ ∈ Θ be a realiza-

tion of the Wiener stochastic process [Wwien] defined in Section 8.2-(ii). Let

{([Z(t; θ)], [Y(t; θ)]), t ∈ R+} be one realization of the (Mνw,mpost
×Mνw,mpost

)-
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valued stochastic process {([Z(t)], [Y(t)]), t ∈ R+}, which is computed by solv-

ing Eqs. (105) to (107) with the Störmer-Verlet scheme detailed in Appendix F for

which the sampling step is ∆t. Let ℓpost

0 be the integer such that, for t ≥ ℓpost

0 ∆t,
the solution of Eqs. (105) to (107) is asymptotic to the stationary solution. There-

fore, the independent realizations of Ŵ
post

can be generated as follows. Let M post

0

be a given positive integer. Using Eqs. (82) and (104), for n = 1, . . . , npost
MC and

for tℓ′ = ℓ′∆t with ℓ′ = ℓpost

0 + nM post

0 , we have, for j = 1, . . . , Ns and for

k = 1, . . . , νw,

ŵ
post,ℓ
k = [uℓ

′

]kj , ℓ = j + (ℓ′ − 1)Ns , (113)

[uℓ
′

] = [uT ] + [A]−T [sℓ
′

] , [sℓ
′

] = [Z(tℓ′; θ)] [gs]
T . (114)

In this method of generation, only one realization θ is used and M post

0 is chosen

sufficiently large in order that [Z(tℓ′)] and [Z(tℓ′+M post

0
)] be two random matrices

that are approximatively independent.

9. Choice of the value of the regularization parameter ε

The regularization introduced in Section 7.2 was aimed to facilitate the non-

parametric statistical estimation of the pdf p
X̂

of random variable X̂ = (Q̂, Ŵ)
with values in Rν = Rνq × Rνw , using the multidimensional Gaussian kernel-

density estimation (see Eq. (45)). As already explained in that section, the pro-

posed regularization depends on the parameter ε and on the criterion for selecting

ν1. Consequently, the posterior pdf ppost

Ŵ
of Ŵ, which is directly deduced from

p
X̂

, depends on ε. There is no prior information constraining ε chosen, which is

typical when regularizations are introduced. Further, a mathematical exploration

of Eq. (48), aimed at deducing such constraints, seems intractable.

It may seem possible to compute an optimal value of ε by minimizing the L1-

norm of the difference between the pdf of Q̂
post

and the pdf of Q̂
exp

. This is not

possible if nr is small, because the quality of the nonparametric estimation of the

pdf of Q̂
exp

would not be sufficiently good. If nr is sufficiently large for obtaining

a good estimation of Q̂
exp

, then an algorithm could proceed as follows. For a

given value of ε, the first stage would consist of using the algorithm presented in

this paper for estimating the pdf of Ŵ
post

and then generating the νpost realizations

{ŵ
post,ℓ, ℓ = 1, . . . , νpost} of Ŵ

post

(which depend on ε). The second stage would

consist of estimating the pdf of Q̂
post

using the conditional pdf of Ŵ
post

given Q̂ =
q̂, which has to be evaluated for the νpost realizations {ŵ

post,ℓ
, ℓ = 1, . . . , νpost} (and

not, using the conditional pdf of Ŵ given Q̂ = q̂, which should then be evaluated
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for the experimental realizations of Ŵ, which are not available). Note that the

complexity of such an approach would be similar to the one that we have used

for estimating the pdf of Ŵ
post

. The pdf of Q̂
post

that would be estimated would

depend on ε. The third stage would consist of solving an optimization problem

with respect to ε for which the objective function would be the L1-norm of the

error. Such a non convex optimization problem would be relatively tricky and

numerically expensive.

Consequently, we propose to fix the value of ε to an ”average value” that has

been estimated by numerical experiments. In order to estimate this ”average”

value, the following method has been used. Let ppost

W be the posterior pdf of W that

is estimated with the νpost realizations {wpost,ℓ, ℓ = 1, . . . , νpost} that are deduced

from {ŵ
post,ℓ, ℓ = 1, . . . , νpost} computed in Section 8.5, using Eqs. (25) and (26).

The methodology used for validating the range of the values of ε consists

in estimating an optimal value of ε, which minimizes a ”distance” between the

pdf ppost

Wk
of component W

post

k , for k = 1, . . . , nw (which depends on ε), and an

experimental reference, pexp

Wk
, that is assumed to be known for the applications

used for the validation. Obviously, in the framework of the Bayesian inference,

the family of {pexp

Wk
, k = 1, . . . , nw} are unknown and consequently, cannot be

used for estimating ε a priori. It is recalled that only nr experimental realizations

{qexp,r, r = 1, . . . , nr} of Q are available and that the corresponding experimental

realizations {wexp,r, r = 1, . . . , nr} of W are not available. We thus introduce the

error function, ε 7→ OVL(ε), defined by

OVL(ε) =
1

nw

nw∑

k=1

∫
R
|ppost

Wk
(w)− pexp

Wk
(w)| dw∫

R
pexp

Wk
(w) dw

. (115)

Let p = (p1, . . . , pnw) be a function in the space L1(R,Rnw) equipped with the

L1-norm,

‖p‖L1 =

∫

R

|p(w)‖1 dw =

∫

R

nw∑

j=1

|pj(w)| dw .

Introducing the functions ppost = (ppost

W1
, . . . , ppost

Wnw
) and pexp = (pexp

W1
, . . . , pexp

Wnw
)

that belong to L1(R,Rnw), it can be seen that

‖ppost − pexp‖L1

‖pexp‖L1

≤ nw OVL(ε) ,
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because, for j = 1, . . . , nw, we have Aj/(a1+ . . .+ anw) ≤ Aj/aj for aj > 0 and

Aj > 0. All the numerical experiments that have been conducted, in particular the

applications presented in Section 10, show that the value 0.5 seems an appropriate

value for ε.

10. Applications (AP1) and (AP2) for validating the methodology

In this section, two applications are presented and are used for performing the

validation of the methodology and algorithms presented. All the random variables

are defined on probability space (Θ, T ,P). These two applications will be refer-

enced as (AP1) and (AP2) for application 1 and 2. These two applications are

relatively simple and can be easily reproduced.

10.1. Stochastic model and simulated experiments for applications (AP1) and

(AP2)

Stochastic model for (AP1) and (AP2). The stochastic model used for generat-

ing the initial dataset DNd
= {xjd = (qjd,w

j
d), j = 1, . . . , Nd} (see Eq. 1) rel-

ative to random variable X = (Q,W) in which Q = (Q1, . . . ,Qnq) and W =
(W1, . . . ,Wnw), is written, for (AP1) and (AP2), as

Q = [B(U)] (W+ V b) ,

in which U, V , and W are independent random variables. The maximum value

of Nd is 200 and nw = 20. We have nq = 200 for (AP1) and nq = 20 000
for (AP2). The deterministic vector b in Rnw is written as b = 0.2 u + 0.9
in which all the components of u belongs to ]0, 1[ (generated with the Matlab

script: rng(’default’); u = rand(nw, 1)). The real-valued random variable V =
0.2U + 0.9 for (AP1) and V = 0.2U − 0.1 for (AP2) in which U is a uni-

form random variable on [0, 1]. The random vector U = (U1, . . . ,Unu) with

nu = 6 is written, for α = 1, . . . , nu, as Uα = 2 uα Uα + 1 − uα in which

U1, . . . ,Unu are nu independent uniform random variables on [0, 1] and where,

uα = 0.2(α − 1)/(nu − 1) for (AP1) and uα = 0.7(α − 1)/(nu − 1) for (AP2).

The entries [B(U)]kj of the (nq × nw) random matrix are defined by [B(U)]kj =∑nu

α=1 λα(Uα)ϕ
α
k (Uα)ϕ

α
k (Uα)ϕ

α
j+nq/2

(Uα). For (AP1), ϕα
k (Uα) = sin{α kπ/(nq+

1)} is independent of Uα (deterministic) and λα(Uα) = 1/(αUα)
2. For (AP2),

ϕα
k (Uα) = sin{αUα kπ/(nq + 1)} and λα(Uα) = 5(1 − Uα) + 1/(αUα)

2. The

random vector W is written as W =
∑3

β=1

√
µβ φ

β ηβ, in which µβ = 1/β2 and

φβ = (φβ
1 , . . . , φ

β
nw
) with φβ

j = sin{βπj/(1 + nw)}. The non-Gaussian centered

37



random vector η = (η1, η2, η3) is written as η =
∑27

γ=1 yγ ψ
α
(γ)
1
(Ξ1)ψα

(γ)
2
(Ξ2) in

which Ξ1 and Ξ2 are independent normalized Gaussian random variables. The

indices α
(γ)
1 and α

(γ)
2 are such that 0 < α

(γ)
1 + α

(γ)
2 ≤ 6, and ψ

α
(γ)
1
(Ξ1) and

ψ
α
(γ)
2
(Ξ2) are the polynomial Gaussian chaos. The matrix [y] = [y1 . . . y27] is

such that [y] [y]T = [I3] and is generated using the Matlab script: rng(’default’);

a1 = randn(27,27); [a2, ] = eig(a1*(a1)
′); a2(: , 4:27) = []; [y] = (a2)

′.

Simulated experiments for (AP1) and (AP2). The experimental dataset Dexp
nr

is gen-

erated with nr = 200 independent experimental realizations {qexp,r, r = 1, . . . nr}
of Qexp = (Qexp

1 , . . . ,Qexp
nq
). As already explained, we also generate the indepen-

dent experimental realizations {wexp,r, r = 1, . . . nr} of Wexp = (Wexp

1 , . . . ,W
exp
nw
)

in order to validate the choice of the regularization parameter ε (see Section 9).

The experimental model is written, for (AP1) and (AP2), as

Qexp = [B(Uexp)] (Wexp + V exp b) ,

in which Uexp, V exp, and Wexp are independent random variables that are also inde-

pendent of U, V , and W. The real-valued random variable V exp = 0.2U exp + 0.9
for (AP1) and V exp = 0.2U exp − 0.1 for (AP2) in which U exp is a uniform random

variable on [0, 1] independent of U . The random vector Uexp = (Uexp

1 , . . . ,U
exp
nu
) is

written, for α = 1, . . . , nu, as Uexp
α = 2 uexp

α U exp
α + 1− uexp

α in which U exp

1 , . . . ,U exp
nu

are nu independent uniform random variables on [0, 1] and where, uexp
α = 0.3(α−

1)/(nu − 1) for (AP1) and uα = 0.7(α − 1)/(nu − 1) for (AP2). Note that for

(AP1), the coefficient is 0.3 and not 0.2 as in the stochastic model. The mapping

u 7→ [B(u)] is the same as the one of the stochastic model. The random vector

Wexp is written as Wexp = 0.2 × 1 + W̃exp in which 1 ∈ Rnw is the vector whose

components are equal to 1 and where W̃exp is an independent copy of the stochastic

model of W.

10.2. Values of the numerical parameters for the computation of (AP1) and (AP2)

Table 1 summarizes the values of all the numerical parameters introduced in

the algorithms. Except for regularization parameter ε and for the convergence

learning with respect to dimension Nd of initial dataset DNd
(theses two parame-

ters will be the subject of a particular analysis presented later), the other values of

the numerical parameters have been obtained by using the existing criteria or by

performing a local convergence analysis.
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Figure 1: Application AP1: validation of the choice ε = 0.5. For Nd = 200, graph of ε 7→ OVL(ε)
(left) and graph of ε 7→ convstd(ε) (right).
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Figure 2: Application AP1: convergence of the probabilistic learning with respect to Nd. For

ε = 0.5, graph of Nd 7→ OVL(Nd) (left) and graph of Nd 7→ convstd(Nd) (right).

10.3. Quantities used for validating the choice of the value of the regularization

parameter, for studying the convergence of the probabilistic learning, and

for validating the proposed method

Definition of the graphs that are plotted. As already explained in Section 9, we

propose the value 0.5 for the regularization parameter ε. In order to validate this

choice, for the three applications and for Nd fixed, we have plotted:

(i) the graph of function ε 7→ OVL(ε) defined by Eq. (115), which has to be

minimum in the neighborhood of ε = 0.5;

(ii) the graph of function ε 7→ convstd(ε) that is defined hereinafter and whose

value should be close to 1 in the neighborhood of ε = 0.5. Let σ
post

W (ε) = (σpost

W1
(ε),
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Figure 3: Application AP1: pdf w 7→ pd
Wk

(w) of Wk estimated with the initial dataset DNd
of

Nd = 200 realizations (thin black line), pdf w 7→ p
exp

Wk
(w) of Wk estimated with the experimental

dataset D
exp
nr

of nr = 200 realizations (thick red dashed line), pdf w 7→ p
post

Wk
(w) of W

post

k
estimated

with ε = 0.5, Nd = 200, and νpost = 40 000 realizations (thick blue line), for k = 5 (a), k = 6
(b), k = 13 (c), and k = 14 (d).

. . . , σpost

Wmw
(ε)) be the vector of the standard deviations estimated with the νpost

realizations of the components of random vector Wpost (estimated with the νpost

realizations) and let σ
exp

W = (σexp

W1
, . . . , σexp

Wmw
) be the standard deviations of the

components of random vector W (estimated with experimental dataset Dexp
nr

). The

function convstd is defined by convstd(ε) = ‖σpost

W (ε)‖/‖σexp

W ‖.

Studying the convergence of the probabilistic learning for the posterior model.

For ε fixed at 0.5, the convergence of the probabilistic learning is analyzed with

respect to Nd by studying the function Nd 7→ OVL(Nd) defined by Eq. (115)

(replacing ε by Nd) and the function Nd 7→ convstd(Nd) such that convstd(Nd) =
‖σpost

W (Nd)‖/‖σexp

W ‖.
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Figure 4: Application AP2: validation of the choice ε = 0.5. For Nd = 200, graph of ε 7→ OVL(ε)
(left) and graph of ε 7→ convstd(ε) (right).
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Figure 5: Application AP2: convergence of the probabilistic learning with respect to Nd. For

ε = 0.5, graph of Nd 7→ OVL(Nd) (left) and graph of Nd 7→ convstd(Nd) (right).

Validating the proposed method. In addition to the quantities just described and

for several components of index k, we will compare the graph of the pdf w 7→
pdWk

(w) of Wk estimated with the initial dataset DNd
of Nd = 200 realizations,

with the graph of the pdf w 7→ pexp

Wk
(w) of Wk estimated with the experimental

dataset Dexp
nr

realizations, and with the graph of the pdf w 7→ ppost

Wk
(w) of W

post

k

estimated for ε = 0.5 and Nd = 200, and νpost = 40 000 realizations. The pdf

w 7→ ppost

Wk
(w) should be close to w 7→ pexp

Wk
(w) (the reference).
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Figure 6: Application AP2: pdf w 7→ pd
Wk

(w) of Wk estimated with the initial dataset DNd
of

Nd = 200 realizations (thin black line), pdf w 7→ p
exp

Wk
(w) of Wk estimated with the experimental

dataset D
exp
nr

of nr = 200 realizations (thick red dashed line), pdf w 7→ p
post

Wk
(w) of W

post

k
estimated

with ε = 0.5, Nd = 200, and νpost = 40 000 realizations (thick blue line), for k = 5 (a), k = 6
(b), k = 13 (c), and k = 14 (d).

10.4. Results and comments for applications (AP1) and (AP2)

The results are presented in Figs. 1 to 3 for application (AP1) and in Figs. 4 to

6 for application (AP2).

(i) Concerning the validation of the choice ε = 0.5 of the regularization param-

eter, Figs. 1-(left) and 4-(left) show that function ε 7→ OVL(ε) has effectively a

minimum in the neighborhood of ε = 0.5 for these two applications.

(ii) For the two applications with ε = 0.5, the convergence of the probabilistic

learning with respect to the size Nd of the initial dataset that is used in all the cal-

culations detailed in Sections 3 to 8, Figs. 2 and 5 show the results obtained for the

functionsNd 7→ OVL(Nd) (left figure) andNd 7→ convstd(Nd) (right figure). For ap-

plication (AP2), the convergence of the learning is slower and a best convergence
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could certainly be obtained by increasing the maximum value ofNd that should be

considered. Nevertheless, this slower convergence of the learning with respect to

Nd does not interfere with the validation of the proposed methodology, because,

for a fixed value of Nd, the results obtained show that the posterior model that

is estimated allows the prior model to be significantly improved; a better conver-

gence of the learning with respect to Nd would lead to even greater improvement

of the posterior model.

(iii) Concerning the validation of the proposed method, Figs. 1-(right) and 4-

(right) show that for Nd = 200 and ε = 0.5, the norm convstd(ε) of the vector

of the standard deviations, normalized by its counterpart for the experiments, is

close to 1. For these two applications, Figs. 3 and 6 show, for selected components

Wk of random vector W, the comparison of three probability density functions:

the pdf w 7→ pdWk
(w) of Wk estimated with the initial dataset DNd

with Nd = 200,

the pdf w 7→ pexp

Wk
(w) of Wk estimated with the experimental dataset Dexp

nr
with

nr = 200, and the pdf w 7→ ppost

Wk
(w) of the posterior W

post

k estimated with ε = 0.5,

Nd = 200, and νpost = 40 000. For each value of k that is considered, the com-

parison between pdWk
and pexp

Wk
shows that there are significant differences (mean

value, standard deviation, non-Gaussianity) between these two pdf’s, which jus-

tify the use of the Bayesian approach for improving pdWk
with ppost

Wk
. The values of

k selected for plotting, for each application, correspond to the greatest difference

between these two pdfs. An important element for the validation is the compari-

son between ppost

Wk
and pexp

Wk
. It can be seen that the results are quite good for these

two applications.

11. Application (AP3) to the ultrasonic wave propagation in biological tissue

In this section, the methodology is applied to the ultrasonic wave propagation

in biological tissue for which W is the vector of the spatial discretization related

to the non-Gaussian tensor-valued random elasticity field of a damaged cortical

bone due to osteoporosis. This application will be referred to (AP3). All the

data concerning this application are described in order that the application can be

reproduced.

11.1. Stochastic boundary value problem

This application deals with the numerical simulation of the axial transmission

technique that is used in biomechanics for the identification of the cortical bone

microstructure. The principle of the axial transmission technique is illustrated in
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Fig. 7. An impulse is generated by a transmitter placed on the skin of a patient

and then, the backscattered pressure field is recorded at distant receivers in the

ultrasonic range.

Probe

transmitter receiver

Cortical layer of a long bone

soft tissue
coupling gel Transmitter

Transmitter

Receivers

Bone

Figure 7: Application AP3: scheme of the axial transmission technique.

Figure 8: Application AP3: Geometry of the multilayer system for the boundary value problem.

Boundary value problem. The 2D physical space is equipped with a cartesian

frame (O, e1, e3) in which the coordinates of a point are denoted by (x1, x3). A

boundary value problem has been introduced [72, 73] for modeling the ultrasonic

wave propagation in human cortical bone. It consists of a 2D semi-infinite mul-

tilayer medium in the e1 longitudinal direction (see Fig. 8). The model consists

of an elastic semi-infinite layer Ω (cortical bone) with thickness h in the e3 radial

direction. This elastic semi-infinite layer is sandwiched between two acoustical

fluid layers, Ω1 (skin and soft tissues) and Ω2 (bone marrow) with thicknesses h1
and h2 in the e3 radial direction. The media occupying domains Ω1 and Ω2 are

homogeneous while the cortical bone that occupies domain Ω is heterogeneous in

the e3 direction. The probe (transmitter and receivers) is located in Ω1.

A mean (nominal) boundary value problem is written in time and space do-

mains considering the three coupled layers: linear acoustic wave equation formu-

lated with the pressure field P1(x, t) and P2(x, t) in domains Ω1 and Ω2, and linear

elastodynamics equation formulated with the displacement field D(x, t) in domain

Ω. Such a formulation requires to define,
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(1) for the heterogeneous cortical bone Ω, its mass density ρ(x3) and its (3 × 3)
matrix-valued effective elasticity field {[C(x3)] , x3 ∈]− h, 0[};

(2) for the acoustic fluids Ω1 and Ω2, their mass densities ρ1 = ρ2 = 1000 kg.m−3,

and their sound velocities c1 = c2 = 1500m.s−1. Note that the acoustic fluid Ω2

can also be viewed as an elastic solid for which the non zero components of its

(3× 3) elasticity matrix, denoted as [CF ], are equal to ρ2 c
2
2.

Introducing a and b such that −h < b < a < 0 (see Fig. 8 in which z = −h).

In case of osteoporosis, there is a gradient of porosity in domain Ω in the e3
direction:

(1) for −h < x3 < b, the cortical bone is a damaged material mostly made up of

an acoustic fluid, which has the same behavior as the acoustic fluid Ω2.

(2) for a < x3 < 0, the cortical bone is an elastic solid that is modeled by a homo-

geneous transverse isotropic elastic medium for which its (3×3) elasticity matrix

is denoted by [CS]: the transverse Young modulus and the Poisson coefficient are

ET = 9.8GPa and νT = 0.4; the longitudinal Young modulus, the Poisson coef-

ficient, and the shear modulus are respectively EL = 17.7GPa, νL = 0.38, and

GL = 4.79GPa; its mass density is ρS = 1600Kg.m−3.

(3) for b ≤ x3 ≤ a, there is a gradient of porosity in the cortical bone.

The model proposed in [73] is used for constructing the mean (nominal) model,

based on the hypotheses defined in paragraphs (1) to (3) above, which is written,

for all x3 ∈]− h, 0[, as

ρ(x3) = (1− f(x3)) ρS + f(x3) ρ2 ,

[C(x3)] = βC

(
(1− f(x3)) [C

S] + f(x3) [C
F ]
)
, (116)

in which βC is a parameter that allows a bias to be introduced in the model, where

f(x3) = 1 if x3 < b, f(x3) = 0 if x3 > a, and f(x3) = α0+α1 x3+α2 x
2
3+α3 x

3
3

if b ≤ x3 ≤ a in which α0 = a2 (a − 3 b)/(a − b)3, α1 = 6 a b/(a − b)3, α2 =
−3(a+ b)/(a− b)3, and α3 = 2/(a− b)3.

Prior stochastic model of the matrix-valued effective elasticity field of the cortical

bone. In practice, the effective elasticity field of the cortical bone, which occupies

domain Ω, is a non-Gaussian random field and is modeled by a (3 × 3) matrix-

valued random field {[C(x3)] ,∈] − h, 0[} whose mean value is the field [C(x3)]
defined by Eq. (116),

E{[C(x3)]} = [C(x3)] , ∀ x3 ∈]− h, 0[ .
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The prior probabilistic model of this non-Gaussian random field is taken in the set

SFE+ introduced in [12]. The construction of this set of non-Gaussian matrix-

valued random fields is based on the use of the Maximum Entropy principle for

constructing a set of positive-definite random matrices. This prior probabilistic

model depends only on two hyperparameters, a dispersion coefficient δS and a

spatial correlation length ℓS .

Stochastic model for the acoustical source. The transmitter is an acoustic point

source located in domain Ω1, which delivers a random acoustical impulse, and is

modeled by a random acoustical source density Q such that

∂Q

∂t
(x, t) = ρ1 F (t)δ0(x1)δ0(x3) ,

in which δ0 is the Dirac function on the real line at the origin. Time function F
is written as F (t) = f0 sin(2πFc t) e

−4(t Fc−1)2 in which Fc is the random central

frequency whose probability distribution is uniform on [800, 1200] kHz and where

f0 = 100N. At time t = 0, the system is assumed to be at rest. For each given

realization of random field [C], the corresponding realization of (1) the random

displacement field D and its associated Von Mises stresses fields SVM are com-

puted in Ω, (2) the random pressure fields P1 and P2 are computed in Ω1 and

Ω2. These numerical calculations are performed using the fast and efficient hy-

brid solver detailed in [72]. It involves a spatial Fourier transform of the random

boundary value problems into the longitudinal direction (e1 direction) and a 1D

finite element discretization into the radial direction (e3 direction).

11.2. Illustration of results obtained with the stochastic boundary value problem

This section deals with an illustration of the ultrasonic wave propagation in

the three-layers system using the stochastic boundary value problem defined in

Section 11.1, but for which the following particular configuration and parameter-

ization are used. Note that, in presence of a gradient of porosity, the ultrasonic

wave propagation is complex and the plot of such waves is difficult to interpret;

consequently, for this illustration, it will be assumed that there is a damaged cor-

tical bone without porosity gradient, which means that −h < b = a < 0. We

consider the case h1 = 10−2m, h = 8 × 10−3m, h2 = 10−2m, b = a = −h/2,

and z = −h (obviously, for generating the initial dataset used by the probabilistic

learning and for generating the experimental dataset required for the Bayesian ap-

proach, we will consider a porosity gradient (−h < b < a < 0)). The calculation

has been performed with βC = 1 and ρS = 1722Kg.m−3. For this illustration,
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parameters δS , ℓS , and Fc are considered deterministic (that will not be the case

for generating the initial dataset) and are such that δS = 0.2, ℓS = 3×10−3m, and

Fc = 1000 kHz. The acoustical point source (transmitter) is located in Ω1 with co-

ordinates (x1 = 0, x3 = 0.001)m. In the e3 radial direction, the number of nodes

used in the finite element interpolation of fields P1, P2, and D are 101, 101, and 82,

respectively. The Monte Carlo numerical simulation method is used as stochastic

solver. The sampling time step is ∆t = 2.94×10−6 s and the number of time sam-

pling points is 330. The sampling spectral step is ∆k = 15.70 rad.m−1 and the

number of spectral sampling points is 1024. At observation time t = 9.72×10−6 s,
Fig. 9 displays the mean and variance of random fields P1, SVM, and P2. Figure 9

shows the lateral wave (or head wave) propagating from the fluid-solid interface

(plane wave front, which links the reflected P-wave front and the interface).

Figure 9: Application AP3: Propagation of the mean (left figure) and variance (right fig-

ure) of the random wave in the three layers at t = 9.72 × 10−6s with for h1 = 10−2m,

h = 8 × 10−3m, h2 = 10−2m. Vertical direction: x3. In grey color, mean and variance

of wave fields (x1, x3) 7→ P1(x1, x3, t) (upper layer), (x1, x3) 7→ SVM(x1, x3, t) (sandwiched

layer), (x1, x3) 7→ P2(x1, x3, t) (bottom layer).

11.3. Generation of the initial dataset

Using the stochastic boundary value problem defined in Section 11.1, the ob-

jective is to generate the initial dataset DNd
= {xjd = (qjd,w

j
d), j = 1, . . . , Nd}

(see Eq. 1) relative to random variable X = (Q,W) in which Q = (Q1, . . . ,Qnq)
and W = (W1, . . . ,Wnw). We then have to define the vector-valued random QoI,

Q, the vector-valued random system parameter, W, and the Rnu-valued random

variable U, which are such that

Q = f(U,W) . (117)

Note that the deterministic mapping f cannot explicitly be described because this

mapping is associated with the solution of the boundary value problem. The gen-
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eration is carried out with Nd = 200.

(i) Initial dataset DNd
is constructed for the case analyzed in [73], that is to say,

for a damaged cortical bone with a gradient of porosity such that h1 = 2×10−3m,

h = 8× 10−3m, h2 = 10−2m, a = −h/2, b = −h, z = −h and ρS =
1600Kg.m−3. The acoustical point source (transmitter) is located in Ω1 with co-

ordinates (x1 = 0, x3 = 0.001)m. The dispersion coefficient δS and the spatial

correlation length ℓS are modeled by random variables with uniform probability

distributions on [0, 0.7977] and [1, 8]×10−3m respectively. The central frequency

Fc is the uniform random variable defined in Section 11.1. The is no bias intro-

duced in the model and consequently, βC = 1 in Eq. (116).

(ii) The number of nodes for the finite element discretization of P1, P2, and D in

the e3 radial direction are 21, 101, and 162, respectively. The sampling time step

is ∆t = 4.2565×10−6 s and the sampling spectral step is ∆k = 44.88 rad.m−1.

The number of time sampling points is 300 and the number of spectral sampling

points is 2048.

(iii) Let Q be the random vector of the 300 time sampling points of the random

pressure field P1 at positions {(xℓ1, x3 = 10−3m), ℓ = 1, . . . , 14} (14 receivers) in

which xℓ1 = 13.1×10−3+ℓ∆x1 with ∆x1 = 0.8×10−3m. Thus, Q is a Rnq-valued

random vector with nq = 4200.

(iv) Let W be the random vector of all the random variables

{[L(xℓ3)]ij , 1 ≤ i < j ≤ 3} ∪ {log([L(xℓ3)]jj) , 1 ≤ j ≤ 3} ,

in which {[L(xℓ3)]ij}ij are the entries of the random upper triangular matrix [L(xℓ3)]
constructed by the following Cholesky factorization, [C(xℓ3)] = [L(xℓ3)]

T [L(xℓ3)].
The points {xℓ3, 1 ≤ ℓ ≤ 120} are the coordinates for the ℓ-th integration points of

the finite element mesh of interval [−h, 0] (see Fig. 7). Thus, W is a Rnw-valued

random vector with nw = 720.

(v) The R3-valued random variable U is written as U = (δs, ℓs, Fc).

11.4. Generation of the experimental dataset

The experimental dataset Dexp
nr

is generated with nr = 200 independent exper-

imental realizations {qexp,r, r = 1, . . . nr} of Qexp = (Qexp

1 , . . . ,Qnq), which are

48



such that

Qexp = f(Uexp,Wexp) , (118)

in which the deterministic mapping f is the same as the one used in Eq. (116) and

corresponds to the use of the boundary value problem defined in Sections 11.1 and

11.3. The random vectors Uexp and Wexp are constructed as independent copies of

random vectors U and W define in Sections11.1 and 11.3, but the bias on the mean

model of the random effective elasticity matrix introduced in Eq. (116) is chosen

as βC = 0.9. It should be noted that the nr independent realizations {wexp,r, r =
1, . . . nr} of random vector Wexp are generated in order to construct the simulated

experiments {qexp,r, r = 1, . . . nr} using Eq. (118), but these realizations are not

used in the Bayesian approach proposed. Nevertheless, these realizations of Wexp

will be used for estimating the probability density functions {w 7→ pexp

Wk
(w)}k of

the components {Wexp

k }k of Wexp in order to validate the methodology proposed

(comparing pexp

Wk
to the posterior pdf ppost

Wk
).

11.5. Values of the numerical parameters, observed quantities for convergence

analyses, and validation

The values of the numerical parameters introduced in the algorithm are sum-

marized in Table 1 (column relative to (AP3)). All the given values of the numeri-

cal parameters have been obtained by using the criteria introduced in the theory or

have been estimated by performing a local convergence analysis. The quantities

used for validating the choice of the value of the regularization parameter ε, for

studying the convergence of the probabilistic learning with respect to Nd, and for

validating the method proposed, are similar to those introduced in Section 10.3

for Applications (AP1) and (AP2).

11.6. Results and comments for application (AP3)

The results are presented in Figs. 10 to 12.

(i) Concerning the validation of the choice ε = 0.5 of the regularization parameter,

Fig. 10-(left) shows that function ε 7→ OVL(ε) has effectively a minimum in the

neighborhood of ε = 0.5, as obtained for applications (AP1) and (AP2) presented

in Section 10.

(ii) Concerning the convergence of the probabilistic learning with respect to size

Nd of the initial dataset that is used in all the calculations detailed in Sections 3

to 8, Fig. 11 shows the results obtained for the functions Nd 7→ OVL(Nd) (left

figure) and Nd 7→ convstd(Nd) (right figure) with ε = 0.5. The convergence of the

learning is slower and a best convergence could certainly be obtained by increas-

ing the maximum value of Nd that should be considered, but as already explained
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Figure 10: Application AP3: validation of the choice ε = 0.5. For Nd = 200, graph of ε 7→
OVL(ε) (left) and graph of ε 7→ convstd(ε) (right).
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Figure 11: Application AP3: convergence of the probabilistic learning with respect to Nd. For

ε = 0.5, graph of Nd 7→ OVL(Nd) (left) and graph of Nd 7→ convstd(Nd) (right).

in Section 10.4, this slower convergence of the learning with respect to Nd does

not interfere with the validation of the proposed methodology (see the explanation

given in Section 10.3-(ii)).

(iii) Concerning the validation of the method proposed, Fig.10-(right) shows that,

for Nd = 200 and ε = 0.5, the norm convstd(ε) of the vector of the standard devi-

ations, normalized by its counterpart for the experiments, is close to 1. Figure 12

shows, for selected components Wk of random vector W, the comparison of three

probability density functions: the pdf w 7→ pdWk
(w) of Wk estimated with the ini-

tial dataset DNd
with Nd = 200, the pdf w 7→ pexp

Wk
(w) of Wk estimated with the

experimental dataset Dexp
nr

with nr = 200, and the pdf w 7→ ppost

Wk
(w) of the poste-
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Figure 12: Application AP3: pdf w 7→ pd
Wk

(w) of Wk estimated with the initial dataset DNd
of

Nd = 200 realizations (thin black line), pdf w 7→ p
exp

Wk
(w) of Wk estimated with the experimental

dataset D
exp
nr

of nr = 200 realizations (thick red dashed line), pdf w 7→ p
post

Wk
(w) of W

post

k
estimated

with ε = 0.5, Nd = 200, and νpost = 40 000 realizations (thick blue line), for k = 5 (a), k = 6
(b), k = 13 (c), and k = 14 (d).

rior W
post

k estimated with ε = 0.5, Nd = 200, and νpost = 40 000. For each value

of k that is considered, the comparison between pdWk
and pexp

Wk
shows that there are

significant differences (mean value, standard deviation, non-Gaussianity) between

these two pdf’s, which justifies the use of the Bayesian approach for improving

pdWk
with ppost

Wk
. An important element for the validation is the comparison between

ppost

Wk
and pexp

Wk
. It can be seen that the results are not perfect. This appearance is due

to the fact that a high-dimensional inverse statistical problem must be solved and

that the capacity of the Bayes formulation to solve it depends on many factors,

the most important of which is certainly the sensitivity of the quantities of inter-

est with respect to certain components of the elastic tensor field at certain spatial

points of the elastic medium of the dynamical fluid-structure coupled problem. If

these observed quantities of interest are not very sensitive to the realizations of
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Wk, which represent random values at a certain spatial point of a certain com-

ponent of the tensor of elasticity, then it is difficult to identify their probability

density functions.

12. Conclusion

In this paper, we have presented a methodology for implementing the Bayesian

inference in the framework of the small-data challenge using the probabilistic

learning on manifolds under the following hypotheses: the likelihood probability

distribution is not Gaussian and cannot be approximated by a Gaussian measure,

the problem can be in high dimension, the number of given realizations in the

initial dataset of the prior model is assumed to be small, which corresponds, for

instance, to the use of an expensive computer code for generating the initial data

set (training), the number of experimental realizations is also small, and the num-

ber of posterior realizations can be arbitrarily large. For solving these difficult

problem, a novel methodology has been developed. The method and the associ-

ated algorithms have been adapted to take into account all the constraints induced

by the given framework. Three applications have been presented for validating

the approach proposed: two are relatively simple and can easily be reproduced,

and the third one corresponds to a difficult statistical inverse problem. The results

obtained are good. The method proposed will have to be tested for many other

applications for confirming its robustness and its capability to treat problems in

high dimension and in the framework of the small-data challenge.
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Appendix A. Summary of the algorithm of the probabilistic learning on man-

ifolds

In this Appendix, we summarize the algorithm of the probabilistic learning on

manifolds (PLoM) that is used in Section 4. This algorithm has been introduced

in [56]. Complementary developments can be found in [74, 75]. Applications and

validations can be found in [76, 77, 78, 40]. In addition, we give the formula for

estimating the values of the two hyperparameters that control the algorithm of the

PLoM.
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Table 1: For applications (AP1), (AP2), and (AP3), the table defines the values of all the parame-

ters introduced in the algorithm, and which are used in computations.

Parameters (AP1) (AP2) (AP3)

Dimensions nq 200 20 000 4 200
nw 20 20 720
n = nq + nw 220 20 020 4 920
Nd ≤ 200 ≤ 200 ≤ 200
maxNd 200 200 200
nr 200 200 200

Learning step νx 9 15 164
(Appendix A) εdiff 48 120 350

m 12 17 166
f0 1.5 1.5 1.5
nMC 150 150 150
νar = Nd × nMC 30 000 30 000 30 000
∆t 0.1649 0.0903 0.2163
M0 100 100 100
ℓ0 100 100 100

PCA of νq 6 12 125
Q and W errQ(νq) 4.3× 10−5 5.3× 10−5 3.9× 10−4

νw 3 3 72
errW(νw) 3.7× 10−15 5.3× 10−15 2.7× 10−4

Posterior step ν = νq + νw 9 15 197
ν1 6 12 125
ε 0.5 0.5 0.5
Ns 200 200 200
εNs 0.0422 0.0322 0.0433
f post

0 10−5 10−5 10−3

εpost
diff 4.0× 103 3.5× 103 3.0× 105

mpost 9 11 69
npost

MC 200 200 200
νpost = npost

MC ×Ns 40 000 40 000 40 000
∆t 0.0277 0.03384 0.05854
M post

0 100 100 100
ℓ post

0 10 000 10 000 120
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Let {x
j
d = (qj

d,w
j
d), j = 1, . . . , Nd} be the set of the Nd independent realizations

given in Rn = Rnq × Rnw with n = nq + nw, which constitute the initial data set

DNd
. Let X = (Q,W) be the random variable with values in Rn = Rnq ×Rnw for

which {x
j
d, j = 1, . . . , Nd} constitutesNd independent realizations. The objective

of the PLoM is to generate νar ≫ Nd additional realizations {xℓ
ar, ℓ = 1, . . . , νar}

of random vector X. As soon as the set {xℓ
ar, ℓ = 1, . . . , νar} has been constructed,

the additional realizations for Q and W can be extracted as (qℓ
ar,w

ℓ
ar) = xℓ

ar for

ℓ = 1, . . . , νar, which constitute the learned dataset Dνar .

A.1. Normalization of the initial dataset. TheNd independent realizations {x
j
d, j =

1, . . . , Nd} of X with values in Rn can be represented by the matrix [xd] =
[x1

d . . . x
Nd
d ] in Mn,Nd

. Let [X] = [X1, . . . ,XNd] be the random matrix with val-

ues in Mn,Nd
, whose columns are Nd independent copies of random vector X.

Therefore, [xd] is one realization of random matrix [X]. The normalization of

random matrix [X] is attained with the random matrix [H] = [H1, . . . ,HNd] with

values in Mνx,Nd
with νx ≤ n, obtained by using the principal component analysis

of random vector X. Consequently, random matrix [X] is written as,

[X] = [x] + [ϕ] [λ]1/2 [H] , (A.1)

in which [λ] is the (νx × νx) diagonal matrix of the νx positive eigenvalues of the

empirical estimate of the covariance matrix of X (computed using x1
d, . . . , x

Nd
d ),

where [ϕ] is the (n × νx) matrix of the associated eigenvectors such [ϕ]T [ϕ] =
[Iνx ], and where [x] is the matrix in Mn,Nd

with identical columns, each one

being equal to the empirical estimate x ∈ Rn of the mean value of random

vector X (computed using x1
d, . . . , x

Nd
d ). The columns of [H] are Nd indepen-

dent copies of a random vector H wit values in Rνx . The realization [ηd] =
[η1 . . .ηNd] ∈ Mνx,Nd

of [H] (associated with the realization [xd] of [X]) is com-

puted by [ηd] = [λ]−1/2[ϕ]T ([xd]− [x]). When n is small, νx can be chosen as n.

If some eigenvalues are zero, they must be eliminated and then νx < n. When n
is high, a statistical reduction can be done as usual and therefore νx < n in such a

case.

A.2. Diffusion-maps basis. This is an algebraic basis of vector space RNd , which

is constructed using the diffusion maps proposed in [79]. Let [b] be the positive-

definite diagonal real matrix in MNd
such that [b]ij = δij

∑Nd

j′=1[K]jj′ in which

[K]jj′ = exp(− 1
4 εdiff

‖ηj −ηj′‖2), depending on a real smoothing parameter εdiff >
0. Let [P] be the transition matrix in MNd

of a Markov chain such that [P] =
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[b]−1 [K]. For 1 < m ≤ Nd, let g1, . . . , gm be the right eigenvectors in RNd of

matrix [P] such that [P] gα = Λα gα, whose eigenvalues are real and such that

1 = Λ1 > Λ2 > . . . > Λm. The normalization condition of these eigenvec-

tors is [g]T [b] [g] = [Im], in which [g] = [g1 . . . gm] ∈ MNd,m is the diffusion-

maps basis. The eigenvector g1 associated with the largest eigenvalue Λ1 = 1
is a constant vector. For m = Nd, the diffusion-maps basis is an algebraic ba-

sis of RNd . The right-eigenvalue problem of the nonsymmetric matrix [P] can

be performed solving the eigenvalue problem [b]−1/2 [K] [b]−1/2 Φα = ΛαΦ
α

related to a positive-definite symmetric real matrix, and with the normalization

[Φ]T [Φ] = [Im], in which [Φ] = [Φ1 . . .Φm]. Therefore, gα can be deduced from

Φα by gα = [b]−1/2 Φα. The construction introduces two hyperparameters: the

dimension m ≤ Nd and the smoothing parameter εdiff > 0. An algorithm is pro-

posed in [75] for estimating their values. Most of the time, m and εdiff can be

chosen as follows. Let εdiff 7→ m̂(εdiff) be the function from R+∗ =]0 ,+∞[ into N

such that

m̂(εdiff) = arg min
α |α≥3

{
Λα(εdiff)

Λ2(εdiff)
< 0.1

}
. (A.2)

If function m̂ is a decreasing function of εdiff in the broad sense (if not, see [75]),

then the optimal value εopt
diff of εdiff can be chosen as the smallest value of the integer

m̂(εopt
diff) such that

{m̂(εopt
diff
)< m̂(εdiff) , ∀εdiff ∈ ]0, εopt

diff
[ } ∩ {m̂(εopt

diff
) = m̂(εdiff) , ∀εdiff ∈ ]εopt

diff
, 1.5 εopt

diff
[ } .

(A.3)

The corresponding optimal value mopt of m is then given by mopt = m̂(εopt
diff).

A.3. Reduced-order representation of random matrices [H ] and [X ]. The diffusion-

maps vectors g1, . . . , gm ∈ RNd span a subspace of RNd that characterizes, for

the optimal values mopt and εopt
diff of m and εdiff, the local geometry structure of the

dataset {ηj, j = 1, . . . , Nd}. The reduced-order representation is obtained by pro-

jecting each column of the MNd,νx-valued random matrix [H]T on the subspace of

RNd , spanned by {g1, . . . , gm}. Let [Z] be the random matrix with values in Mνx,m

such that

[H] = [Z] [g]T . (A.4)

Since the eigenvector g1 is a constant vector and since random matrix [H] is cen-

tered, this eigenvector can be removed from the basis. As the matrix [g]T [g] ∈
Mm is invertible, the least-squares approximation of [Z] is written as [Z] = [H] [a]
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in which

[a] = [g] ([g]T [g])−1 ∈ MNd,m ,

and the realization [zd] ∈ Mνx,m of [Z] is written as

[zd] = [ηd] [a] ∈ Mνx,m .

A.4. Generation of additional realizations {ηℓ
ar, ℓ = 1, . . . , νar} of random vector

H.

An MCMC generator for random matrix [H] is constructed using the approach

proposed in [68, 69] belonging to the class of Hamiltonian Monte Carlo methods

[68, 80, 81]. The generation of additional realizations [z1ar], . . . , [z
nMC

ar ] of random

matrix [Z] is carried out by using an unusual MCMC method based on a reduced-

order Itô stochastic differential equation (ISDE) that is constructed as the projec-

tion on the diffusion-maps basis of the ISDE related to a dissipative Hamiltonian

dynamical system for which the invariant measure is the pdf of random matrix [H]
constructed with the Gaussian kernel-density estimation method and [ηd]. This

method preserves the concentration of the probability measure and avoids the scat-

ter phenomenon. Let {([Z(t)], [Y(t)]), t ∈ R+} be the unique asymptotic (for

t→ +∞) stationary diffusion stochastic process with values in Mνx,m×Mνx,m, of

the following reduced-order ISDE (stochastic nonlinear second-order dissipative

Hamiltonian dynamical system), for t > 0,

d[Z(t)] = [Y(t)] dt ,

d[Y(t)] = [L([Z(t)])] dr − 1

2
f0 [Y(t)] dt+

√
f0 [dW

wien(t)] ,

with the initial condition [Z(0)] = [zd] and [Y(0)] = [N ] [a] almost surely.

(i) The random matrix [L([Z(t)])] with values in Mνx,m is such that [L([Z(t)])] =
[L([Z(t)] [g]T )] [a]. For all [u] = [u1 . . .uNd] in Mνx,Nd

with uj = (uj1, . . . , u
j
ν)

in Rνx, the matrix [L([u])] in Mνx,Nd
is defined, for all k = 1, . . . , νx and for all

j = 1, . . . , Nd, by

[L([u])]kj =
1

p(uj)
{∇uj p(uj)}k ,

p(uj) =
1

Nd

Nd∑

j′=1

exp{− 1

2ŝ 2
νx

‖ ŝνx
sνx

ηj′ − uj‖2} ,
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∇uj p(uj) =
1

ŝ 2
νx

1

Nd

Nd∑

j′=1

(
ŝνx
sνx

ηj′ − uj) exp{− 1

2ŝ 2
νx

‖ ŝνx
sνx

ηj′ − uj‖2} ,

in which ŝνx is the modified Silverman bandwidth sνx , which has been introduced

in [69],

ŝνx =
sνx√

s2νx +
Nd−1
Nd

, sνx =

{
4

Nd(2 + νx)

}1/(νx+4)

.

(ii) [Wwien(t)] = [Wwien(t)] [a] where {[Wwien(t)], t ∈ R+} is the Mνx,Nd
-valued

normalized Wiener stochastic process.

(iii) [N ] is the Mνx,Nd
-valued normalized Gaussian random matrix that is inde-

pendent of stochastic process [Wwien].
(iv) The free parameter f0, such that 0 < f0 < 4, allows the dissipation term of

the nonlinear second-order dynamical system (dissipative Hamiltonian system) to

be controlled in order to kill the transient part induced by the initial conditions. A

common value is f0 = 1.5.

(v) We then have [Z] = limt→+∞ [Z(t)] in probability distribution, which al-

lows for generating the additional realizations, [z1ar], . . . , [z
nMC

ar ], and then, gen-

erating the additional realizations [η1ar], . . . , [η
nMC

ar ] by using Eq. (A.4), such that

[ηℓar] = [zℓar] [g]
T (see Section A.6).

A.5. Algorithm for solving the reduced-order ISDE. Let M = nMC ×M0 be the

positive integer in which nMC and M0 are integers. The reduced-order ISDE is

solved on the finite interval R = [0 ,M ∆t], in which ∆t is the sampling step of

the continuous index parameter t. The integration scheme is based on the use of

the M + 1 sampling points tℓ′ such that tℓ′ = ℓ′∆t for ℓ′ = 0, . . . ,M for which

[Zℓ′] = [Z(tℓ′)], [Yℓ′ ] = [Y(tℓ′)], and [Wwien

ℓ′ ] = [Wwien(tℓ′)], with [Z0] = [zd],
[Y0] = [N ] [a], and [Wwien

0 ] = [0νx,m]. For ℓ′ = 0, . . . ,M − 1, let [∆Wwien

ℓ′+1] =
[∆Wwien

ℓ′+1] [a] be the sequence of random matrices with values in Mνx,m, in which

the increments [∆Wwien
1 ], . . . , [∆Wwien

M ] are M independent random matrices with

values in Mνx,Nd
. For all k = 1, . . . , νx and for all j = 1, . . . , Nd, the real-valued

random variables {[∆Wwien
ℓ′+1]kj}kj are independent, Gaussian, second-order, and

centered random variables such that

E{[∆Wwien

ℓ′+1]kj[∆Wwien

ℓ′+1]k′j′} = ∆t δkk′ δjj′ .
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For ℓ′ = 0, . . . ,M − 1, the Störmer-Verlet scheme applied to the reduced-order

ISDE yields

[Zℓ′+ 1
2
] = [Zℓ′ ] +

∆t

2
[Yℓ′ ] ,

[Yℓ′+1] =
1− b

1 + b
[Yℓ′ ] +

∆t

1 + b
[Lℓ′+ 1

2
] +

√
f0

1 + b
[∆Wwien

ℓ′+1] ,

[Zℓ′+1] = [Zℓ′+ 1
2
] +

∆t

2
[Yℓ′+1] ,

with the initial condition defined before, where b = f0∆t /4, and where [Lℓ′+ 1
2
]

is the Mνx,m-valued random variable such that

[Lℓ′+ 1
2
] = [L([Zℓ′+ 1

2
])] = [L([Zℓ′+ 1

2
] [g]T )] [a] .

A.6. Additional realizations {xℓ
ar, ℓ = 1, . . . , νar} of random vector X. The reduced-

order ISDE is then used for generating nMC additional realizations, [z1ar], . . . , [z
nMC

ar ]
in Mνx,m, of random matrix [Z], and therefore, for deducing the nMC additional

realizations, [η1ar], . . . , [η
nMC

ar ] in Mνx,Nd
of random matrix [H], such that [ηℓar] =

[zℓar] [g]
T for ℓ = 1, . . . , nMC. The computation is performed as follows. Let

νar = nMC×Nd, in which nMC is a any given integer. Let [Wwien(·; θ)] with θ ∈ Θ be

a realization of the Wiener stochastic process [Wwien] defined in Section A.4-(ii).

Let {([Z(t; θ)], [Y(t; θ)]), t ∈ R+} be one realization of the (Mνx,m×Mνx,m)-
valued stochastic process {([Z(t)], [Y(t)]), t ∈ R+}, for which its time-sampling

is computed using the algorithm presented in Section A.5. Let ℓ0 be the integer

such that, for t ≥ ℓ0∆t, the solution is asymptotic to the stationary solution.

Therefore, the independent realizations {ηℓ, ℓ = 1, . . . , νar} of H are generated

as follows. Let M0 be a given positive integer. For κ = 1, . . . , nMC and for

tℓ′ = ℓ′∆t with ℓ′ = ℓ0+κM0, we have, for j = 1, . . . , Nd and for k = 1, . . . , νx,

ηℓk = {[Z(tℓ′ , θ)] [g]
T}kj with ℓ = j + (ℓ′ − 1)Nd. In this method of genera-

tion, only one realization θ is used and M0 is chosen sufficiently large in order

that [Z(tℓ′)] and [Z(t(ℓ′+M0))] be two random matrices that are approximately in-

dependent. The realizations {xℓ
ar, ℓ = 1, . . . , νar} of random vector X are then

calculated by xℓ
ar = x + [ϕ] [λ]1/2 ηℓ with ηℓ = (ηℓ1, . . . , η

ℓ
ν).

Appendix B. Proof of the convergence of the random sequence X(νq,νw).

Since X = (Q,W), xar = (q
ar
,war), and X(νq,νw) = (Q(νq),W(νw)), we have

E{‖X − xar‖2} = E{‖Q − q
ar
‖2}+ E{‖W − war‖2} ,
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that is equal to tr [CQ] + tr [CW], in which X, Q, and W stand for X(nq ,nw), Q(nq),

and W(nw). We also have

E{‖X − X(νq,νw)‖2} = E{‖Q − Q(νq)‖2}+ E{‖W − W(νw)‖2} ,

that can be rewritten, using Eqs. (12) and (19), as

E{‖X − X(νq,νw)‖2} = errQ(νq)E{‖Q − q
ar
‖2}+ errW(νw)E{‖W − war‖2} .

Since tr [CQ] > 0 and tr [CW] > 0, it can then be deduced that

errX(νq, νw) = errQ(νq)
1

1 + tr [CW]/tr [CQ]
+ errW(νw)

1

1 + tr [CQ]/tr [CW]
.

Defining ζ = max{(1 + tr [CW]/tr [CQ])
−1, (1 + tr [CQ]/tr [CW])−1} > 0 yields

errX(νq, νw) ≤ ζ (errQ(νq) + errW(νw)). Since ζ < 1, we then obtain

errX(νq, νw) ≤ errQ(νq) + errW(νw) . (B.1)

Appendix C. Proof of the range of the values of covariance matrix [C
X̂
] de-

fined by Eq. (32)

Since matrix [CX̂ ] is positive or positive definite, we have <[CX̂ ] x̂, x̂>≥ 0
for all x̂ = (q̂, ŵ) in Rν = Rνq × Rνw . Using Eq. (32) yields

2 <[Cqw]
T q̂ , ŵ> +‖q̂‖2 + ‖ŵ‖2 ≥ 0 . (C.1)

For all q̂ in Rνq , we can choose ŵ = −[Cqw]
T q̂ in Eq. (C.1), which yields

‖[Cqw]
T q̂‖2 ≤ ‖q̂‖2 ,

which can be rewritten as

<[Cqw] [Cqw]
T q̂ , q̂> ≤ ‖q̂‖2 , ∀ q̂ ∈ Rνq . (C.2)

Let Λ1 ≥ . . . ≥ Λνq ≥ 0 be the eigenvalues of the positive matrix [Cqw] [Cqw]
T .

Equation (C.2) shows that

1 ≥ Λ1 ≥ . . . ≥ Λνq ≥ 0 . (C.3)
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Let us consider the eigenvalue problem [C
X̂
] ϕ̂ = λ ϕ̂ (see Eq. (36) in which the

columns of matrix [Φ] are the eigenvectors ϕ̂). Using the block decomposition

defined by Eq. (32) and ϕ̂ = (ϕ̂q, ϕ̂w) yield

ϕ̂q + [Cqw] ϕ̂w = λ ϕ̂q , (C.4)

[Cqw]
T ϕ̂q + ϕ̂w = λ ϕ̂w . (C.5)

Eliminating ϕ̂w between Eqs. (C.4) and (C.5) yields

[Cqw] [Cqw]
T ϕ̂q = (1− λ)2 ϕ̂q .

Consequently, (1−λ)2 appears as the eigenvalue Λ of matrix [Cqw] [Cqw]
T . Taking

into account Eq. (C.3), it can be deduced that −1 ≤ 1− λ ≤ 1, which proves that

any eigenvalue λ of matrix [CX̂ ] is such that 0 ≤ λ ≤ 2.

Appendix D. Proof of Eq. (48) for the consistency of the estimator defined by

Eq. (47) corresponding to the estimation defined by Eq. (45)

The proof is inspired of [82], is slightly different, is adapted to the Gaussian

kernel-density, and the upper bound defined by Eq. (48) is not the same. The

Silverman bandwidth sar is defined by Eq. (35) and x̂ is a point fixed in Rν . Let

x̂ 7→ κ(x̂) be the Gaussian pdf, centered, with invertible covariance matrix [Ĉε]

defined by Eq. (39), such that [G] = [Ĉε]
−1 ∈ M+

ν , and let x̂ 7→ κνar(x̂) be the

function on Rν , such that,

κ(x̂) =

√
det[G]

(2π)ν/2
exp{−1

2
<[G] x̂ , x̂>} , (D.1)

κνar(x̂) =
1

sνar

κ(
x̂

sar

) . (D.2)

Using the change of variable x̂ = [Φ] η̂ with [G] = [Φ] [Λε]
−1 [Φ]T (see Eq. (41))

and since sar → 0 when νar → +∞, it can be seen that we have the following

limit in the space of measures on Rν ,

lim
νar→+∞

κνar(x̂) dx̂ = δ0(x̂) , (D.3)

in which dx̂ is the Lebesgue measure on Rν and δ0(x̂) is the Dirac measure on Rν

at point x̂ = 0.
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(i) Sequence of estimators of p
X̂

. Let X̂
1
, . . . , X̂

νar
be νar independent copies of

random variable X̂ whose pdf is p
X̂

. Therefore, x̂
ℓ

is a realization of X̂
ℓ
. For x̂

fixed in Rν , the sequence of estimators of p
X̂
(x̂), whose an estimation is p

(νar)

X̂
(x̂)

defined by Eq. (45), is the sequence {Pνar(x̂)}νar of positive-valued random vari-

ables defined by

Pνar(x̂) =
1

νar

νar∑

ℓ=1

κνar(X̂
ℓ − x̂) . (D.4)

(ii) Mean value P νar
(x̂) of Pνar(x̂). The mean value of random variable Pνar(x̂) is

written as E{Pνar(x̂)} = 1
νar

∑νar

ℓ=1E{κνar(X̂
ℓ − x̂)}, which yields

P νar
(x̂) =

∫

Rν

κνar(x̃ − x̂) p
X̂
(x̃) dx̃ . (D.5)

Assuming that pX̂ is a continuous function in x̂ ∈ Rν , using Eq. (D.3) yields

lim
νar→+∞

P νar
(x̂) = pX̂(x̂) . (D.6)

(iii) Variance of Pνar(x̂). Since the random variables X̂
1
, . . . , X̂

νar
are independent

copies of X̂, and using Eq. (D.2), the variance of Pνar(x̂) is such that

E{(Pνar(x̂)− P νar
(x̂))2} =

1

νar

E{(κνar(X̂ − x̂))2} − 1

νar

(P νar
(x̂))2

≤ 1

νar

E{(κνar(X̂ − x̂))2}

=
1

νar

∫

Rν

(κνar(x̃ − x̂))2 p
X̂
(x̃) dx̃ .

Since ∀ x̂, supx̃ κνar
(x̃ − x̂) = 1

sνar

√
det[G]

(2π)ν/2
and using Eqs. (D.2) and (D.5), we have

E{(Pνar(x̂)− P νar
(x̂))2} ≤ 1

νarsνar

√
det[G]

(2π)ν/2
P νar

(x̂) . (D.7)
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Substituting sar given by Eq. (35) into the right-hand side of Eq. (D.7) yields

E{(Pνar(x̂)− P νar
(x̂))2} ≤

{
1

νar

}4/(ν+4){
ν+2

4

}ν/(ν+4)
√

det[G]

(2π)ν/2
P νar

(x̂) . (D.8)

(iv) Properties of the sequence of estimators. It can be seen that

E{(Pνar(x̂)− p
X̂
(x̂))2} = E{(Pνar(x̂)−P νar

(x̂))2}+ (P νar
(x̂)− p

X̂
(x̂))2 . (D.9)

Using Eqs. (D.6), (D.8), and (D.9) for νar → +∞, it can be seen that the estimator

Pνar(x̂) is asymptotically unbiased and is consistent because

lim
νar→+∞

E{(Pνar(x̂)− pX̂(x̂))
2} = 0 . (D.10)

The mean-square convergence corresponding to Eq. (D.10) implies the conver-

gence in probability.

Appendix E. Construction of the diffusion-maps basis for the posterior model

The construction, based on [79], is the one presented in [56] and is summa-

rized in Appendix A.2, using theNs independent realizations {sj , j = 1, . . . , Ns}
defined by Eq. (103). Let [Ps] = [bs]

−1 [Ks] be the matrix in MNs such that,

for all i, j and j′ in {1, . . . , Ns}, [Ks]jj′ = exp(− 1
4 εpost

diff

‖sj − sj
′‖2) and [bs]ij =

δij
∑Ns

j′=1[Ks]jj′ depending on a positive parameter εpost
diff whose value depends on

dataset {sj , j = 1, . . . , Ns}. Therefore, [Ps] is a transition matrix of a Markov

chain. For 1 < mpost ≤ Ns, let g1
s, . . . , g

mpost

s be the right eigenvectors in RNs ,

of the eigenvalue problem [Ps] gα
s = Λs,α gα

s with the normalization condition

[gs]
T [bs] [gs] = [Impost

] and where the associated mpost ≤ Ns positive eigenvalues

are such that 1 = Λs,1 > Λs,2 > . . . > Λs,mpost
. The diffusion-maps basis is rep-

resented by the matrix [gs] = [g1
s . . . g

mpost

s ] ∈ MNs,mpost
. The eigenvector g1

s asso-

ciated with the largest eigenvalue Λs,1 = 1 is a constant vector that has to be kept

because stochastic process [S] is not centered (it is [Slin] that is a centered stochas-

tic process). Formpost = Ns, the diffusion-maps basis is an algebraic basis of RNs .

The right-eigenvalue problem of the nonsymmetric matrix [Ps] can be performed

solving the eigenvalue problem [bs]
−1/2 [Ks] [bs]

−1/2 Φα
s = Λs,αΦ

α
s related to a

positive-definite symmetric real matrix with the normalization ‖Φα
s ‖ = 1. There-

fore, gα
s can be deduced from Φα

s by gα
s = [bs]

−1/2 Φα
s . The construction intro-

duces two hyperparameters: the dimension mpost ≤ Ns and the smoothing param-
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eter εpost
diff > 0. The algorithm for estimating the optimal values of εpost

diff and mpost is

detailed in [75]. Most of the time, these optimal values can be calculated using

Eqs. (A.2) and (A.3) in which εdiff has to be replaced by εpost
diff .

Appendix F. Störmer-Verlet scheme for solving the reduced-order ISDE

Let npost
MC and M post

0 be the given integers defined in Section 8.5. The reduced-

order ISDE defined by Eqs. (105) to (107) is solved for t ∈ [0, tmax] with tmax =
(ℓ0 + npost

MC M
post

0 )∆t in which ∆t is the sampling step and where ℓ0 is chosen in

order that the solution of Eqs. (105) to (107) has reached the stationary regime.

For ℓ = 0, 1, . . . , npost
MC M

post

0 , we consider the sampling points tℓ = ℓ∆t and the

following notations: [Zℓ] = [Z(tℓ)], [Yℓ] = [Y(tℓ)], and [Wwien

ℓ ] = [Wwien(tℓ)].
The Störmer-Verlet scheme is used for solving the reduced-order ISDE, which is

written, for ℓ = 0, 1, . . . , npost
MC M

post

0 , as

[Zℓ+ 1
2
] = [Zℓ] +

∆t

2
[Yℓ] ,

[Yℓ+1] =
1− β

1 + β
[Yℓ] +

∆t

1 + β
[L̃ℓ+ 1

2
] +

√
f post

0

1 + β
[∆Wwien

ℓ+1] ,

[Zℓ+1] = [Zℓ+ 1
2
] +

∆t

2
[Yℓ+1] ,

with the initial condition defined by Eq. (107), where β = f post

0 ∆t /4, and where

[L̃ℓ+ 1
2
] is the Mνw,mpost

-valued random variable such that

[L̃ℓ+ 1
2
] = [L̃([Zℓ+ 1

2
])] = [L̃([Zℓ+ 1

2
] [gs]

T )] [as] .

In the above equation, [∆Wwien

ℓ+1] = [∆Wwien

ℓ+1] [as] is a random variable with values

in Mνw,mpost
, in which the increment [∆Wwien

ℓ+1] = [Wwien
ℓ+1]− [Wwien

ℓ ]. The increments

are statistically independent. For all k = 1, . . . , νw and for all j = 1, . . . , Ns, the

real-valued random variables {[∆Wwien
ℓ+1]kj}kj are independent, Gaussian, second-

order, and centered random variables such that

E{[∆Wwien
ℓ+1]kj[∆Wwien

ℓ+1]k′j′} = ∆t δkk′ δjj′ .
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[25] H. P. Flath, L. C. Wilcox, V. Akçelik, J. Hill, B. van Bloemen Waanders,

O. Ghattas, Fast algorithms for Bayesian uncertainty quantification in large-

scale linear inverse problems based on low-rank partial hessian approxi-

mations, SIAM Journal on Scientific Computing 33 (1) (2011) 407–432.

doi:10.1137/090780717.

[26] M. T. Pratola, S. R. Sain, D. Bingham, M. Wiltberger, E. J. Rigler, Fast se-

quential computer model calibration of large nonstationary spatial-temporal

processes, Technometrics 55 (2) (2013) 232–242.

[27] T. Isaac, N. Petra, G. Stadler, O. Ghattas, Scalable and efficient algo-

rithms for the propagation of uncertainty from data through inference

to prediction for large-scale problems, with application to flow of the

antarctic ice sheet, Journal of Computational Physics 296 (2015) 348–368.

doi:10.1016/j.jcp.2015.04.047.

[28] A. Spantini, T. Cui, K. Willcox, L. Tenorio, Y. Marzouk, Goal-oriented opti-

mal approximations of Bayesian linear inverse problems, SIAM Journal on

Scientific Computing 39 (5) (2017) S167–S196.

[29] Q. Zhou, W. Liu, J. Li, Y. Marzouk, An approximate empirical Bayesian

method for large-scale linear-Gaussian inverse problems, Inverse Problems.

[30] R. Tipireddy, R. Ghanem, Basis adaptation in homogeneous chaos spaces,

Journal of Computational Physics 259 (2014) 304–317.

[31] P. Tsilifis, R. Ghanem, Bayesian adaptation of chaos representations using

variational inference and sampling on geodesics, Proc. R. Soc. A 474 (2217)

(2018) 20180285.

[32] M. A. Grepl, Y. Maday, N. C. Nguyen, A. T. Patera, Efficient reduced-basis

treatment of nonaffine and nonlinear partial differential equations, ESAIM:

Mathematical Modelling and Numerical Analysis 41 (3) (2007) 575–605.

[33] S. Chaturantabut, D. C. Sorensen, Nonlinear model reduction via dis-

crete empirical interpolation, SIAM Journal on Scientific Computing 32 (5)

(2010) 2737–2764.

[34] K. Carlberg, C. Bou-Mosleh, C. Farhat, Efficient non-linear model reduc-

tion via a least-squares petrov–galerkin projection and compressive tensor

66

http://dx.doi.org/10.1137/090780717
http://dx.doi.org/10.1016/j.jcp.2015.04.047


approximations, International Journal for Numerical Methods in Engineer-

ing 86 (2) (2011) 155–181.

[35] C. Farhat, T. Chapman, P. Avery, Structure-preserving, stability, and accu-

racy properties of the energy-conserving sampling and weighting method

for the hyper reduction of nonlinear finite element dynamic models, Interna-

tional Journal for Numerical Methods in Engineering 102 (5) (2015) 1077–

1110. doi:10.1002/nme.4820.

[36] D. Ryckelynck, A priori hyperreduction method: an adaptive approach, Jour-

nal of computational physics 202 (1) (2005) 346–366.

[37] M. Meyer, H. G. Matthies, Efficient model reduction in non-linear dynam-

ics using the karhunen-loeve expansion and dual-weighted-residual meth-

ods, Computational Mechanics 31 (1-2) (2003) 179–191.

[38] A. Nouy, Low-rank tensor methods for model order reduction, in:

R. Ghanem, D. Higdon, O. H. (Eds.), Handbook of Uncertainty Quantifi-

cation, Springer, Cham, Switzerland, 2017, Ch. 25, pp. 857–882.

[39] E. Capiez-Lernout, C. Soize, M.-P. Mignolet, Post-buckling nonlinear static

and dynamical analyses of uncertain cylindrical shells and experimental

validation, Computer Methods in Applied Mechanics and Engineering 271

(2014) 210–230.

[40] C. Soize, C. Farhat, Probabilistic learning for modeling and quantifying

model-form uncertainties in nonlinear computational mechanics, Interna-

tional Journal for Numerical Methods in Engineering 117 (2019) 819–843.

doi:10.1002/nme.5980.

[41] R. Ghanem, R. Doostan, Characterization of stochastic system parameters

from experimental data: A bayesian inference approach, Journal of Compu-

tational Physics 217 (1) (2006) 63–81.

[42] M. Arnst, R. Ghanem, C. Soize, Identification of Bayesian posteriors for

coefficients of chaos expansions, Journal of Computational Physics 229 (9)

(2010) 3134–3154. doi:10.1016/j.jcp.2009.12.033.

[43] S. Dolgov, B. N. Khoromskij, A. Litvinenko, H. G. Matthies, Polynomial

chaos expansion of random coefficients and the solution of stochastic par-

tial differential equations in the tensor train format, SIAM/ASA Journal on

Uncertainty Quantification 3 (1) (2015) 1109–1135.

67

http://dx.doi.org/10.1002/nme.4820
http://dx.doi.org/10.1002/nme.5980
http://dx.doi.org/10.1016/j.jcp.2009.12.033


[44] Y. Marzouk, H. Najm, L. Rahn, Stochastic spectral methods for efficient

Bayesian solution of inverse problems, Journal of Computational Physics

224 (2) (2007) 560–586.

[45] Y. Marzouk, H. Najm, Dimensionality reduction and polynomial chaos ac-

celeration of Bayesian inference in inverse problems, Journal of Computa-

tional Physics 228 (6) (2009) 1862–1902.

[46] B. V. Rosic, A. Litvinenko, O. Pajonk, H. G. Matthies, Sampling-free linear

Bayesian update of polynomial chaos representations, Journal of Computa-

tional Physics 231 (17) (2012) 5761–5787.

[47] J. B. Nagel, B. Sudret, Spectral likelihood expansions for Bayesian infer-

ence, Journal of Computational Physics 309 (2016) 267–294.

[48] L. Giraldi, O. P. Le Maı̂tre, K. T. Mandli, C. N. Dawson, I. Hoteit, O. M.

Knio, Bayesian inference of earthquake parameters from buoy data us-

ing a polynomial chaos-based surrogate, Computational Geosciences 21 (4)

(2017) 683–699.

[49] M. B. Palacios, M. F. J. Steel, Non-gaussian bayesian geostatistical model-

ing, Journal of the American Statistical Association 101 (474) (2006) 604–

618.
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MCMC method for Bayesian characterization of errors associated

with data limitations in stochastic expansion methods for uncertainty

quantification, Journal of Computational Physics 349 (2017) 59–79.

doi:10.1016/j.jcp.2017.08.005.

[51] N. J. Gordon, D. J. Salmond, A. F. Smith, Novel approach to nonlinear/non-

Gaussian Bayesian state estimation, IEE Proceedings for radar and signal

processing 140 (2) (1993) 107–113.
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