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Abstract

Gaussian processes (GPs) serve as flexible surrogates for complex surfaces, but
buckle under the cubic cost of matrix decompositions with big training data sizes.
Geospatial and machine learning communities suggest pseudo-inputs, or inducing points,
as one strategy to obtain an approximation easing that computational burden. How-
ever, we show how placement of inducing points and their multitude can be thwarted
by pathologies, especially in large-scale dynamic response surface modeling tasks. As
remedy, we suggest porting the inducing point idea, which is usually applied globally,
over to a more local context where selection is both easier and faster. In this way, our
proposed methodology hybridizes global inducing point and data subset-based local
GP approximation. A cascade of strategies for planning the selection of local inducing
points is provided, and comparisons are drawn to related methodology with empha-
sis on computer surrogate modeling applications. We show that local inducing points
extend their global and data-subset component parts on the accuracy–computational
efficiency frontier. Illustrative examples are provided on benchmark data and a large-
scale real-simulation satellite drag interpolation problem.

1 Introduction

Advancements and expansion of access to supercomputing, algorithms for finite element
analysis, particle transport and agent-based modeling, combine in modern times to pro-
duce simulation data of an unprecedented magnitude. Yet as modeling fidelity and config-
uration spaces continue to grow, coverage of representative cases is still sparse. Gaussian
process (GP) regression is a common choice to fill in those gaps, emulating or serving as
a surrogate for the data-generating mechanism. GP surrogates excel at downstream tasks
from optimization to sensitivity analysis due to their out-of-sample predictive accuracy and
uncertainty quantification (UQ) capability, and ability to interpolate the response when
simulations are deterministic. For a review of computer experiments and surrogate model-
ing see Santner et al. (2018) or Gramacy (2020).

However, GP inference and prediction calculations scale poorly for large data sets. GPs
involve working with a multivariate normal (MVN) distribution whose dimension matches
the training data (XN ,YN ) size, N . Matrix decomposition for covariance determinant and
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inverses is cubic in N . In practice, this means limiting N to the thousands – small by
modern standards.

Work from across disciplines where GPs play a fundamental role (machine learning, geo-
statistics, computer experiments) targets remedies through various approximations. Some
methods induce sparsity in the covariance (Titsias 2009a; Aune et al. 2014; Wilson and
Nickisch 2015; Gardner et al. 2018b; Pleiss et al. 2018; Solin and Särkkä 2020) or precision
matrix (Datta et al. 2016; Katzfuss and Guinness 2021). Others propose divvying up the
design space (Kim et al. 2005; Gramacy and Lee 2008) and constructing multiple GPs by
divide-and-conquer. Partitioning offers the potential for parallelized multicore computa-
tion, productively engaging untapped resources. It also induces statistical independence
which can enhance flexibility when response surfaces have regime changes or exhibit other
nonstationary behavior.

One framework, developed separately as pseudo-inputs in machine learning (e.g., Snelson
and Ghahramani 2006) and predictive processes in geostatistics (e.g., Banerjee et al. 2008),
offers a low-rank approximation. Together, these two ideas are more recently referred to as
inducing point methods. Rather than measuring covariances between all pairs of N training
data points directly, a smaller reference set X̄M of M � N inducing points or “knots” is
used. Woodbury matrix identities make decompositions cubic in M , a potentially dramatic
savings. While space-filling work well, optimizing the multitude M and location of knots
is fraught with challenges (e.g., Garton et al. 2020).

One thing that sets surrogate modeling of computer simulations apart from machine
learning and geostats applications of GPs – beside time being of the essence – is an all-
but-total emphasis on prediction and UQ above other inferential tasks. This opens up
new opportunities for computational and statistical economies by taking a transductive
approach to learning (Vapnik 2013): let the testing data dictate how training is done.
Accurate, approximate GP prediction at an input x? can be based on a subset of data
nearby x?, leading to the so-called local approximate GP (LAGP; Gramacy and Apley
2015). Small data subsets n � N mean faster matrix decomposition, and potential for
embarrassingly parallel implementation (Gramacy et al. 2014), through an infinite divide-
and-conquer/partition scheme.

The best sub-designs for predicting at x? depend on the training data Xn(x?) ⊂ XN

nearby x?. Those which are the very closest – a nearest neighbor (NN) subset – may not
be ideal for all predictive goals, such as minimizing mean-squared error (MSE; Vecchia
1988; Stein et al. 2004). Best results require sequentially optimizing a criterion for each
x? to greedily build Xn(x?). Although speedy and vastly parallelizable, handling N in the
millions in a matter of minutes, it can still represent a substantial computational effort,
growing cubically with n and combinatorially in

(
N
n

)
choices. Authors have long opined

that novel searches for each x? ∈ X could be short-cut by learning some kind of re-locatable
template of local sub-design characteristics (Gramacy and Haaland 2016; Sung et al. 2018).
However, a truly thrifty scheme has so far remained elusive.

We believe a potential answer may lie in hybridizing inducing point and local GP
schemes – a variation on a recently popular theme of combining sparse GP methods with
local models (Tan et al. 2016; Liu et al. 2019). The basic idea is as follows: search lo-
cally for m inducing points X̄m(x?) in order to predict nearby x?, specifically on a NN set
Xn(x?). Having m � n � N leads to a manageable cascade of calculations. We show
how greedy optimization of X̄m(x?), via a closed form weighted integrated MSE (wIMSE)
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criterion and gradients, avoids combinatorial sub-design search. Moreover, X̄m(x?) can be
used as a template, relocated anywhere for any x? without re-optimization. In fact, we
show that even locally space-filling schemes make for adequate templates in this setting.
The result is a local inducing point GP (LIGP) approximation which is nearly as accurate
as LAGP, sometimes even more accurate, and is faster. Whereas LAGP was limited by
small-n neighborhoods regardless of what the data prefer, we show that LIGP is not. We
explore neighborhoods more than double the size of LAGP and demonstrate accuracy im-
provements for commensurate computational effort. This allows the user, for the first time,
to fully explore the statistical–computational efficiency Pareto frontier in the context of
local GP approximation.

The remainder of the paper is organized as follows. Section 2 provides an overview of
GP regression and various scalable models, including local and inducing points methods
by way of motivating our hybrid approach. Section 3 describes the joining of local and
inducing points methods comprising LIGP. We detail some refinements to LIGP, including
local inducing point templates, in Section 4. Illustrative examples are provided throughout,
however Section 5 offers a systematic comparison of LIGP and LAGP variations to using
both synthetic and real benchmark examples. Section 6 concludes with a discussion.

2 Foundations in GP approximation

Here we highlight relevant surrogate modeling and scalable GP methods and provide mo-
tivation for a new criterion for placement of global and local inducing points.

2.1 Gaussian process regression

Consider an unknown function f : XN ⊂ Rd → R for a set of d-dimensional design lo-
cations XN = (x1, ...,xN )> and corresponding observations YN = (y1, ..., yN )>. GPs are
common surrogates for such data (Sacks et al. 1989), especially as arising from determin-
istic computer simulations f(·), and boil down to placing an MVN prior on the observa-
tions YN . Gaussians are uniquely defined by a mean vector, which we take as zero for
simplicity, and an N × N covariance matrix KN . The joint model for all responses is
YN ∼ NN (0, ν(KN + εkIN )) where ν is a scale hyperparameter and KN is comprised of
entries based on a kernel kθ(xi,xj). Jitter parameter εK is set as small as possible (for in-
terpolating deterministic simulations) while maintaining well-conditioned positive-definite
covariances (Neal 1998), and IN denotes an N ×N identity matrix. Our presentation is ag-
nostic to the choice of kθ(·, ·) except that it be based on inverse distances in the input space.
Our empirical work favors a squared exponential kernel with lengthscale hyperparameter
θ.

Kij
N = kθ(xi,xj) = exp

{
−||xi − xj ||2

θ

}
(1)

Other common kernels include the Matérn family (Stein 2012; Gramacy 2020, Section 5.3.3).
Inference for unknown hyperparameters (θ, ν) can proceed by maximum likelihood esti-

mation through the log MVN pdf and its closed-form derivatives. Some hyperparameters,
like ν̂ = N−1Y>NK−1

N YN , have tidy expressions conditional on others, like θ, which must be
optimized numerically. Since MVN pdfs involve |KN | and K−1

N , computation is on the order
of O(N3), limiting training data sizes N to the small thousands on most desktop machines.
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In custom setups with highly distributed architectures, stochastic approximations based on
linear conjugate gradients and Lanczos quadrature can push those boundaries (Ubaru et al.
2017; Gardner et al. 2018a; Wang et al. 2019).

For fixed hyperparameters (ν̂, θ̂) a predictive distribution for Y (x?) arises as standard
MVN conditioning via an (N + 1)-dimensional MVN for (Y (x?),YN ). The moments of
that Gaussian distribution are:

µN (x?) = E(Y (x∗) | YN ) = k>N (x?)K−1
N YN

σ2
N (x?) = Var(Y (x?) | YN ) = ν̂

(
kθ(x

?,x?)− k>N (x?)K−1
N kN (x?)

)
,

(2)

where kN (x?) = (kθ(x
?,x1), ..., kθ(x

?,xN ))>. These calculations are also in O(N3), al-
though again linear algebra tricks can mitigate that to an extent.

2.2 Inducing points

A more direct approach to speedy GP approximation in the face of big N is to impose a
low-rank structure on covariance. The idea originated with local data subsets for splines
(Wahba 1990; Poggio and Girosi 1990), and later was applied to GPs (Smola and Bartlett
2001; Csató and Opper 2002; Seeger et al. 2003). Snelson and Ghahramani (2006) proposed
that these reference locations not be restricted to a subset of the data. First attempts at a
unifying perspective for sparse approximate GPs were made by Quiñonero and Rasmussen
(2005) and Rasmussen and Williams (2006, Chapter 8), with the former referring to these
latent reference variables as inducing inputs. Outside of the machine learning community,
Banerjee et al. (2008) applied similar techniques to develop predictive processes. Here we
adopt a big-tent inducing points nomenclature.

Let X̄M = (x̄1, . . . , x̄M )> be M inducing points in the same space as XN , but they need
not coincide with any elements of XN . Notate KM as a kernel matrix built from X̄M and
kθ(·, ·), e.g., in (1); similarly, write kNM as cross evaluations of the kernel between XN and
X̄M . Most variations on inducing point methods base GP approximations on the so-called
Nyström approximation (Williams and Seeger 2001): KN ≈ K̄ = kNMK−1

M k>NM . Rather
than calculate covariance between all pairs in XN , instead use M � N references X̄M to
induce a similar structure K̄.

Snelson and Ghahramani (2006) introduced a diagonal correction on the Nyström ap-
proximation

Σ
(M)
N = ν(K̄ + εkIN ) = ν

(
kNMK−1

M k>NM + Λ
(M)
N + εKIN

)
(3)

where Λ
(M)
N = Diag{KN − kNMK−1

M k>NM}. This ensures that K̄ and KN contain the

same diagonal elements so that when X̄M ≡ XN , Σ
(M)
N in (3) reduces to the standard GP

covariance ΣN = ν(KN + εkIN ). Both approximations allow for decomposition of Σ
(M)
N

through Woodbury matrix identities (Harville 2011):

Σ
−1(M)
N =ν−1

(
Ω
−1(M)
N − ΓNMQ

−1(N)
M Γ>NM

)
(4)

log |Σ(M)
N | = log(ν) + log |Q(N)

M | − log |KM |+ 1>N log(Ω
(M)
N )1N ,

where ΓNM = Ω
−1(M)
N kNM and 1N is a vector of N ones. Above, Q

(N)
M = KM +

k>NMΩ
−1(M)
N kNM + εQIM and Ω

(M)
N = Λ

(M)
N + εKIN . Since Ω

(M)
N is an N × N diagonal
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matrix and can be stored and manipulated as a vector, we elect to not embolden its nota-
tion like that of other matrices. Hyperparameter inference is achieved by maximizing the

logarithm of the MVN likelihood YN ∼ N
(
0, ν(kNMK−1

M k>NM + Ω
(M)
N )

)
:

`(X,Y, X̄M , ν, θ, g) =− N

2
log(2π)− 1

2
log |ΣN | −

1

2
Y>NΣ−1

N YN (5)

∝const.−N log(ν)− log |Q(N)
M |+ log |KM | − 1>N log(Ω

(M)
N )1N

− ν−1Y>N

(
Ω
−1(M)
N − ΓNMQ

−1(N)
M Γ>NM

)
YN .

Differentiating Eq. (5) with respect to ν and solving yields the closed-form estimate

ν̂(N,M) = N−1Y>N

(
Ω
−1(M)
N − ΓNMQ

−1(N)
M Γ>NM

)
YN . (6)

There is not a similar closed-form solution for the lengthscale. Numerical solvers like optim
in R can work with negative concentrated log-likelihood

−` (X,Y, X̄M , θ) ∝ N log
(
Y>N

(
Ω
−1(M)
N − ΓNMQ

−1(N)
M Γ>NM

)
YN

)
(7)

+ log |Q(N)
M | − log |KM |+ 1>N log(Ω

(M)
N )1N

and closed form derivatives (not shown) to obtain θ̂(N,M). In practice this works well
because the surfaces are either convex in hyperparameters, or are nearly so.

Analogues to Eqs. (6–7) reduce full rank prediction from O(N3) down to O(NM2) flops.
Following (3), predictive equations are Gaussian with

µM,N (x?) = k>M (x?)Q
−1(N)
M Γ>NMYN (8)

σ2
M,N (x?) = ν

(
K∗∗−k>M (x?)

(
K−1
M −Q

−1(N)
M

)
kM (x?)

)
,

where kM (x?) = kθ(X̄M ,x
?). When optimizing X̄M via log likelihood, the value

Q
−1(N)
M Γ>NMYN can be re-used from Σ

−1(M)
N YN . Thus, prediction requires only O(M)

and O(M2) additional flops compared to O(N) and O(N2) for a full GP model.

2.3 Optimal induction

Suppose, for now, that the number of inducing points M is fixed by computational lim-
itations. Snelson and Ghahramani (2006) suggested selecting locations X̄M through the
marginal log-likelihood. Such a strategy is prone to overfitting (Bauer et al. 2016), while the
Variational Free Energy (VFE) approximation—a lower bound on the marginal likelihood—
is not (Titsias 2009a,b; Hoffman et al. 2013). Yet even with VFE’s variational construction
of the likelihood, its optimization still requires a cubic cost on a highly-multimodal surface
(Bauer et al. 2016), which we explore in Appendix A. This begs the question if likelihood
optimization is worth it over relatively convenient space-filling options.

Methods for “choosing inputs”, known more widely as statistical design or active learn-
ing, have potential to reduce the cost of selecting inducing points. A slew of acquisition
functions for greedy design point selection are available for such diverse goals as integral
estimation (Fernández et al. 2020; Kanagawa and Hennig 2019), space-fillingness (Busby
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2009; Svendsen et al. 2020), and posterior density approximation (Wang and Li 2018).
Other variance-based (2) criteria may be appropriated for the selection of inducing points
X̄M by routing through Eq. (8) instead. Such criteria require quadratic computational cost
and more squarely target predictive goals in surrogate modeling. In particular, we consider
integrated mean-squared error (IMSE) and its discretized analog Active Learning Cohn
(Cohn 1993, ALC) to select inducing points X̄M , a design strategy not yet explored in the
literature. See Appendix A for an overview of these variance-based criteria.
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Figure 1: Approximate GP performance via RMSE and number of inducing points, M ,
compared to a full GP (blue). Means (solid) and central 90% intervals (dashed) arise from
thirty replicates. Boxplots in the top right zoom in at M = 100.

For a simple experiment, we sought to compare the predictive accuracy of sparse GP
models with inducing points selected sequentially with VFE, IMSE, and ALC to a full GP.
We generate data using f(x1, x2) = x1 exp{−x2

1−x2
2} for x1, x2 ∈ [−2, 4]. Figure 1 compares

the three methods to themselves and to a full GP over M = 1, . . . , 100 tracking root MSE
(RMSE) via Monte Carlo (MC) averaging over training XN and testing X locations. To
manage the computational cost of evaluating criteria on a dense grid, training data sizes
were limited to N = 100.1 Observe that all three methods offer a decent approximation to
the full GP with close to 85 inducing points. Zoomed boxplots (upper-right panel) show
that ALC is consistently best. If you know where you are going to be tested, you should

1Ordinary IMSE was used, substituting inducing points in for design points, as described in Binois et al.
(2019). Progress is blocky because individual inducing point additions do not substantial alter space-filling
properties until most of a “new row” of sites are added in this 2d example.
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“design” your X̄M to focus there. If you do not, then you are (eventually) next-best by
integrating over the input domain with IMSE. VFE performs worst because likelihood is
imperfectly aligned to the RMSE criteria.

2.4 Local approximate GPs

Rather than massage the GP framework to cope with the entire data set at once, e.g., by
working with a single global data subset, a local approximate GP (LAGP; Gramacy and
Apley 2015) considers disparate local data subsets depending on each of the predictive
location(s) x? of interest. Such subsets can be much smaller because, under typical inverse-
distance based correlation (1), training data inputs XN far from each x? provide little added
value to the underlying predictor. Specifically, suppose that (Xn(x?),Yn(x?)) represents
an n-sized subset, or neighborhood of the training data nearby x?, e.g., comprised of nearest
neighbors (NNs). Then, given a suitable hyperparameterization, prediction could follow
Eq. (2) using (Xn(x?),Yn(x?)) rather than the full (XN ,YN ). This can potentially provide
drastic computational savings when n � N , even though the calculations would still be
cubic in n.

In this framework, the subset size n and neighborhood Xn(x?) must be determined.
Because flops grow quickly with n, this value is usually fixed by computational limitations,
just like the number of inducing points, M . A default in the laGP software (Gramacy
2016) is n = 50, see Appendix B for further discussion. Fixing n, it turns out that NN
subdesign, originally suggested by Emery (2009) in a 2d geostatistics setting, is sub-optimal
by several criteria (Vecchia 1988; Stein 2012). However, exhaustively searching among all(
N
n

)
alternatives for each x? is combinatorially infeasible. Gramacy and Apley showed that

greedy neighborhood selection via ALC approximately minimizes a MSE criteria common
in surrogate modeling settings. Specifically, choose a singleton reference set X = {x?}, with
σ2

new(·) = σ2
n+1(x) derived from (Xn(x?),Yn(x?)) and select among xn+1 ∈ XN \Xn(x?)

candidates.2

Care is taken to ensure computational demands in each update and ALC optimiza-
tion do not exceed O(n2) so that the entire scheme’s flops are not worse in order
than using NNs (i.e., cubic in n). For example, if vn(xn+1) = kn+1(xn+1,xn+1) −
k>n+1(xn+1)K−1

n+1kn+1(xn+1) represents the kernel portion of σ2
n(xn+1), then the change

∆vn(x?) = vn(x?)− vn+1(x?)

= k>n (x?)Gn(xn+1)vn(xn+1)kn(x?) + 2k>n (x?)gn(xn+1)kθ(xn+1,x
?)

+ kθ(xn+1,x
?)2/vn(xn+1)

(9)

can be updated in O(n2) via partition inverse equations (Barnett 1979) using Gj(xn+1) =
gn(xn+1)g>n (xn+1), gn(xn+1) = −K−1

n kn(xn+1)/vn(xn+1).
Despite being massively parallelizable (Gramacy et al. 2014) for many x? and over

candidates xn+1 ∈ XN \ Xn(x?), further approximations are made in order to shortcut
O(N) subroutines in an O(n2) scanning over that set (Gramacy and Haaland 2016; Sung
et al. 2018; Sun et al. 2019). Several groups of authors have suggested that it might be
possible to design a “template” sub-design that could be applied automatically, after simple

2Here we are abusing notation a little to describe an inductive process n → n + 1 and referring to n as
the final local design size as opposed to introducing a new iterator.
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shifting/scaling for each x?, without exhaustive search of XN \Xn(x?). Non-uniform global
designs XN render this a non-starter. Sparse design coverage in some regions, and dense
in others, demands bespoke calculation in each x? instance. Even with highly regular (e.g.,
gridded) global designs XN , local coverage can be irregular at the boundaries.

Local design topology is twinned with subset size, n. Accommodating wiggly test
problems benefit with reactive dynamics offered by smaller n is easy, because that means
faster execution. But n much larger than the default of n = 50 can be a deal-breaker on
speed grounds regardless of accuracy boosts in less wiggly settings.

3 Inducing point neighborhoods

Inducing points offer computational savings, but several drawbacks remain. Predictive
accuracy suffers when they are placed far from testing locations. Optimization by likelihood
can perform worse than simple space-filling (Section 2.3). Computational costs are still
cubic in a big number, despite M � N because you need enough M to fill the input
volume. Multi-processing parallel schemes via likelihood (Chen et al. 2013) and stochastic
variational inference (Hensman et al. 2013; Hoang et al. 2015; Schürch et al. 2020) offer
limited respite because they operate on the full data.

We thus propose a locally induced GP (LIGP) by hybridizing ordinary, “global” induc-
ing point schemes with LAGP. This brings knock-on benefits to the local data-subsetting
world: speed-ups, selection of neighborhood size (larger for smoother processes), long-
elusive template schemes (Section 4). LIGP operates similarly to LAGP via neighborhoods
Xn(x?) ⊂ XN . If a greedy scheme like ALC is used to fill Xn(x?), it would include an ex-
haustive search on the order of O(Nn3). Instead we choose simple NN approach, incurring
an amortized one-off O(N logN) cost. Effort is reallocated into choosing local inducing
points X̄m(x?) for Xn(x?), which are free to take on any values, at cubic in m cost. Our
multiplicity notation is intended to convey m � n � M � N , although that hierarchy
need not be strict. Small m allows wider local scope with bigger n without a substantial
computational hit.

Algorithm 1 outlines the LIGP prediction algorithm, which can be run independently
for each x? ∈ X?. For each x?, a local neighborhood Xn(x?) is built from a NN subset of
XN followed by a set of inducing points X̄m(x?). Various methods to select X̄m(x?) are
explored in the following sections.

Algorithm 1 LIGP Prediction

1: procedure LIGP.pred(m, n, X?,XN ,YN , X )
2: for i = 1, . . . , N ′ = |X?| do ## Each x?l ∈ X?, potentially in parallel
3: {X̄m,Xn} ← IP(. . . ) ## Any of Algorithms 2–4
4: Yn ← Y (Xn) ## Extract from YN at neighborhood
5: ν̂, θ̂ ← argmaxν,θ LLik(ν, θ,Xn,Yn, X̄m) ## Local MLE, Eqs. (6–7)

6: {µ̂(i), σ̂2(i)} ← GP.pred(x?i | Xn,Yn, X̄m, θ̂, ν̂) ## Eq. (8)
7: end for
8: return {µ̂(i), σ̂2(i)}N ′

i=1

9: end procedure
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3.1 Sequential selection of local inducing points

Changing focus to local neighborhoods Xn(x?) warrants a second look at selection crite-
ria for inducing points X̄m(x?). Likelihoods here are a mismatch to surrogate modeling
and machine learning predictive goals. Instead, we follow the LAGP format of greedy
optimization via MSE. Given the connection between inducing X̄m(x?) and actual train-
ing locations Xn(x?), emphasis on prediction at singleton x? has deleterious effects. We
tried this: X̄m(x?) “pile up” around x? leading to poor estimates of local lengthscale and
curvature. Instead, we suggest a locally weighted IMSE criterion.

Suppose we have X̄m(x?) already and wish to choose the next inducing point x̄m+1(x?).
Dependence on x? is implicit below, although we shall drop it from the expressions and
simply write Xn, X̄m and x̄m+1, etc., in order to streamline the notation. We presume that
the study region is a hyperrectangle X = [ak, bk]

d
k=1. Rather than integrate uniformly over

that domain, reproducing an ordinary global IMSE whose closed form slightly generalizes
Binois et al. (2019), we weight the calculation by proximity to the predictive location
x?. Although this weighting scheme could be treated as a tuning parameter, we choose
a Gaussian measure proportional to the Gaussian kernel kθ(·,x?) to facilitate a similar
closed-form solution:

wIMSE(m+1)
n (x̄m+1,x

?) ≡ wIMSE(x̄m+1,Xn,Yn,X , X̄m,x
?) (10)

=

∫
x̃∈X

kθ(x̃,x
?)
σ2
m+1,n(x̃)

ν
dx̃

=

√
θπ

2

d∏
k=1

(
erf

{
x? − ak√

θ

}
− erf

{
x? − bk√

θ

})
− tr

{(
K−1
m+1 −Q

−1(n)
m+1

)
W∗

m+1

}
,

where erf is the error Gaussian function and W?
m+1 =

∏d
k=1 W?

m+1,k. The (i, j)th entry of
W?

m+1,k is

w
?(i,j)
m+1,k ≡ wm+1,k(x̄i, x̄j) (11)

=

∫ bk

ak

kθ(x̃k,x
?
k)kθ(x̃k, x̄i,k)kθ(x̃k, x̄j,k) dx̃k

=

√
πθ

12
exp
{ 2

3θ

(
x̄i,kx

∗
k + x̄j,kx

∗
k + x̄i,kx̄j,k − x∗2k − x̄2

i,k − x̄2
j,k

)}
×

(
erf

{
ι
(u,j)
k − 3ak√

3θ

}
− erf

{
ι
(u,j)
k − 3bk√

3θ

})
,

notating x?k as the kth entry of the vector x? and ι
(u,j)
k = x?k + x̄u,k + x̄j,k. Derivations

for (10–11) are included in Appendix A.1. Extensions to other kernel structures, such as
Matérn (Stein 2012), yield similar closed forms (i.e., further extending Binois et al. 2019).

The best new local inducing point can be found by solving the following program:

x̄m+1 = argminx̄m+1∈XwIMSE(m+1)
n (x̄m+1,x

?).

The wIMSE
(m+1)
n (x̄m+1,x

?) surface realized over choices x̄m+1 ∈ X , which we shall visualize
momentarily in Section 3.2, may be multi-modal. However, it is not pathologically so like
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a global IMSE. Library-based numerical schemes (details in Section 5.1) work well when
suitably initialized but perform even better when aided by derivative information. The kth

component of the gradient is given by

∂

∂x̄m+1,k
wIMSE(x̄m+1,x

?) (12)

= −tr

{(
∂K−1

m+1

∂x̄m+1,k
−
∂Q
−1(n)
m+1

∂x̄m+1,k

)
W?

m+1

}
− tr

{(
K−1
m+1 −Q

−1(n)
m+1

) ∂W?
m+1

∂x̄m+1,k

}
.

The form of W?
m+1, given in Eq. (11), reveals that the only non-zero entries in

∂W?
m+1

∂x̄m+1,k
are

the m+ 1st row/column. Those entries are

∂w?m+1(x̄i, x̄m+1)

∂x̄m+1,k

d∏
k=1,k 6=k′

w?m+1,k(x̄i, x̄m+1).

Derivation of
∂w?

m+1(x̄i,x̄m+1)

∂x̄m+1,k′
based on a squared exponential kernel is in Appendix A.1.

Expressions for wIMSE and derivative (10–12) leverage the same Woodbury identities

used earlier (4–8). Partitioned inverse updates of K−1
m+1 and Q

−1(n)
m+1 (Appendix A.1), allows

m→ m+ 1 in O(m2n) flops.

3.2 Illustrations of Greedy Inducing Point Search

Greedily optimizing wIMSE to place local inducing points around neighborhood Xn(x?)
results in X̄m(x?) with (approximately) minimal predictive variance nearby x?, so naturally
they concentrate in that locale. To explore inducing point optimization with wIMSE, we use
a toy 2d test problem known as Herbie’s tooth (Lee et al. 2011). This function is attractive
due to its low dimensionality but complex nonstationary surface littered with local minima.
The function is defined by f(x1, x2) = −w(x1)w(x2) where w(x) = exp

{
−(x− 1)2

}
+

exp
{
−0.8(x+ 1)2

}
−0.05 sin (8(x+ 0.1)) and x1, x2 ∈ [−2, 2]. Figure 2 shows the evolution

of wIMSE-based acquisition for x? placed at the origin for Herbie’s tooth (N = 40K,
n = 100). Panels (a–c) show existing X̄m(x?) in blue overlayed on the wIMSE surface
used to select x̄m+1. Optimal x̄m+1, i.e., the wIMSE global minimum, are represented by
white-filled circles. Unlike global VFE likelihood, ALC, and IMSE surfaces (explored in
Appendix, A, Figure 9), the local wIMSE surface does not appear to be as affected by
placement of the training points XN , or local neighborhood Xn(x?) ⊂ XN , shown as dots
in panel (d). Local minima still exist as more inducing points are introduced. Yet the
wIMSE surface is much smoother and well-behaved, making optimization easier.

The first selection, x̄1(x?), often lies very close to x?. When x? is near the boundary of
the input space, where wIMSE would be asymmetric, the first inducing point selection may
“pull away” somewhat from x? towards to middle of the space. But when symmetry is high,
as it is at the origin for the illustration in Figure 2, it is hard to distinguish between x̄1

and x? up to numerical error. We find it convenient to simply begin optimizing at iteration
two, with x̄1 = x?.

For concreteness, steps for this greedy wIMSE inducing point search are outlined in
Algorithm 2. After building the local neighborhood Xn(x?), initialization is completed by
choosing x̄1 ← x? and local lengthscale θ(0). Here we set θ(0) based on quantiles of squared
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(d) Local neighborhood and inducing points

Figure 2: wIMSE surfaces (a–c), red/lower yellow/higher, used to optimize the 2nd, 4th,
and 10th inducing points: existing in blue; new selection in white. Predictive location x? is
at the origin, which is where x̄1 is placed. Panel (d) summarizes the neighborhood Xn(x?)
as gray dots and local inducing points X̄m(x?) in number order.

distances in Xn(x?), though other settings are considered later. After greedy selection over
i = 1, . . . ,m, intermixed with updates to the locally induced GP structure as outlined in
Section 3.1, the procedure returns an m × d matrix comprised of the selected inducing
points X̄m(x?) alongside an n× d matrix defining the local neighborhood X̄n(x?).

The left panel of Figure 3 shows the predictions for a grid of x? settings arranged
over a 1d slice of Herbie’s tooth where x?2 = 0.6, including LAGP (via ALC with n =
50, defaults in laGP) and LIGP (m,n) = (10, 100), with local subset and inducing point
designs re-optimized at each predictive location. We allow LIGP a bigger neighborhood
(n), with explanation in Appendix B, but remind that this involves thriftier m-sized cubic
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Algorithm 2 Inducing Point wIMSE Design

1: procedure IP.wIMSE(m, n, x?, X, X )
2: Xn ← NN(x?,X, n) ## Find n nearest neighbors to x?

3: θ(0) ← quantile(0.1,dist(Xn)) ## Reasonable local lengthscale
4: x̄1 ← x?; ## Place first inducing point
5: for i = 2, . . . ,m do ## Greedy wIMSE to find the rest

6: x̄i ← argminx̄i∈XwIMSE
(i)
n (x̄i,x

?) ## Implicit dependence on θ(0)

7: end for ## Implicit updates of local induced GP
8: return X̄m(x?) = {x̄i}mi=1 and Xn(x?) = Xn

9: end procedure
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Figure 3: Left: approximate GP fits’ mean prediction and truth on a slice of Herbie’s tooth
at x?2 = 0.6. Right: errors relative to the truth on the approximate GP fits for the same
slice of Herbie’s tooth.

decompositions. Observe that both LAGP (red-dashed) and LIGP (green-dotted) capture
the bumpiness of the surface, completely overlaying the true out-of-sample response (black-
solid).

Zooming in, the right panel of Figure 3 shows errors along the slice under these compara-
tors and two new variations: LAGP via NN with n = 100 and LIGP with (m,n) = (10, 100)
via template (Section 4.1). Along most of the slice, LIGP’s error follows a similar trend
as LAGP (NN, n = 100), albeit with a bumpier line. This is not surprising given that
both GP fits use the same neighborhood Xn(x?). LAGP (ALC) copes well with smaller
n = 50 by filling Xn(x?) with a mix of NNs and satellites.3 Averaging along that slice,
out-of-sample RMSE for LAGP (ALC) was 7.88×10−4, versus 1.14×10−4 and 1.12×10−4

for LAGP (NN) and LIGP, respectively. Here, LIGP predicts slightly better than LAGP
(NN), its most direct competitor, and noticeably better than LAGP (ALC). By reducing
the computational burden of the optimization criteria (NN v. ALC) and matrix inversions
(LIGP v. LAGP), we free up resources to increase n and thus accuracy.

3For identical n, ALC bests NN (Gramacy and Apley 2015), motivating increased n for NN here.
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Encouraging as these early LIGP results are, selecting novel X̄m(x?) for each x? is a
substantial undertaking. LIGP required 3.32 seconds, on average, to greedily build X̄m(x?)
using about 9 derivative-based iterates at each x?. Once in hand, optimizing via likelihood
using a local analog of Eq. (3) and predicting (8) based on X̄m(x?) and Xn(x?) is almost
instantaneous, requiring 0.0062 seconds per prediction. LAGP (NN or ALC), which search
discretely over subsets, lag a little behind at 0.0437 and 0.073 seconds, respectively.

4 Refinements to neighborhood composition

LIGP can be accelerated with little impact on predictive accuracy by applying a single
inducing point design X̄m(x?) almost identically over all predictive locations x? ∈ X of
interest. Here we explore the benefits of inducing point design templates built with wIMSE
and thriftier space-filling strategies.

4.1 Inducing points template

Creating X̄m(x?) based on wIMSE for each x? ∈ X is a chore that can cannibalize any
benefit that might come with adopting an inducing point approximation in the first place.
The highly structured nature of optimal wIMSE-based inducing points (Figure 2d) suggests
such effort might be overkill. Perhaps the cost of a single, representative optimization
could be amortized over the expense of its application on a vast predictive grid. When
re-purposed, through shifting or other transformation for new x?, we refer to the original
wIMSE design – which might be calculated at the middle of the input space – as a template.
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Figure 4: Local neighborhoods for two predictive locations x? at (−0.1, 1.85) and (0.19,
1.97). Gray dots are n = 100 neighborhoods Xn(x?). Green points are wIMSE optimal
inducing points X̄m(x?); blue ones are displaced templates derived at the origin. The
wIMSE template performs nearly the same space-filling effect as the locally optimized
inducing points.

Figure 4 depicts the essence of the idea, comparing bespoke X̄m(x?) to re-shifted ones
from a template in two variations. The setup is again Herbie’s tooth in [−2, 2]2 and the
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two predictive sites are x?(1) = (−0.1, 1.85) and x?(2) = (0.19, 1.97) whose n = 100 neigh-
borhoods Xn(x?(1)) and Xn(x?(2)), shown as gray dots, reside completely in the interior
and on the x2 boundary, respectively. Blue points in the plot represent a wIMSE-based
inducing point design – as optimized (Section 3) at the center of the design space and then
– shifted to be centered at the x?s. Compare these template-based local inducing points to
corresponding optimal analogues in green. At both predictive locations, the pair of inducing
point designs differ, yet both still space-fill the inner-neighborhood around x?. A mild ex-
ception may be template-based X̄m(x?(2)) with its two points outside of the design region,
which would not happen under an exhaustive re-optimization. Other differences between
alternatives would otherwise appear to be cosmetic up to rotation/small perturbations as
may stem from a myriad of benign causes: relationship of x? to its local neighborhood
Xn(x?), convergence and global scope in greedy optimization, etc.

Looking back at the right panel of Figure 3, observe how prediction errors based on
templates (blue dashed line) compare with locally wIMSE-optimized inducing points (green
dotted line) along the slice. Both LIGP variations seem to underestimate the response
compared to LAGP (NN), but the template methods give nearly as accurate predictions
as LIGP with locally wIMSE-optimized inducing points. Transferring a template captures
most of the variability between local wIMSE designs, even at the boundaries. The template
is also much faster. It took a total of 328.82 seconds to fit separate X̄m(x?) and predict
at the 99 x? locations depicted in the slice. Using a template instead takes 3.82 seconds, a
near two orders of magnitude improvement.

Algorithm 3 Building and Displacing Inducing Point Templates

1: x̌← median(X) ## Set x̌ to the center of the data
2: X̄m ← IP.wIMSE(m,n, x̌,X,X ) ## Use Alg. 2 on x̌
3: X̄

′
m ← X̄m − x̌ ## Center template at the origin

4: procedure IP.Template(n, x?, X, X̄′m)
5: Xn ← NN(x?,X, n)
6: X̄m ← X̄

′
m + x? ## Simple displacement

7: return X̄m(x?) = {x̄i}mi=1 and Xn(x?) = Xn

8: end procedure

Algorithm 3 provides pseudo-code for this template scheme, clarifying how a single
wIMSE-based local inducing point design X̄m is displaced for each x?. It is worth remarking
that the scheme makes a tacit presumption that the full design structure, XN , is somewhat
homogeneous: similar near the middle of the input space, x̌, as near where it will be applied,
i.e., for many disparate x? ∈ X . We do not doubt it would be possible to engineer test
problems, and/or non-space-filling designs XN , that would thwart this scheme, yet we find
it works well in most cases.

4.2 Space-filling templates

Our template-scheme leverages the neighborhood-focused space-filling nature of inducing
points, beyond say x̄1 ≈ x?. Space-fillingness is a cornerstone of (global) computer ex-
periment design. Numerous schemes exist, such as Latin hypercube samples (LHSs Mckay
et al. 1979) or maximin designs (Johnson et al. 1990), etc., and hybrids thereof (Morris
and Mitchell 1995). These work well and often require less computation than model-based
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alternatives such as IMSE. If such space-filling designs (SFDs) could be re-tooled to “focus”
on particular parts of the input space – say in the neighborhood of x? – we might be able to
avoid an expensive greedy wIMSE optimization all together. SFDs might be able to mimic
the behavior of a wIMSE template scheme at almost no cost at all.

SFDs are usually constructed in a unit hypercube. Re-centering such a template to x? is
trivial, but re-scaling so that it lies within Xn(x?) and resembles X̄m(x?) is more challeng-
ing. One way is to derive a second, local rectangle as a means of defining a linear mapping
between scales. A thrifty strategy is to use the bounds of the neighborhood Xn(x?). But
the shape of Xn(x?) is roughly spherical, being comprised of Euclidean distance-based NNs.
Thus the rectangular SFD will cover regions outside of the hypersphere, potentially plac-
ing some inducing points outside the neighborhood. In low input dimension, say d ≤ 2,
this is no big deal, because the circumscription is relatively tight. But when d = 8, say,
circumscription is poor.
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Figure 5: SFD template schemes (triangles) in 2d projections relative to local neighborhood
(gray dots): (a) rectangular re-scaled LHS template (triangles) in relation to a local neigh-
borhood (gray dots); (b) qNorm LHS template. Green triangles indicate X̄m(x?) within
the neighborhood Xn(x?) in all coordinates; red outside.

Figure 5a shows a 2d projection of an 8d local neighborhood for the borehole problem,
described in Section 5.2. Here, the volume of the convex hull of the neighborhood Xn(x?)
is less than one sixtieth of the size of the rectangle circumscribing its bounds in the coor-
dinate axis directions. Consequently many of the template re-scaled local inducing points
X̄m(x?), indicated as triangles, lie outside the neighborhood (red) in at least one of the
eight coordinates. Of the m = 30 local inducing points calculated for that figure, one of
which is automatically at x?, only five rectangular re-scaled LHS template points lie within
the neighborhood.

As remedy, we propose a nonlinear mapping that warps the SFD to lie inside the
neighborhood with high probability. In particular, we scale the SFD based on an inverse
Gaussian CDF (Φ−1), applied separately to each of the d input coordinates. Algorithm 4
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outlines steps towards generating an inducing point design X̄m(x?) based on a SFD X̂ of
size m− 1, i.e., beyond choosing x̄1 = x?. Φ−1 calculations for each dimension k = 1, . . . , d
involve µ = x?k and variance θ(0). This is the same θ(0) as in Algorithm 2 for greedy
wIMSE optimization, except here we demonstrate a more absolute default choice. This
Φ−1 transformation yields higher density near x? and much lower density outside of the
neighborhood’s hypersphere. Observe in Figure 5b how this warping drastically reduces
the number of template points outside of the neighborhood.

Algorithm 4 Inverse Gaussian CDF Space-Filling Template

1: procedure IP.qNorm(m, n, x?, X)
2: Xn ← NN(x?,X, n) ## Find n nearest neighbors to x?

3: θ(0) ← (1
3 maxk |Xn,k(x

?)− x?k|)2 ## Reasonable local lengthscale

4: X̂← SFD[0, 1]d with m− 1 points ## Could be moved outside
5: for k = 1, . . . , d do ## Warp each input coordinate
6: x̆d ← Φ−1(x̂d;µ = x?d, σ

2 = θ(0)) ## Inverse Gaussian CDF with µ, σ2

7: end for
8: X̄m ← rowbind(x?, X̆) ## Add x? as inducing point
9: return X̄m(x?) = X̄m and Xn(x?) = Xn

10: end procedure

Pseudocode in Algorithm 4 conveys bespoke SFD within each application of the subrou-
tine, yielding new X̂ in each call. As with the wIMSE template in Algorithm 3, this can be
moved outside the subroutine to fix a single SFD, which might be important if the SFD is
expensive to compute. We prefer LHSs for our SFDs because they are easy/instantaneous
via libraries such as lhs (Carnell 2019) on CRAN. Hybrids such as maximin–LHS are also
straightforward (also with lhs), which can avoid some pathologies inherent in random LHS
design. Ordinary maximin can be problematic under Φ−1 because that criteria places points
on the bounding hypercube, which would warp to ±∞ without intervention, and because
evaluating and optimizing that criteria is slow. Uniformly random design may be preferred
when local lengthscales are difficult to estimate (Zhang et al. 2021).

Section 3.2 offered comparison between run time and predictive accuracy for LIGP,
using wIMSE to build unique inducing point designs, to that of LAGP on a slice of Herbie’s
tooth. Now consider new template comparators: hyperrectangular SFD, LIGP (cHR), and
Φ−1-scaled SFD, LIGP (qNorm). While it took 3.32 seconds on average to build wIMSE-
based designs, scaling an SFD to circumscribe the neighborhood (cHR) or applying Φ−1

(qNorm) only takes 0.01 seconds on average. Both of these SFD template schemes produce
an RMSE that is essentially the same (1.8×10−4) as applying the wIMSE template scheme.

The borehole problem uses larger (m,n) = (80, 150) settings due to the higher input
dimension (see Appendix B for a discussion). It takes 141 seconds to build a wIMSE-based
inducing point template of size m, while it only takes 0.034 seconds to build a SFD-scaled
template. SFD and wIMSE templates produce LIGPs with similar RMSEs, discussed in
Section 5.2.
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5 Computation and benchmarking

Here we provide implementation details followed by in-depth comparison of LIGP and
various template schemes, to LAGP on a swath of synthetic and real computer simulation
experiments. Our metrics for benchmarking are out-of-sample RMSE and computation
time. All analysis was performed on an eight-core hyperthreaded Intel i9-9900K CPU at
3.60GHz.

5.1 Implementation details

R code (R Core Team 2020) supporting our methodological contribution, and all examples,
may be found on our Git repository.

https://bitbucket.org/gramacylab/lagp/src/master/R/inducing/

Some noteworthy aspects of that implementation include the following. Unlike laGP, which
is coded in C with OpenMP for symmetric multiprocessing parallelization (R serving only
as wrapper), our LIGP implementation is pure R. Nevertheless, our template schemes are
competitive, time-wise, and sometimes notably faster.

We privilege an isotropic Gaussian kernel formulation with scalar lengthscale θ for local
modeling, although there is no reason other forms, such as Matérn (Stein 2012), could not be
entertained so long as the structure is differentiable with respect to inducing points X̄m. To

improve numerical conditioning of matrices Km and Q
(n)
m for stable inversion, we augment

their diagonals with εK = 10−6 and εQ = 10−5 jitter (Neal 1998), respectively. While both

are theoretically decomposible, we find that Q
(n)
m is more sensitive to conditioning issues,

thus requiring larger ε. In the context of LAGP, it has been shown that separable local
formulations do not much improve predictive performance, especially after first applying a
global pre-scaling of inputs (Sun et al. 2019). Such stretching and compressing of inputs,4

has recently become popular as a means of boosting predictive performance of approximate
GP methods (e.g., Katzfuss et al. 2020). When pre-scaling in our exercises to ensure
apples-with-apples comparisons to benchmarks we divide by square-root separable global
lengthscales obtained from a GP’s fit to random size-1000 data subsets. See Gramacy
(2020), Section 9.3.4, for details. The time required is not included in our summaries.

Building of wIMSE inducing point designs X̄m(x?) and templates X̄m(x̌), generically
X̄m below, follows Algorithm 3 with m and n appropriate to the input dimension d (Ap-
pendix B), provided momentarily with our particular exercises. For initial local lengthscale
θ(0), we have had success with a number of heuristics which often lead to similar values/per-
formance for LIGP methods in our exercises. Gramacy (2016) suggests the 10% quantile
of squared pairwise distances between the neighborhood points Xn.5 See Algorithm 2. A
downside is that this is quadratic in n. A more absolute/direct O(n) approach matches
θ(0) = σ2, where 3σ approximates the 99% quantile of a Gaussian fit, to the margins of
Xn. Algorithm 4 exemplifies this choice for contrast, although we see these as interchange-
able. Each x̄m+1 augmenting X̄m optimizing wIMSE is found via a 20-point multi-start
L-BFGS-B (Byrd et al. 1995) scheme (using optim in R) peppered within the bounding box

4A characterization attributed to Derek Bingham predating any published account, to our knowledge.
5In laGP, the function providing θ(0) in this way is darg.
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surrounding the neighborhood Xn to a tolerance of 0.01. Templates derived from space-
filling designs (Section 4.2) originate from m − 1 point LHSs through the hyperrectangle
enclosing Xn(x̌), and then augmented with x̌ as the mth inducing point.

Regardless of inducing point/template construction, machinery behind LIGP-based pre-
diction is identical. Algorithm 1 outlines the steps to construct local neighborhoods and
predict at each of a set of N ′ prediction locations X? given training data {XN ,YN}, neigh-
borhood size n, and number of inducing points m. Each location xi, for i = 1, . . . , N ′ could
proceed in parallel. In our implementation we use 16 threads.6 The pseudocode attempts
to be agnostic about the inducing point scheme by simply writing IP(. . . ). Any of Algo-
rithms 2–4 can be used here. To estimate scale and lengthscale we used Eqs. (6–7) through
simple substitutions of (m,n) for the local neighborhoods of x?. We rely on optim in R to
minimize the negative log-likelihood to estimate local θ̂(x?)’s. Finally, the predictive mean
and variance for x? are extracted via Eq. (8).

5.2 Borehole

Previewed in Section 4.2, the borehole function (Worley 1987) is a classic example in com-
puter experiments literature. Outputs may be derived in closed form as

y =
2πTu[Hu −Hl]

log
(
r
rw

) [
1 + 2LTu

log(r/rw)r2wKw
+ Tu

Tl

]
via inputs in the eight-dimensional rectangle:

rw ∈ [0.05, 0.15] r ∈ [100, 5000] Tu ∈ [63070, 115600] Tl ∈ [63.1, 116]

Hu ∈ [990, 1100] Hl ∈ [700, 820] L ∈ [1120, 1680] Kw ∈ [9855, 12045].

For training we use LHSs of size N = 100000, recoding natural inputs to the unit 8-
cube followed by pre-scaling via a global separable θ̂ as explained in Section 5.1. We use
(m,n) = (80, 150) for all LIGP fits (see Appendix B). For a fair comparison, we entertain
n = 150 for LAGP (NN) as well as the default of n = 50 for NN and ALC-based LAGP
comparators. Figure 6 summarizes RMSEs obtained over thirty MC instances with novel
training and N ′ = 10000 sized LHS testing sets.

Mirroring other studies (e.g., Sun et al. 2019), local approximation is key to using a
vast training data set to get good predictions. LAGP performs better with a neighborhood
of n = 50 selected using ALC versus even larger neighborhoods (n = 150) using NN. Given
the smoothness of the borehole surface, the addition of “satellite” points provided by ALC
gives an accuracy boost over pure NN of similar size. We believe the same to be true of
LIGP (cHR). Any inducing points lying outside the neighborhood act as “satellites” in this
context. This is backed up by comparable RMSE results. The added flexibility of inducing
points (LIGP) over discrete subsets (LAGP) may be limited by the highly smooth borehole
dynamics.

Timings are provided at the bottom of Figure 6, with LIGP LHS templates being fastest
among the most competitive alternatives, accuracy-wise. Interestingly, the cHR template is
even better at prediction than the optimized wIMSE one, obtained at great computational
expense (3.06 minutes). Compared to LAGP (NN) with n = 150, accuracy is only slightly

6I.e., two per hyperthreaded core.
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Figure 6: Top-left: accuracy over 30 MC repetitions with lines showing other published
works’ results: (Kaufman et al. 2011, green), (Gramacy and Apley 2015, purple), (Katzfuss
et al. 2020, orange). Top-right: zoomed in version focusing on the best LI/LAGP methods.
The color of the boxplot outline, red and black, correspond to the sizes of the neighborhoods
(n = 50, 150 respectively). Table below: compute time in minutes.

diminished, but predictions are furnished in half the time on aggregate. Again, we remind
the reader that this is a little unfair to LIGP, comparing an R-only implementation to
laGP’s C library. Another reason this timing comparison is not more impressive is that
optimizing the inducing point likelihood to obtain local θ̂(x?), despite being cubic in m
rather than n, tends to take more BFGS iterations than the LAGP analog.

Although LIGP methods do not best LAGP (except NN with n = 50) on accuracy, it
is important to place these RMSEs in context. Horizontal dashed lines in the left panel of
Figure 6 offer wider historical perspective. Kaufman et al. (2011)’s reported an RMSE of 1.4
(green line; 99% sparse) with (N,N ′) = (4000, 500) in 17 minutes via compactly supported
kernels. Gramacy and Apley (2015)’s initial LAGP (ALC) implementation improved that to
0.88 (purple line) in 3 minutes, utilizing eight cores. Subsequent improvements in handling
larger (less well-conditioned) matrices, and wider OpenMP parallelization bring us to the
orders of magnitude more accurate and fast results in Figure 6.

More recently a method called SVecchia (Katzfuss et al. 2020), adapted from geostatistcs
to computer surrogate modeling, has yielded impressive RMSEs of 0.016 (orange line) in
similar exercises ((N,N ′) = (100000, 20000)) in about five minutes – combining training
(4.4 minutes) and testing (0.4 minutes) phases – in a single-core setting. We see this new
vanguard of methods as equivalent on the borehole problem, with nuance depending on the
application. For example, if you need a one-off prediction, LAGP methods (e.g., ALC) are
best, furnishing accurate predictions in fractions of a second without an explicit training
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phase. With modest testing sizes, LIGP methods are faster when amortizing the cost of
template calculation. For larger testing sets, SVecchia methods seem attractive.

Lastly, consider comparing to a more traditional global form of inducing point predic-
tion (Section 2.3). Using an LHS for X̄M with M = 80 in [0, 1]8 requires only 0.56 minutes
to produce predictions (8) with fixed lengthscale θ, less than even the space-filling tem-
plate variations of LIGP. Accuracy is tightly coupled to θ, but MLEs render the method
uncompetitive as a single evaluation of the log-likelihood (7) takes nine minutes.

5.3 Robot arm

The SARCOS data is a popular computer simulation benchmark from the machine learning
literature (Vijayakumar and Schaal 2000; Rasmussen and Williams 2006). The data/simu-
lations7 model seven torque outputs as a function of 21 input variables consisting of position,
velocity, and acceleration of a robot arm. It comes pre-partitioned into a training set of size
N = 44484 and a testing set of size N ′ = 4449. Here we consider only the first torque out-
put. High input dimensionality and non-uniform design – inputs lie on a low-dimensional
manifold in the input space – present surrogates with unique challenges.

One implication of the non-uniform design for LIGP is that a hyperrectangle surround-
ing Xn(x̌), for median input x̌, does not place x̌ in its center. Consequently a cHR template
would yield an un-centered Xm(x?). Space-fillingness is preserved, albeit with many points
outside of the hypersphere enclosing Xn(x̌). A qNorm template, by contrast, can preserve
centering through Φ−1. However, in both cases the low-dimensional input manifold may
result in a fair number of inducing points without many Xn(x?) nearby.

As with previous examples, we perform an input pre-scaling based on separable length-
scales estimated via MLE from a size n = 1000 random data subset. After pre-scaling we
find that local likelihoods, for both LAGP and LIGP, are flat for many x?, yielding exceed-
ingly long local lengthscales θ̂(x?) and “washed out” local surrogates. Apparently, in 21
input dimensions, small neighborhoods (n = 50 and n = 200) provide insufficient informa-
tion about local lengthscales, i.e., beyond the global one. Although we show results with
LAGP in both variations, with and without local MLE calculations (with both isotropic
and separable local kernels), all variations entertained perform much better with a fixed
θ0 = 1 for all local calculations.

Figure 7 summarizes those results, plotting log RMSE against log computation time.
Working from the top of the figure (lowest predictive accuracy) downwards, observe that
default LAGP (blue), i.e., with local MLE lenthscales, performs worst. Larger local neigh-
borhoods (n = 200 vs. n = 50) do not help accuracy much, and hurt speed. Separable
lengthscales improve accuracy by an order of magnitude, but you do even better by sticking
with a fixed θ0 = 1 after pre-scaling, which brings us to the second (red) group. Foregoing
local MLE calculation conveys a several orders-of-magnitude speed-up. These RMSEs are
on par with the best methods in recent studies. For example, Jankowiak and Gardner
(2019) report on a bakeoff of ten deep and shallow GP and neural network comparators,
with best RMSE of 0.107, which in log space is −2.3 (dashed horizontal line).8 Keeping
it simple in high dimension, especially when the training data lie on a lower-dimensional
manifold, helps control estimation risk and enhances stability. Larger neighborhoods give
a small accuracy fillip, but substantial increase in computation time.

7Original MATLAB: http://www.gaussianprocess.org/gpml/data/; plain text in our Git repo.
8No timings provided; the worst method had RMSE 0.25.
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Figure 7: LAGP v. LIGP models pitting log RMSE (y-axis) against log time (x-axis) on
SARCOS data. LAGP fits included both isotropic and anisotropic (sep) local lengthscales.
Fixing local θ0 = 1 (no mle) yields computational and predictive advantages.

Finally, LIGP methods (m,n) = (80, 200) fall into the last/lowest (purple) group with
the highest accuracy. These are 4-5 orders of magnitude more accurate than the default
LAGP setup, 2-3 orders better than nomle-LAGP. Compute times are commensurate with
the red/middle group, excepting two cases. An wIMSE template pays accuracy dividends
for increased computational cost. Simple LAGP (NN) is faster but substantially less accu-
rate. We again remind that these timings are unfair to LIGP’s R-only implementation.

5.4 Satellite Drag

Finally, consider large data sets of simulated drag coefficients for satellites in low-Earth
orbit. For a description of these data see Sun et al. (2019), Mehta et al. (2014), Gramacy
(2020, Chapter 2.3.3) and the Git repo https://bitbucket.org/gramacylab/tpm/src.
We seek accurate surrogates for drag for the Hubble Space Telescope (HST). Simulations,
via so-called called test particle MC (TPMC), treat atmospheric elements of atomic oxygen
(O), molecular oxygen (O2), atomic nitrogen (N), molecular nitrogen (N2), helium (He),
or hydrogen (H) separately. Following previous studies, we consider surrogates for these
“species” separately. Data for each species is comprised of a two million-sized (N) LHS over
eight configuration inputs. The goal is to predict drag to a 1% relative RMSE (RMSPE)
accuracy. Big training data are essential to meeting that benchmark, and needless to say
ordinary large-N GP surrogates are not a viable alternative.

Figure 8 summarizes the results of 10-fold cross-validation for each species. The 1%
benchmark is shown horizontally at zero in log space. Again mimicking previous experi-
ments, we pre-scale (Section 5.1) after coding inputs and before fitting local approximations.
Observe in the left panel that LAGP (NN) with n = 150 is the only method able to produce
log RMSPEs below the 1% benchmark for all folds. However, LIGP (wIMSE) and LIGP
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Figure 8: Left: accuracy over 10-fold cross validation for each species via log RMSPE. The
horizontal line denotes the 1% benchmark in log space. Right: Prediction compute time
(in minutes) across cross-validation folds.

(qNorm) come in at a close second and third and have medians (over all folds) below the 1%
benchmark. Factoring in computation time (right panel), LIGP methods predict roughly
50% faster than LAGP (NN) with n = 150. Given the scale of the test and training sets,
even LIGP (wIMSE) emerges as a viable, cheap alternative.

In contrast to the previous two examples, LIGP (cHR) accuracy suffers relative to the
other space-filling template scheme LIGP (qNorm). This may be due to nonstationarity.
Inducing points that lie within the neighborhood – thus motivating LIGP (qNorm) – trans-
fer more of the flexible structure of the GP and provide more accurate predictions. Finally,
results recently released using SVecchia (brown) offer further improvement, although only
when substantial training time is amortized over a large predictive set. In cases when a
single or a relatively small number of predictions are needed, LIGP/LAGP can furnish
accurate predictions in seconds, whereas SVecchia requires (tens of) minutes.

6 Discussion

Exponential growth of diversity and size of computer simulation campaigns places a heavy
burden on GP surrogates. Remaining fast enough to be useful – they cannot be slower than
the simulator they are replacing – but without cutting too many corners in approximation,
in order to keep fidelity high to capture nonstationary relationships, requires a nimble ap-
proach. Many interesting new methods have come online of late, including inducing points
and local approximation. Inducing points address computation time and space head on,
but sacrifice on fidelity. Existing likelihood based tools for choosing their multiplicity and
location are difficult to wield due to an abundance of local minima. Local approximations
(LAGP) perform better in prediction exercises because their criteria more squarely tar-
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get predictive accuracy. However, they rely on cumbersome discrete search to supplant
intractably large conditioning sets.

Here we proposed a hybrid approach: locally induced Gaussian processes (LIGPs).
Toward that end, we developed a novel weighted integrated mean-squared error (wIMSE)
criterion for selecting inducing points nearby predictive locations of interest. Closed forms
for the criteria and derivatives were provided. The key insight here is one of replacing
discrete data subset selection (LAGP) with continuous, library-based search via wIMSE
through inducing points. Our empirical work revealed that such conditioning sets had a
highly consistent structure from one predictive location to the next, suggesting that one-off
calculations could be reused as a template for other locations of interest.

The result is a new transductive GP learner that is faster than the original, with compa-
rable or improved accuracy in out-of-sample exercises. When LIGP results are less accurate
than LAGP, the gaps are narrow and LAGP requires substantially more computation. In
some cases, LIGP is orders of magnitude more accurate without demanding more compu-
tation. Our examples spanned illustrative (2d and 8d with tens and hundreds thousands of
points) to high-dimensional benchmarks (21d with non-space-filling design) and real-world
simulation (8d and millions of runs).

We see these promising results as providing a solid foundation from which to explore
improvements: from accurate and even faster predictions; to broader application such as in
low-signal and even heteroskedastic (Binois et al. 2019) stochastic simulation experiments.
We have some specific ideas. Rather than NN neighborhoods for each predictive location,
thrifty ALC alternatives (e.g., alcray in laGP, Gramacy and Haaland 2016) may enhance
the hybrid. Kernel support could be expanded to include other families, such as Matérn,
or to include locally separable lengthscales. In addition, automating the choice of local
sizes (m,n) through a Bayesian optimization of out-of-sample RMSE could help make the
methodology more plug-n-play.
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A IMSE and ALC overview

As mentioned in Section 2.3, variance-based sequential design criteria are better aligned
with the goal of generating accurate GP predictions than using the likelihood. We consider
variations on integrated mean-squared error (IMSE) over a domain X , with smaller being
better:

(IMSE) I =

∫
x̃∈X

σ2(x̃) dx̃.

Choose σ2(·) ≡ σ2
N (·)/ν from Eq. (2), and I may be used to optimize the N coordinates

of XN , or to choose the next (N + 1st) one (x̃N+1) in a sequential setting.9 Closed form
expressions are available for rectangular X and common kernels (e.g., Ankenman et al. 2010;
Anagnostopoulos and Gramacy 2013; Burnaev and Panov 2015; Leatherman et al. 2018).
Analytic derivatives ∂I

∂x̃N+1
facilitate numerical optimization (Binois et al. 2019; Gramacy

2020, Chapters 4 & 10). Approximations are common otherwise (Gramacy and Lee 2009;
Gauthier and Pronzato 2014; Gorodetsky and Marzouk 2016; Pratola et al. 2017).

An analogue active learning heuristic from Cohn (1993), dubbed ALC, instead targets
variance aggregated over a discrete reference set X , originally for neural network surrogates:

(ALC) ∆σ2 =
∑
x̃∈X

σ2(x̃)− σ2
new(x̃),

Seo et al. (2000) ported ALC to GPs taking σ2(·) = σ2
N (·) and σ2

new(·) ≡ σ2
N+1(·). If discrete

and volume-based X are similar, then ∆σ2 ≈ c− I, where c is constant on xN+1. Discrete
∆σ2 via ALC is advantageous in transductive learning settings (Vapnik 2013), where X
can be matched with a testing set. Otherwise, analytic I via IMSE may be preferred.

Against that backdrop, we propose employing ALC and IMSE to select inducing points
X̄M . To our knowledge, using such variance-based criteria is novel in the literature on the
selection of inducing points. The criteria below are framed sequentially, for an M + 1st

point given M collected already. Although we prefer this greedy approach – optimizing d
coordinates one-at-a-time rather than Md all at once in a surface with many equivalent
locally optimal configurations due to label-switching – either criteria is easily re-purposed

9Dividing out ν removes dependence on Y-values through ν̂. Greedy build-up of xn+1 over n =
N0, . . . , N − 1 is near optimal due to a supermartingale property (Bect et al. 2019).

29



for an all-at-once application. Under the diagonal-corrected Nyström approximation (3)
and assuming coded X = [0, 1]d,

ALC
(M+1)
N = ALC(x̄M+1; XN ,YN ,X , X̄M ) = c−

∑
x̃∈X

σ2
M+1,N (x̃), and (13)

IMSE
(M+1)
N = IMSE(x̄M+1,XN ,YN ,X , X̄M ) = E − tr

{(
K−1
M+1 −Q

−1(N)
M+1

)
WM+1

}
,

where E =
∫
x̃∈X k(x̃, x̃)dx̃ and WM+1 is (M + 1) × (M + 1) via w(x̄i, x̄j) =∫

x̃∈X k(x̄i, x̃)k(x̄j , x̃)dx̃ for i, j ∈ {1, ...,M + 1}. This derivation is similar to the wIMSE
calculations (10) and (11) following Binois et al. (2019).

(a) Variational lower bound of log-likelihood
surface (b) ALC/IMSE surface

Figure 9: In both panels: N = 200 training data points (black dots) and M = 19 inducing
points (blue dots), selecting the twentieth one (green) by two criteria: (a) variational lower
bound of the log-likelihood; (b) ALC/IMSE. Yellow is higher/red lower.

To explore inducing point optimization, consider Herbie’s tooth (Lee et al. 2011) de-
scribed in Section 2.3. Figure 9 shows variational lower-bound of the log-likelihood (left)
and ALC/IMSE surfaces (right) for x̄20 given a modestly sized training dataset (XN ,YN ) of
size N = 200. Similarities in the two surfaces are apparent. Many low/red areas coincide,
but the optimizing locations (green dots), found via multi-start local optimization with
identically fixed kernel hyperparameters, do not. Even after taking great care to humbly
restrict searchers, e.g., from crossing X̄M locations, sometimes upwards of 1000 evaluations
were required to achieve convergence. Consequently, quadratic ALC/IMSE is faster.

A.1 Derivations of wIMSE and its gradient

For the predictive location x∗, assign weight kθ(x̃,x
?) and consider squared exponential

kernel kθ(·, ·) with isotropic lengthscale (1). The following is based on predictive variance
(8) and expectation of the quadratic form of a random vector (Binois et al. 2019, Section
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3.1).

wIMSE(x̄m+1,X , X̄m,Xn, θ,x
?) =

∫
x̃∈X

kθ(x̃,x
?)σ2

n,m+1(x̃) dx̃

=

∫
x̃∈X

kθ(x̃,x
?)
(
kθ(x̃, x̃) + εK − kθ(x̃, X̄m+1)

[
K−1
m+1 −Q

−1(n)
m+1

]
kθ(x̃, X̄m+1)>

)
dx̃

=
D∏
k=1

(
(1 + εK)

∫ bk

ak

kθ(x̃k,x
?
k)dx̃k

−
∫ bk

ak

kθ(x̃k,x
?
k)

1/2kθ(x̃k, X̄m+1,k)
[
K−1
m+1 −Q

−1(n)
m+1

]
× kθ(x̃k, X̄m+1,k)

>kθ(x̃k,x
?
k)

1/2 dx̃k

)
=

√
θπ(1 + εK)D

2

D∏
k=1

(
erf

{
x? − ak√

θ

}
− erf

{
x? − bk√

θ

})
− tr

{
(K−1

m+1 −Q−1
m+1)W?

m+1

}

where W?
m+1 =

∏D
k=1 W?

m+1,k in D dimensions. The entry in the ith row and jth column
of W?

m+1,k is

w
?(i,j)
m+1,k ≡ w

?
m+1,k(x̄i,k, x̄j,k)

=

∫ bk

ak

kθ(x̃k,x
?
k)kθ(x̃k, x̄i,k)kθ(x̃k, x̄j,k)dx̃k

=

∫ bk

ak

exp

{
−

(x̃k − x?k)
2 + (x̃k−x̄i,k)

2 + (x̃k−x̄j,k)
2

θ

}
dx̃k

=

√
πθ

12
exp

{ 2

3θ
(x̄i,kx

?
k + x̄j,kx

?
k + x̄i,kx̄j,k − x∗2k − x̄2

i,k − x̄2
j,k)
}
×(

erf

{
ι
(i,j)
k − 3ak√

3θ

}
− erf

{
ι
(i,j)
k − 3bk√

3θ

})

where ι
(i,j)
k = x?k+ x̄i,k+ x̄j,k. x̄i,k, x̄j,k are entries from the ith and jth rows and kth column

of X̄m+1 (i, j ∈ {1, . . . ,m+ 1}) and x?k is the kth coordinate of x?.
The gradient of weighted integrated mean-squared error with respect to the kth dimen-

sion of x̄m+1 is:

∂wIMSE(x̄m+1,X , X̄m,Xn, θ,x
?)

∂x̄m+1,k

= −tr

{(
∂K−1

m+1

∂x̄m+1,k
−
∂Q
−1(n)
m+1

∂x̄m+1,k

)
W?

m+1

}
− tr

{(
K−1
m+1 −Q

−1(n)
m+1

) ∂W?
m+1

∂x̄m+1,k

}

= tr
{(

K−1
m+1

∂Km+1

∂x̄m+1,k
K−1
m+1 −Q

−1(n)
m+1

∂Q
(n)
m+1

∂x̄m+1,k
Q
−1(n)
m+1

)
W?

m+1

}
− tr

{(
K−1
m+1 −Q

−1(n)
m+1

) ∂W?
m+1

∂x̄m+1,k

}
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In the matrix
∂W?

m+1

dx̄m+1,k
, all entries are zero except the row/column that corresponds to the

row of X̄m+1 that contains x̄m+1, which we place in the last m+ 1st row. For the nonzero

entries in
∂W?

m+1

∂x̄m+1,k
, we re-express them as

∂w?m+1(x̄i, x̄m+1)

∂x̄m+1,k
=
∂w

?(i,m+1)
m+1

∂x̄m+1,k

D∏
k′=1,k′ 6=k

w
?(i,m+1)
m+1,k′

where

∂w
?(i,m+1)
m+1

∂x̄m+1,k
=

√
πθ

12
exp

{
2

3θ

(
x̄i,kx

?
k + x̄m+1,kx

?
k + x̄i,k′ x̄m+1,k − x∗2k − x̄2

i,k − x̄2
m+1,k

)}

×

[
2

3θ
(x?k − 2x̄m+1,k − x̄i,k)×

(
erf

{
ι
(i,m+1)
k − 3ak√

3θ

}
− erf

{
ι
(i,m+1)
k − 3bk√

3θ

})

+
2√
3πθ

(
exp
{
−

(ι
(i,m+1)
k − 3ak)

2

3θ

}
− exp

{
−

(ι
(i,m+1)
k − 3bk)

2

3θ

})]
.

Working with Km+1 and Q
(n)
m+1 is cubic inm, yet even that is overkill. Thrifty evaluation

of Eqs. (10–12) lies in construction of Q
(n)
m+1 which is equivalent to Km+1 + k>n,m+1Γn,m+1.

Evaluating k>n,m+1Γn,m+1 requires 2n − 1 products for each of (m + 1)2 entries, incurring

costs in O(m2n) flops. Assuming n� m, this dominates the O(m3) cost of decomposition.
More time can be saved through partitioned inverse (Barnett 1979) sequential updates

to K−1
m+1 after the new x̄m+1 is chosen, porting LAGPs frugal updates to the LIGP context.

Writing Km+1 as an m-submatrix with new m+ 1st column gives

Km+1 =

[
Km km(x̄m+1)

km(x̄m+1)> kθ(x̄m+1, x̄m+1)

]
so that K−1

m+1 =

[
K−1
m + ρηη> η

η> ρ−1

]
(14)

using ρ = kθ(x̄m+1, x̄m+1) − k>m(x̄m+1)K−1
m km(x̄m+1) and m-length column vector η =

−ρ−1K−1
m km(x̄m+1). Updating K−1

m+1 requires calculation of ρ, η, and ηη>, each of which

is in O(m2). Thus we reduce the computational complexity of K−1
m+1 from O

(
m3
)

to

O
(
m2
)
. Similar partitioning provides sequential updates to Ω

(m+1)
n , a diagonal matrix:

Ω(m+1)
n = Diag

(
Kn + εKIn − kn,m+1K

−1
m+1k

>
n,m+1

)
= Ω(m)

n − ρ−1Diag
{
ζζ>

}
(15)

where ζ = knmK−1
m km(x̄m+1)−kn(x̄m+1). Updates of Ω

(m+1)
n without partitioning, driven

by matrix–vector product(s) kn,m+1K
−1
m+1k

>
n,m+1 involve m2n flops. Using (15) reduces

that to O(mn).

Unlike in Eq. (14), Q
(n)
m cannot be trivially augmented to construct Q

(n)
m+1 due to the

presence of Ω
(m)
n which is also embedded in Q

(n)
m . Yet there are some time savings to be

found in the partitioned inverse

Q
(n)
m+1 =

[
Q

(n)
m∗ γ(x̄m+1)

γ(x̄m+1)> ψ(x̄m+1)

]
Q
−1(n)
m+1 =

[
Q
−1(n)
m∗ + υξξ> ξ

ξ> υ−1

]
(16)
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with Q
(n)
m∗ = Km + k>nmΩ

(m+1)−1
n knm built via updated values of Ω

(m+1)
n ,

γ(x̄m+1) = km(x̄m+1) + k>nmΩ
−1(m+1)
n kn(x̄m+1), ψ(x̄m+1) = kθ(x̄m+1, x̄m+1) +

kn(x̄m+1)>Ω
−1(m+1)
n kn(x̄m+1), υ = ψ(x̄m+1) − γ(x̄m+1)>Q

−1(n)
m∗ γ(x̄m+1) and ξ =

−υ−1Q
−1(n)
m∗ γ(x̄m+1). Similar to Q

(n)
m , calculating Q

(n)
m∗ requires in flops in O(m2n). Con-

sequently the entire scheme can be managed in O(m2n).

B Determining neighborhood size

Little attention is paid in the literature to the choosing the number of (global) inducing
points (Seeger et al. 2003; Titsias 2009b; Azzimonti et al. 2016) relative to problem size
(N, d), except on computational grounds – smaller M is better. The same is true for local
neighborhood size n in LAGP. Although there is evidence that the laGP default of n = 50
is too small (Gramacy 2016), especially with larger input dimension d, cubically growing
expense in n limits the efficacy of larger n in practice. With local inducing points this is
mitigated through cubic-in-m proxies, allowing larger local neighborhoods, thus implying
more latitude to explore/choose good (m,n) combinations.

Toward that end, we considered a coarse grid of (m,n) and predictive RMSEs on Her-
bie’s tooth (d = 2) and borehole (d = 8) toy problems. Setup details are identical to
descriptions in Sections 3.2 and 5.2, respectively, and we used the qNorm (Φ−1) template
throughout. An LHS testing set of size N ′ = 1000 was used to generate the response sur-
faces of RMSEs reported in Figure 10. These are shown in log space for a more visually
appealing color scheme, and were obtained after GP smoothing to remove any artifacts
from random testing. Grid elements where m > n were omitted from the simulation on the
grounds that there are no run-time benefits to those choices.

Figure 10: log(RMSE) over inducing points m and neighborhood n: Herbie’s tooth (left)
and borehole (right).
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Observe that both surfaces are fairly flat across a wide swath of m, excepting quick
ascent (decrease in accuracy) for smaller numbers of inducing points in the left panel. The
situation is similar for n. Best settings are apparently input-dimension dependent. Numbers
of inducing points as low as m = 10 seems sufficient in 2d (top panel), whereas m = 80
is needed in 8d. For borehole, it appears that larger neighborhoods n are better, perhaps
because the response surface is very smooth and the likelihood prefers long lengthscales
(Gramacy 2016). A setting like n = 150 seems to offer good results without being too
large. The situation is different for Herbie’s tooth. Here larger n has deleterious effects. Its
non-stationary nature demands reactivity which is proffered by smaller local neighborhood.
A setting of n = 100 looks good.

These are just two problems, and it is clearly not reasonable to grid-out (m,n) space
for all future applications. But nevertheless we have found that these rules of thumb port
well to our empirical work in Section 5. Our satdrag example (d = 8) and classic d = 21
benchmark work well with the settings found for borehole, for example. Some ideas for
automating the choice of (m,n) are discussed in Section 6.
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