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Abstract

Mathematical models implemented on a computer have become the driving force

behind the acceleration of the cycle of scientific processes. This is because computer

models are typically much faster and economical to run than physical experiments. In

this work, we develop an empirical Bayes approach to predictions of physical quantities

using a computer model, where we assume that the computer model under considera-

tion needs to be calibrated and is computationally expensive. We propose a Gaussian

process emulator and a Gaussian process model for the systematic discrepancy between

the computer model and the underlying physical process. This allows for closed-form

and easy-to-compute predictions given by a conditional distribution induced by the

Gaussian processes. We provide a rigorous theoretical justification of the proposed

approach by establishing posterior consistency of the estimated physical process. The

computational efficiency of the methods is demonstrated in an extensive simulation

study and a real data example. The newly established approach makes enhanced use

of computer models both from practical and theoretical standpoints.

Keywords— Gaussian process, Posterior consistency, Computer experiments, Nonparametric

regression, Nuclear binding energies
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1 Introduction

With the advancements of computer architectures in the 21th century, mathematical models imple-

mented on a computer (computer models) heavily contributed to the rapid speed-up of the cycle

of scientific processes. This is because computer models are generally much faster and economical

to run than physical experiments. For instance, experiments conducted in high-energy particle

colliders require budgets in billions of dollars and multinational collaborations. Additionally, many

experiments related to natural events such as extreme weather phenomena, including tropical cy-

clones or tornadoes, are practically impossible to conduct.

Computer models, despite being an invaluable component of the process of scientific discovery,

are imperfect representation of physical systems with each model evaluation often taking many

hours. In this paper, we present an empirical Bayes approach for fast and statistically princi-

pled predictions of physical quantities using imperfect computer models that need to be calibrated

with experimental observations. We particularly aim at those scenarios where computer models

under consideration are complex and computationally too expensive to be used directly for pre-

dictions with quantified uncertainties. Our approach builds on the framework for computer model

aided inference developed by Kennedy and O’Hagan (2001) that establishes the connection between

experimental observations, computer model, and the systematic discrepancy (error) between the

model and the physical process. The systematic discrepancy is modeled nonparametrically using

a Gaussian process (GP) and the computer model is replaced by an emulator based also on a GP.

This framework has reached high popularity over the past two decades with many applications in

nuclear physics (Higdon et al., 2015; King et al., 2019), climatology (Sexton et al., 2012; Pollard

et al., 2016), and engineering (Williams et al., 2006; Plumlee et al., 2016; Zhang et al., 2019).

There have been also various extensions of the original framework from both methodological and

computational perspective. For example, Higdon et al. (2008) consider computer models with high-

dimensional output. Plumlee (2017) and Gu and Wang (2018) study specific GP modeling choices

to improve the predictive accuracy of the framework. Kejzlar and Maiti (2020) develop variational

inference based approach for approximation of posterior densities. Tuo and Wu (2015), Plumlee

(2019), and lately Xie and Xu (2020) show theoretical properties of the framework under some

2



modifications.

Despite these efforts, some of the practical challenges for computer enabled predictions with GPs

remain. First, implementation of the framework Kennedy and O’Hagan (2001) is never straight-

forward and typically requires considerable effort and experience, especially under some of the

extensions listed in the previous paragraph. Second, a fully Bayesian approach becomes quickly

computationally demanding with the increasing sample size, model complexity, and number of pa-

rameters. Third, in the absence of correct prior distributions, the full Bayesian models could be

sensitive to the choice of hyperparameter values. To avoid these complications, we consider an em-

pirical Bayes approach, which can be viewed as an approximation to the fully Bayesian treatment.

This approximation principle is well established for standard statistical models. We validate this

in the context of calibrated computer models. Following are the specific contributions of this work:

a) Our methodology utilizes the statistical properties of GPs to establish easy-to-implement,

closed-form, and fast-to-compute predictions of physical quantities using computationally

expensive computer models that are calibrated with experimental observations. This includes

a proposal of two estimators for plug-in model parameters with negligible loss of uncertainty

on predictions that can be readily obtained using standard numerical solvers.

b) We offer a fresh perspective on the framework of Kennedy and O’Hagan (2001) and provide

its equivalent representation as a hierarchical model. As a consequence, we derive new

theoretical properties of this framework and show that our proposed methodology estimates

the values of underlying physical process consistently. Our theoretical analysis is based on

an original extension of Schwartz’s theorem for nonparametric regression problems with GP

priors and an unknown but consistently estimated variance.

c) We provide an extensive simulation study and demonstrate the computational efficiency of

the proposed methodology compared with the Metropolis-Hasting algorithm (fully Bayesian

implementation). We also conduct a sensitivity study of the fully Bayesian solution to

prior selection and show that our methodology is preferred in the absence of proper and

meaningful prior distributions. Additionally, we illustrate the opportunities provided by our

method on an analysis of experimental nuclear binding energies. A fully documented Python
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code with our algorithm and examples is available at https://github.com/kejzlarv/EB_

Calibration.

1.1 Outline of this paper

In Section 2, we review the general framework for Bayesian inference with computer models. Section

3 defines two plug-in estimators for GP model parameters and a consistent estimator of a noise

variance component. Then, in Section 4, we discuss the theoretical properties of our approach

and establish its statistical consistency. Section 5 contains a simulation study that validates the

methodology in this paper empirically. A real data application is also included in Section 5.

2 Bayesian model for inference with computer models

Let us consider observations y = (y1, . . . , yn) of a physical process ζ(t) depending on a known set

of inputs ti, i = 1, · · · , n taking values in a compact and convex set Ω ⊂ Rp, p ≥ 1, following the

relationship

yi = ζ(ti) + σεi, i = 1, . . . , n, (1)

where σ represents the scale of observational error, typically εi
i.i.d.∼ N (0, 1). Our aim is to establish

statistically principled predictions y∗ = (y∗1, . . . , y
∗
J) of the physical process ζ at new, yet to be

observed, inputs (t∗1, . . . , t
∗
J) using y and a computer model fm defined as a mapping (t,θ) 7→

fm(t,θ). As we can see, the computer model depends on an additional set of inputs θ ∈ Θ ⊂ Rq

that we call calibration parameters. These are considered fixed but unknown quantities common

to all the observations yi and all the instances of the physical process that we intend to predict

using calibrated computer model. The calibration parameters represent inherent properties of

the physical process that cannot be directly measured or controlled in an experiment. In the most

rudimentary form, one can think of the calibration parameters as parameters in standard regression

problems. To this extent, we suppose the relationship between the observations y, physical process

ζ, and the computer model fm as proposed by Kennedy and O’Hagan (2001):

yi = fm(ti,θ) + δ(ti) + σεi, (2)
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where δ(ti) represents an unknown systematic error between the computer model and the physical

process. While δ(ti) is intrinsically deterministic, a nonparametric approach using a GP prior

model is typically imposed for Bayesian inference.

GPs are a convenient way of placing a distribution over a space of functions. By definition, we

say that δ(t) has a GP distribution, if for every i = 1, 2, 3 . . . the joint distribution of δ(t1), . . . δ(ti)

is multivariate normal. It is fully described by its mean and covariance functions that characterizes

the relationship of the process at different inputs.

Typically, the mean function is chosen to be zero or some dense family of basis functions

(wavelets, Fourier, polynomials) across the input domain:

mδ(·) = h(·)Tβ, (3)

where h(·) = (h1(·), . . . hr(·)) are the basis functions and β is a hyperparameter. A typical choice

for the covariance function is a stationary covariance function that depends on the inputs through

t−t′. For example, a Gaussian kernel covariance function (also called squared exponential or radial

basis function kernel) takes the form

kδ(t, t
′) = η exp

(
− 1

2
(t− t′)TM(t− t′)

)
, (4)

where M corresponds to a positive definite diagonal matrix of hyperparameters. We refer to the

case of M = 1
`2
I, for some ` > 0, as an isotropic version of the kernel, because it is invariant to the

rotation. The case of M with different diagonal terms is called an anisotropic version of the kernel.

Other popular choices for stationary covariance functions are Matérn kernels, polynomial kernels,

or exponential kernels (Rasmussen and Williams, 2006).

It is important to note that one first needs to provide an estimate of the unknown parameter

θ according to the relationship (2), before making any predictions. The process of estimation of

such parameter is called model calibration. In Bayesian sense, it corresponds to obtaining a full

posterior distribution of θ given data. Unfortunately, the calibration parameter θ is non-identifiable

in general. Several authors have pointed this out and proposed various methods to mitigate the

problem including (Bayarri et al., 2007; Brynjarsdóttir and O’Hagan, 2014; Plumlee, 2017; Tuo
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and Wu, 2015, 2016). Our main goal here, nonetheless, is not the correct identification of θ,

but a prediction. Thus the problem can be thought of as a “black-box” based prediction such

as the prediction based on neural networks or deep networks where parameters are part of the

nonparametric models.

It is often the case that the evaluation of computer model fm is too expensive in terms of both

time and space (memory). Common practice is to reduce the number of necessary computer model

evaluations by considering a GP prior model. We use the following notation:

fm(t,θ) ∼ GP(mf (t,θ), kf ((t,θ), (t′,θ′))).

In this setup, the data also include set of model evaluations z = (z1, . . . , zs) over a grid {(t̃1, θ̃1), . . . , (t̃s, θ̃s)}.

These are usually selected sequentially using some space-filling design such us uniform or Latin hy-

percube design (Morris and Mitchell, 1995), which is a design that has a good coverage of the space

with evenly distributed points in each one-dimensional projection. The complete dataset d in the

case of computationally expensive models consists of n observations yi from the physical process ζ

and s evaluations zj of the computer model fm, i.e. d = (d1, . . . , dn+s) := (y, z). We shall denote

the set of unknown parameters as (θ,φ, σ) with φ ∈ Ξ ⊂ Rq′ denoting the set of hyperparameters

of GPs’ mean and covariance functions. Consequently, the distribution of the complete dataset d

conditioned on (θ,φ, σ) is

d|θ,φ, σ ∼ N(M(θ,φ),K(θ,φ, σ)), (5)

where

M(θ,φ) =

Mf (Ty(θ)) +Mδ(Ty)

Mf (Tz(θ̃))

 , (6)

Mf (Ty(θ)) is a column vector with jth element mf (tj ,θ), Mδ(Ty) is a column vector with jth

element mδ(tj), and Mf (Tz(θ̃)) is a column vector with jth element mf (t̃j , θ̃j). The covariance
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matrix of the multivariate normal distribution (5) is

K(θ,φ, σ) =

Kf (Ty(θ), Ty(θ)) +Kδ(Ty, Ty) + σ2In Kf (Ty(θ), Tz(θ̃))

Kf (Tz(θ̃), Ty(θ)) Kf (Tz(θ̃), Tz(θ̃))

 . (7)

Here Kf (Ty(θ), Ty(θ)) is the matrix with (i, j) element kf ((ti,θ), (tj,θ)), Kδ(Ty, Ty) is the

matrix with (i, j) element kδ(ti, tj), and Kf (Tz(θ̃), Tz(θ̃)) is the matrix with (i, j) element

kf ((t̃i, θ̃i), (t̃j, θ̃j)). We can define the matrix Kf (Ty(θ), Tz(θ̃)) similarly with the kernel kf .

Under a fully Bayesian treatment, the predictions of y∗ are specified by the poste-

rior predictive distribution p(y∗|d). It is obtained by integrating the conditional density

p(y∗|d,θ,φ, σ), which is a multivariate normal density given by the statistical model (1)

and the specification of GPs, against the posterior density p(θ,φ, σ|d). Analogical relation-

ship holds for the predictions of new realizations of the physical process ζ∗. The posterior

density p(θ,φ, σ|d), however, does not have a closed-form in general and one needs to resort

to either Markov chain Monte Carlo (MCMC) methods for approximation or use variational

techniques. This can be a non-trivial task to implement and requires some practical expe-

rience. Additionally, the nature of the marginal likelihood p(d|θ,φ, σ) makes the problem

harder to scale due to the complex structure of the covariance matrixK(θ,φ, σ), see Kennedy

and O’Hagan (2001) and Kejzlar and Maiti (2020) for further discussion.

To avoid these difficulties, we propose an empirical Bayes approach which instead of plac-

ing a (prior) distribution on (θ,φ, σ) estimates these parameters directly form the data. One

can therefore utilize the convenience of GPs to obtain closed-form, simple, and fast predic-

tions given by the conditional distribution p(y∗|d,θ,φ, σ) (or p(ζ∗|d,θ,φ, σ)). The proposed

approach can be conceptualized as an approximation of the fully Bayesian treatment that

neglects some of the uncertainty associated with the unknown parameters.
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3 Prediction and parameter estimation

One of the main benefits of the empirical Bayes approach is that once we estimate the

unknown parameters (θ,φ, σ), we can obtain a closed-form predictive distribution given

these estimates. The framework additionally yields a principled approach for the inference

of physical process ζ that is statistically consistent (shown below in Section 4).

Here we formally derive the algorithm for prediction of physical quantities. Let us con-

sider a set of new inputs (t∗1, . . . , t
∗
J) at which we want to obtain prediction according to the

model (2). The joint normality between d and y∗ implies that the conditional distribution

p(y∗|d,θ,φ, σ) is a multivariate normal distribution with the mean vector

My∗(θ,φ, σ) = Mf (T ∗y (θ)) +Mδ(T
∗
y ) + C∗K(θ,φ, σ)−1(d−M(θ,φ)), (8)

and the covariance matrix

Ky∗(θ,φ, σ) = Kf (T ∗y (θ), T ∗y (θ)) +Kδ(T
∗
y , T

∗
y ) + σ2IJ − C∗K(θ,φ, σ)−1CT∗ , (9)

where

C∗ =

(
Kf (T ∗y (θ), Ty(θ)) +Kδ(T

∗
y , Ty) Kf (T ∗y (θ), Tz(θ̃))

)
, (10)

M(θ,φ) and K(θ,φ, σ) is the mean vector and the covariance matrix of the data likeli-

hood p(d|θ,φ, σ), Kf (T
∗
y (θ), T ∗y (θ)) is the matrix with (i, j) element being kf ((t

∗
i ,θ), (t∗j ,θ)),

Kf (T
∗
y (θ), Ty(θ)) is the matrix with (i, j) element being kf ((t

∗
i ,θ), (tj,θ)), Kδ(T

∗
y , T

∗
y ) is the

matrix with (i, j) element kδ(t
∗
i , t
∗
j), and Kδ(T

∗
y , Ty) is the matrix with (i, j) element kδ(t

∗
i , tj).

We can similarly define the matrix Kf (T
∗
y (θ), Tz(θ̃)) with the kernel kf and the mean vectors

8



Mf (T
∗
y (θ)) and Mδ(T

∗
y ) as in the case of the likelihood (5). Analogical relationship holds for

the conditional distribution of the new realizations from the physical process p(ζ∗|d,θ,φ, σ),

where the mean vector Mζ∗(θ,φ, σ) is identical with (8), and the covariance matrix is

Kζ∗(θ,φ, σ) = Kf (T ∗y (θ), T ∗y (θ)) +Kδ(T
∗
y , T

∗
y )− C∗K(θ,φ, σ)−1CT∗ , (11)

The Algorithm 1 summarizes the procedure for predictions of physical quantities using

imperfect and computationally expensive computer models.

Algorithm 1: Empirical Bayes algorithm for predictions of physical quantities using
computer models

Input: Data d = (y, z), mean and covariance functions for GPs, and new inputs
(t∗1, . . . , t

∗
J).

1 Use the experimental observations y to compute the estimate of noise scale σ̂n

2 Use d to obtain the estimates of GPs’ hyperparameters (θ̂n+s, φ̂n+s)

3 Compute My∗(θ̂n+s, φ̂n+s, σ̂n) and Ky∗(θ̂n+s, φ̂n+s, σ̂n) or Mζ∗(θ̂n+s, φ̂n+s, σ̂n) and

Kζ∗(θ̂n+s, φ̂n+s, σ̂n) respectively to get the posterior predictive distribution

3.1 Parameter estimation

As we have all closed-form expressions for the conditional distributions in Algorithm 1, the

computation avoids Monte Carlo sampling, hence negligible time is required compared to

the sampling based approximations. This is assuming plugged-in parameter estimates.

To this extent, we propose the following estimator of the noise scale:

σ̂n =

√∑n−1
i=1 (yi+1 − yi)2

2(n− 1)
, (12)

where yi are the observations from the physical process under the model (1). The advantage

of considering σ̂n of this form is twofold. First, the estimator requires minimal computational

effort. Second, σ̂n is in fact a strongly consistent estimator (see Corollary 1 in Section 4)
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which turns out to be a crucial assumption for the theoretical validation of the empirical

Bayes framework conducted in the following section.

3.2 Estimation of hyperparameters

Marginal data likelihood We first consider estimates of (θ,φ) as minimizers of a loss

function that is reminiscent of the standard maximum likelihood approach, namely

LMLE(θ,φ) = − log p(d|θ,φ, σ̂n), (13)

with the negative log-likelihood being

− log p(d|θ,φ, σ̂n) =
1

2
(d−M(θ,φ))TK(θ,φ, σ̂n)(d−M(θ,φ))

+
1

2
log|K(θ,φ, σ̂n)|+ n+ s

2
log 2π.

We can interpret the minimizer of LMLE as a trade-off between the data-fit given by 1
2
(d−

M(θ,φ))TK(θ,φ, σ̂n)(d−M(θ,φ)) and the model complexity penalty given by 1
2
log|K(θ,φ, σ̂n)|

that depends only on model parameters and the variable inputs.

Predictive likelihood with K-fold cross-validation Another viable approach of esti-

mating the parameters (θ,φ) is to base these on a model’s predictive performance on unseen

data. Cross-validation is a popular and robust approach to estimate this predictive perfor-

mance that has been utilized across many statistical applications. See Sundararajan and

Keerthi (2001); Rasmussen and Williams (2006); Martino et al. (2017) for applications with

Gaussian processes. Here, we consider a K-fold cross-validation where the basic idea is to

randomly partition the training dataset into K subsets of roughly equal size. We then select

K − 1 subsets for training and consider the remaining set as a proxy for estimating the pre-

dictive performance. This is then repeated until we exhaust all the K subsets for the purpose

of validation with typical choices for K being 3, 5, 10, or n (leave-one-out cross-validation).

10



Formally, let yi represent the ith subset of the observations y and y−i = y r yi. The

negative predictive log-likelihood under the K-fold cross-validation is

LCV (K)(θ,φ) = −
K∑
i

log p(yi|y−i, z,θ,φ, σ̂n), (14)

The cross-validation should be more robust against the model miss-specification and over-

fitting (Wahba, 1990).

4 Theoretical analysis and posterior consistency

Below we represent the Bayesian model described in Section 2 hierarchically using a set of

prior distributions for a systematic exploitation of conjugacy. This representation of the

model is crucial for the theoretical results obtained in Section 4.1. It reframes the Bayesian

model as a version of a nonparametric regression problem with a GP prior for ζ(t) and an

additive noise. Namely, we define the model for data d = (d1, . . . , dn+s) = (y, z):

yi = ζ(ti) + σεi i = 1, . . . , n,

zj = fm(t̃j, θ̃j), j = 1, . . . , s,

εi
i.i.d.∼ N(0, σ2),

where zj’s are the realizations of computer model fm(t,θ) at pre-selected design points

(t̃j, θ̃j), and yi’s are the experimental observations from the underlying physical process.

Additionally, we consider the following GP priors:

ζ(t)|fm(t,θ), δ(t) ∼ fm(t,θ) + δ(t),

δ(t) ∼ GPδ(mδ(t), kδ(t, t
′)),

fm(t,θ) ∼ GPf (mf (t,θ), kf ((t,θ), (t′,θ′))).

11



Under this model, the conditional likelihoods for yi and zj are

p(yi|ζ(ti), σ) =
1

σ
√

2π
exp

(
− (yi − ζ(ti))

2

2σ2

)
, (15)

p(zj|fm(t̃j, θ̃j)) = 1zj=fm(t̃j ,θ̃j)
(zj), (16)

where p(zj|fm(t̃j, θ̃j)) is a likelihood with the point mass at zj = fm(t̃j, θ̃j). Consequently,

the equivalence of the hierarchical formulation here and the model described in Section 2

is given through the equality between the likelihood (5) and the following integral, which

shows that both model representations yield the same (marginal) data likelihood.

∫
ζ

∫
f̃m

p(ζ, f̃m,d|θ,φ, σ) df̃m dζ =∫
ζ

∫
f̃m

p(d|ζ, f̃m,θ,φ, σ)p(ζ, f̃m|θ,φ) df̃m dζ =∫
ζ

∫
f̃m

n∏
i

p(yi|ζi, σ)
s∏
j

p(zj|f̃m,j)p(ζ, f̃m|θ,φ) df̃m dζ =

∫
ζ

n∏
i

p(yi|ζi, σ)p(ζ, z|θ,φ) dζ,

where ζ = (ζ(t1), . . . , ζ(tn)) = (ζ1, . . . , ζn) and f̃m = (fm(t̃1, θ̃1), . . . , fm(t̃s, θ̃s)). The likeli-

hood p(ζ, z|θ,φ) is the multivariate normal distribution with the mean M(θ,φ) (see (6))

and the covariance

Kp(θ,φ) =

Kf (Ty(θ), Ty(θ)) +Kδ(Ty, Ty) Kf (Ty(θ), Tz(θ̃))

Kf (Tz(θ̃), Ty(θ)) Kf (Tz(θ̃), Tz(θ̃))

 .

We leave the details of the integral computation for Appendix A. Using this equivalent

representation, we can gain a further insight into the role of the set of model runs z. Let us

12



consider a function space F and a subset F̃ ⊂ F , then

p(ζ ∈ F̃|d,θ,φ, σ) ∝
∫
F̃

n∏
i

p(yi|ζi, σ)p(ζ|z,θ,φ) dζ. (17)

One can therefore interpret the model runs z as an additional information provided by the

computer model fm that enhances the GP prior distribution p(ζ|z,θ,φ) over the physical

process ζ, having the mean function

mζ(t) = mf (t,θ) +mδ(t)

+
s∑

i,j=1

κj,i

[
kf ((t,θ), (t̃j, θ̃j))

][
zi −mf (t̃i, θ̃i)

]
,

(18)

and the covariance function

kζ(t, t
′) = kf ((t,θ), (t′,θ)) + kδ(t, t

′)

−
s∑

i,j=1

κj,i

[
kf ((t,θ), (t̃j, θ̃j))

][
kf ((t̃i, θ̃i), (t

′,θ))
]
,

(19)

where κj,i is the (j, i) element of the inverse matrix Kf (Tz(θ̃), Tz(θ̃))−1.

4.1 Posterior consistency

The revealing consequence of the previous discussion is that the Kennedy and O’Hagan

(2001) framework is equivalent to the nonparametric regression model of an unknown func-

tion ζ(t) with the prior distribution p(ζ|z,θ,φ). This is not only a new perspective on

the popular framework, but also happens to be the key step that allows us to validate our

empirical Bayes approach theoretically and establish the posterior consistency of the physi-

cal process when the prior p(ζ|z,θ,φ) satisfies certain properties. To this end, rather than

considering parametric forms of covariance kernels, the following results assume appropriate

minimal smoothness of the GP prior over ζ. This additionally means that any kernels with
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a smoothness parameter (e.g. Matérn kernels) are considered to have the parameter fixed.

Since the empirical Bayes estimator of smoothness parameter is not part of our procedure,

the optimality of posterior concentration rate cannot be guaranteed. However, the focus

of our asymptotic analysis is not on contraction rates but on consistency. We discuss the

concrete examples of kernel functions that are sufficiently smooth at the end of this section.

In what follows, we suppose that the true underlying physical process ζ0 is a continuously

differentiable function on the compact and convex set Ω ⊂ Rp. Without loss of generality,

we take Ω = [0, 1]p. Finally, we shall assume the plug-in estimates of the hyperparameters

(θ̂n+s, φ̂n+s) take values in some compact subset Υ ⊂ Θ×Ξ. This is a mild general condition

that is satisfied by the hyperparameter estimators in Section 3, as long as the minimization

of loss functions is constrained within some compact set. Analogous conditions have been

considered recently by Teckentrup (2020) in a GP regression setting similar to this paper.

For any ν > 0, we aim to establish, under suitable conditions, the following:

p(ζ ∈WC
ν,n|y1, . . . , yn, z, θ̂n+s, φ̂n+s, σ̂n) −−−→

n
0 a.s. P0, (20)

where P0 denotes the joint conditional distribution of {yi}∞i=1 given the true ζ0 and the true

noise scale σ0, σ̂n is a strongly consistent estimator of σ0, and

Wν,n =

{
ζ :

∫
|ζ(t)− ζ0(t)| dQn(t) ≤ ν

}
, (21)

with Qn being the empirical measure on the design points given as Qn(t) = n−1
∑n

i=1 1ti(t).

In Theorem 1, we first present a general result on the consistency of nonparametric

regression problems and subsequently discuss the theorem’s conditions in the context of

the model described in Section 2. This is based on the extensions of Schwartz’s theorem

for independent but non-identically distributed random variables given by Choi (2007) and

Choi and Schervish (2007), where the authors assume σ is included in Wν,n, and the posterior

consistency is derived jointly for ζ and σ. On the other hand, the consistency of ζ conditioned
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on σ̂n, as stated in (20), requires a non-trivial modification of their original results. The proof

of Theorem 1 is provided in Appendix B.

Theorem 1. Let {yi}∞i=1 be independently and normally distributed with mean ζ(ti) and

standard deviation σ with respect to a common σ-finite measure, where ζ belongs to a space

of continuously differentiable functions on [0, 1]p denoted as F , and σ > 0. Let ζ0 ∈ F and

let P0 denote the joint conditional distribution of {yi}∞i=1 given true ζ0 and σ0. Let {Un}∞n=1

be a sequence of subsets of F . Let ζ have a prior Π(·|θ,φ) where (θ,φ) take values in a

compact set Υ. Then, under assumptions (A1)–(A3) (provided in Section 4.1.1 below),

sup
(θ,φ)∈Υ

p(ζ ∈ UC
n |y1, . . . , yn,θ,φ, σ̂n) −−−→

n
0 a.s. P0.

For the purpose of generality of Theorem 1, we do not explicitly condition on the set

of model runs z. It is clear from our previous discussions (see (17) in particular) that the

model runs play the role of fixed constants in the prior distribution over ζ. The dependence

on z in (20) arises by setting Π(ζ|θ,φ) := p(ζ|z,θ,φ), which is the GP prior distribution

with the mean function (18) and the covariance function (19).

4.1.1 Assumptions for Theorem 1

As a matter of convenience, for any 0 < ε < 1 and ζ0(ti) = ζ0,i define

Λi(ζ0, ζ) = log
p(yi|ζ0,i, σ0)

p(yi|ζi, σ0(1− ε))
,

Ki(ζ0, ζ) = Eζ0,σ0(Λi(ζ0, ζ)),

Vi(ζ0, ζ) = Varζ0,σ0(Λi(ζ0, ζ)).

The following paragraph lists all the necessary conditions of Theorem 1:

(A1) Suppose there exists a set B with Π(B|θ,φ) > 0 for any (θ,φ) ∈ Υ, and for any ∆ > 0

a constant 0 < ε̃1 < 1, so that for any ε < ε̃1:
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(i)
∑∞

i=1
Vi(ζ0,ζ)

i2
<∞, ∀ζ ∈ B,

(ii) Π(B ∩ {ζ : Ki(ζ0, ζ) < ∆ for all i}|θ,φ) > 0.

(A2) Suppose there exist tests {Φn}∞n=1, sets {Fn}∞n=1 and constants C2, C1, c1 > 0 and

0 < ε̃2 < 1 so that:

(i)
∑∞

n=1 Eζ0,σ0Φn <∞

(ii) sup(θ,φ)∈Υ Π(FCn |θ,φ) < C1e
−c1n

(iii) There exists a constant c2 > 0 such that for any 0 < ε < ε̃2 the inequality

c2 + log(1− ε)− log(1 + ε) > 0 holds and

sup
ζ∈UCn ∩Fn

Eζ,σ0(1+ε)(1− Φn) ≤ C2e
−c2n.

(A3) σ̂n is strongly consistent, i.e σ̂n −−−→
n

σ0 a.s. P0.

We now discuss (A1)–(A3) in the context of the model described in Section 2. These fall

into three general categories; the first one addresses prior positivity conditions ((A1) and

(ii) of (A2)), second category is related to the existence of test functions Φn ((i) and (ii) of

(A2)), and the last condition (A3) requires strong consistency of the noise scale estimator.

To verify conditions (A1) of Theorem 1 for prior distributions, it is sufficient to show

that the GP prior for ζ assigns positive probability to the following set for any ω > 0:

Bω = {ζ :‖ ζ − ζ0 ‖∞< ω} , (22)

where ‖ · ‖∞ denotes the supremum norm. For any 0 < ε < 1, a short calculation leads to

Ki(ζ0, ζ) = log(1− ε)− 1

2

(
1− 1

(1− ε)2

)
+

[ζ0(ti)− ζ(t)]2

2σ2
0(1− ε)2

≤

log(1− ε)− 1

2

(
1− 1

(1− ε)2

)
+
‖ ζ0 − ζ ‖2

∞
2σ2

0(1− ε)2
.
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Let a(ε) = log(1−ε)−1/2+1/[2(1−ε)2], it is easy to see that a(ε) is positive and continuous

at ε = 0. Therefore, for every ∆ > 0, there exist ω > 0 and 0 < ε̃1 < 1 so that Ki(ζ0, ζ) < ∆

for all i and any ε < ε̃1.

Additionally, for any ε < ε̃1 and any ω > 0

Vi(ζ0, ζ) =
1

2

[
1

(1− ε)2
− 1

]2

+

[
[ζ0(ti)− ζ(t)]

(1− ε)2

]2

<∞ uniformly in i,

and as a result, for all ζ ∈ Bω,
∑∞

i=1
Vi(ζ0,ζ)
i2

< ∞. The prior condition (ii) of (A2) for the

sieve Fn (23) is addressed in Lemma 1, see Appendix C for proof.

Lemma 1. Let the mean function mζ(·) of the GP prior for ζ defined on [0, 1]p be contin-

uously differentiable, and the covariance function kζ(·, ·) has mixed partial derivatives up to

order 4 that are continuous. Define,

ρ2
0(θ,φ) = sup

t∈[0,1]p
Var (ζ(t)|z,θ,φ) ,

ρ2
i (θ,φ) = sup

t∈[0,1]p
Var

(
∂

∂ti
ζ(t)

∣∣∣∣z,θ,φ) , i = 1, . . . , p.

Suppose that ρ2
i are continuous functions of (θ,φ) for all (θ,φ) ∈ Υ, i = 0, . . . , p, for any

compact set Υ. Then there exist constants C, c > 0 such that

sup
(θ,φ)∈Υ

p(FCn |z,θ,φ) < Ce−cn,

where Fn are the sieves defined in (23).

Our approach to establish the existence of test functions {Φn}∞n=1 that satisfy the condi-

tions (i) and (iii) in Theorem 1 is similar to that of Theorem 2 in Choi and Schervish (2007).

We consider a sieve Fn which grows to the space of continuously differentiable functions on
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[0, 1]p. Namely, let

Fn =

{
ζ : ‖ ζ ‖∞< Mn, ‖

∂

∂ti
ζ ‖∞< Mn, i = 1, · · · , p

}
, (23)

where Mn = O(nα) for some α ∈ (1
2
, 1). Each test is defined as a combination of tests over

finitely many elements in the covering of Fn. The existence of tests in the case of Wn,ν is

given in Lemma 2 with proof in Appendix D.

Lemma 2. Let Fn be the sieves defined in (23). For any ν > 0 there exist tests {Φn}∞n=1

and constants C and 0 < ε̃ < 1 so that:

(i)
∑∞

n=1 Eζ0,σ0Φn <∞

(ii) There exists a constant c > 0 such that for any 0 < ε < ε̃ the inequality c + log(1 −

ε)− log(1 + ε) > 0 holds and

sup
ζ∈WC

n,ν∩Fn
Eζ,σ0(1+ε)(1− Φn) ≤ Ce−cn.

As we have suggested in Section 3, the estimator σ̂n defined in (12) is in fact strongly

consistent estimator of the true scale parameter σ0.

Theorem 2. Suppose ζ0(t) represents the true physical process and σ2
0 be the true value of

the experimental error variance, where t ∈ Ω is a compact and convex subset of Rp and ζ0 is

continuously differentiable on Ω. Let P0 denote the joint conditional distribution of {yi}∞i=1

given true ζ0 and σ2
0. Also assume that the following holds about the design points ti:

sup
i∈{1,...,n},j∈{1,...,p}

|ti+1,j − ti,j| −−−→
n

0, (AD)

then

σ̂2
n −−−→

n
σ2

0 a.s. P0. (24)

18



The proof of Theorem 2 is given in Appendix E. The continuous mapping theorem directly

implies the following.

Corollary 1. Under the assumptions of Theorem 2,

σ̂n =
√
σ̂2
n −−−→

n
σ0 a.s. P0. (25)

Remark 1. The assumption (AD) is satisfied by a design that contains at least one point in

each hypercube H in Ω with its Lebesgue measure λ(H) ≥ 1
Kn

, for some constant 0 < K ≤ 1.

This is, for example, the case of equally spaced design.

Below we present Theorem 3 whose corollary is, under the additional assumption of

(θ̂n+s, φ̂n+s) taking values in some compact set Υ, the almost sure consistency result (20).

Theorem 3. Let P0 denote the joint conditional distribution of {yi}∞i=1 given true ζ0 and σ0.

Let mζ(·) and kζ(·, ·) be the mean and covariance functions of the GP prior for ζ satisfying the

conditions of Lemma 1. Assume that for any compact set Υ and any ω > 0, p(Bω|z,θ,φ) >

0, where (θ,φ) ∈ Υ. If σ̂n is a strongly consistent estimator of σ0, then for any ν > 0

sup
(θ,φ)∈Υ

p(ζ ∈WC
ν,n|y1, . . . , yn, z,θ,φ, σ̂n) −−−→

n
0 a.s. P0. (26)

Theorem 3 is a direct consequence of Lemmas 1 and 2, and Theorem 1.

Prior conditions: concrete examples The key sufficient condition for the convergence

of empirical Bayes posterior (20) is the prior positivity condition requiring p(Bω|z,θ,φ) > 0

for any ω and (θ,φ) ∈ Υ which was extensively studied by Ghosal and Roy (2006) and

Tokdar and Ghosh (2007). Specifically, Theorem 4 of Ghosal and Roy (2006) states that

this condition is satisfied for a GP with continuous sample paths and continuous mean

and covariance functions, as long as ζ0 and mζ belong to reproducing kernel Hilbert space

(RKHS) of the covariance function kζ . First, the continuity of GP’s sample paths is given by

the application of Theorem 5 in Ghosal and Roy (2006) which requires the same smoothness

19



conditions as Lemma 1 in this section. It should be clear from (18) and (19) that mζ

is continuous on [0, 1]p, and kζ has continuous mixed partial derivatives up to 4th order on

[0, 1]p, as long as the same holds about mf and mδ (commonly used mean functions including

polynomials are analytic functions) and respectively kf and kδ. For example, the product

of one-dimensional Matérn kernels with fixed smoothness parameter λ > 2 (tensor-product

Matérn kernel) and the squared exponential kernel are sufficiently smooth (Williams et al.,

2006). Second, Tokdar and Ghosh (2007) show that the RKHS of kζ spans the space of

continuously differentiable functions on [0, 1]p, if kζ is a product of p isotropic and integrable

univariate covariance functions with continuous mixed partial derivatives up to order 4. The

squared exponential kernel and the tensor-product Matérn kernel with smoothness λ > 2

satisfy these requirements, including the continuity of ρ2
i for i = 0, . . . , p.

This, of course, does not directly imply that such choices for kf and kδ result in the con-

ditional covariance kζ whose RKHS spans the space of continuously differentiable functions.

However, our numerical study show that with increasing number of computer model evalua-

tions s – obtained using a space filling design – the covariance function kδ quickly dominates

(see Appendix G for details). Such behavior is not unexpected since the increasing number

of runs s effectively reduces the uncertainty about emulated computer model. This indicates

that kζ and kδ behave asymptotically same, with respect to the s. Additionally, the simula-

tion study conducted in Section 5 strongly suggests that choosing the squared exponential

kernel leads to consistent predictions.

5 Numerical analysis and applications

The main objective of this section is to establish the efficiency of the empirical Bayes method

in Algorithm 1 and to support the consistency result presented in section 4. All this while

sacrificing minimally in terms of the fidelity of UQ as compared to the fully Bayesian treat-

ment. To this extent, we consider a simulation study where we compare our method (under
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both LMLE and LCV (K)) to a fully Bayesian treatment with the posterior samples obtained

using the standard Metropolis-Hastings algorithm (Gelman et al., 2013). We also conduct a

prior sensitivity analysis of the fully Bayesian treatment to further the practical advantages

of the empirical Bayes. Finally, we demonstrate the opportunities provided by our method

for science practitioners through predictions of nuclear binding energies using the Liquid

Drop Model.

5.1 Simulation study: Transverse harmonic wave

Let us consider a simple computer model representing a periodic wave disturbance that

moves through a medium and causes displacement of individual atoms or molecules in the

medium. This is called a transverse harmonic wave, where the displacement fm((t, x),θ) of

a particle at location x over time t is given by

fm((t, x),θ) = θ1 sin
(
kx− θ2t+ ψ

)
, (27)

where θ1 represents the amplitude of the wave, and θ2 is the frequency of the wave. The

model also depends on the wave number k, which is reciprocal to the wave length, and the

phase constant ψ. For the purpose of this example, we shall consider these to be known

values with k = 5 and ψ = 1, and define the model inputs (t, x) over the space [0, 1]2 (we

assume that the length and time units are all equal to one). The true physical process is

modeled according to

ζ0(t, x) = fm((t, x),θ) + δ(t, x) = θ1 sin
(
5x− θ2t+ 1

)
+ β, (28)

where β = 1 is a constant systematic error of the model and θ = (θ1, θ2) are arbitrarily set

to be (1.2, 1.8).
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5.1.1 Data generation and design

We generate the experimental observation according to the model (2) with the true value

of the observation error scale σ0 = 0.2, where the model inputs (t, x) are chosen using the

Latin hypercube design over the full space [0, 1]2. The space filling properties of the design

guarantee decreasing bias of the estimator σ̂n with an increasing sample size. Additionally,

we assume that the computer model for the periodic wave disturbance is computationally

expensive and generate the set of model runs z using, again, the Latin hypercube design,

now over [0, 1]2 × [0, 2]2. In each of the subsequent scenarios, the amount of experimental

observations is equal to the number of computer model runs, i.e. n = s. We define the GP

priors for fm and δ to have zero means and the covariance functions

kf ({t, x,θ}, {t′, x′,θ′}) = ηf · exp (−‖t− t
′‖2

2`2t
− ‖x− x

′‖2

2`2x
− ‖θ1 − θ′1‖2

2`2θ1
− ‖θ2 − θ′2‖2

2`2θ2
),

kδ({t, x}, {t′, x′}) = ηδ · exp (−‖t− t
′‖2

2ν2
t

− ‖x− x
′‖2

2ν2
x

).

The hyperparameters in this scenario are therefore φ = (ηf , `t, `x, `θ1 , `θ2 , ηδ, νt, νx). For the

fully Bayesian treatment, we choose inverse gamma priors with shape and scale parametriza-

tion for (σ, ηf , ηδ), gamma priors with shape and rate parametrization for the length scales,

and independent normal distributions for the calibration parameters (θ1, θ2). As we demon-

strate below, the performance of the MCMC-based fit can vary greatly with different prior

selections. To asses this effect, we consider the following prior variations: inverse gamma

distributions with the shape fixed at 3 and the scale taking values in {0.5, 1, 2, 4, 8}, gamma

distribution with the rate equal to 3 and the shape taking values in {1, 5}, and the normal

distribution with the mean µθ ∈ {0, 1, 1.5} and the standard deviation σθ ∈ {0.25, 0.5, 1, 2}.

These choices reflect both fairly informative priors (e.g. µθ = 1.5 and σθ = 0.25) and non-

informative priors, given the spans of both the input space [0, 1]2 and the parameter space

[0, 2]2.

22



5.1.2 Results

Figure 1 shows the root mean squared errors (RMSEs) of predictions of new realizations

from the true physical process (28) evaluated on a testing datasets of 225 realizations over

a uniform grid on [0, 1]2. The predictions are taken to be the posterior predicative means

under each method. Each box-plot in Figure 1 represents the distribution of RMSEs obtained

through the MCMC-based fits for given values of µθ and σθ. We consider the estimates of

hyperparameters using the LMLE loss and the predictive likelihood loss function with 10-

fold cross-validation under the empirical Bayes approach. The noise scale parameter was

estimated using the consistent estimator σ̂n defined in Section 3.
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Figure 1: The RMSE of the empirical Bayes approach and the fully Bayesian treatment.
The results are grouped according to the values of prior means µθ and standard deviations
σθ used in the Metropolis-Hastings algorithm. The box-plots represent the distribution of
RMSE values obtained with the MCMC-based fits across the prior combinations described
in Section 5.1.1. The GP hyperparameters for the empirical Bayes approach were estimated
using Algorithm 1.

In general, the proposed empirical Bayes approach performs comparably with the fully

Bayesian treatment and monotonously decreases with the increasing size of the dataset. In

particular, the RMSE under the LCV (10) loss is larger than the other methods for the smallest

size of training dataset considered, however, the RMSE under the LMLE loss is the smallest

for the larger training sets. The likely reason for the slightly better performance of the
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empirical Bayes is that the parameter estimates given by the minimization of LMLE and

LCV (10) are purely data driven, whereas the fully Bayesian approach needs to account for

prior uncertainties. This observation is consistent with the sensitivity of the predictions to

the prior selection clearly visible in Figure 1. A choice of strongly informative prior that is

far from the underlying truth, such as µθ = 0 and σθ = 0.25, can yield especially poor fit even

for large training sets. Thus, in the absence of proper and meaningful prior distributions,

an empirical Bayes approach may be preferable besides its other advantages as discussed in

this article. Overall, the empirical Bayes fit can be readily obtained in several minutes using

standard numerical solvers while sampling from posterior distributions can take hours.

It took approximately 2 hours to obtain 104 samples in the scenario with the largest

sample size on a standard PC with 4 cores. For completeness, we also show the estimates

of calibration parameters and the noise scale under each method in Figure 2 and Table 1.

Posterior means were taken as the estimates under the fully Bayesian solution. We can see

a reasonable match between the approximate empirical Bayes method and the Metropolis-

Hastings algorithm for many of the prior choices. The first notable difference is a series

of outlying estimates of the calibration parameters under the MCMC-based fit. These are

the consequence of the aforementioned strongly informative priors. The second difference

is in terms of the noise scale estimate σ̂n. This is expected since the estimate is unbiased

asymptotically.

n = 125, s = 125 n = 250, s = 250 n = 500, s = 500

LMLE LCV (10) LMLE LCV (10) LMLE LCV (10)

θ1 1.197 1.217 1.160 1.251 1.207 1.206

θ2 1.781 1.787 1.805 1.799 1.792 1.818

σ 0.328 0.259 0.228

Table 1: The estimates of calibration parameters and the noise scale under the empirical
Bayes approach. The values used to generate the simulation data were (θ1, θ2) = (1.2, 1.8)
and σ0 = 0.2.
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Figure 2: The distribution of posterior means of the calibration parameters and the noise
scale obtained with the Metropolis-Hastings algorithm. Unlike in Figure 1, the box-plots
were aggregated over all the prior choices. The values used to generate the simulation data
were (θ1, θ2) = (1.2, 1.8) and σ0 = 0.2.

Figure 3 and Figure 4 show the loss in terms of UQ is negligible under the empirical

Bayes approach as compared to the fully Bayesian treatment for all practical purposes. For

clarity, we display only the results of inverse gamma priors with shape 3 and scale 1, gamma

priors with shape 1 and rate 3, and normal priors with mean 0 and standard deviation

2. These are fairly non-informative priors. We can see that the empirical Bayes approach

slightly overestimates the uncertainty for smaller sample size, but this quickly diminishes as

the sample size increases. This is likely the consequence of the inflation of the noise scale

given by the bias of σ̂n which diminishes with the increasing sample size as expected. See

Appendix H for additional figures of the empirical Bayes fit at the time locations t = 0,

t = 0.43, t = 0.71, and t = 1.

5.2 Liquid Drop Model for nuclear binding energies

Nuclear physics is one of many fields that has recently experienced a surge in the applications

of Bayesian statistics due to its intuitive way to describe uncertainties probabilistically. GP

modeling and its variants have been prominently used in the context of computationally ex-
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Figure 3: Details of 95% credible bands of posterior predictive distributions under the em-
pirical Bayes approach and the fully Bayesian approach of Metropolis-Hastings algorithm.
These were plotted at t = 0.21.
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Figure 4: Comparison of the convergence to the true physical process ζ0(t, x) under the empir-
ical Bayes approach and the fully Bayesian implementation given by the Metropolis-Hastings
algorithm. The dashed line represents the true process ζ0, and the solid line corresponds
to the mean of posterior predictive distributions under respective method. The curves with
95% credible intervals (shaded area) are plotted at t = 0.21.
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pensive theoretical mass models for either emulation or modeling of systematic discrepancies

to produce precise and quantified predictions of nuclear observables (Higdon et al., 2015;

Neufcourt et al., 2018, 2019; Schunck et al., 2020).

To illustrate our framework for computer enabled predictions on a real data example,

we shall consider the 4-parameter Liquid Drop Model (LDM) (Myers and Swiatecki, 1966;

Kirson, 2008; Benzaid et al., 2020) of nuclear binding energy, which is the minimum energy

needed to break the nucleus of an atom into free protons and neutrons. It is equivalent

(energy-mass equivalence explained by E = mc2) to the mass defect that corresponds to

the difference between the mass number of a nucleus and its actual measured mass. This

difference is caused by the energy released in the event of atom’s creation. The LDM is a

simple yet reasonably accurate description of the atomic nucleus given by the semi-empirical

mass formula:

EB(N,Z) = θvolA− θsurfA
2/3 − θsym

(N − Z)2

A
− θC

Z(Z − 1)

A1/3
. (29)

The LDM is a function of the proton number Z and the neutron number N (A = Z+N is the

mass number) that depends on a set of calibration parameters θ = (θvol, θsurf , θsym, θC). These

have physical meaning that represent the volume, surface, symmetry and Coulomb energy

(see Krane (1987) for details). The semi-empirical mass formula is particularly suitable

example, because it provides a good fit for heavy nuclei and somewhat poor fit for light

nuclei. This clearly points to the existence of a systematic model discrepancy that is also

supported in the literature (Reinhard et al., 2006; Yuan, 2016; Kejzlar et al., 2020).

We now present an analysis of 595 experimental binding energies of even-even nuclei from

the AME2003 dataset (Audi et al., 2003) (publicly available at http://amdc.impcas.ac.

cn/web/masstab.html) randomly divided into a training set of 450 nuclei and a testing set

of 145 nuclei, see Figure 5.
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Figure 5: Binding energies of even-even nuclei in AME2003 dataset divided into the testing
and training datasets.

We consider the statistical model (2) and model the systematic discrepancy δ with zero

mean GP and the isotropic squared exponential covariance function. For the purpose of this

example, we also assume that the LDM is computationally expensive (or not directly acces-

sible) and regard it is an unknown function of (Z,N) and θ. Similarly to the discrepancy

δ, we assign a GP prior to EB(N,Z) with zero mean and the isotropic squared exponential

covariance function. To this extent, we additionally generated a set of 900 model evaluations

using the Latin hypercube design over the space spanning all reasonable values of the pa-

rameters θ as given by the nuclear physics literature (Weizsäcker, 1935; Bethe and Bacher,

1936; Myers and Swiatecki, 1966; Kirson, 2008; Benzaid et al., 2020). Corresponding nuclear

configurations, the inputs (Z,N), were randomly assigned to the generated values of θ from

a set of two times duplicated training nuclei. We also want to point out that this is not the

first application of GP modeling in the context of the LDM. See Bertsch and Bingham (2017)

for instance. We conducted a similar study previously using a fully Bayesian approach with

posterior distributions approximated through variational inference Kejzlar and Maiti (2020).

5.2.1 Results

The predictions of nuclear binding energies were computed as the means of the posterior

predictive distribution (8) conditioned on the estimates of the calibration parameters θ,
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GP’s hyperparameters φ, and the noise scale σ̂n. The estimates for (θ,φ) were obtained

numerically as the minimizers of LMLE and LCV (10). The priors for the GP hyperparameters

in the case of the fully Bayesian treatment are discussed in Appendix F.

Parameter estimates Testing error

θvol θsurf θsym θC RMSE (MeV)

LMLE 15.07 15.58 22.00 0.68 1.16

LCV (10) 15.08 16.08 21.19 0.67 1.26

M-H 15.32 16.09 22.09 0.70 1.16

Table 2: The RMSEs of the predictions evaluated on 145 even-even nuclei from the AME2003
dataset. The parameter estimates are also listed. The posterior means are shown in the case
of the Metropolis-Hastings algorithm.

Table 2 gives the RMSE values calculated on the testing set of 145 even-even nuclei for

the empirical Bayes approach and also the Metropolis-Hastings algorithm. The calibration

parameter estimates are also provided with values that do not significantly differ between

the methods considered. The resulting RMSEs are 1.1−1.3 MeV which is a consistent result

with our previous study in Kejzlar and Maiti (2020) that was conducted on a larger dataset,

however, under a fully Bayesian stetting. Overall, this is quite a remarkable result given the

considerable effort that needs to be put forth to implement the fully Bayesian solution. We

were able to obtain the empirical Bayes predictions under 10 minutes using the standard

optimization modules in Python, while the Metropolis-Hastings algorithm needed close to 8

hours to generate 1.5× 104 samples.

6 Conclusion

We presented and studied an empirical Bayes approach to prediction of physical quantities

using computer model, where we assumed that the computer model under consideration

needs to be calibrated and is computationally too expensive to be used directly for inference.
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To this extent, we proposed a GP emulator and utilized the structural convenience of GPs to

formulate closed-form and easy-to-compute predictions of new observations from a physical

process. These predictions are obtained through conditional predictive distributions with

plugged-in estimates of calibration parameters, GP hyperparameters, and experimental noise

scale. A strongly consistent estimator for the noise scale and two sensible estimators for the

remaining parameters (defined as minimizers of two alternative loss functions) were provided.

Theoretical study and justification of the proposed methodology were also given: we

revisited hierarchical models and established an equivalent representation of the framework

of Kennedy and O’Hagan (2001) as a nonparametric regression model with GP prior for

an unknown function corresponding to the underlying physical process. Consequently, we

derived a non-trivial extension of Schwartz’s theorem for nonparametric regression problems.

The application of this results shows that our method consistently estimates the underly-

ing true physical process, assuming smoothness of the mean and covariance functions of

GP priors and the existence of a strongly consistent estimator of the noise scale. To the

best of our knowledge, this is the first such posterior consistency result under the original

model of Kennedy and O’Hagan (2001). Nonetheless, our theoretical study is by no means

exhaustive. For example, the asymptotic analysis in this work does not focus on posterior

concentration rates. The derivation of optimal minimax rates on the contraction of the pos-

terior requires further extensively study on the RKHS properties of Gaussian process priors

as in van der Vaart and van Zanten (2008) and we thereby leave it as future work. We also

assumed that any covariance kernels with smoothness parameter have the parameter fixed.

We refer the reader to Belitser and Enikeeva (2008); Florens and Simoni (2012); Szabó et al.

(2013); Sniekers and van der Vaart (2015); Knapik et al. (2016); Rousseau and Szabo (2017);

Serra and Krivobokova (2017), for discussion about posterior consistency in non-parametric

regression related problems with smoothness estimator.

A simulation study that empirically supports the consistency result was given in Section

5. The speed and efficiency of the empirical Bayes approach was demonstrated in comparison
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to the fully Bayesian approach of Metropolis-Hastings algorithm. Both methods yield compa-

rable results in terms of UQ and quality of the predictions, however, the Metropolis-Hastings

algorithm is significantly slower and its implementation requires considerable effort. Addi-

tionally, our sensitivity study strongly suggests that the empirical Bayes approach may be

preferable in the absence of proper and meaningful prior distributions. Finally, to show the

opportunities given by our method for practitioners, we analyzed a dataset of experimental

binding energies using the Liquid Drop Model.

The general framework presented in this paper can be wived as a fast and computationally

efficient approximation to the sampling based fully Bayesian approach for calibration of

computer models that neglects some uncertainty of unknown parameters. Our empirical

studies show that this loss becomes quickly negligible with the increasing size of datasets.
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Appendix A Equivalency of hierarchical model

To establish the equivalency between the Bayesian model given by the data likelihood

p(d|θ,φ, σ) and the hierarchical model (see Section 4), we need to show that the follow-

ing equality holds

p(d|θ,φ, σ) =

∫
ζ

n∏
i

p(yi|ζi, σ)p(ζ, z|θ,φ) dζ, (30)

where ζ = (ζ(t1), . . . , ζ(tn)) = (ζ1, . . . , ζn) and the density p(ζ, z|θ,φ) is the multivariate

normal distribution with mean the mean M(θ,φ) (see (6)) and the covariance

Kp(θ,φ) =

Kf (Ty(θ), Ty(θ)) +Kδ(Ty, Ty) Kf (Ty(θ), Tz(θ̃))

Kf (Tz(θ̃), Ty(θ)) Kf (Tz(θ̃), Tz(θ̃))

 =

C11 C12

C21 C22

 .

For the ease of notation, let us now assume M(θ,φ) = (MT
y ,M

T
z )T . Then

∫
ζ

n∏
i

p(yi|ζi, σ)p(ζ, z|θ,φ) dζ

=

∫
ζ

1

(2π)n/2|σ2In|1/2
exp

(
− 1

2
(y − ζ)T (σ2In)−1(y − ζ)

)
× 1

(2π)(n+s)/2|Kp|1/2

× exp

(
− 1

2

(
ζ −My

z −Mz

)T
K−1
p

(
ζ −My

z −Mz

))
dζ

=
1

(2π)(n+s)/2|K|1/2
exp

(
− 1

2

(
y −My

z −Mz

)T
K−1

(
y −My

z −Mz

))
×
∫
ζ

|K|1/2

(2π)n/2|σ2In|1/2|Kp|1/2

× exp

(
− 1

2
(y − ζ)T (σ2In)−1(y − ζ)

)
× exp

(
− 1

2

(
ζ −My

z −Mz

)T
K−1
p

(
ζ −My

z −Mz

))
× exp

(
1

2

(
y −My

z −Mz

)T
K−1

(
y −My

z −Mz

))
dζ

=
1

(2π)(n+s)/2|K|1/2
exp

(
− 1

2

(
y −My

z −Mz

)T
K−1

(
y −My

z −Mz

))
.

The integral is equal to 1 since it is an integration of multivariate normal probability density

function over ζ with covariance ((σ2In)−1 + (C11 − C12C
−1
22 C21)−1)−1. Namely
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|K|1/2

|σ2In|1/2|Kp|1/2
=
|C22|1/2|C11 + σ2In − C12C

−1
22 C21|1/2

|σ2In|1/2|C22|1/2|C11 − C12C
−1
22 C21|1/2

=
|C11 + σ2In − C12C

−1
22 C21|1/2

|σ2In|1/2|C11 − C12C
−1
22 C21|1/2

=
|A+B|1/2

|A|1/2|B|1/2
=

1

|A|1/2|B|1/2|A+B|−1/2

=
1

(|A−1||B−1||A+B|)−1/2
=

1

|A−1B−1A+ A−1B−1B|−1/2

=
1

|A−1B−1A+ A−1|−1/2
=

1

|A−1(B−1 + A−1)A|−1/2

=
1

(|A−1||(B−1 + A−1)||A|)−1/2
=

1

|(B−1 + A−1)−1|1/2

where we used the Schur complement identity for determinants in the first equality and

A = C11 − C12C
−1
22 C21,

B = σ2In.

Lastly, considering the notation

K−1
p =

C−11 C−12

C−21 C−22


we have

exp

(
− 1

2
(y − ζ)T (σ2In)−1(y − ζ)

)
exp

(
− 1

2

(
ζ −My

z −Mz

)T
K−1
p

(
ζ −My

z −Mz

))
× exp

(
1

2

(
y −My

z −Mz

)T
K−1

(
y −My

z −Mz

))
∝ exp

(
− 1

2
ζT ((σ2In)−1 + C−11)ζ + ζTb

)
,

where C−11 = C11 − C12C
−1
22 C21 and b is a constant column vector. This shows that integral

is indeed equal to 1 as stated, and the equality (30) holds.
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Appendix B Proof of Theorem 1

Note that for any ε > 0, the posterior probability of interest p(ζ ∈ UC
n |y1, . . . , yn,θ,φ, σ̂n)

can be bound from the above as

p(ζ ∈ UC
n |y1, . . . , yn,θ,φ, σ̂n) ≤ p(ζ ∈ UC

n |y1, . . . , yn,θ,φ, σ̂n)1{
∣∣∣ σ̂nσ0 −1

∣∣∣≤ε} + 1{
∣∣∣ σ̂nσ0 −1

∣∣∣>ε},

where

p(ζ ∈ UCn |y1, . . . , yn,θ,φ, σ̂n)1{
∣∣∣ σ̂nσ0 −1

∣∣∣≤ε}
≤ Φn +

(1− Φn)
∫
Ucn∩Fn

∏n
i=1

p(yi|ζi,σ̂n)
p(yi|ζ0,i,σ0)1{

∣∣∣ σ̂nσ0 −1
∣∣∣≤ε} dΠ(ζ|θ,φ)∫

F
∏n
i=1

p(yi|ζi,σ̂n)
p(yi|ζ0,i,σ0) dΠ(ζ|θ,φ)

+

∫
Ucn∩FCn

∏n
i=1

p(yi|ζi,σ̂n)
p(yi|ζ0,i,σ0)1{

∣∣∣ σ̂nσ0 −1
∣∣∣≤ε} dΠ(ζ|θ,φ)∫

F
∏n
i=1

p(yi|ζi,σ̂n)
p(yi|ζ0,i,σ0) dΠ(ζ|θ,φ)

= Φn +
I1n(y1, . . . , yn,θ,φ, σ̂n, ε)

I3n(y1, . . . , yn,θ,φ, σ̂n)
+

I2n(y1, . . . , yn,θ,φ, σ̂n, ε)

I3n(y1, . . . , yn,θ,φ, σ̂n)
.

Since the assumption (A3) implies that 1{
∣∣∣ σ̂nσ0 −1

∣∣∣>ε} −→n 0 a.s. P0, it is enough to show that

there exists ε > 0 so that

sup
(θ,φ)∈Υ

Φn −→
n

0 a.s. P0, (31)

sup
(θ,φ)∈Υ

eβ1nI1n(y1, . . . , yn,θ,φ, σ̂n, ε) −→
n

0 a.s. P0, (32)

sup
(θ,φ)∈Υ

eβ2nI2n(y1, . . . , yn,θ,φ, σ̂n, ε) −→
n

0 a.s. P0, (33)

inf
(θ,φ)∈Υ

eβ3nI3n(y1, . . . , yn,θ,φ, σ̂n) −→
n
∞ a.s. P0, (34)

for some β1, β2, β3 > 0 where β3 ≤ min{β1, β2}.

The rest of the proof follows the general steps of the proof of Theorem 1 in Choi and

Schervish (2007) and Theorem 9 in Choi (2007) with some non-trivial treatment of the
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constant ε. Similarly to Choi (2007), we assume that the covariance function is smooth

enough so that the supremum of the variance of the Gaussian process is continuous with

respect to (θ,φ) on the compact set Υ. We shall provide step by step details below.

Step 1) By Markov inequality, for any ρ > 0

∞∑
n=1

P0(Φn > ρ) ≤ 1

ρ

∞∑
n=1

Eζ0,σ0Φn,

which due to the condition (i) of (A2) and the first Borel-Cantelli Lemma yields

Φn −→
n

0 a.s. P0.

Since this does not depend on (θ,φ), it implies (31).

Step 2) By Fubini’s theorem and for any 0 < ε < ε̃2

Eζ0,σ0(I1n(y1, . . . , yn,θ,φ, σ̂n, ε))

= Eζ0,σ0
[
(1− Φn)

∫
Ucn∩Fn

n∏
i=1

p(yi|ζi, σ̂n)

p(yi|ζ0,i, σ0)
1{
∣∣∣ σ̂nσ0 −1

∣∣∣≤ε} dΠ(ζ|θ,φ)

]

=

∫
Ucn∩Fn

∫
(1− Φn)

n∏
i=1

p(yi|ζi, σ̂n)

p(yi|ζ0,i, σ0)
1{
∣∣∣ σ̂nσ0 −1

∣∣∣≤ε} dP0 dΠ(ζ|θ,φ)

≤
(
σ0(1− ε)
σ0(1 + ε)

)−n ∫
UnC∩Fn

Eζ,σ0(1+ε)[(1− Φn)] dΠ(ζ|θ,φ)

≤
(

1− ε
1 + ε

)−n
sup

ζ∈UCn ∩Fn
Eζ,σ0(1+ε)[(1− Φn)]

≤
(

1− ε
1 + ε

)−n
C2e

−c2n = C2e
−c̃εn,
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where c̃ε = c2 + log(1 − ε) − log(1 + ε) together with condition (iii) of (A2) implies c̃ε > 0.

Thus

P0

{
I1n(y1, . . . , yn,θ,φ, σ̂n, ε) ≥ e−c̃ε

n
2

}
≤ C2e

c̃ε
n
2 e−c̃εn

= C2e
−c̃ε n2 .

Therefore, for any ε > 0 so that ε < ε̃2 there exists a constant c̃ε for which the first Borel-

Cantelli Lemma implies

ec̃ε
n
4 I1n(y1, . . . , yn,θ,φ, σ̂n, ε) −→

n
0 a.s. P0.

Since this does not depend on (θ,φ), it implies (32).

Step 3) If we proceed as in the step 2), the Fubini’s theorem implies

Eζ0,σ0(I2n(y1, . . . , yn,θ,φ, σ̂n, ε))

= Eζ0,σ0
[ ∫

Ucn∩Fn

n∏
i=1

p(yi|ζi, σ̂n)

p(yi|ζ0,i, σ0)
1{
∣∣∣ σ̂nσ0 −1

∣∣∣≤ε} dΠ(ζ|θ,φ)

]
≤
(
σ0(1− ε)
σ0(1 + ε)

)−n ∫
UnC∩FCn

Eζ,σ0(1+ε)[1] dΠ(ζ|θ,φ)

≤
(

1− ε
1 + ε

)−n
Π(FCn |θ,φ).

The condition (ii) of (A2) and the first Borel-Cantelli Lemma implies that for any ε < 1−e−c1
1+e−c1

:

sup
(θ,φ)∈Υ

ek̃ε
n
4 I2n(y1, . . . , yn,θ,φ, σ̂n, ε) −→

n
0 a.s. P0,

where k̃ε = c1 + log(1− ε)− log(1 + ε).
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Step 4) To prove (34), given any 0 < ρ < 1, we first observe the following:

I3n(y1, . . . , yn,θ,φ, σ̂n)

≥ I3n(y1, . . . , yn,θ,φ, σ̂n)1{
∣∣∣ σ̂nσ0 −1

∣∣∣≤ρ}
≥
(

1− ρ
1 + ρ

)n ∫
F

n∏
i=1

p(yi|ζi, σ0(1− ρ))

p(yi|ζ0,i, σ0)
dΠ(ζ|θ,φ).

Let us now define log+(x) = max{0, log(x)} and log−(x) = −min{0, log(x)} as well as

Wi = log+

p(yi|ζ0,i, σ0)

p(yi|ζi, σ0(1− ρ))
,

K+
i (ζ0, ζ) =

∫
p(yi|ζ0,i, σ0) log+

p(yi|ζ0,i, σ0)

p(yi|ζi, σ0(1− ρ))
dyi,

K−i (ζ0, ζ) =

∫
p(yi|ζ0,i, σ0) log−

p(yi|ζ0,i, σ0)

p(yi|ζi, σ0(1− ρ))
dyi.

Then we get

Varζ0,σ0(Wi) = Eζ0,σ0(W 2
i )− {K+

i (ζ0, ζ)}2

≤ Eζ0,σ0(W 2
i )− {Ki(ζ0, ζ)}2

≤ Eζ0,σ0(W 2
i ) +

∫
p(yi|ζ0,i, σ0)

(
log−

p(yi|ζ0,i, σ0)

p(yi|ζi, σ0(1− ρ))

)2

dyi − {Ki(ζ0, ζ)}2

=

∫
p(yi|ζ0,i, σ0)

(
log

p(yi|ζ0,i, σ0)

p(yi|ζi, σ0(1− ρ))

)2

dyi − {Ki(ζ0, ζ)}2

= Vi(ζ0, ζ).

Hence, by condition (i) of (A1) for any ρ < ε̃1 and ζ ∈ B

∞∑
i=1

Varζ0,σ0(Wi)

i2
≤

∞∑
i=1

Vi(ζ0, ζ)

i2
<∞,
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and by the Kolmogorov’s strong law of large numbers for independent non-identically dis-

tributed random variables (e.g. Shiryaev (1996), Chapter 3),

1

n

n∑
i=1

(Wi −K+
i (ζ0, ζ)) −→

n
0 a.s. P0.

As a result, for every ζ ∈ B, with P0 probability 1

lim inf
n→∞

(
1

n

n∑
i=1

log
p(yi|ζi, σ0(1− ρ))

p(yi|ζ0,i, σ0)

)

= − lim inf
n→∞

(
1

n

n∑
i=1

− log
p(yi|ζi, σ0(1− ρ))

p(yi|ζ0,i, σ0)

)

= − lim inf
n→∞

(
1

n

n∑
i=1

log
p(yi|ζ0,i, σ0)

p(yi|ζi, σ0(1− ρ))

)

≥ − lim sup
n→∞

(
1

n

n∑
i=1

log+

p(yi|ζ0,i, σ0)

p(yi|ζi, σ0(1− ρ))

)

= − lim sup
n→∞

(
1

n

n∑
i=1

K+
i (ζ0, ζ)

)

≥ − lim sup
n→∞

(
1

n

n∑
i=1

Ki(S0, S) +
1

n

n∑
i=1

√
Ki(ζ0, ζ)

2

)

≥ − lim sup
n→∞

 1

n

n∑
i=1

Ki(ζ0, ζ) +

√√√√ 1

n

n∑
i=1

Ki(ζ0, ζ)

2

 .

The fourth line follows from the almost sure convergence proved in the previous paragraph,

and the second to last line follows from Amewou-Atisso et al. (2003). We now make use of

the condition (ii) of (A1). Let us consider β > 0 and select ∆ so that ∆ +
√

∆
2
≤ β

8
and

also C = B ∩ {ζ : Ki(ζ0, ζ) < ∆ for all i}. By (A1) there exists ε̃1 so that for all 0 < ρ < ε̃1
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implies Π(C|θ,φ) > 0. Therefore, for each ζ ∈ C

lim inf
n→∞

(
1

n

n∑
i=1

log
p(yi|ζi, σ0(1− ρ))

p(yi|ζ0,i, σ0)

)

≥ − lim sup
n→∞

 1

n

n∑
i=1

Ki(ζ0, ζ) +

√√√√ 1

n

n∑
i=1

Ki(ζ0, ζ)

2


≥ −(∆ +

√
∆

2
),

since 1
n

∑n
i=1Ki(ζ0, ζ) < ∆ for all ζ ∈ C. Finally, for any ρ < min{ε̃1, 1−e

−β
8

1+e
−β
8

}

lim inf
n→∞

e
2nβ
8 I3n(y1, . . . , yn,θ,φ, σ̂n)

≥ lim inf
n→∞

e
2nβ
8

(
1− ρ
1 + ρ

)n ∫
F

n∏
i=1

p(yi|ζi, σ0(1− ρ))

p(yi|ζ0,i, σ0)
dΠ(ζ|θ,φ)

≥ lim inf
n→∞

e
2nβ
8

(
1− ρ
1 + ρ

)n ∫
C

n∏
i=1

p(yi|ζi, σ0(1− ρ))

p(yi|ζ0,i, σ0)
dΠ(ζ|θ,φ)

≥
∫
C

lim inf
n→∞

e
2nβ
8

(
1− ρ
1 + ρ

)n n∏
i=1

p(yi|ζi, σ0(1− ρ))

p(yi|ζ0,i, σ0)
dΠ(ζ|θ,φ)

=∞.

Note that the actual bound on I3n does not depend on (θ,φ). Taking ε < min{ε̃2, 1−e−c1
1+e−c1

}

concludes the proof.
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Appendix C Proof of Lemma 1

Theorem 5 of Ghosal and Roy (2006) implies that there exist positive constants C, d1, . . . , dp

so that for i = 1, . . . , p

P

(
sup
t∈[0,1]p

|ζ(t)| > Mn

∣∣∣∣z,θ,φ,
)
≤ Ce

−d0
M2
n

ρ20(θ,φ) ,

P

(
sup
t∈[0,1]p

∣∣∣ ∂
∂ti

ζ(t)
∣∣∣ > Mn|z,θ,φ,

)
≤ Ce

−di
M2
n

ρ2
i
(θ,φ) .

The continuity of ρ2
i (θ,φ), for i = 0, · · · , p, on a compact set Υ implies that they are

uniformly bounded. Therefore, there exist universal constants (c0,1, c0,2), · · · , (cp,1, cp,2) such

that for i = 0, · · · , p,

0 < ci,1 ≤ sup
(θ,φ)∈Υ

|ρ2
i (θ,φ)| ≤ ci,2.

Hence, for i = 0, · · · , p,

sup
(θ,φ)∈Υ

P

(
sup
t∈[0,1]p

|ζ(t)| > Mn

∣∣∣∣z,θ,φ,
)
≤ Ce

−d0
M2
n

c0,1 ,

sup
(θ,φ)∈Υ

P

(
sup
t∈[0,1]p

∣∣∣ ∂
∂ti

ζ(t)
∣∣∣ > Mn|z,θ,φ,

)
≤ Ce

−di
M2
n

ci,1 .

Appendix D Proof of Lemma 2

We shall first define some notation. Let 0 < r < ν
2

and t = r
4
. Let Nt = N(t,Fn, ‖ · ‖∞)

be the covering number of Fn. In Theorem 2.7.1, van der Vaart and Wellner (1996) show

that there exist a constant K so that logNt ≤ KMn

tp
and therefore Nt = O(Mn), where

Mn = O(nα) for α ∈ (1
2
, 1) according to the definition of the sieves. Let us consider τ ∈ (α

2
, 1

2
)

and define cn = nτ so that log(Nt) = o(c2
n). Moreover, let ζ1, . . . , ζNt ∈ Fn be finitely

many elements of the sieve so that for every ζ ∈ Fn there is i ∈ {1, . . . , Nt} satisfying

‖ ζ − ζ i ‖∞< t. This implies that if ζ ∈ Fn such that
∫
|ζ(t) − ζ0(t)| dQn(t) > ν, then
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∫
|ζ i(t)− ζ0(t)| dQn(t) > ν

2
.

The next step in the proof is to construct a test for each ζ i with the resulting functions

Φn defined as a combination of the individual tests and showing that the probabilities of

type I and type II errors satisfies the properties of the lemma. Let us recall that ζj = ζ(tj)

and ζ0,j = ζ0(tj). For an arbitrary ζ ∈ Fn such that ‖ ζ− ζ i ‖∞< t, let us define ζ1,j = ζ i(tj)

and bj = 1 if ζ1,j > ζ0,j and −1 otherwise. For any ν > 0, let Ψn[ζ, ν] be the indicator of set

A defined as follows

A =

{
n∑
j=1

bj

(
yj − ζ0,j

σ0

)
> 2cn

√
n

}
.

The test functions Φn are then

Φn = max
1≤j≤Nt

Ψn[ζj,
ν

2
].

Type I error) The Mill’s ratio implies

Eζ0,σ0(Ψn) = P0

[
n∑
j=1

bj

(
yj − ζ0,j

σ0

)
> 2cn

√
n

]

= 1− Φ(2cn)

≤ 1

2cn
√

2π
e−2c2n

≤ e−2c2n .

The function Φ(·) is the CDF of the standard normal distribution. Consequently, we have

Eζ0,σ0(Φn) ≤
Nt∑
j=1

Eζ0,σ0(Ψn[ζj,
ν

2
])

≤ Nte
−2c2n = elog(Nt)−2c2n

≤ e−c
2
n ,

47



and
∞∑
n=1

Eζ0,σ0Φn <∞.

Type II error) It is sufficient to find i for which the probability of type II error of Ψn[ζ i, ν
2
],

given an arbitrary ζ in WC
ν,n ∩ Fn, is sufficiently small. This is because the probability of

type II error for the composite test Φn is no larger than the smallest of Ψn[ζ i, ν
2
]. Note that

here we assume
∫
|ζ(t)− ζ0(t)| dQn(t) > ν, and then

∫
|ζ i(t)− ζ0(t)| dQn(t) > ν

2
. For every

r < ν
2
, Choi (2005) show that

n∑
j=1

|ζ1,j − ζ0,j| > rn.

Let n be large enough so that 4σ0cn < r
√
n, then for any 0 < ε < 1

Eζ,σ0(1+ε)(1−Ψn[ζi,
ν

2
])

= Pζ,σ0(1+ε)

[
n∑
j=1

bj

(
yj − ζ0,j

σ0

)
≤ 2cn

√
n

]

= Pζ,σ0(1+ε)

[
1√
n

n∑
j=1

bj

(
yj − ζj
σ0

)
+

1√
n

n∑
j=1

bj

(
ζj − ζ1,j

σ0

)
+

1√
n

n∑
j=1

∣∣∣∣ζ1,j − ζ0,j

σ0

∣∣∣∣ ≤ 2cn

]

≤ Pζ,σ0(1+ε)

[
1√
n

n∑
j=1

bj

(
yj − ζj
σ0

)
≤ r
√
n

4σ0
− r
√
n

σ0
+ 2cn

]

≤ Pζ,σ0(1+ε)

[
1√
n

n∑
j=1

bj

(
yj − ζj
σ0(1 + ε)

)
≤ − r

√
n

4σ0(1 + ε)

]

= Φ

(
− r

√
n

4σ0(1 + ε)

)
≤ 4σ0(1 + ε)

r
√

2πn
e
− nr2

32σ20(1+ε)
2
.

To establish the part (ii) of the lemma, we need to show that there exists 0 < ε̃ < 1 so

that for any ε < ε̃

r2

32σ2
0(1 + ε)2

+ log

(
1− ε
1 + ε

)
> 0. (35)
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Take κ = r2

32σ2
0

and define b(ε) to be the left hand side of (35),

b(ε) = κ

(
1

(1 + ε)2
+

1

κ
log

(
1− ε
1 + ε

))
.

The function b(ε) is clearly continuous at ε = 0. Hence, for each κ > 0, there exists ε̃ such

that for all 0 < ε < ε̃, b(ε) > 0.

Appendix E Proof of Theorem 2

First, we show that σ̂2
n is asymptotically unbiased. Note that

E[(yi+1 − yi)2] = [ζ0(ti+1)− ζ0(ti)]
2 + σ2

0E[(εi+1 − εi)2]

= [ζ0(ti+1)− ζ0(ti)]
2 + 2σ2

0,

because εi
i.i.d.∼ N (0, 1). Consequently

E(σ̂2
n) =

∑n−1
i=1 [ζ0(ti+1)− ζ0(ti)]

2

2(n− 1)
+ σ2

0. (36)

Since ζ0 is continuously differentiable on the compact and convex set Ω, it is also (globally)

Lipschitz on Ω (e.g. Schaeffer and Cain (2016), Corollary 3.2.4), and there exist a real

constant K so that

|ζ0(ti+1)− ζ0(ti)| ≤ K

p∑
j=1

|ti+1,j − ti,j|.

Therefore, due to the design assumption (AD)

0 ≤
∑n−1

i=1 [ζ0(ti+1)− ζ0(ti)]
2

2(n− 1)

≤ K2p2

2

[
sup

i∈{1,...,n},j∈{1,...,p}
|ti+1,j − ti,j|

]2

−−−→
n

0,

(37)
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and the combination of (36) with (37) implies

E(σ̂2
n) −−−→

n
σ2

0. (38)

To show the almost sure convergence of σ̂2
n, let us now denote xi = (yi+1 − yi)

2 and

rewrite the estimator σ̂2
n as a sum of two estimators, each consisting of a sum of independent

variables:

σ̂2
n =

1
2

∑n−1
2

i=1 x2i

2
(
n−1

2

) +
1
2

∑n−1
2

j=1 x2j−1

2
(
n−1

2

) = σ̂2
n,e + σ̂2

n,o.

Without loss of generality, we assumed that n is an odd integer. Lastly note that Var(xi) ≤

C <∞ uniformly in i. This is because the differences ζ0(ti+1)−ζ0(ti) are uniformly bounded

on the compact set Ω due to the continuity of ζ0. Additionally, yi+1 − yi are normal and

have bounded moments. We can now apply the Kolmogorov’s strong law of large numbers

for independent non-identically distributed random variables (e.g. Shiryaev (1996), Chapter

3),

σ̂2
n,e −−−→

n

1

2
σ2

0 a.s. P0

σ̂2
n,0 −−−→

n

1

2
σ2

0 a.s. P0

and as a result

σ̂2
n = σ̂2

n,e + σ̂2
n,o −−−→

n
σ2

0 a.s. P0.

Appendix F The LDM calibration

The analysis of the LDM follows our previous study in Kejzlar and Maiti (2020). Here we

provide a concise discussion regarding the choices of prior distributions for and the GP’s

specification.
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GP specifications. For the computer model EB(Z,N), we consider the GP prior with the

mean zero and the covariance function

ηE · exp(−(Z − Z ′)2

2ν2
Z

− (N −N ′)2

2ν2
N

−
(θvol − θ′vol)

2

2ν2
1

−
(θsurf − θ′surf)

2

2ν2
2

−
(θsym − θ′sym)2

2ν2
3

−
(θC − θ′C)2

2ν2
4

).

We also assume the GP prior for the systematic discrepancy δ(Z,N) with mean zero and

covariance function

ηδ · exp(−(Z − Z ′)2

2l2Z
− (N −N ′)2

2l2N
).

Prior distributions The prior distributions for the calibration parameters θ are chosen

to be wide enough to cover the space of all their reasonable values:

θvol ∼ N (15.42, 0.203),

θsurf ∼ N (16.91, 0.645),

θsym ∼ N (22.47, 0.525),

θC ∼ N (0.69, 0.015).

The prior distributions for the hyperparameters φ were selected as Gamma(α, β) with the

shape parameter α and scale parameter β. They are chosen to be weakly informative so

that they correspond to the scale of these parameters given by the literature on nuclear mass

models (Weizsäcker, 1935; Bethe and Bacher, 1936; Myers and Swiatecki, 1966; Fayans, 1998;

Kirson, 2008; McDonnell et al., 2015; Kortelainen et al., 2010, 2012, 2014; Benzaid et al.,
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2020; Kejzlar et al., 2020). In particular,

σ ∼ Gamma(2, 1),

ηδ ∼ Gamma(10, 1),

lZ ∼ Gamma(10, 1),

lN ∼ Gamma(10, 1),

νZ ∼ Gamma(10, 1),

νN ∼ Gamma(10, 1),

νi ∼ Gamma(10, 1), i = 1, 2, 3, 4.

Since the majority of the masses in the training dataset are larger than 1000 MeV. We

consider the following prior for ηf to reflect this notion

ηf ∼ Gamma(110, 10).

Appendix G Numerical study of the conditional co-

variance kζ

Here we present the numerical investigation of our conjecture about the asymptotic behavior

of the conditional covariance kζ . We show that with increasing number of model evaluations

s (assuming some space filling design) the covariance function kδ quickly dominates which

strongly points out to similar asymptotic behavior of kζ and kδ with respect to s. Our

rational is that by informing the prior distribution for ζ with more model evaluations, we

effectively reduce the uncertainty about the computer model.
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G.1 Study design

We consider a simple scenario with the joint space of model and calibration inputs over

[0, 1]2. The input pairs (t̃j, θ̃j) were generated using the space filling Latin hypercube design.

The true value of calibration parameter was chosen to vary between θ = {0.3, 0.5, 0.8}.

G.2 Results

Figure 6 and Figure 7 show the values of |kζ(ti, tj)− kδ(ti, tj)| as a function of model runs in

the case of squared exponential covariance kernels for both kf and kδ. The hyperparameter

values were fixed to ηf = ηδ = 1 with varying values for the length scales so that lf = lδ.

Analogically, Figures 8 and 9 correspond to the case of tensor-product Matérn kernels

with the standard choice of smoothness parameter λ = 2.5 which is sufficient according to

the theory discussed in Section 4.1.1. The remaining hyperparameters are same as in the

case of squared exponential kernel.

We can see that both choices of kernel functions for kf and kδ exhibit the hypothesized

dominance of kδ with the increasing number of model runs. This happens irrespective of the

choice of kernel function, model inputs t, calibration parameters θ, and the length scales.

Particularly in the case of squared exponential kernel, the absolute difference between kζ

and kδ quickly decreases and reaches the limits of numerical stability. On the other hand,

the rate of convergence is considerably slower for the Matérn kernel which is likely related

to the limited smoothness of the kernel.
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Figure 6: The absolute difference between the conditional kernel kζ and kδ for the model
inputs ti = 0.2 and tj = 0.4 and the value of true calibration parameter θ = {0.3, 0.5, 0.8}.
This is the squared exponential kernel case.
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Figure 7: The absolute difference between the conditional kernel kζ and kδ for the model
inputs ti = 0.3 and tj = 0.7 and the value of true calibration parameter θ = {0.3, 0.5, 0.8}.
This is the squared exponential kernel case.
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Figure 8: The absolute difference between the conditional kernel kζ and kδ for the model
inputs ti = 0.2 and tj = 0.4 and the value of true calibration parameter θ = {0.3, 0.5, 0.8}.
This is the tensor-product Matérn case.

54



0 250 500 750 1000 1250
s

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

|k
(t i

,t
j)

k
(t i

,t
j)|

ti = 0.3, tj = 0.7, = 0.3
lf = 0.2
lf = 0.5
lf = 0.7

0 250 500 750 1000 1250
s

ti = 0.3, tj = 0.7, = 0.5

0 250 500 750 1000 1250
s

ti = 0.3, tj = 0.7, = 0.8

Figure 9: The absolute difference between the conditional kernel kζ and kδ for the model
inputs ti = 0.3 and tj = 0.7 and the value of true calibration parameter θ = {0.3, 0.5, 0.8}.
This is the tensor-product Matérn case.

Appendix H Additional results for simulation study:

Transverse harmonic wave

The following figures shows additional results of the empirical Bayes fit under the transverse

harmonic wave simulation study at the time locations t = 0, t = 0.43, t = 0.71, and t = 1

(Figures 10, 11, 12, 13, 14, 15, 16, and, 17).
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Figure 10: Comparison of the convergence to the true physical process ζ0(t, x) under the
empirical Bayes approach and the fully Bayesian implementation given by the Metropolis-
Hastings algorithm. The dashed line represents the true process ζ0, and the solid line cor-
responds to the mean of posterior predictive distributions under respective method. The
curves with 95% credible intervals (shaded area) are plotted at t = 0.00.
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Figure 11: Comparison of the convergence to the true physical process ζ0(t, x) under the
empirical Bayes approach and the fully Bayesian implementation given by the Metropolis-
Hastings algorithm. The dashed line represents the true process ζ0, and the solid line cor-
responds to the mean of posterior predictive distributions under respective method. The
curves with 95% credible intervals (shaded area) are plotted at t = 0.43.
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Figure 12: Comparison of the convergence to the true physical process ζ0(t, x) under the
empirical Bayes approach and the fully Bayesian implementation given by the Metropolis-
Hastings algorithm. The dashed line represents the true process ζ0, and the solid line cor-
responds to the mean of posterior predictive distributions under respective method. The
curves with 95% credible intervals (shaded area) are plotted at t = 0.71.
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Figure 13: Comparison of the convergence to the true physical process ζ0(t, x) under the
empirical Bayes approach and the fully Bayesian implementation given by the Metropolis-
Hastings algorithm. The dashed line represents the true process ζ0, and the solid line cor-
responds to the mean of posterior predictive distributions under respective method. The
curves with 95% credible intervals (shaded area) are plotted at t = 1.00.
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Figure 14: Details of 95% credible bands of posterior predictive distributions under the
empirical Bayes approach and the fully Bayesian approach of Metropolis-Hastings algorithm.
These were plotted at t = 0.00.
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Figure 15: Details of 95% credible bands of posterior predictive distributions under the
empirical Bayes approach and the fully Bayesian approach of Metropolis-Hastings algorithm.
These were plotted at t = 0.43.
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Figure 16: Details of 95% credible bands of posterior predictive distributions under the
empirical Bayes approach and the fully Bayesian approach of Metropolis-Hastings algorithm.
These were plotted at t = 0.71.
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Figure 17: Details of 95% credible bands of posterior predictive distributions under the
empirical Bayes approach and the fully Bayesian approach of Metropolis-Hastings algorithm.
These were plotted at t = 1.00.
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