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Abstract
Computationally efficient evaluation of penalized estimators of multivariate exponential family distributions is sought. These
distributions encompass among others Markov random fields with variates of mixed type (e.g., binary and continuous) as
special case of interest. The model parameter is estimated by maximization of the pseudo-likelihood augmented with a
convex penalty. The estimator is shown to be consistent. With a world of multi-core computers in mind, a computationally
efficient parallel Newton–Raphson algorithm is presented for numerical evaluation of the estimator alongside conditions for its
convergence. Parallelization comprises the division of the parameter vector into subvectors that are estimated simultaneously
and subsequently aggregated to form an estimate of the original parameter. This approach may also enable efficient numerical
evaluation of other high-dimensional estimators. The performance of the proposed estimator and algorithm are evaluated and
compared in a simulation study. Finally, the presented methodology is applied to data of an integrative omics study.

Keywords Markov random field · Consistency · Pseudo-likelihood · Block-wise Newton–Raphson · Network · Parallel
algorithm · Graphical model

1 Introduction

With the increasing capacity for simultaneous measurement
of an individual’s many traits, networks have become an
omnipresent visualization tool to display the cohesion among
these traits. For instance, the cellular regulatory network por-
traits the interactions among molecules like mRNAs and/or
proteins. Statistically, a network captures the relationships
among variates implied by a joint probability distribution
describing the simultaneous random behavior of the vari-
ates. These variates may be of different type, representing—
for example—traits with continuous, count, or binary state
spaces. Generally, the relationship network is unknown and
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is to be reconstructed from data. To this end, we present
methodology that learns the network from data with variates
of mixed types in a computationally efficient manner.

A collection of p variates ofmixed type ismostlymodeled
by apairwiseMarkov randomfield (MRF)distribution (a spe-
cial case of the multivariate exponential family). A Markov
random field is a set of random variables Y1, . . . ,Yp that sat-
isfies certain conditional independence properties specified
by an undirected graph. This is made more precise by intro-
duction of the relevant notions. A graph is a pair G = (V, E)

with a finite set of vertices or nodes V and a collection of
edges E ⊆ V×V that join node pairs. In an undirected graph,
any edge is undirected, i.e., (v1, v2) ∈ E is an unordered pair
implying that (v2, v1) ∈ E . A subgraph G′ ⊆ G with V ′ ⊆ V
and E ′ ⊆ E is a clique if G′ is complete, i.e., all nodes are
directly connected to all other nodes. The neighborhood of a
node v ∈ V , denoted N (v), is the collection of nodes inV that
are adjacent to v: N (v) = {v′ ∈ V | (v, v′) ∈ E, v �= v′}. The
closedneighborhood is simplyv∪N (v) anddenoted by N [v].
Now letY be a p-dimensional randomvector. Represent each
variate of Y with a node in a graph G with V = {1, . . . .p}.
Node names thus index the elements ofY. LetA, B and C be
exhaustive andmutually exclusive subsets ofV = {1, . . . .p}.
Define the random vectors Ya , Yb and Yc by restricting the
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p-dimensional random vector Y to the elements of A, B
and C, respectively. Then Ya and Yb are conditionally inde-
pendent given random vector Yc, written as Ya ⊥⊥ Yb |Yc,
if and only if their joint probability distribution factorizes
as P(Ya,Yb |Yc) = P(Ya |Yc) · P(Yb |Yc). The random
vector Y satisfies the local Markov property with respect to
a graph G = (V, E) if Y j ⊥⊥ YV\N [ j] |YN ( j) for all j ∈ V .
Graphically, conditioning on the neighbors of j detaches j
from V \N [ j]. AMarkov random field (or undirected graph-
ical model) is a pair (G,Y) consisting of an undirected graph
G = (V, E) with associated random variables Y = {Y j } j∈V
that satisfy the local Markov property with respect to G (cf.
Lauritzen 1996). For strictly positive probability distribu-
tions ofY and by virtue of theHammersley–Clifford theorem
(Hammersley and Clifford 1971), the local Markov property
may be assessed through the factorization of the distribution
in terms of clique functions, i.e., functions of variates that
correspond to a clique’s nodes of the associated graph G.

In this work, we restrict ourselves to cliques of size atmost
two. Thus, only pairwise interactions between the variates of
Y are considered. Although restrictive, many higher-order
interactions can be approximated by pairwise interactions
(confer, e.g., Gallagher et al. 2011). Under the restriction to
pairwise interactions and the assumption of a strictly positive
distribution, the probability distribution can be written as:

P(Y) = exp
[
−

∑
j, j ′∈V φ j, j ′(Y j ,Y j ′) − D

]
, (1)

with log-normalizing constant or log-partition function D
and pairwise log-clique functions {φ j, j ′ } j, j ′∈V . The pair-
wise MRF distribution P(Y), and therefore the graphical
structure, is fully known once the log-clique functions are
specified. In particular, nodes j, j ′ ∈ V are connected by an
edge whenever φ j, j ′ �= 0 as the probability distribution of Y
would then not factorize in terms of the variates, Y j and Y j ′ ,
constituting this clique.

The estimation of the strictly positive MRF distribution
(1) with pairwise interactions will be studied here. This is
hampered by the complexity of the log-partition function.
Although analytically known, for example for the multivari-
ate normal distribution, it is—in general—computationally
not feasible to evaluate. Indeed, the partition function is com-
putationally intractable for MRFs that have variables with a
finite state space (Welsh 1993; Höfling and Tibshirani 2009),
or more generally for MRFs with variables of mixed type
(Lee and Hastie 2013). In effect, maximum likelihood esti-
mation is prohibited computationally. Instead, parameters
will be estimated by means of pseudo-likelihood estimation.
In particular, as the number of parameters is often of the
same order—if not larger—as the sample size, the pseudo-
likelihood will be augmented with a penalty. An overview of

related work, which concentrates mainly on �1-penalization,
can be found in Supplementary Material A (henceforth SM).

The contribution of this work to existing literature is three-
fold. In short, (i) we present machinery for estimation of the
mixed variate graphical model with a quadratic penalty, (ii)
we propose an efficient parallel algorithm for evaluating this
estimator, and (iii) we created a software package that imple-
ments this algorithm to learn graphical models from data of
more than two different variable types.

Specifically, we present machinery for estimation of the
mixed variate graphical model with a quadratic penalty, i.e.,
ridge or �2. Our motivation for ridge penalized estimation is
multifold: (i) ridge estimators are unique, and (ii) an analytic
expression or a stable algorithm is available for their evalu-
ation, preventing convergence problems often exhibited by
lasso-type estimators. (iii) Ridge estimators generally yield a
better fit than those of lasso-type, as has been observed in the
graphical model context (van Wieringen and Peeters 2016;
Miok et al. 2017; Bilgrau et al. 2020). (iv) The dominant
paradigm of sparsity is not necessarily valid in all fields of
application. For example, more dense (graphical) structures
are advocated in molecular biology (Boyle et al. 2017). (v)
If desired, the smoothness and strict convexity of the ridge
penalty can be used to approximate other penalties (Fan and
Li 2001), as previously done for the generalized lasso/elastic
net in graphical model context (van Wieringen 2019). SM B
contains a more elaborate motivation.

The second contribution of our work is to be found in
the efficient algorithm for the evaluation of the presented
estimator. This exploits the high degree of parallelization
allowed by modern computing systems. We developed a
Newton–Raphson procedure that uses full (instead of par-
tial) second-order information with comparable computa-
tional complexity to existing methods that use only limited
second-order information. Our approach translates to other
high-dimensional estimators that may profit in their numeri-
cal evaluation.

Thirdly, thiswork is complementedwith a software imple-
mentation to learn graphical models from data of more than
two different variable types. This is a practical and rele-
vant contribution as medical and biological fields measure
more and more different types of traits of samples. This can
be witnessed from the TCGA (The Cancer Genome Atlas)
repository,wheremany types of themolecular traits of cancer
samples are measured. In current developments, this molec-
ular information is augmented with imaging data (referred
to as radiomics, Gillies et al. 2015). Additionally, these data
are further complemented with a sample’s exposome, i.e., a
quantification its environmental exposure (Wild 2012). Thus,
there is a need formethods and implementations that can deal
with data comprising more than two types.

The paper is structured as follows. First, Sect. 2 recaps
the pairwise MRF distribution for variates of mixed types
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as a special case of the more general exponential fam-
ily, along with parameter constraints that ensure its well-
definedness. Next, Sect. 3 presents a consistent penal-
ized pseudo-likelihood estimator for the exponential family
model parameter—thereby also for that of the pairwise MRF
distribution. Then, Sect. 4 introduces a form of the Newton–
Raphson algorithm to numerically evaluate this estimator.
The algorithm is parallelized to exploit the multi-core capa-
bilities of modern computing systems, and conditions that
ensure convergence of the algorithm are described. Finally,
Sect. 5 presents (a) an in silico comparison of the estimator to
related ones and (b) a simulation study into the computational
performance of the algorithm.

2 Model

This section describes the graphical model for data of mixed
types. In its most general form, it is any exponential fam-
ily distribution. Within the exponential family the model is
first specifiedvariate-wise, conditionally on all other variates.
The parametric form of this conditionally formulated model
warrants that the implied joint distribution of the variates
is also an exponential family member. This correspondence
between the variate-wise and joint model parameters endows
the former (by way of zeros in the parameter) with a direct
relation to conditional independencies between variate pairs,
thus linking it to the underlying graph. Finally, parameter
constraints are required to ensure that the proposed distribu-
tion is well-defined.

The multivariate exponential family is a broad class
of probability distributions that describe the joint random
behavior of a set of variates (possibly of mixed type). It
encompasses many distributions for variates with a continu-
ous, count and binary outcome space. All distributions share
the following functional form:

f�(y) = h(y) exp{η(�)T (y) − D[η(�)]},

where � is a p× p-dimensional parameter matrix, h(y) is a
nonnegative base measure, η(�) is the natural or canonical
parameter, T (y) the sufficient statistic, and D[η(�)], the log-
partition function or the normalization factor, which ensures
f�(y) is indeed a probability distribution. The log-partition
function D[η(�)] needs to be finite to ensure a well-defined
distribution. Standard distributions are obtained for specific
choices ofη, T andh. Theoretical results presented inSects. 3
and 4 are stated for the multivariate exponential family and
therefore apply to all encompassing distributions. To provide
for the envisioned practical purpose of reconstruction of the
conditional dependence graph, we require and outline next a
Markov random field in which the variates follow a partic-
ular exponential family member conditionally. This is thus

a special case of the delineated class of exponential family
distributions, as will be obvious from the parametric form of
the Markov random field distribution.

Following Besag (1974) and Yang et al. (2014), the prob-
ability distribution of each individual variate of Y j of Y
conditioned on all remaining variates Y\ j is assumed to be a
(potentially distinct) univariate exponential family member,
e.g., a Gaussian or Bernoulli distribution. Its (conditional)
distribution is:

P(Y j |Y\ j ) ∝ h j (Y j )

× exp
[
η j (� j,\ j ;Y\ j )Tj (Y j ) − Dj (η j )

]
. (2)

Theorem 1 specifies the joint distribution for graphical mod-
els of variates that have conditional distribution (2). In
particular, it states that there exists a joint distribution P�(Y)

of Y such that (G,Y) is a Markov random field if and only
if each variate depends conditionally on the other variates
through a linear combination of their univariate sufficient
statistics.

Theorem 1 (after Yang et al. 2014)
Consider a p-variate random variable Y = {Y j } j∈V .

Assume the distributions of each variate Y j , j ∈ V , condi-
tionally on the remaining variates to be an exponential family
member as in (2). Let G = (V, E) be a graph which decom-
poses into C, the set of cliques of size at most two. Finally,
the off-diagonal support of the MRF parameter � matches
the edge structure of G. Then, the following assumptions are
equivalent:

i) For j ∈ V , the natural parameter η j of the variate-wise
conditional distribution (2) is:

η j (� j,\ j ;Y\ j ) = � j, j

+
∑

{ j ′∈V :( j, j ′)∈EC ,C∈C}
� j, j ′Tj ′(Y j ′). (3)

ii) There exists a joint distribution P�(Y) of Y such that
(G,Y) is a Markov random field.

Moreover, by either assumption the joint distribution ofY is:

P�(Y) ∝
∏
j∈V

h j (Y j ) exp
{
Tj (Y j )

[
� j, j

+
∑

{ j ′∈V :( j, j ′)∈EC ,C∈C}
� j, j ′Tj ′(Y j ′)

]}
. (4)

The theorem above differs from the original formulation
in Yang et al. (2014) in the sense that here it is restricted to
pairwise interactions (i.e., cliques of size at most two).
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For the reconstruction of the graph underlying theMarkov
random field, the edge set E is captured by the parameter �:
nodes j, j ′ ∈ V are connected by a direct edge ( j, j ′) ∈ E if
and only if� j, j ′ �= 0 [by the Hammersley-Clifford theorem,
Lauritzen (1996)]. This gives a simple parametric criterion to
assess local Markov (in)dependence. Moreover, the param-
eter � j, j ′ can be interpreted as an interaction parameter
between variables Y j and Y j ′ .

We refer to distribution (4) as the pairwise MRF distribu-
tion. After normalization of (4), the joint distribution P�(Y)

is fully specified by sufficient statistics and base measures of
the exponential familymembers. For practical and illustrative
purposes, the remainder will feature—but is not limited to—
only four common exponential family members, the GLM
family: the Gaussian (with unknown variance), exponential,
Poisson and Bernoulli distributions.

The joint distribution P�(Y) formed from the variate-
wise conditional distributions need not be well-defined for
arbitrary parameter choices. In order for P�(Y) to be well-
defined, the log-normalizing constant D[η(�)] needs to be
finite. For example, for the Gaussian graphical model, a
special case of the pairwiseMRFdistribution under consider-
ation, this is violated when the covariance matrix is singular.
Lemma 1 of Chen et al. (2015) specifies the constraints on
the parameter � that ensure a well-defined pairwise MRF
distribution P�(Y) when the variates of Y are GLM family
members conditionally (see SM C for details).

These parameter constraints are restrictive on the struc-
ture of the graph and the admissible interactions. As the
graph is implicated by the off-diagonal support of �, the
constraints for well-definedness imply that the nodes corre-
sponding to conditionally Gaussian random variables cannot
be connected to the nodes representing exponential and/or
Poisson random variables. Moreover, when Y j and Y j ′ are
assumed to be Poisson and/or exponential random variables
conditionally on the other variates, their interaction can only
be negative. However, these restrictions could be relaxed by
modeling data with, for example, a truncated Poisson distri-
bution (Yang et al. 2014).

3 Estimation

The parameter � of the multivariate exponential fam-
ily distribution P�(Y) is now to be learned from (high-
dimensional) data. Straightforward maximization of the
penalized loglikelihood is impossible due to the fact that
the log-partition function cannot be evaluated in practice.
For example, the partition function of the Ising model with
p binary variates sums over all 2p configurations. For large
p, this becomes computationally intractable for almost all
Ising models. This is circumvented by the replacement
of the likelihood by the pseudo-likelihood comprising the

variate-wise conditional distributions (Besag 1974; Höfling
and Tibshirani 2009). We show that the maximum penal-
ized pseudo-likelihood estimator of the exponential family
model parameter is—under conditions—consistent. Finally,
we present a computationally efficient algorithm for the
numerical evaluation of this proposed estimator. Both results
carry over to the pairwise MRF parameter as special case of
the multivariate exponential family.

Consider an identically and independently distributed
sample of p-variate random variables {Yi }ni=1 all drawn
from P�. The associated (sample) pseudo-loglikelihood is a
composite loglikelihood of all variate-wise conditional dis-
tributions averaged over the observations:

LPL(�, {Yi }ni=1) = 1

n

n∑
i=1

∑
j∈V

log[P�(Yi j |Yi,\ j )]. (5)

The maximum penalized pseudo-loglikelihood augments
this by a strictly convex, continuouspenalty function fpen(�;
λ)with penalty parameter λ > 0. Hence,LpenPL(�, {Yi }ni=1):= LPL(�, {Yi }ni=1) − fpen(�; λ). Then, the maximum
penalized pseudo-likelihood estimator of � is:

�̂
pen

(λ) = argmax� LpenPL(�, {Yi }ni=1). (6)

The next theorem shows that the maximum penalized
pseudo-likelihood estimator (6) is consistent in the traditional
sense, i.e., a regime of fixed dimension p and an increasing
sample size n. It is a minimum requirement of a novel esti-
mator. A motivation for refraining from consistency results
in high-dimensional regimes is provided in SM D.

Theorem 2 Let {Yn
i=1} be n independent draws from a p-

variate exponential family distribution P�(Y)∝exp[� T (Y)

+ h(Y)]. Temporarily supply �̂ and λ with an index n to
explicate their sample size dependence. Then the maximum
penalized pseudo-likelihood estimator �̂

pen
n maximizing the

penalized pseudo-likelihood is consistent, i.e., �̂
pen
n

p−→ �

as n → ∞ if,

i) The parameter space is compact and such that P�(Y)

is well-defined for all �,
ii) � T (Y) + h(Y) can be bounded by a polynomial,

|� T (Y) + h(Y)| ≤ c1 + c2
∑

j∈V |Y j |β for constants
c1, c2 < ∞ and β ∈ N,

iii) The penalty function fpen(�) is strict convex, con-
tinuous, and the penalty parameter λn converges in

probability to zero: λn
p−→ 0 as n → ∞.

Proof Refer to SM E. �
Theorem 2 differs from related theorems on �1-estimators

in two respects. Most importantly, (i) it holds uniformly over
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all (well-defined) models, i.e., it does not require a sparsity
assumption. Moreover, (ii) the assumption on the penalty
parameter is of a probabilistic rather than a specific deter-
ministic nature, which we consider to be more suited as λ is
later chosen in a data-driven fashion.

Theorem2warrants—under conditions—the convergence
of the maximum penalized pseudo-likelihood estimator �̂ as
the sample size increases (n → ∞). These conditions require
a compact parameter space, a commonassumption in thefield
of graphical models (Lee et al. 2015). Theorem 2 holds in
general for any multivariate exponential family distribution
and is therefore generally applicable with the pairwise MRF
distribution as special case.

Finally, if the penalty function fpen(�; λ) is proportional
to the sum of the square of the elements of the parameter,
fpen(�; λ) = 1

2λ‖�‖2F with ‖ · ‖F the Frobenius norm, it is
referred to as the ridge penalty. With the ridge penalty, the
estimator (6) is called the maximum ridge pseudo-likelihood
estimator. Then, when P�(Y) is well-defined for the GLM
family, we obtain the following corollary.

Corollary 1 Let {Yi }ni=1 be p-variate independent draws
from a well-defined pairwise MRF distribution P�(Y) with

parameter �. The ridge pseudo-likelihood estimator �̂
ridge
n

that maximizes the ridge pseudo-likelihood is consistent, i.e.,

�̂
ridge
n

p−→ � as n → ∞, if the parameter space is com-
pact, and the penalty parameter λn converges in probability

to zero: λn
p−→ 0 as n → ∞.

Proof Refer to SM E. �
Note that, in practice—as recommended by Höfling and

Tibshirani (2009)—weemploy fpen(�; λ)= 1
2λ

∑p
j, j ′=1, j �= j ′

�2
j, j ′ , thus leaving the diagonal unpenalized. Empirically,we

observed this yields a better model fit, which is intuitively
understandable as the estimator is then able to (uncon-
strainedly) account for (at least) the marginal variation in
each variate.

4 Algorithm

Maximization of the ridge pseudo-loglikelihood presents a
convexoptimizationproblem (a concavepseudo-loglikelihood
and convex parameter space, SM E). We present a parallel
block-wise Newton-Raphson algorithm for numerical eval-
uation of the penalized pseudo-likelihood estimator �̂(λ).
We show that this algorithm yields a sequence of updated
parameters that converge to �̂(λ) and terminates after a finite
number of steps. The results for the algorithm presented
in this section hold for maximizing the penalized pseudo-
loglikelihood for anymultivariate exponential family and are
not restricted to the pairwise MRF distribution.

Strict concavity of the optimization problem (6) and
smoothness of LpenPL permit the application of the Newton-
Raphson algorithm to find the estimate. The Newton–

Raphson algorithm starts with an initial guess �̂
(0)

(λ)

and—motivated by a Taylor series approximation—updates

it sequentially. This generates a sequence {�̂(k)
(λ)}k≥0 that

converges to �̂(λ) (Fletcher 2013). However, the Newton–
Raphson algorithm requires inversion of the Hessian matrix
and is reported to be slow for pseudo-loglikelihood maxi-
mization (Lee and Hastie 2013; Chen et al. 2015): It has
computational complexity O(p6) for p variates. Instead
of a naive implementation of the Newton-Raphson algo-
rithm to solve (6), the remainder of this section describes
a block-wise approach (Xu and Yin 2013), that speeds up
the evaluation of the estimator by exploiting the structure of
the pseudo-likelihood and splitting the optimization problem
(6) into multiple simpler subproblems. These subproblems
are then solved in parallel fashion. This parallel block-wise
Newton–Raphson algorithm makes optimal use of available
multi-core processing systems and is necessary to answer to
the increasing size of data sets. Finally, in contrast to other
pseudo-likelihood approaches (Höfling and Tibshirani 2009;
Lee and Hastie 2013), the presented approach allows for the
use of all second-order information (i.e., theHessian)with the
benefit of potentially faster convergence, butwithout increas-
ing the computational complexity.

In order to describe the block-wise approach some nota-
tion is introduced. Define q = 1

2 p(p + 1), the number of
unique parameters of�. The set of unique parameter indices
is denoted by Q = {( j, j ′) : j ≤ j ′ ∈ V} and we use θ as
shorthand for the q-dimensional vector of unique parameters
{� j, j ′ }( j, j ′)∈Q. Furthermore, write θ j for �∗, j = (� j,∗)�,
the p-dimensional vector of all unique parameters of � that
correspond to the j-th variate. Consequently, for j �= j ′ the
corresponding θ j and θ j ′ have parameter(s) of � in com-
mon. Finally, let H j be the p × p-dimensional submatrix
of the Hessian limited to the elements that relate to the j-th
variate, i.e., H j = ∂2LpenPL/∂θ j∂θ�

j .
Theblock-wise approachmaximizes thepenalizedpseudo-

loglikelihood with respect to the parameter subvector θ j for
j ∈ V , while all other parameters are temporarily kept con-
stant at their current value. Per block we maximize by means

of the Newton-Raphson algorithm, with initial guess θ̂
(0)

(λ)

and current parameter value θ̂
(k)
j (λ), updating to θ̂

(k+1)
j (λ)

through:

θ̂
(k+1)
j (λ) = θ̂

(k)
j (λ) −

(∂2LpenPL

∂θ j∂θ�
j

)−1
∣∣∣∣∣
θ=θ̂

(k)
(λ)

× ∂LpenPL

∂θ j

∣∣∣∣
θ=θ̂

(k)
(λ)

. (7)
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Fig. 1 Parameter updating by
Algorithm 1. First, the p
subvectors θ j are updated to

novel θ̂ j (line 5 of Algorithm 1).
These updates are interspersed
with zero’s to form the
q-dimensional vectors θ̃ j (line 6
of Algorithm 1). Finally, the
θ̃ j ’s are averaged weightedly to
produce the update of θ (line 8
of Algorithm 1)

� k+1~
p

�p
k+1

Line 6

Line 4 - 5

Current estimate

Compute (p-dimensional)

Convert updates
(q-dimensional)

�Block-wise updates for columns

�k

k

block updates in parallel 

�2
k+1�1

k+1

...

j

�j
k+1 �p

k+1

...

Schematics of parallel block coordinate Newton-Raphson algorithm

... Line 8

Aggregate updates

�jBlock-wise updates       for k~

Update for 

...

� k+1~
2

�2
k+1

� k+1~
1

All other 
elements
zero

�1
k+1

� k+1~
j

�j
k+1

�k

�k

Block coordinate-wise the procedure converges to the opti-
mum, that is, the maximum of LpenPL given the other
parameters of θ . Sequential application of the block-wise
approach is—by the concavity of LpenPL—then guaranteed
to converge to the desired estimate. Sequential application of
the block-wise approach may be slow and is ran in parallel

for all j ∈ V simultaneously. This means that all {θ̂ (k+1)
j } j∈V

are computed in parallel during a single step. As some ele-
ments of θ j and θ j ′ map to the same element of θ , multiple
estimates of the latter are thus available. Hence, the results
of each parallel step need to be combined in order to pro-

vide a single update of the full estimate θ̂
(k)
. This update of

θ̂
(k)

should increase LpenPL and iteratively solve the concave
optimization problem (6).Wefind such anupdate in the direc-

tion of the sum of the block-wise updates of {θ̂ (k+1)
j } j∈V .

A well-chosen step size in this direction then provides a

suitable update of θ̂
(k)
. Alternatively, to avoid the need for

combining block-wise updates one may seek a split of the
elements of � into blocks without overlap. This, however,
raises several issues. First, there is no straightforward choice
for coordinate blocks without overlap. Second, as the algo-
rithm is parallelized one can only use the estimate from the
previous step. Non-overlapping coordinate blocks optimize
the pseudo-likelihood for their respective blocks, but are sub-
optimal for the entire parameter affecting the convergence.
Finally, removing overlap requires a choice: which coordi-
nate blockprovides the estimate for a sharedparameter. There
is no obvious rationale that tells which one should prevail.
Moreover, there is no guarantee that the coordinate block
with the overlapping elements removed still increases the
pseudo-likelihood.

Algorithm 1 gives a pseudo-code description of the paral-
lel block-wise Newton–Raphson algorithm (the combination
of block-wise estimates is visualized in Fig. 1). Theorem 3
states that Algorithm 1 converges to the maximum penalized
pseudo-likelihood estimator and terminates. While Theo-
rem 3 is a rather general result for the maximum penalized
pseudo-likelihood estimator of exponential family distribu-
tions, as special case the same result follows for themaximum
ridge pseudo-likelihood estimator of the pairwise MRF dis-
tribution with the GLM family.

Theorem 3 Let {Yi }ni=1 be n independent draws from a p-
variate exponential family distribution P� (Y)∝exp[� T (Y)

+ h(Y)]. Assume that the parameter space of � is compact.
Let �̂(λ) be the unique global maximum of the penalized
pseudo-likelihood LpenPL(�, {Yi }ni=1). Then, for any initial
parameter θ (0), threshold τ > 0 and sufficiently large multi-
plier α ≥ p, Algorithm 1 terminates after a finite number of
steps and generates a sequence of parameters {θ (k)}k≥0 that
converge to �̂(λ).

Proof Refer to SM F. �

The presented Algorithm 1 balances computational com-
plexity, convergence rate and optimal use of available infor-
mation. The algorithm terminates after a finite number of
steps and one step, i.e., lines 3–10, has computational com-
plexity O(p3) when run in parallel. Moreover, Algorithm 1
uses all available second-order information (the Hessian of
LpenPL) and its convergence rate is at least linear. Further-
more, the convergence rate is quadratic when the multiple
updates for each parameter are identical.
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input : n × p data matrix Y;
p exponential family members;
initial parameter θ (0);
penalty parameter λn ∈ R>0;
threshold τ ∈ R>0;
multiplier α > 0.

output: sequence {θ (k)}k≥0.

1 initialize k = 0, err0 = 2τ .

2 while errk > τ do

3 for j ∈ V do in parallel

4 calculate the gradient ∂LpenPL/∂θ j and
Hessian H j .

5 compute a single Newton-Raphson update
of θ j .

6 formulate the update as a q-dimensional

vector θ̃ j by:

(θ̃ j )q =
{

(θ j ) j ′ for q ∈ Q s.t. q = ( j, j ′) or q = ( j ′, j),
0 otherwise.7

8 end synchronize

9 define the parameter estimate

θ̂
(k+1) := θ̂

(k) + 1
α

∑
j∈V θ̃ j .

10 [optional] compute the reciprocal conditional
variance {� j } j∈V of Gaussian variates (SM
G).

11 assess error errk = ‖ ∂LpenPL/∂θ
∣∣
θ=θ̂

k+1 ‖F
and set k = k + 1.

12 end

Algorithm 1: Pseudocode of the parallel block-
wiseNewton-Raphson algorithm for evaluation of
the maximum penalized pseudo-likelihood esti-
mator.

As comparison, other work uses either the pseudo-
likelihood or a node-wise regression for optimization. The
pseudo-likelihood method has previously been reported to
be computationally intensive with slow algorithms (Chen
et al. 2015). For instance, the computational complex-
ity of pseudo-likelihood maximization is O(p6) per step
for a naive implementation of the Newton-Raphson algo-
rithm. When maximizing the pseudo-loglikelihood, existing
methods therefore use a diagonal Hessian or an approxima-
tion thereof, or only first-order information (Höfling and
Tibshirani 2009; Lee and Hastie 2013). Such approaches
achieve linear convergence at best and have a computa-
tional complexity of at least O(np2) per step as the gradient

of the pseudo-loglikelihood must be evaluated. Alterna-
tively, the computational complexity of node-wise regression
methods is O(p4) per step for existing algorithms, which
could be optimized to O(p3) with a parallel implemen-
tation. However, node-wise regression methods estimate
each parameter twice and subsequently need to aggregate
their node-wise estimates. This aggregated estimate does
not exhibit quadratic convergence. Moreover, these node-
wise estimates are potentially contradictory and their quality
depends on the type of the variable (Chen et al. 2015).

In short,we expectAlgorithm (1) to performnoworse than
other pseudo-likelihood maximization approaches, since its
computational complexity of O(p3) is comparable or better
than existing methods and all available second-order infor-
mation is used.

We can, in addition to the pairwise MRF distribution
parameter, analytically estimate the variance of the Gaussian
variates from the pseudo-loglikelihood (SM G). We perform
this additional estimation at the end of each parallel update of
the algorithm (line 9, Algorithm 1). This allows the variance
of Gaussian variates to be unknown and also aids the intuitive
understanding of the estimated parameter as follows. Sup-
pose that we have a multivariate Gaussian distribution with
precision matrix �. The off-diagonal elements of the MRF
distribution parameter � correspond to the off-diagonal of
�. The elements of the diagonal of � represent the recipro-
cal of the conditional variances. In contrast, and by definition
of the pairwise MRF distribution, the diagonal of � repre-
sents the marginal mean of the variates. This non-intuitive
relationship between the precision matrix � and parameter
� is remedied by substituting the diagonal elements of �

corresponding to Gaussian variates with the reciprocal of the
conditional (estimated) variances. Then, if the data consist
of only Gaussian variates, the algorithm estimates the preci-
sion matrix, and additionally returns the estimated means as
intuitively expected. This extends to data of mixed types.

Finally, the condition on the multiplier α in Theorem 3
may be relaxed when using the ridge penalty (cf. Lemma 1),
thereby appropriately increasing the step size of the param-
eter update and the convergence speed of Algorithm 1.

Lemma 1 Let Y = {Yi }ni=1 be p-variate independent
draws from an exponential family distribution P�(Y) ∝
exp[� T (Y) + h(Y)]. Let θ (0) be any initial parameter
unequal to the maximum ridge pseudo-likelihood estimator

�̂
ridge

(λ). A single step of Algorithm (1) initiated with θ (0)

yields the block solutions {θ j } j∈V (Line 5, Algorithm 1) and

block-wise updates {θ̃ j } j∈V (Line 6, Algorithm 1). Let α > 0
and define θ (1) as θ (1) = θ (0) + 1

α

∑
j∈V θ̃ j . Next, define the

p-dimensional difference vectors {δ j } j∈V with elements:

(δ j ) j ′ =
{

(θ j ′) j −(θ j ) j ′ if j �= j ′
−(θ j ) j ′ if j = j ′, (8)
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a b

dc

Fig. 2 Pseudo-likelihood estimator of a lattice graph having Bernoulli,
Gaussian, Poisson and Exponential data types. a The synthetic simu-
lation lattice graph G = (V, E) with p = 16 nodes. Variates have a
conditional distribution represented by the shape of the node’s pic-
togram. Distributions are GLM family members Gaussian (green),
Bernoulli (red), Poisson (yellow) and exponential (blue). bHeatmap of
the pairwise MRF distribution parameter. The parameter has 1

2 (p+1) ·
p = 136 elements allowing for 120 edges (off-diagonal). The parame-
ter constraints reduce the number of allowed edges to 88, with 36 edges

present. Diagonal elements for Gaussian variates represent the vari-
ance (specifically, the negative reciprocal of the conditional variances).
c Scaling of the error of the estimator with the sample size. Included
are the cross-validated ridge pseudo-likelihood (k = 10, dark green),
its unpenalized counterpart (light green) and the ‘averaged’ node-wise
regression coefficients (yellow). All curves showmean± standard error
of the mean (20 replicates per condition). (d) Heatmap of the error of
a cross-validated ridge pseudo-likelihood estimator for n = 100. Also
see SM M, Figures S1-S4

for all j, j ′ ∈ V . Let L(·; θ (0)) be the second-order Tay-
lor approximation of LpenPL at θ (0). Then L(θ (1); θ (0)) >

L(θ (0); θ (0)) if,

α ≥ αmin = 3 + 3

2
·

∑
j∈V δ�

j H jδ j∑
j∈V θ�

j H jθ j
, (9)

where H j is the j-th block Hessian matrix.

Proof Refer to SM H. �

Lemma 1 presents a lower bound αmin > 3 on α which
warrants, when α > αmin, an increase of the penal-
ized pseudo-likelihood LpenPL(�, {Yi }ni=1) at each step of
Algorithm1. In practice,we usedαmin throughout as it signif-
icantly speeds up the convergence of Algorithm 1. Similarly,
we noticed that updating the diagonal elements of the pair-
wise MRF distribution parameter � more than once could
also enhance convergence (seeSMH,Corollary 5 for details).

4.1 Implementation

We implemented Algorithm 1 in C++ using the OpenMP
API that supports multi-threading with a shared memory.
For convenience of the user, the algorithm is wrapped in an
R-package as extension for the R statistical computing soft-
ware. To ensure the estimated parameter always produces a
well-defined pairwise MRF distribution, the constraints on
the parameter space are implemented using additional con-
vex border functions (SM I). The package includes some
auxiliary functions such as a Gibbs sampler to draw samples
from the pairwise MRF distribution (SM J) and k-fold cross-
validation to select the penalty parameter λ for the maximum
ridge pseudo-likelihood estimator. The simplicity, generality
and good prediction performance of k-fold cross-validation
make it a natural choice for ridge-type estimators that do
not induce sparsity (SM K), although we considered sparsi-
fication procedures (SM L). The package is made publicly
available on GitHub.
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5 Simulations

In a numerical study with synthetic data, we evaluate the
performance of the proposedAlgorithm 1 for numerical eval-
uation of the maximum ridge pseudo-likelihood estimator
�̂n(λopt) of parameter �. We also assess the quality of
�̂n(λopt) using the convex and twice differentiable ridge
penalty‖�‖2F , leaving the diagonal of� unpenalized (as rec-
ommended by Höfling and Tibshirani 2009). Unless stated
otherwise, we use threshold τ = 10−10 and multiplier
α = αmin for Algorithm 1.

5.1 Performance Illustration

We illustrate the capabilities of the estimator and our algo-
rithm with a simulation of a lattice graph G = (V, E), thus
following Yang et al. 2014; Lee and Hastie 2013, and Chen
et al. 2015. The lattice graph’s layout represents the most
general setting encompassed by the outlined theory. Each
GLM family member is present with an equal number of
(four) variates (Fig. 2a). In short, the nodes are laid out
on a lattice, each node being connected to all of its neigh-
bors (e.g., the Gaussian nodes form a complete subgraph,
and similarly all Bernoulli nodes, or combinations of three
Poisson nodes and an Exponential node form complete sub-
graphs). The interactions between nodes obey the parameter
restrictions for well-definedness of the pairwise MRF dis-
tribution. The resulting lattice graph for p = 16 nodes has
|E | = 36 edges, and it contains 40% of all possible edges.
Consequently, the nodes have an average degree of 4.5, while
correct graphical model selection is no longer guaranteed
(asymptotically) when the maximum vertex degree is larger
than

√
p/ log(p) = √

16/ log(16) = 2.4 (Das et al. 2012).
The lattice graph thus represents a setting where previous
work on (sparse) graphical models with data of mixed types
fails when the sample size is small, relative to the number
of parameters. To ensure the resulting pairwise MRF distri-
bution P�(Y) adheres to the described lattice graph G, we
choose its parameter � as follows (Fig. 2b):

� j, j ′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.2 j, j ′ ∈ V such that j �= j ′ and ( j, j ′) ∈ E,

−0.2 j, j ′ ∈ V such that j = j ′ and Y j follows
either a Bernoulli or an exponential,

2 j, j ′ ∈ V such that j = j ′ and Y j follows
a Poisson,

0 Otherwise.

This parameter choice ensures the pairwise MRF distribu-
tion P�(Y) is well-defined and all edges share the same edge
weight. Finally, the variance of the conditionalGaussian vari-
ates is set to σ 2 = 1.

We compare the performance—in terms of the error—
of the cross-validated ridge pseudo-likelihood estimator

�̂n(λopt) of � to the unpenalized pseudo-likelihood esti-
mator and the averaged node-wise regression coefficients,
whenever the sample size allows. The error is defined as
the Frobenius norm of the difference between the param-
eter and its estimate, e.g., ‖�̂(λopt) − �‖F . Hereto we
generate data for n ∈ [10, 104] samples from the ‘lattice
graph’ distribution (SM J). From these data, the estima-
tors are evaluated and their errors calculated (Fig. 2c). The
error of the cross-validated ridge pseudo-likelihood estimator
�̂(λopt) decreases slowly with the sample size n in the low-
dimensional regime as expected, while a sharp increase of its
error of is observed in a high-dimensional setting. The error
of the ridge pseudo-likelihood is generally on a par with its
unpenalized counterpart and the node-wise regression in the
low-dimensional regime. More refined, both the maximum
ridge and unpenalized pseudo-likelihood estimator outper-
form the averaged node-wise regression for all sample sizes.
The full information and simultaneous parameter estima-
tion approaches are thus preferable. Finally, the proposed
ridge pseudo-likelihood estimator clearly shows better per-
formance in the sample domain of (say) n < 150. Hence,
regularization aids (in the sense of error minimization) when
the dimension p approaches or exceeds the sample size n.

To gain further insight in the quality of the estimator, we
compute the per-element error of the parameter. This is visu-
alized by means of a heatmap of the estimator’s error for a
representative example (Fig. 2d). The Bernoulli variates have
the largest per-element error in the (ridge) pseudo-likelihood
estimator, predominantly amongst Bernoulli-Bernoulli inter-
actions. This is observed across sample sizes. This is intuitive
as precise estimation of the parameter of a Bernoulli distri-
bution requires a larger sample size than that of (say) the
exponential distribution. Although the error of all types of
pairwise interactions decreases with sample size (SM M,
Figure S1), the relative contribution of each type of pairwise
interaction to the error remains surprisingly constant (SMM,
Figure S2). Thus, an increase of the sample size reduces the
per-element error for any interaction type but leaves their rel-
ative contributions to the total error approximately unaltered.

We also study model selection via the lasso penalty and
compare the errors of the ridge and lasso pseudo-likelihood
estimators (SM M, Figures S3 and S4).

5.2 Comparison

In a Gaussian graphical model context, we compare the
performance of the proposed maximum (ridge) pseudo-
likelihood estimator to that of the ridge precision matrix
estimator (van Wieringen and Peeters 2016). The latter
assumes normality, Y ∼ N (0p,�−1), and estimates �

through ridge penalized likelihood maximization. The maxi-
mum ridge pseudo-likelihood estimator too estimates �, but
does so in a limited information approach. Here we compare
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a b

c

Fig. 3 Scaling of the error of the precision matrix estimator with the
sample size. Compared are the errors of the cross-validated maximum
ridge pseudo-likelihood estimator (dark-green), its unpenalized coun-
terpart (light-green), the maximum ridge likelihood estimator (yellow)

and its unpenalized counterpart (yellow). Shown is the error for dimen-
sions p = 25 (a), p = 50 (b) and p = 100 (c). All curves show mean
± standard error of the mean (10 replicates for n = 104, 20 replicates
per condition for n < 104). Also see SM M, Figure S5

the quality of these full and limited information approaches in
silico. Define a three-banded precision matrix � with a unit
diagonal, � j, j+1 = 0.5 = � j+1, j for j = 1, . . . , p − 1,
� j, j+2 = 0.2 = (� j+2, j for j = 1, . . . , p − 2, � j, j+3 =
0.1 = � j+3, j for j = 1, . . . , p − 4, and all other entries
equal to zero. The number of variates p ranges from p = 25
to p = 150 to test the performance of the proposed estima-
tor for its intended use in the context of a large number of
variates. Data are sampled from the thus defined multivariate
normalN (0p,�−1) and used to evaluate both the maximum
(ridge) likelihood and (ridge) pseudo-likelihood estimators
for various sample sizes n.

We compare the performance of the precision estimators
by means of their error, defined as ||�̂(λopt) − �||F , and
analogously for their unpenalized counterparts. In the low-
dimensional regime, for p = 25 and n > 100, the errors
of all estimators are very close and decrease slowly as the
sample size n increases (Fig. 3a). Specifically, the maximum
unpenalized likelihood and maximum unpenalized pseudo-
likelihood estimators are identical for all sample sizes and all
data sets, resulting in identical errors. In the high-dimensional
regime, for p = 25 and n < 100, the penalized estimators
clearly outperform their unpenalized counterparts as can be
witnessed from their diverging error when n approaches p.

Moreover, the maximum ridge pseudo-likelihood estimator
appears to slightly outperform its maximum ridge likelihood
counterpart. This is probably due to the penalty or implemen-
tation of the cross-validation methods, as both estimates are
generally very close. This corroborates the results of previ-
ous simulation studies into the maximum (lasso) penalized
pseudo-likelihood estimator (Lee and Hastie 2013; Höfling
and Tibshirani 2009). With the application of large data sets
and parallel computing inmind,we consider the performance
of the maximum penalized pseudo-likelihood estimator for
a higher number of variates up to p = 150 next (Fig. 3b–d).
Generally, while an increase of the dimension p increases
the error of the estimators, qualitatively their relative behav-
ior remains largely unchanged. Specifically, (i) the errors of
all estimators are very close in the low-dimensional regime,
(ii) the unpenalized likelihood and unpenalized pseudo-
likelihood estimators are identical for all dimensions and
sample sizes, (iii) the penalized estimators outperform their
unpenalized counterparts in the high-dimensional regime,
and (iv) the errors of the maximum ridge pseudo-likelihood
estimator are very close to the errors of the maximum ridge
likelihood estimator. We further study the error of the penal-
ized estimators as function of the degree of nodes in the
underlying graph (SM M, Figure S5).
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5.3 Speed-up and benchmark

Here we pursue to speed up Algorithm 1 by further reducing
its computational complexity. To this end, we modified the
parallel block-wise Newton–Raphson to a block-wise quasi-
Newton approach using a chord method that computes the
inverse of the block-wise Hessian matrices

{
H j

}
j≤p only

every k0 = p steps of the algorithm. This vastly reduces the
computational complexity of the algorithm—without signif-
icantly reducing convergence— by alleviating the burden of
the rate-limiting substep (SM M, Figure S6).

We benchmark the proposed algorithm by studying its run
time and the required number of steps. For this we consider
a pairwise MRF distribution having variates of the binary
(Bernoulli) and continuous (Gaussian) type. The two types
are equally represented among the p variates. The parame-
ter � of this distribution is chosen such that it satisfies the
parameter restrictions for well-definedness of the pairwise
MRF distribution (SM M, Figure S7). The conditional pre-
cision matrix of the Gaussian variates is three-banded as in
the previous comparison study. Each Bernoulli variate has
an interaction with every

√
p-th other variate, and the cor-

responding interaction parameters are set equal to ±0.1, in
alternating fashion. Data with n = 1.000 samples with a
dimension ranging from p = 16 to p = 200 variates are
sampled from thismixedBernoulli-Gaussian distribution and
used for benchmarking.

First we study the effect of the step size of the algorithmon
convergence of the parameter estimate. The update changes

the estimate θ̂
(k) → θ̂

(k+1)
with 1

α

∑
j∈V θ̂ j (Line 8 of

Algorithm 1). Thus, the step size is proportional to α−1. Con-
ventionally, one would take α = p and naively average the

block-wise updates (a convex combination) to update θ̂
(k)

.
We showed that the approach of combining block updates
theoretically allows for a larger step α < p (Lemma 1).
Indeed, we find that increasing the step size—decreasingα—
reduces the number of required steps for Algorithm 1 to find
the estimator (Fig. 4a). Specifically, doubling the step size
approximately halves the number of required steps for all
dimensions p. However, a step size that is too large prevents
convergence of the parameter estimate (hence the endpoints
of the curves at α < p). Lemma 1 circumvents this problem
by evaluating an (in some sense) optimal αmin at every step
of the algorithm and using this αmin for the update of that
step. This approach further reduces the required number of
steps to find the estimator (diamonds in Fig. 4a).

We next assess the effect of having multiple processors to
compute the parallel part of Algorithm 1 (the gradient and
inverse of the block-wise Hessian matrices). Doubling the
number of processors approximately halves the required time
per step of the algorithm (Fig. 4b), especially at high dimen-
sions (e.g., p ≥ 64). This is expected as the rate-limiting

substep (inverting the Hessians) increasingly dominates the
run time as the problem size increases, and almost perfectly
parallelizes with the number of processors. Note that a single
processor computes everything sequentially, but an update

for θ̂
(k)

still represents the aggregated block-wise updates.
With both the number of steps and the time per step

optimized, we compare the performance of our proposed
algorithm with naive approaches. Hereto we compute the
time required to find the maximum pseudo-likelihood esti-
mator �̂n for three methods: using (i) Newton-Raphson,
(ii) sequential block-wise and (iii) parallel block-wise algo-
rithms.TheNewton–Raphson approach computes and inverts
the full q × q-dimensional Hessian matrix (with q = 1

2 (p +
1)p). The sequential block-wise approach sequentially picks
variates j ∈ {1, . . . , p} and then only updates the block
of elements � j,∗ of the parameter estimate, thus inverting
only the j-th p× p-dimensional block-wise HessianH j at a
given step. The parallel approach is Algorithm 1, inverting all
p× p-dimensional Hessians

{
H j

}
j≤p in parallel and aggre-

gating the block-wise estimates using a step size determined
by αmin. Note that using the Newton-Raphson algorithm that
inverts the full Hessian at each step is computationally too
intensive, while a diagonal Hessian requires too many steps
to convergence (see SM M, Figure S6 for a comparison).
For a fair comparison each approach inverts their respective
Hessian matrices only every k0 = p-th step.

Algorithm 1 outperforms the other approaches, especially
for large problem sizes (Fig. 4c). This is also independent
of whether the variance of Gaussian variates is estimated or
not (SM M, Figure S7). Specifically, sequential block-wise
is the slowest approach for all dimensions p as the num-
ber of required steps increases very fast with p (SM M,
Figure S7). The Newton–Raphson approach, requiring very
few steps, is fastest for small dimensions p < 20, although
the computational complexity of inverting the full Hessian
quickly becomes prohibitively large (for p > 20). To appre-
ciate the computational efficiency of the parallel algorithm,
note that one step of the full Newton–Raphson algorithm
has computational complexity O(p6) compared to O(p3)
of the parallel Algorithm 1. This permits the latter O(p3)
steps before exceeding the computational complexity of one
step of full Newton–Raphson. Indeed, the parallel algorithm
was found to always terminate within O(p3) steps. In terms
of actual run time, the parallel algorithm typically finds the
estimator (converges with threshold τ = 10−10) in under
one minute for p = 150. In contrast, the sequential approach
already takes over 6 minutes for p = 64, while Newton–
Raphson takes over 20 minutes for p = 100. In summary,
the proposed parallel algorithm is orders of magnitude faster
compared to naive approaches for large dimensions p > 100
by (i) reducing the required number of steps and (ii) reducing
the time taken per step for the algorithm to find the estimator
(Fig. 4d).
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Fig. 4 Parallel algorithm outperforms naive algorithms. a The number
of steps required for Algorithm 1 to find the estimator as function of
the step size (α−1). Shown are dimensions p = 64 (dark red), p = 32
(red) and p = 16 (orange). A step size p−1 is equivalent to naively
averaging the block-wise estimates. The optimal (average) αmin from
Lemma 1 for each dimension is indicated with a diamond. b The time
per step of Algorithm 1 as function of the number of available proces-
sors. Shown are dimensions p = 100 (dark green), p = 64 (green)
and p = 32 (light green). One processor corresponds to performing
all computations sequentially. c The time taken to find the estimator
for the naive Newton–Raphson algorithm (purple), a sequential block-

wise algorithm (blue) and the parallel Algorithm 1 (green) as function
of the number of variates p. The inverse Hessian matrices were com-
puted every k = p steps to reduce computation time for each method.
a–c All curves show mean ± standard error of the mean (5 replicates
per condition). Processor cores were artificially limited to 2 GHz for a
fair comparison (SM N). d Schematic summary. The parallel approach
reduces the time to find the estimator by (1) lowering the required num-
ber of steps (scaling with step size) and (2) shortening the time taken
per step (scaling with number of processors). Also see SM M, Figures
S6 and S7

6 Conclusion

We presented methodology for the maximum penalized
pseudo-likelihood estimation of multivariate exponential
family distributions. As special case of interest, the employed
class of distributions encompasses the pairwise Markov ran-
dom field that describes stochastic relations among variates
of various types. The presented estimator was shown to be
consistent undermild conditions. Our algorithm for its evalu-
ation allows for efficient computation on multi-core systems
and accommodates for a large number of variates. The algo-
rithm was shown to converge and terminate. A simulation
study showed that the performance of the proposed (ridge-
penalized) pseudo-likelihood estimator was very close to the
maximum ridge likelihood estimator. Moreover, our bench-
mark showed that the proposed parallel algorithm is superior
to naive approaches. Finally, our methodology was demon-

stratedwith an application to an integrative omics study using
data from various molecular levels (and types) (see SM O).

Envisioned extensions of the presented ridge pseudo-
likelihood estimator allow—among others—for variate type-
wise penalization. Technically, this is a minor modification
of the algorithm but brings about the demand for an efficient
penalty parameter selection procedure. Furthermore, when
quantitative prior information of the parameter is available
it may be of interest to accommodate shrinkage to nonzero
values.

Foreseeing a world with highly parallelized workloads,
our algorithm provides a first step towards a theoretical
framework that allows for efficient parallel evaluation of
(high-dimensional) estimators. Usually and rightfully most
effort concentrates on the mathematical optimization of the
computational aspects of an algorithm.Once that has reached
its limits, parallelization may push further. This amounts
to simultaneous estimation of parts of the parameter fol-
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lowed by careful—to ensure convergence—recombination
to construct a fully updated parameter estimate. Such paral-
lel algorithms may bring about a considerable computational
gain. For example, in the presented case this gain was
exploited to incorporate full second-order information with-
out inferior computational complexity compared to existing
algorithms.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-021-10013-
x.
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