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Abstract
Historical functional linear models (HFLMs) quantify associations between a functional predictor and functional outcome
where the predictor is an exposure variable that occurs before, or at least concurrently with, the outcome. Prior work on
the HFLM has largely focused on estimation of a surface that represents a time-varying association between the functional
outcome and the functional exposure. This existing work has employed frequentist and spline-based estimation methods, with
little attention paid to formal inference or adjustment for multiple testing and no approaches that implement wavelet bases.
In this work, we propose a new functional regression model that estimates the time-varying, lagged association between a
functional outcome and a functional exposure. Building off of recently developed function-on-function regression methods,
the model employs a novel use the wavelet-packet decomposition of the exposure and outcome functions that allows us to
strictly enforce the temporal ordering of exposure and outcome, which is not possible with existing wavelet-based functional
models. Using a fully Bayesian approach, we conduct formal inference on the time-varying lagged association, while adjusting
for multiple testing. We investigate the operating characteristics of our wavelet-packet HFLM and compare them to those of
two existing estimation procedures in simulation. We also assess several inference techniques and use the model to analyze
data on the impact of lagged exposure to particulate matter finer than 2.5µg, or PM2.5, on heart rate variability in a cohort of
journeyman boilermakers during the morning of a typical day’s shift.

Keywords Functional data analysis · Historical functional models · Bayesian methods and inference · Wavelet-packets ·
Environmental exposures

1 Introduction

Historical functional linear models (HFLMs) are used to
analyze the relationship between a functional “exposure”
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and a functional “outcome” where only exposures occur-
ring in time before or concurrently with the outcome can
affect the outcome. HFLMs are a special case of function-
on-function regression (FFR) models, the latter of which fit
an unconstrained surface and are therefore inappropriate for
modeling functional predictors that are lagged exposures.
For example, suppose that for subject i , xi (v) represents
levels of a pollutant sampled on a grid v ∈ V and yi (t)
represents a measure of heart health, sampled on a grid
t ∈ T . A general FFR model with no constraints takes the
form

yi (t) = α(t) +
∫

v∈V
xi (v)β(v, t)dv + Ei (t), (1)

where the surface β(v, t) is the primary quantity of inter-
est for estimation and Ei (t) is typically assumed to come
from a Gaussian process. For example, see Ivanescu et al.
(2015), Meyer et al. (2015), Morris (2015), Scheipl et al.
(2015), Scheipl and Greven (2016), Kim et al. (2018), and
references therein.
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However, when applied to data on the association between
time-varying personal air pollution exposure and heart rate
variability (HRV), model (1) allows HRV measurements at
time t to be associated with pollutants occurring both prior
to time t as well as after time t , despite the implausibility
of such a relationship. The HFLM addresses this issue, con-
straining β(v, t) to prevent such spurious associations by
limiting the integration in (1) to the set of coefficients such
that {v ∈ V, t ∈ T : v ≤ t}. The basic HFLM takes the form

yi (t) = α(t) +
∫

{v≤t}
xi (v)β(v, t)dv + Ei (t). (2)

The observed data are usually discrete, so that β(v, t) can
be expressed as a matrix of coefficients. Thus, the problem
reduces to constraining the estimate of β(v, t) to be zero for
the lower triangle of the matrix.

Several authors explore ways of implementing the con-
straint in (2). Malfait and Ramsay (2003) propose the use
of tent-shaped basis functions with support over a two-
dimensional region. They estimate the surface using a mul-
tivariate linear model approximation to a finite-dimensional
model. After dimension reduction via the basis-space expan-
sion, they use least squares to estimate β(v, t). Harezlak
et al. (2007) also use basis functions defined over a two-
dimensional region, but specify a large number of basis
functions and penalize the fit. The authors consider both
LASSO and L2-norm penalties on triangular basis functions,
using restricted maximum likelihood (REML) for the latter.
Both Malfait and Ramsay (2003) and Harezlak et al. (2007)
allow for a pre-defined lag beyond which the effect of expo-
sure is zero, further constraining the surface to a trapezoidal
region defined by {v,∈ V, t ∈ T : t − Δ ≤ v ≤ t} for
some pre-defined lag Δ. Kim et al. (2011) take the con-
straint further by proposing a recent history functional linear
modelwhere the surface is constrained to a trapezoidal region
defined by {v,∈ V, t ∈ T : t − Δ1 ≤ v ≤ t − Δ2} for
0 < Δ1 < Δ2 < T . The authors estimate the constrained
surface with a varying coefficient model representation using
B-spline basis functions, although they suggest Fourier, trun-
cated power, and eigenbasis functions can also be used.

Pomann et al. (2016) and Brockhaus et al. (2017) examine
HFLMs with multiple functional predictors and estimation
potentially constrained to a fixedwindow, similar to the work
ofHarezlak et al. (2007). Pomann et al. (2016) implement two
approaches: semi-local smoothing, which performs point-
wise estimation, and global smoothing, which smoothes over
T globally. The methods select smoothing parameters via
cross-validation and REML, respectively, and use B-spline
basis expansions to model the functional form. In each, the
covariance of the error term, Ei (t), is assumed independent or
to have “working” independence. Brockhaus et al. (2017) use
component-wise gradient boosting and B-splines to estimate

multiple historical surfaces. To our knowledge, the existing
body of work on HFLMs is limited to spline-based meth-
ods which can oversmooth signals and peaks in spiky and
irregular data. The current literature lacks a Bayesian imple-
mentation and also does not consider inferential procedures,
focusing instead on estimation and model fit criterion. As
such, the performance of the existing methods with respect
to uncertainty quantification is not clear.

Wavelet-based functional regression models, such as the
work of Morris and Carroll (2006) and Malloy et al. (2010),
consider the function-on-scalar and scalar-on-function regres-
sion cases, respectively, in the Bayesian context. Meyer et al.
(2015) extend the wavelet functional mixed model of Morris
and Carroll (2006) to the FFR case using wavelets for the
basis function of the outcome and wavelet principal compo-
nents (WPCs) for reducing the dimension of the predictor.
One advantage of the wavelet-based framework is that it
does not require the assumption of independence in the data
space; that is, the wavelet-based approach can accommo-
date a wide range of structures for the covariance of Ei (t)
(Morris and Carroll 2006). However, the wavelet-based FFR
of Meyer et al. (2015) fits an unconstrained surface, as in
(1), and cannot be used to estimate historical effects, as
in (2). To implement an HFLM using wavelets, we need a
wavelet transformation that maintains the temporal ordering
of the untransformed outcome and exposure data. The dis-
crete wavelet transformation (DWT) andWPC,whichMeyer
et al. (2015) employ, distort the original time domains and
thus do not maintain the exposure–response ordering. How-
ever, the discrete wavelet-packet transformation (DWPT),
which has not previously been used for functional regression,
is an alternative algorithm for determining wavelet-space
coefficients. The indexing of the resulting coefficients has
a convenient relationship to the time domain that we can
exploit, allowing us to sample coefficients in such a way that
maintains the historical constraint in the wavelet-space.

In this work, we propose a novel use of the DWPT to, in
conjunction with Bayesian regularization, enforce the con-
straint in model (2). The resulting coefficients from a DWPT
maintain the ordering of the original data. Thus, after per-
forming the DWPT on both the y and x , the coefficients are
similarly ordered. While the DWPT alone does not constrain
the surface, its preservation of the temporal ordering of the
original signal in the wavelet coefficients allows us to use a
prior in the wavelet-space to constrain the surface and thus
build a Bayesian wavelet-space HFLM. We formulate our
model within the framework of Morris and Carroll (2006)
and Meyer et al. (2015). Thus, our method does not rely
on the assumption of independence in the data space and
can accommodate a wide range of underlying within-curve
covariance structures. A benefit of the Bayesian approach
is that we can implement joint credible intervals to quan-
tify uncertainty and Simultaneous Band Scores or SimBaS
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(Meyer et al. 2015) to identify critical regions of time when
the exposure is associated with the outcome—both of which
adjust for multiplicity. We assess the operating character-
istics of the methodology in simulation and show that, in
comparison with two other existing approaches for HFLMs,
our method performs well. We also demonstrate the advan-
tages of using joint intervals and SimBaSover otherBayesian
methods for inference including point-wise credible intervals
and the Bayesian false discovery rate. Finally, we present an
application to data from a study of journeyman boilermakers
exposed to particulate matter during the course of a workday.

The motivating data consist of five-minute assessments of
HRV, as defined by the standard deviation of the normal-to-
normal intervals (SDNN) at each time point, and particulate
matter finer than 2.5µm (PM2.5) which results from expo-
sure to residual oil fly ash and cigarette smoke (Magari et al.
2001; Cavallari et al. 2008). Harezlak et al. (2007) present
an analysis of part of this data and found both negative and
positive time-specific associations in the morning that cor-
responded to the workers’ break times. Our analysis focuses
on the morning hours of the workday where Harezlak et al.
(2007) demonstrate the largest effects. We make available
MATLAB code for the implementation of our method at
https://github.com/markjmeyer/WPHFLM.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief introduction to the discrete wavelet-
packet transformation. Section 3 details the formulation of
the Bayesian wavelet-packet HFLM along with a discussion
of inferential procedures. Sections 4 and 5 present the results
of our simulation study and the application of our model
to the journeyman data, respectively. Finally, in Sect. 6, we
provide a discussion of the methodology.

2 Discrete wavelet-packet transformation

Consider a one-dimensional function, x(v), which we dis-
cretely observe as x = [x1 · · · xV ]′ , where V = 2k for some
positive integer value k (wavelet transformations require the
signal to be dyadic, see Percival and Walden (2000) and
Nason (2008) for more details). For a given mother wavelet,
the DWPT begins by first passing the corresponding low-
, G, and then high-pass, H, filters over the original signal,
resulting in a set of approximation coefficients, a, and detail
coefficients, d. After the first level, the DWPT applies G and
H to all coefficientswithin the level, reversing the orderwhen
applied to the detail coefficients. Figure 1 illustrates the par-
tial DWPT decomposition for J = 3 levels. The resulting
representation of x is the set of coefficients from the last
level, wP = [a3,0 d3,1 a3,2 d3,3 a3,4 d3,5 a3,6 d3,7]′. The
DWPT can be expressed as a post-multiplication of the orig-
inal exposure vector by an orthogonal matrix,WP . Thus,wP

can be shown to be wP = xWP .

Fig. 1 Algorithm for partial, j = 3,DWPT (Percival andWalden 2000)

Similar to the DWT, the wavelet-packet coefficients inwP

are indexed by a scale and location. The scale indexes the bin
the coefficient is in at the final level of the decomposition and
thus corresponds to the second subscript from the j = 3 level
in Fig. 1, while the location denotes the position of the coef-
ficient within the set of coefficients at a given scale. Thus,
the time ordering of the observed signal is preserved, within
a scale, in the ordering of the coefficients. Suppose we have
a second function, y(t), that we discretely observe on a grid
such that y = [

y1 · · · yT
]′
. Performing the DWPT on y, we

obtain a set of wavelet-packet coefficients that preserve the
time ordering of the original signal within each scale. Pro-
vided the elements of x are sampled in time concurrently or
before the elements of y, we can use the location index from
their respective DWPT decompositions to estimate only the
desired region of the surface within each scale in the wavelet-
packet space. It is important to note that the DWPT does not,
on its own, constrain the surface. It only provides a conve-
nient representation of the signal in the wavelet-packet space
that allows us to sample only certain coefficients. When we
apply the inverse DWPT (IDWPT), the constraint is main-
tained in the data space. For more details on DWPTs, see
Percival andWalden (2000, chap. 6), Misiti et al. (2007), and
Nason (2008, chap. 2).

3 Bayesian historical functional linear model

We begin with the model in (2) that constrains the estimation
to the region defined by {v ∈ V, t ∈ T : v ≤ t}. We assume
the within-function errors come from a Gaussian process,
Ei (t) ∼ GP (0,ΣE ), where ΣE is an unstructured covari-
ancematrix. Because the data, yi (t) and xi (v), arrive sampled
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on a grid of equally spaced time points t = [t1, . . . , tT ]′ and
v = [v1, . . . , vV ]′, we use the vector version of the model:
yi = xiβ + ei for the vectors yi , xi , and ei and matrix of
coefficients β. We recommend centering and scaling both
the outcome and predictor functions first. Thus, without loss
of generality, we drop the intercept function from the model
formulation—although our method does estimate the inter-
cept and can accommodate scalar covariates. Stacking the
response vectors and predictor vectors into matrices gives

Y = Xβ + E, (3)

where for N total curves, E and Y are N × T , while X is
N × V . The constrained region of integration in Model (2)
restricts the form of the functional regression coefficients so
that β(vk, tk′) = 0 if vk > tk′ . If T = V and t1 = v1, t2 =
v2, . . . , tT = vV , then the discrete version of β is an upper
triangular matrix of the form

β =

⎛
⎜⎜⎜⎝

β(v1, t1) β(v1, t2) · · · β(v1, tT )

0 β(v2, t2) · · · β(v2, tT )
...

...
. . .

...

0 0 · · · β(vV , tT )

⎞
⎟⎟⎟⎠ , (4)

with zeros below the main diagonal.

3.1 Historical constraint via wavelet-packets

Workingwith (3), we apply theDWPT separately to each row
of Y and to each row of X. Performing this transformation
is equivalent to the post-multiplication of the approximately
orthonormal projection matrices resulting from the DWPT
(Percival and Walden 2000). The decompositions have the
form Y = YWPWP,Y and X = XWPWP,X whereWP,Y and
WP,X are orthogonal matrices containing thewavelet-packet
basis functions. Then, for the two-dimensional decomposi-
tion on β = W′

P,XβWPWP,Y , Model (3) in the wavelet-

packet space isYWPWP,Y = XWPWP,XW′
P,XβWPWP,Y +

EWPWP,Y for E = EWPWP,Y . Post-multiplying by WP,Y

and recognizing the orthogonality of thewavelet-packet basis
matrices, thismodel reduces toYWP = XWPβWP +EWP with
subject-specific model yWP

i = xWP
i βWP + eWP

i .
We enforce the constraint in the wavelet-packet space via

our prior specification on the elements of β. Let the DWP
transformations be indexed by scales j = 1, . . . , J y and
s = 1, . . . , Sx and locations k = 1, . . . , K y and � =
1, . . . , Lx in theY andXwavelet-packet spaces, respectively.
Consistent with previous work on wavelet-based models in
function regression, we place spike-and-slab priors onmodel
coefficients. To restrict the surface in the wavelet-packet

space, our prior on the elements of βWP =
[
β
WP
s�, jk

]
is

β
WP
s�, jk ∼ 1(� ≤ k)γs�, jk N (0, τs�, j ·)+[1− γs�, jk]d0, where

γs�, jk ∼ Bern(πs�, j ·) and d0 is a point mass distribution at
zero. The regularization parameters, τs�, j · and πs�, j ·, smooth
over locations k which we denote using the “dot” notation
in the subscript. We assume inverse gamma and beta hyper-
priors, respectively, for the regularization parameters with
hyper-parameters based on empirical Bayes estimates.

Morris and Carroll (2006) show that after a wavelet
transformation, assuming independence in thewavelet-space
does not imply independence in the data space. There-
fore, wavelets accommodate a wide range of covariances in
the data space. As wavelet-packets share the same whiten-
ing properties of wavelets, we assume independence in the
wavelet-packet space (Percival and Walden 2000). Thus, we

let e
Wp
i ∼ N (0,ΣWp ) where ΣWp = diag

{
σ 2
jk

}
, which

varies by the scale and location of the Y wavelet-packet
coefficients. We place an inverse gamma prior on σ 2

jk . The
independence assumption allows us to sample the coeffi-
cients separately, corresponding to different combinations
of j and k .

For the jkth wavelet-packet space coefficient from YWP

and the s�th column of XWP , the conditional posterior dis-
tribution is a mixture of a point mass at zero and a normal
distribution of the form

β
WP
s�, jk |rest ∼1(� ≤ k)γs�, jk N (μs�, jk, εs�, jk)

+ (1 − γs�, jk)d0, (5)

where μs�, jk = β̂
WP
s�, jk(1 + Λs�, jk/τs�, j )

−1 and εs�, jk =
Λs�, jk(1 + Λs�, jk/τs�, j )

−1 for the OLS and variance esti-

mates β̂
WP
s�, jk and Λs�, jk at the current step. The conditional

for γs�, jk is

γs�, jk |rest ∼ Bern(αs�, jk), (6)

where αs�, jk = Os�, jk/
(
Os�, jk + 1

)
for

Os�, jk = πs�, j/(1 − πs�, j )BFs�, jk,

BFs�, jk = e
1
2 ζ 2s�, jk

(
1+ Λs�, jk

τs�, j

)/√
1 + τs�, j

Λs�, jk
,

and ζs�, jk equal to the ratio of the current values of β
WP
s�, jk

to the current estimate of the standard deviation of β
WP
s�, jk .

Via the indicator function in the conditional in (5), 1(� ≤ k),
we enforce the historical constraint by forcing coefficients
for which � > k to come from the point mass density d0 and
thus be constrained to zero. Because of wavelet-packet space
independence, these coefficients do not inform the estimation
of the coefficients in the region of interest and are excluded
from informing the variance components.
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The conditionals for the diagonal elements of the wavelet-
packet space variance components, σ 2

jk , are

P
(
σ 2
jk |rest

)
∝ π

(
σ 2
jk

) (
σ 2
jk

)−n/2 ×

exp

[
− 1

2σ 2
jk

(
y
Wp
jk − Xβ

Wp
··, jk

)′ (
y
Wp
jk − Xβ

Wp
··, jk

)]
, (7)

where π
(
σ 2
jk

)
is the prior density on σ 2

jk , which we take

to be inverse gamma with parameters aσ 2 and bσ 2 both set
to their empirical Bayes estimates. Similar to prior work on
wavelet-based functional regression models, we employ a
Metropolis–Hastings step to sample these variance compo-
nents (Morris and Carroll 2006; Morris et al. 2008; Malloy
et al. 2010; Zhu et al. 2011; Meyer et al. 2015). The pro-
posal densities are independent Gaussians, truncated at zero
and centered at the previous value in each chain. The full
conditionals for the regulationization parameters are

τs�, j ·|rest ∼ IG

[
aτ + 1

2
γs�, jk,

bτ + 1

2
γs�, jk

(
β
WP
s�, jk

)2 ]
and (8)

πs�, j ·|rest ∼ Beta
(
aπ + γs�, jk, bπ + γs�, jk

)
, (9)

with aτ , bτ , aπ , and bπ set to the empirical Bayes estimates.
These prior specifications are in accordancewith the previous
work on wavelet-based functional models (Morris and Car-
roll 2006; Malloy et al. 2010; Meyer et al. 2015). For more
details on the empirical Bayes estimates, seeMorris and Car-
roll (2006). Our sampler then iterates between draws from
(5) to (9) until convergence. Upon completion of the algo-
rithm, we apply the inverse DWPT to the posterior samples
of βWP to obtain estimates in the data space of β, the upper
triangular matrix of historically constrained coefficients.

3.2 Thresholding and wavelet details

There are two potential sources of computational burden in
the estimation procedure. The first source is in the post-
processing of the samples when projecting them back into
the data space which requires pre- and post-multiplication of
each sampled matrix. For several of the inference procedures
we consider, the full posterior sample must be obtained and
this inefficiency is unavoidable. However, if the estimate and
point-wise credible intervals are all that are of interest, the
wavelet-space samples can be summarized accordingly and
then projected into the data space. This considerably reduces
computation time. The second source is the sampler itself
which becomes computationally intensive as V increases. In
previous work on wavelet-based models, Meyer et al. (2015)

address this by reducing the dimension of the wavelet trans-
formed X using wavelet principal components (WPC) and
retaining columns containing a large amount of the variabil-
ity in X. The WPC decomposition involves first performing
a DWT onX and then performing a singular value decompo-
sition (SVD).While this approach reduces computation time
and achieves additional denoising akin to thresholding coef-
ficients to zero, it does not work in the historical framework
because performing an SVD on XWP disrupts the temporal
ordering.

To address the computational intensity of the sampler and
simultaneously achieve additional denoising as is commonly
done with wavelets via hard or soft thresholding, we propose
a simplified thresholding procedure: All coefficients in the
larger scales ofXWP are set to zero.We consider retaining the
scales that comprise 25 and 50% of the wavelet-packet coef-
ficients in XWP . For example, using the J = 3 level partial
DWPT, the first approach would result in retaining the vec-
tors of wavelet-packet coefficients a3,0 and d3,1 from Fig. 1.
The second approach, retaining 50%, would correspond to
retaining the vectors ofwavelet-packet coefficients a3,0,d3,1,
a3,2, and d3,3, also from Fig. 1. Our simulation compares the
performance of both approaches in terms of computational
efficiency and estimation. It is important to note that we do
not threshold the outcome and retain all coefficients ofYWP .

For the choice of mother wavelets, we use Daubechies
wavelets with three vanishing moments for the separate
DWPTs on both Y and X. Wavelet-packets also require
a choice of boundary padding for most types of mother
wavelets and when the signal is not dyadic. We select zero
padding, which pads each boundary of the vector of coeffi-
cients with zeros (Percival and Walden 2000). To ensure the
padding is consistent within each scale between Y and X,
we wrote our own DWPT algorithm that applies the padding
uniformly within each scale. Finally, we must choose the
number of levels for the partial DWPT. Because we seek to
maintain time ordering within scales, we must use the same
number of levels of decomposition, J = 3, for both Y and
X. We consider the impact of using J = 4 levels on the
journeyman data in the application.

3.3 Posterior inference andmodel evaluation

Previous implementations of the HFLM have focused on
model fit, and not on statistical inference. In the wavelet-
based functional literature,Meyer et al. (2015) use aBayesian
false discovery rate (BFDR) procedure that Morris et al.
(2008) and Malloy et al. (2010) also consider. Meyer et al.
(2015) also use joint credible bands (Ruppert et al. 2003) and
propose Simultaneous Band Scores or SimBaS. We consider
the use of each method in the context of Bayesian wavelet-
packet HFLMs.
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The BFDR utilizes the MCMC samples to estimate the
posterior probability of a coefficient being greater than a
meaningful effect size, δ. These values are ranked and a cut-
off selected to control the overall FDR at a pre-specified
global α-bound. Suppose we have M MCMC samples and
β(m)(v, t) is mth draw from the posterior estimated surface.
For {v ∈ V and t ∈ T s.t. v ≤ t}, we find PB(v, t) =
Pr {|β(v, t)| > δ|y} ≈ 1

M

∑M
m=1 1

{∣∣β(m)(v, t)
∣∣ > δ

}
. We

then flag the set of coefficients on the historical surface that
satisfy ψ = {(v, t) : v ≤ t and PB(v, t) ≥ φα}. Here,
φα is determined by ranking the values of PB in descend-
ing order to obtain the set

{
P(r), r = 1, . . . , R

}
, where R

is the number of coefficients satisfying the historical con-
straint. Then, define the cutoff value as λ, λ = max

[
r∗ :

1
r∗

∑r∗
r=1

{
1 − P(r)

} ≤ α
]
. We select coefficients with PB

greater than or equal to φα = P(λ) as significant.
For interval estimation, we consider both point-wise cred-

ible intervals (PWCIs) as well as joint credible intervals.
PWCIs are constructed by finding the α/2 and 1 − α/2
quantiles of the posterior samples taken at each coefficient
for some choice of α. Similar to Meyer et al. (2015), we
construct joint credible intervals using Iα(v, t) = β̂(v, t) ±
q(1−α)

[
̂St.Dev

{
β̂(v, t)

}]
,where β̂(v, t) and ̂St.Dev

{
β̂(v, t)

}
are the mean and standard deviation of the posterior samples,
respectively, and q(1−α) is the (1−α) quantile taken over all
posterior samples of the quantity

q(m) = max
(v,t)

∣∣∣∣∣∣
β(m)(v, t) − β̂(v, t)

̂St.Dev
{
β̂(v, t)

}
∣∣∣∣∣∣ , s.t. v ≤ t .

Such an interval satisfies Pr{L(v, t) ≤ β(v, t) ≤ U (v, t)
∀v ∈ V, t ∈ T s.t. v ≤ t} ≥ 1−α,where L(v, t) andU (v, t)
are the corresponding upper and lower interval bounds. This
procedure yields a joint 100(1−α) interval for the historical
association surface. SimBa scores are then defined as the
smallest value of α at which the interval first excludes zero
for each (v, t).

For model selection, Harezlak et al. (2007) and Meyer
et al. (2015) both propose the use of a functional R2 metric
of the form

R2
ave = 1

T

∫ T

0

[
1 −

∑n
i=1{yi (t) − ŷi (t)}2∑n

i=1{yi (t)}2
]
dt .

In the application, we use this metric for selecting between
retaining 25% and 50% of the wavelet-packet coefficients in
XWP . Thus, we apply R2

ave to the wavelet-space model:

R2
W ,ave ≈ 1

J yK y

∑
j

∑
k

[
1 −

∑n
i=1{yWP

i, jk − ŷWP
i, jk}2∑n

i=1{yWP
i, jk}2

]
.

4 Simulation study

We first consider a setting designed to mimic our application
with N = 20 and T = V = 32 which we refer to as the
peak effect. The top left panel of Fig. 2 displays the peak
surface. We then examine four other historical surfaces rep-
resenting more general relationships between x(v) and y(t):
a lagged effect of x(v) on y(t), a cumulative effect, a time-
specific effect, and a delayed time-specific effect. Graphs
of these four more general surfaces along with the corre-
sponding mathematical expressions for all surfaces are in
Supplementary Material. For each of the more general rela-
tionships, we vary the sampling rate such that T = V = 64
and T = V = 128. We also vary the sample size, consid-
ering N = 50 and N = 200. For the peak and the sparser,
T = 64 settings, we vary the percent of the columns of XWP

we retain: first retaining 25% of coefficients and then retain-
ing 50%. In the denser, T = 128 settings, we only retain 25%
of coefficients since retaining more considerably increases
the computational burden. For comparison, we also imple-
ment the FDBoost approach proposed by Brockhaus et al.
(2017) using 1500 boosting iterations and the finite element
basis (FEB) approach used by Malfait and Ramsay (2003)
using 13 basis functions, per the authors’ recommendation.

For each “true” historical surface β, we generate N xi
curves from a mean zero Gaussian Process with a first-order
auto-regressive (AR1) covariance structure.Webase the vari-
ance and correlation parameters of the AR1 covariance off of
the PM2.5 data from the journeyman data, letting σ 2

AR,X =
3.5 and ρX = 0.75. Next we generate within-subject error
functions, ei , from a separate mean zero Gaussian Process
with an AR1 covariance structure. Once again we base the
parameters of the covariance matrix off of the journeyman
data, setting them to σ 2

AR,E = 0.1 and ρE = 0.5. We simu-
late the outcome functions using yi = xiβ + ei . We repeat
this data generation process 200 times for all settings, each
time obtaining 2000 posterior samples, discarding the first
1000. For every simulated dataset, we perform a J = 3 level
DWPT on both the outcome and predictor using Daubechies
wavelets with 3 vanishing moments. All computation is done
usingMATLABversion R2017a on a desktopwith a 3.2GHz
Intel Core i5 processor and 16 GB of memory.

To evaluate each method’s performance in estimation,
we find the root mean integrated squared error (RMISE).
Table 1 presents the RMISE averaged across all 200 sim-
ulated datasets for the peak scenario, while Fig. 2 shows a
single estimated surface with near-average RMISE from the
wavelet-packetmodel retaining 25%of coefficients in the top
right panel. Table 2 presents RMISEs for the more general
relationships, while corresponding figures similar to those in
Fig. 2 are in Supplementary Material.

From Table 1, the wavelet-packet model retaining 25% of
coefficients has the smallest average RMISE, while FDBoost
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Table 1 RMISE for the peak setting with N = 20 and T = 32 for
the wavelet-packet model retaining 25% (WP 25%) and 50% of coeffi-
cients (WP 50%) alongside the FDBoost and finite element basis (FEB)
approaches

RMISE Coverage
Point-wise Joint

WP 25% 0.044 0.780 0.943

WP 50% 0.073 0.827 0.973

FEB 0.106 − −
FDBoost 0.062 − −
Coverage for point-wise and joint credible intervals from the wavelet-
packet models is in the last two columns

is the next smallest. The wavelet-packet model retaining
50% of coefficients is slightly larger than FDboost while the
FEB’s RMISE is an order of magnitude larger. In Table 2, the
wavelet-packet models outperform both FDBoost and FEB

across the board. Increasing the sample size tends to decrease
RMISE for the wavelet-packet models as does increasing T
and V . Themore complicated relationships,βT andβD , have
lowerRMISEswhen retainingmore coefficients, although all
settings produce similar results. Regardless of sample size
or sampling density, retaining 25% of the X -space wavelet-
packet coefficients preserves roughly 75% of the energy,
while retaining 50% of coefficients preserves 88% of the
energy in X(v). To calculate average preserved energy, we

use 1
N

∑N
i=1 x

Wp
i

′
xWp
i from the thresholded wavelet-packet

coefficients. Figure 2 suggests that a single simulated dataset
with near-average RMISE accurately estimates the peak
effect, even when only retaining an average of 75% of the
energy in the predictor function. Results under the more gen-
eral relationships are similar; see Supplementary Material.

Computation time comes from two sources: the sampler
itself and the post-processing of the samples. For the peak

Fig. 2 True peak effect (upper left panel) and a single estimated surface
with near-average RMISE (upper right panel). The sensitivity, SENΨ ,
for the SimBaS, point-wise credible intervals (PWCIs), and BFDRs at

δ = 0.25 (BFDR0.25) and 0.4 (BFDR0.4). This figure appears in color
in the electronic version of this article
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Table 2 RMISEs for the general relationships lagged (L), cumulative
(C), time-specific (T ), and delayed time-specific (D)

N T Model RMISE
βL βC βT βD

50 64 WP 25% 0.015 0.012 0.095 0.045

WP 50% 0.018 0.017 0.056 0.017

FEB 0.097 0.072 0.259 0.078

FDBoost 0.064 0.040 0.296 0.048

128 WP 25% 0.010 0.008 0.040 0.008

FEB 0.099 0.079 0.267 0.085

FDBoost 0.055 0.037 0.284 0.022

200 64 WP 25% 0.009 0.007 0.088 0.009

WP 50% 0.010 0.008 0.045 0.008

FEB 0.097 0.071 0.282 0.077

FDBoost 0.055 0.034 0.296 0.028

128 WP 25% 0.004 0.004 0.036 0.003

FEB 0.100 0.079 0.278 0.085

FDBoost 0.049 0.034 0.241 0.023

Table values represent averages taken over 200 simulated datasets. RC
denotes retained coefficients.WP25%andWP50%denote thewavelet-
packetmodels retaining 25%and 50%of coefficients, respectively. FEB
denotes the finite element basis approach

setting, the sampler takes an average of 12.2 s when retain-
ing 25% of the coefficients and 17.5 s when retaining 50%.
Regardless of retained coefficients, post-processing takes an
average of 262.6 s for a total computation time between
274.8 and 280.1 s. As V increases, we see greater gains in
computational efficiency resulting from the reduction. When
V = 64, models retaining 25% of the coefficients take an
average of 59.7 s for the sampler to finish. The sampler for
models retaining 50%of the coefficients finishes, on average,
in 158.2 s. The post-processing is similar with both models
taking an average of 455.3 s making the total computation
time between 515.9 and 612.5 s, depending on the number
of retained coefficients. For T = V = 128, the models
take longer with the sampler completing in 195.4 s and post-
processing taking 838.1 s for a total of 1033.5 s, on average.

We assess inference using coverage along with metrics
defined in Meyer et al. (2015) for assessing sensitivity and

false discovery rate in functional regression. The first met-
ric, denoted SENΨ , determines the proportion of coefficients
selected as significant out of the number of coefficients from
the true surface that are greater than Ψ . The second metric,
FDRε , is the number of coefficients flagged as significant
whose true value is ≤ ε divided by the number of flagged
coefficients. Coverage for both point-wise and joint credible
intervals under the peak setting is given in Table 1, while
Table 3 contains coverage probabilities for the general rela-
tionships. Coverage is calculated by first averaging over the
historical surface and then over all 200 simulated datasets.

In general, we see that the joint credible intervals provide
higher coverage. In thepeak setting, the joint interval from the
model retaining 25% of coefficients attains average coverage
that is closest to nominal. Coverage also tends to increase,
regardless of interval type, as the percent of retained coeffi-
cients increase, though in some settings the differences are
negligible. Coverage of the joint intervals can also be affected
by sampling density and sample size. However, for the joint
intervals, coverage is above the nominal level for most set-
tings. This is not the case for the PWCI, where coverage sits
below the nominal level—in some instances considerably
below it. All intervals are at the 95% level.

Given the similarity in the RMISEs, we assess sensitivity
and FDR of the inference procedures for only the wavelet-
packet model that retains 25% of the coefficients. For this
model applied to the peak setting, the bottom panel of Fig. 2
presents the sensitivity as a function of Ψ , while Table 4
displays FDRε values. Sensitivity for the general relation-
ships under a sample size of N = 50 and sampling density
of T = 64 are in Fig. 3. Similar figures for the remain-
ing combinations along with tables of FDRε for all settings
not displayed here are in Supplementary Material. For the
BFDR, we must select a δ value which represents a mean-
ingful change in the effect. Since the outcome function is
scaled prior to analysis, we investigate δ’s of 0.25 and 0.4
which represent one-quarter and two-fifths of a standard devi-
ation change in yi (t), respectively, per one standard deviation
change in xi (t).

Table 3 Point-wise and joint
credible interval coverage
probabilities for the simulation
settings lagged (L), cumulative
(C), time-specific (T ), and
delayed time-specific (D)

N T RC (%) Point-wise interval Joint interval
βL βC βT βD βL βC βT βD

50 64 25 0.811 0.870 0.524 0.565 0.993 0.997 0.770 0.778

50 0.923 0.942 0.826 0.934 0.999 0.999 0.984 0.999

128 25 0.855 0.885 0.767 0.940 1.000 1.000 0.978 1.000

200 64 25 0.724 0.784 0.452 0.735 0.957 0.986 0.673 0.957

50 0.865 0.890 0.718 0.930 0.999 0.999 0.933 1.000

128 25 0.884 0.881 0.590 0.897 0.999 0.999 0.906 1.000

All intervals are at the 95% level. Table values represent averages taken over 200 simulated datasets. RC
denotes retained coefficients
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Table 4 False discovery rates,
FDRε , for the peak setting with
N = 20 and T = 32 for
SimBaS, point-wise credible
intervals (PWCIs), and BFDRs
at δ = 0.25 (BFDR0.25) and 0.4
(BFDR0.4)

ε Inference procedure
BFDR0.25 (%) BFDR0.40 (%) SimBaS (%) PWCI (%)

0.001 0.00 0.00 1.20 14.7

0.005 0.00 0.00 1.90 19.3

0.015 0.00 0.00 4.03 25.1

0.025 0.00 0.00 4.24 28.6

All inference procedures use α = 0.05

Fig. 3 Sensitivity, SENΨ , for the SimBaS, point-wise credible intervals (PWCIs), and BFDRs at δ = 0.25 (BFDR0.25) and 0.4 (BFDR0.4) applied
to the general relationships. This figure appears in color in the electronic version of this article

Under the peak setting, the sensitivity of the 95% PWCI is
the fastest to one with the SimBaS procedure in second. Fig-
ure 3 depicts a similar story for the other surfaces when N =
50 and T = V = 64. SENΨ of the BFDR is highly depen-
dent upon surface type, size of δ, sample size, and sampling
density. FDRε in the peak setting is smallest for the BFDRs,
regardless of δ, across all ε with SimBaS having the second

smallest value. The PWCIs have high FDR for evenmodest ε
which is also the case in the general relationships. The values
of FDRε are sensitive to sample size and sampling density
for the BFDRs, reaching as high 40% in some settings for the
smallest ε. Tables of FDRε values for settings not presented
here are in Supplementary Material. In contrast, SimBaS has
low FDRε with SENΨ that is comparable to that of PWCI.
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5 Analysis of journeyman boilermaker data

Harezlak et al. (2007) and Cavallari et al. (2008) analyze data
from 14 journeyman boilermakers relating measured stan-
dard deviation of the normal-to-normal intervals, or SDNN,
to each journeyman’s microenvironment pollution exposure
over the course of the day. Pollution exposure was taken from
personal respirators that recorded the level of exposure to par-
ticulate matter finer than 2.5µg in diameter. Both SDNN and
PM2.5 were measured over the course of the workday and
aggregated to the five-minute scale. Exposure to PM2.5 pri-
marily came from two sources: residual oil fly ash or ROFA,
a by-product of the manufacturing process, and cigarette
smoke during mandatory breaks. Particulate matter as fine
as PM2.5 is known to be detrimental to heart health (see for
example the MESA study, Kaufman et al. (2016) and refer-
ences therein); thus, it is important to quantify the effect of
occupational exposure to PM2.5 on heart health. The study
of SDNN helps provide insights into the biological mech-
anisms underlying these observed health effects. Harezlak
et al. (2007) find elevated levels of association during the
morning hours that corresponded tomandatory breaks,which
were then followed by depressions in the estimated surface
later in the day. To try to better understand these spikes in
association, we focus our analysis on the first three hours of
the workday beginning at 8:30 am and going until 11:30 am.
Unlike Harezlak et al. (2007) whose method does not yield
inference on the estimated surface, we estimate joint inter-
vals and calculate both SimBaS and the BFDR to determine
the significance of these peaks and troughs.

Prior to analysis, we log-transform and center and scale
both SDNN and PM2.5. Thus, changes in the estimated sur-
face correspond to one standard deviation changes in the log
of PM2.5 and result in changes in the log of SDNN. The
sampled curves are spiky and irregular; see Supplementary
Material for graphical depictions. To investigate the morn-
ing hours only, we take T = V = 34 measurements. As in
the simulation, we use J = 3 levels of decomposition for
both wavelet-packet transformations and select Daubechies
wavelets with 3 vanishing moments. Given the results of the
simulation, we retain only the first two scales of wavelet-
packet coefficients in XWP , resulting in only 25% of the
columns being kept. We allow this model to run longer than
the simulated settings, taking 1000 posterior samples after a
burn-in of 3000 and monitor convergence using the potential
scale reduction factor (Gelman and Rubin 1992) and trace
plots; see Supplementary Material for both.

Figure 4 contains the posterior surface estimate (top left
panel) for the journeyman data alongside the lower (top right
panel) and upper (bottom panel) bounds of the joint credi-
ble intervals. Given the centering, the estimated intercept is
nearly zero for all t . We present this estimated intercept and

its associated credible intervals in Supplementary Material.
In Fig. 4, moving across the v-axis from left to right, we see a
pattern of time-specific depressions at the start of the work-
day followed by elevations, which culminate in a delayed
time-specific effect around v = 8 and t = 20. This suggests
that initial exposure to ROFA is associated with a delayed
decrease in SDNN. Further, another exposure later in the day
is associated with elevated SDNN that is sustained until, and
peaks at, t = 20. After this peak, there is another depression
that occurs around v = 16 and t = 20 suggesting a decrease
in SDNN associated with an exposure approximately 2–4
measurements prior. These patterns are consistent with the
analysis in Harezlak et al. (2007), but using our approach
we are able to show they are also significantly different from
zero as suggested by the upper and lower bounds.

Given its performance in simulation, we turn to the Sim-
BaS procedure to confirm these inferential observations.
Figure 5displays theSimBa scores (left panel) andwhether or
not the score is less than α = 0.05 (right panel). By design,
SimBa scores are capped at 0.5 as evaluation of higher α

values is not meaningful: Regions equal to 0.5 suggest the
corresponding coefficients require a joint credible interval
with α > 0.5 to exclude zero. We see that the smallest
SimBa scores correspond to the regions of both increased and
decreased association in the estimated surface from Fig. 4.
The right panel of Fig. 5 indicates that these regions are
also significantly different from zero. The BFDR, evaluated
at δ = 0.25 and 0.4 and graphically presented in Supple-
mentary Material, further confirms the significance of these
regions.

To assess the choices to retain only 25% of the coeffi-
cients and to use J = 3 levels of decomposition, we conduct
a sensitivity analysis that varies both. In the above model,
which retains only 25% of the XWP coefficients, R2

W ,ave is
34.16%. The model that retains 50% of the coefficients only
modestly increases R2

W ,ave to 37.51%. The choice of levels
of decomposition represents a trade-off in the smoothness of
the estimate and the number of coefficients available within
each scale. To assess the impact of choice of J , we also fit the
model with J = 4 levels of decomposition. In the wavelet-
space, the model that retains 25% of the coefficients results
in a R2

W ,ave of 21.75%. Finally, the J = 4 model that retains

50% of the coefficients has an R2
W ,ave of 17.13%. While

the model we present does not have the largest R2
W ,ave, the

trade-off of ∼3% gain in R2
W ,ave versus the additional com-

putation time and performance in the peak setting suggests
that the model that retains only 25% of coefficients is pre-
ferred. Increasing the levels of decomposition only decreases
R2
W ,ave.
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Fig. 4 Estimated surface of association (upper left panel) between log(SDNN) and log(PM2.5) in journeyman boilermakers during the morning,
8:30 am to 11:30 am. Lower (upper right panel) and upper (lower panel) bounds of the joint interval. This figure appears in color in the electronic
version of this article

Fig. 5 SimBa scores (left panel) and corresponding significant coefficients (right panel) for the surface of association. Significance is determined
using an α = 0.05 cutoff. This figure appears in color in the electronic version of this article
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6 Discussion

One of the difficulties of estimating a historical func-
tional effect is maintaining the constraint which previous
authors have used tent-shaped basis functions to achieve.
The existing wavelet-based methodology cannot estimate
historical effects. However, wavelet-packet coefficients from
a DWPT have an exploitable relationship between their loca-
tion indices and the original time scale that allows us to
sample only the desired coefficients in the wavelet-packet
space via our prior specification. The constraint is thenmain-
tained when projecting back to the data space. In this work,
we show that when performing the DWPT on both y(t) and
x(v), we can use wavelet-packet basis functions and a histor-
ical constraint prior to model historical effects in the wavelet
domain.

The current literature on HFLMs is limited, with a focus
on the estimation of surface effects and the determination of
model fit criterion. Most methods implement spline-based
basis functions. While one method does allow for differ-
ent basis expansions, the authors only present results for
spline-based models. Further, inference procedures are not
discussed in the existing literature. To our knowledge, the
model we present here represents the first work in wavelet-
based modeling of historical effects as well as the first
Bayesian HFLM. Additionally, our method employs a novel
use of wavelet-packets, which have not previously been used
in functional regression models. We also adapt several estab-
lished multiplicity adjusted Bayesian inferential procedures
to the constrained surface to generate posterior intervals and
identify peaks and regions of significant coefficients. Finally,
we conduct a formal comparison of our approach to two exist-
ing methods.

We demonstrate that, in simulation, the wavelet-packet
HFLM can accurately estimate several realistic historical
surface settings. In particular, we show that, regardless of
the percent ofXWP coefficients we retain, the wavelet-packet
HLFMhas good RMISE levels that are similar across sample
size and sampling density. Our approach outperforms both
the FDBoost and FEB-based methods in terms of estimation
for the more general relationships, regardless of the number
of coefficients retained. Under the data-motivated setting,
the model retaining 25% of the wavelet-packets performs
best. Further, we show that the joint credible intervals pro-
vide better coverage than PWCIs. For identifying significant
coefficients, the SimBaS procedure strikes a balance between
lower FDRε while maintaining reasonably high sensitivity
without having to select a δ value. Given the sensitivity to
the choice of δ in the BFDR and the lowered coverage of the
PWCI, we propose the use of joint intervals and the SimBaS
procedure for inference. We also recommend retaining only
25% of the wavelet-packet coefficients given its performance
in simulation and reduced computational burden. Finally, we

apply the proposed model to analyze data on the association
between HRV and PM2.5 exposure in a panel of journeymen
boilermakers, focusing on the first three hours of exposure
during theworkday. Using thewavelet-packet HFLM,we are
able to not only estimate regions of association but clearly
identify them as representing significant changes in SDNN
usingSimBaS.The reasonable R2

W ,ave for themodel retaining
only 25% of the coefficients further supports our recommen-
dation.
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