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Abstract Classical Krylov subspace projection meth-

ods for the solution of linear problem Ax = b out-

put an approximate solution x̃ ≃ x. Recently, it has

been recognized that projection methods can be un-

derstood from a statistical perspective. These proba-

bilistic projection methods return a distribution p(x̃) in

place of a point estimate x̃. The resulting uncertainty,

codified as a distribution, can, in theory, be meaning-

fully combined with other uncertainties, can be propa-

gated through computational pipelines, and can be used

in the framework of probabilistic decision theory. The

problem we address is that the current probabilistic

projection methods lead to the poorly calibrated pos-

terior distribution. We improve the covariance matrix

from previous works in a way that it does not contain

such undesirable objects as A−1 or A−1A−T , results in

nontrivial uncertainty, and reproduces an arbitrary pro-

jection method as a mean of the posterior distribution.

We also propose a variant that is numerically inexpen-

sive in the case the uncertainty is calibrated a priori.

Since it usually is not, we put forward a practical way

to calibrate uncertainty that performs reasonably well,

albeit at the expense of roughly doubling the numerical

cost of the underlying projection method.

Keywords probabilistic numerical methods · projec-
tion methods · uncertainty quantification

1 Introduction

One way to approximately solve Ax = b, A ∈ Rn×n is

to start from the initial guess x0, choose two subspaces

K,L spanned by columns of matrices V,W ∈ Rn×m,
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m ≤ n and enforce Petrov–Galerkin condition: x̃ = x0+

δ, δ ∈ K, b − Ax̃ ⊥ L. For suitably chosen subspaces,

the new approximation reads

x̃ = x0 + V
(
WTAV

)−1
WT (b−Ax0) . (1)

Different choices of V,W lead to different projection

methods, amongst which are conjugate gradient algo-

rithm, generalized minimum residual method, and oth-

ers Saad (2003).

A series of papers starting with the work on proba-

bilistic reconstruction of quasi-Newton methods Hennig

and Kiefel (2013) led to Bayesian projection methods

Hennig (2015), Cockayne et al. (2019), Bartels et al.

(2019). In contrast to classical projection methods that

provide point estimation (1), probabilistic projection

methods produces a distribution p(x̃) that reflects un-
certainty about the true solution A−1b. In particular,

in Cockayne et al. (2019) and Bartels et al. (2019), the

authors proved the following result:

Theorem 1. Let detA ̸= 0, p(x) = N (x|x0, Σ0) and

ym = ST
mAx, where Sm ∈ Rn×m,m ≤ n is a full-rank

matrix. The mean of conditional distribution p(x|ym =

ST
mb) = N (x|xm, Σm) reproduces projection method (1)

for three choices of prior distribution and search direc-

tions Sm:

1. Σ0 = V V T and Sm = W result in xm = x̃, Σm = 0;

2. In case A is symmetric positive definite, the choice

Σ0 = A−1, Sm = V results in xm = x̃|W=V , Σm =

A−1 − V
(
V TAV

)−1
V T ;

3. Σ0 =
(
ATA

)−1
, Sm = AV result in xm = x̃|W=AV ,

Σm =
(
ATA

)−1 − V
(
(AV )

T
AV
)−1

V T .

No choice of the prior distributions in this theorem

produces a useful covariance matrix. The first option
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leads to trivial uncertainty, while the other two are too

expensive to compute. Moreover, as shown in Bartels

et al. (2019) and Cockayne et al. (2019), posterior dis-

tributions of the last two choices are poorly calibrated

for Krylov subspace methods. Further examination of

priors reveals that they do not have free parameters,

which renders uncertainty calibration impossible.

To address these problems, we propose an extension

of the covariance matrix Σ0 = V V T that maintains the

same mean of conditional distribution, but introduces

a nontrivial covariance Σm. The main idea behind our

construction stems from the observation made in Bar-

tels et al. (2019), that the first prior distribution is a

probability density of random variable x = x0 + V v,

were p(v) = N (v|0, I). Perhaps it is not surprising that

the posterior uncertainty is trivial, since the prior dis-

tribution puts no probability mass on the part of space

where a projection method is not allowed to operate.

Naturally, we seek a prior of the form x = x0+V v+Y y,

p(y) = N (y|0, I), and restrict Y to have meaningful

mean and posterior covariance matrix.

In Section 3, we completely characterize all possible

choices of Y . Section 4 contains a discussion of uncer-

tainty calibration for abstract projection methods. A

practical inexpensive construction of covariance matrix

in terms of projectors is presented in Section 5. In Sec-

tion 6 we argue that realistic Krylov subspace methods

elude rigorous probabilistic interpretation. Given the

popularity of Krylov subspace methods, we explain how

uncertainty can be calibrated for them in Section 7. In

Section 8 we compare our approach with the related

one, recently introduced in Reid et al. (2020). In Sec-

tion 9 we perform a comparative study of different un-

certainty calibration procedures on a several test prob-

lems that include a large family of small dense matri-

ces, large and medium sparse matrices from SuiteSparse

Matrix Collection1, a finite-difference discretization of

biharmonic equation and a PDE-constrained optimiza-

tion problem.

2 Notation

In this section, we summarize some notation and defi-

nitions that we use in later parts of the paper.

For symmetric positive definite matrix A we use the

notation A > 0. For symmetric positive semidefinite

matrix A we use the notation A ≥ 0.

The direct sum of two matrices A ∈ Rn×m and B ∈
Rl×k, denoted A⊕B is defined as(

A 0n×k

0l×m B

)
, 0n×k ∈ Rn×k, (0n×k)ij = 0. (2)

1 https://sparse.tamu.edu

For the dimension of a linear space S we use the

notation |S|.
Recall also that a pseudoinverse (Moore-Penrose in-

verse) of A ∈ Rn×m, given rank(A) = k is a matrix

A† = UD−1V T , where columns of U ∈ Rn×k are left

singular vectors, columns of V ∈ Rm×k are right sin-

gular vectors and diagonal matrix D contains nonzero

singular values σi, i = 1, . . . , k, that is, D ∈ Rk×k :

Dij = σiδij (see (Trefethen and Bau, 1997, Lecture 4)).

For matrix Y ∈ Rn×m we use Y⋆i, i = 1, . . . ,m to

indicate column i and Yi⋆, i = 1, . . . , n to indicate row

i.

We denote indicator function for condition x as

Ind[x] =

{
1, if condition x holds;

0, otherwise.
(3)

For arbitrary positive semidefinite covariance ma-

trix Rn×n ∋ Σ = UDUT ≥ 0, rank(Σ) = k ≤ n,

Rk×k ∋ D > 0, U ∈ Rn×k and mean vector µ ∈ Rn we

define two random variables by their probability density

functions. The first one is multivariate normal

N (x|µ,Σ) = C
Ind

[
UTx ̸= UTµ

]
exp

(
1
2 (x− µ)TΣ†(x− µ)

) ,
C =

1√
(2π)k detD

.

(4)

The second one is multivariate Student

Stν(x|µ,Σ) = C
Ind

[
UTx ̸= UTµ

]
(
1 + 1

ν (x− µ)TΣ†(x− µ)
) ν+k

2

,

C =
Γ
(
ν+k
2

)
Γ
(
ν
2

)√
(πν)k detD

.

(5)

These two probability densities are constructed so that

it is not possible to draw a random variable that belongs

to the nullspace of the covariance matrix.

The other three distributions, i.e., inverse gamma,

F -distribution, and χ2, are used in their standard form.

As noted above, a projection method is defined by

two subspaces K = range(V ) and L = range(W ). We

say that such a method is well-defined if WTAV is

invertible. Conditions on W and V for a projection

method to be well-defined can be found in e.g. Saad

(2003).

In practical applications of projection methods round-

ing errors are important. In this article all results are

given for exact arithmetic. This is not a major restric-

tion, because we reproduce projection method exactly.

This implies the whole body of known results on round-

ing error in projection methods can be applied as is.

https://sparse.tamu.edu
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3 Fixing prior distribution

In this section, we establish a sufficiently general form of

Σ0 that leads to nontrivial uncertainty for probabilistic

projection methods. We start by proving three lemmas

and then gather all results in Theorem 2.

Lemma 1. Let V and W lead to a well-defined pro-

jection method (1), p(x) = N (x|x0, Σ0), ym = ST
mAx,

p(x|ym = ST
mb) = N (x|xm, Σm). If we take covariance

matrix Σ0 = V V T + Ψ and search directions Sm = W ,

where Ψ satisfies WTAΨ = 0, Ψ ≥ 0, the resulting

mean and covariance matrix are xm = x̃ from (1) and

Σm = Ψ .

Proof. General result Bartels et al. (2019) for mean and

covariance are

xm = x0 +Σ0A
TSm

(
ST
mAΣ0A

TSm

)−1
ST
m (b−Ax0) ,

Σm = Σ0 −Σ0A
TSm

(
ST
mAΣ0A

TSm

)−1
ST
mAΣ0.

Matrix Σ0A
TSm and its transpose appear frequently

in xm and Σm. For a chosen covariance matrix Σ0 this

combination has a simple form

Σ0A
TSm =

(
V V T + Ψ

)
ATW = V

(
V TATW

)
, (6)

where the second equality follows from the condition

WTAΨ = 0. Using this form of Σ0A
TSm we find(

ST
mAΣ0A

TSm

)−1
=
(
V TATW

)−1 (
WTAV

)−1
. (7)

This implies that the second part of the covariance ma-

trix simplifies as follows

Σ0A
TSm

(
ST
mAΣ0A

TSm

)−1
ST
mAΣ0 = V V T , (8)

from which we conclude that

Σm = V V T + Ψ − V V T = Ψ. (9)

In the same vein, using

Σ0A
TSm

(
ST
mAΣ0A

TSm

)−1
ST
m = V

(
WTAV

)−1
WT

(10)

we can obtain xm = x0 + V
(
WTAV

)−1
WT (b − Ax0)

for the mean vector.

As the following result shows, matrix Ψ exists under

mild conditions.

Lemma 2. For invertible A ∈ Rn×n and full-rank W ∈
Rn×m, m ≤ n, there exists a full-rank Y ∈ Rn×k, k ≤
n − m for which WTAY = 0. As such, we can take

Ψ = Y GY T for any conformable G > 0.

Proof. Note, that
∣∣Null (WTA

)∣∣ = n−
∣∣Range (ATW

)∣∣ =
n−m. The last equality follows from the fact that AT

is invertible, so W and ATW has the same rank. From

this we conclude that there are exactly n −m linearly

independent vectors that span Null
(
WTA

)
. Stacking

k ≤ n−m of them together we can construct Y .

Next, we show that Ψ can be chosen to have Σ0 > 0,

givenWTAV is invertible. To demonstrate that we need

to prove that for a well-defined projection method it is

always possible to supplement m vectors V⋆i with n−m

vectors Yn−m to form a basis for Rn. Indeed, if this is

the case, Σ0 = V V T + Y GY T > 0 since it is clearly

positive semidefinite for any G > 0, and there is no x

such that xTΣ0x = 0 because Range (V )∪Range (Y ) =

Rn.

Lemma 3. If V and W lead to a well-defined projection

method (1), m linearly independent vectors V⋆i along

with n−m linearly independent Y⋆i : W
TAY = 0 form

basis for Rn.

Proof. It is easy to see that WTAV is invertible iff no

vector from AK = Range (AV ) is orthogonal to L =

Range (W ). Vectors Y⋆i, where i ≤ n − m, form basis

for Null
(
WTA

)
, whereas m vectors V⋆i /∈ Null

(
WTA

)
,

hence V⋆i ∈ Range
(
ATW

)
. By definition V⋆i are lin-

early independent, so they form a basis for Range
(
ATW

)
.

According to a fundamental result of linear algebra

Rn = Null
(
WTA

)
∪Range

(
ATW

)
, which means columns

of V and Y form a basis for Rn.

We summarize all results of this section in the fol-

lowing statement:

Theorem 2. Let the following be true:

1. Matrix A is invertible, W,V ∈ Rn×m are full-rank

matrices, and detWTAV ̸= 0;

2. Solution of Ax = b is a normal random variable with

probability density function p(x) = N (x|x0, Σ0);

3. Covariance matrix Σ0 has a form Σ0 = V V T +

Y GY T , where Range (Y ) = Null
(
WTA

)
and G ≥ 0;

4. Random variable y = WTAx represents information

available to a projection method.

Then under these conditions p(x|y = WT b) = N (x|x̃, Y GY T ),

where x̃ is defined by (1).

The proposed covariance matrix has a clear geo-

metric meaning. It is easy to see that x from Theo-

rem 2 can be represented as a sum of two indepen-

dent random variables x = x0 + V v + Y G1/2y, where

p(v) = N (v|0, I) and p(y) = N (v|0, I). So, the part

V V T corresponds to the vector that is sampled from

Range(V ), whereas the second part Y GY T accounts
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for the subspace Null(WTA) in accordance with Petrov-

Galerkin condition WT (b−Ax̃) = WTA(A−1b−x) = 0.

Thanks to Lemma 3 we known that sampling x we

can reproduce any vector from Rn, so prior distribution

is suitable for an arbitrary right-hand side. Adjusting

G ≥ 0 we can control how x is distributed in Range (Y )

(see Lemma 4 for a quantitative result). On the other

hand it is not possible to control the distribution in-

side Range (V ). This does not pose any problem, since

as a result of projection process, the solution vector is

completely defined within subspace Range (V ).

4 Uncertainty calibration for abstract

projection methods

To be useful in practical applications (for example, in

probabilistic decision theory, sensitivity analysis and

others) probability density function produced by prob-

abilistic projection methods should be meaningfully re-

lated to the actual error. In Cockayne et al. (2019) au-

thors propose a statistical criterion for uncertainty cali-

bration: “When the UQ is well-calibrated, we could con-

sider x⋆ [the solution A−1b] as plausibly being drawn

from the posterior distribution N (xm, Σm).” Based on

this statements authors suggest a test statistic Z(x⋆) ≡
∥x⋆ − x̃∥2Σ†

m
∼ χ2

n−m. In what follows we refer to Z(x⋆)

as Z−statistic. We now show that, according to this

definition, the prior proposed in Theorem 2 provides a

perfect uncertainty calibration.

Theorem 3. Let x⋆ = x0 + V v + Y G1/2y, where v

and y are independent random variables, v has arbitrary

distribution and p(y) = N (y|0, I). Under conditions of

Theorem 2, a posterior distribution is well-calibrated:

1. p
(
x|y = WT (Ax0 +AV v0)

)
= p(x⋆|v = v0)

2. ∥x⋆ − x̃∥2(Y GY T )† ∼ χ2
n−m

Proof. 1. Both random variables are normal, so it is

sufficient to demonstrate that first two moments are

equal. Substitution of b = AV v0+Ax0 into the def-

inition of general projection method (1) gives us

x0 + V v0 which is a mean of random variable x⋆

given v = v0. Covariance matrices coincide as a con-

sequence of Theorem 2 and definition of x⋆.

2. After the projection step, arbitrary sample of ran-

dom variable v is completely specified, because V v ∈
Range(V ). Namely, x̃ = x0 + V v, which implies

p(x⋆ − x̃) = N (·|0, Y GY T ). Now, since Y GY T is

positive semidefinite, it is always possible to find a

full-rank matrixX ∈ Rn×k, where k = rank(Y GY T )

such that XXT coincides with Y GY T . It is easy to

check that(
Y GY T

)†
=
(
XXT

)†
= X

(
XTX

)−2
XT . (11)

Since x⋆− x̃ = Xδ, where δ is a standard multivari-

ate normal random variable, we can find that test

statistic

∥x⋆ − x̃∥2(Y GY T )† = δTXTX
(
XTX

)−2
XTXδ = δT δ

(12)

follows χ2
n−m distribution.

Note, that this result is also correct for all priors

proposed in Theorem 1. This is because all methods

are fully Bayesian when W and V do not depend on x.

As we discuss in Section 6, this is not true for Krylov

subspace methods like CG and GMRES.

Having a well-calibrated posterior probability, we

turn to the choice of a prior distribution. Since with G,

we can always perform a change of basis in Null
(
WTA

)
;

we consider it to be fixed and describe how the rescaling

of basis vectors influences an error vector.

Lemma 4. Let in addition to conditions of Theorem 2

columns of matrix Y be orthonormal, and the exact so-

lution be x⋆ = x0+V δ1+Y G1/2δ, where δ1, δ are stan-

dard multivariate normal random variables. The choice

G = s2Ip×p⊕I(n−m−p)×(n−m−p), s ∈ R leads to cos (θ) =

1
/(

1 + n−m−p
s2p z

)
, where θ is an acute angle between

the error ẽ = x⋆ − x̃ and span {Y⋆i : i = 1, . . . , p}; z is

F -distributed with numerator n−m−p and denomina-

tor p (see Figure 1 for geometric interpretation).

Proof. Since x⋆ = x0+V δ1+Y G1/2δ, where δ1 and δ are

independent standard multivariate normal variables, an

error ẽ after the projection step (1) is Y G1/2δ. Using

the definition of the acute angle θ (see Figure 1), and

orthogonal projector P⊥ =
∑p

i=1 Y⋆iY
T
⋆i on subspace

spanned by vectors Y⋆i, i = 1, . . . , p we can show that

cos(θ) =
ẽT
(∑p

i=1 Y⋆iY
T
⋆i

)
ẽ

ẽT ẽ

=
s2
∑p

i=1 δ
2
i∑n−m−p

i=p+1 δ2i + s2
∑p

i=1 δ
2
i

=
1

1 +
χ2
n−m−p

s2χ2
p

(13)

Since z =
(
pχ2

n−m−p

)
/
(
(n−m− p)χ2

p

)
is F -distributed

(see Chapter 13 in Krishnamoorthy (2016)) the proof

is complete.

With this result we can easily construct probabilis-

tic bounds. For example, identity P (cos(θ) ≥ 1− ϵ) =

P
(
z ≤ s2pϵ/ ((1− ϵ)(n−m− p))

)
allows to choose s

that guaranties ẽ to be located within a p-dimensional

subspace with prescribed probability.
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v1

v2

v3

2v3

u1

u2

P⊥ui, i = 1, 2

θ1

θ2

Fig. 1: The figure demonstrates how the acute angle

θi, i = 1, 2 between subspace spanned by v1 and v2 and

ui, i = 1, 2 depend on the vector ui = v1+v2+iv3. The

angles can be computed as cos(θi) = uT
i P⊥ui

/
uT
i ui.

Lemma 4 is a probabilistic counterpart of this situation.

Namely, by rescaling eigenvectors of covariance matrix

one can influence the distribution of the angle between

the error and a given subspace.

5 Construction of covariance matrices

So far, we discussed only a general form of a covariance

matrix. The most straightforward way to construct it

explicitly is to compute a basis for Null
(
WTA

)
with

SVD and choose positive semidefinite G according to

some criteria. This can be problematic for two rea-

sons. First, SVD incurs additional O
(
nm2

)
floating-

point operations Trefethen and Bau (1997). Depending

on the situation, this can be manageable. The second

and more serious problem is that we need to store a

dense n× (n−m) matrix. Iterative methods are useful

only when A is sparse and large, so as a rule, we do not

have the luxury to store (n−m) vectors forming a ba-

sis for Null
(
WTA

)
. The following result resolves these

issues.

Theorem 4. Let conditions of Theorem 2 be fulfilled.

For P1 = I − V
(
WTAV

)−1
WTA the following state-

ments are true:

1. Matrix P1 is a projection operator.

2. Range(P1) = Null
(
WTA

)
3. General form of covariance matrix from Lemma 2

is Σ0 = V V T + P1GPT
1 , G ≥ 0.

Proof. 1. It is enough to demonstrate that I − P1 is a

projection operator. Indeed, if this is the case, P1 is

a projection operator too since (I−P1)
2 = I−P1 im-

plies that P 2
1 = P1. Using I−P1 =

(
WTAV

)−1
WTA

for (I − P1)
2
we find

V
(
WTAV

)−1
WTAV

(
WTAV

)−1
WTA

= V
(
WTAV

)−1
WTA = I − P1,

(14)

so I − P1 is a projection operator.

2. It is easy to see that WTAP1 = 0. Indeed,

WTA
(
I − V

(
WTAV

)−1
WTA

)
= WTA−WTA = 0

(15)

FromWTAP1 = 0 we have Range(P ) ⊆ Null(WTA).

On the other hand WTAx = 0 ⇒ P1x = x, so

Null(WTA) ⊆ Range(P ). From two inclusions we

conclude that Range(P ) = Null(WTA).

3. Any Ψ ≥ 0 from Lemma 2 has a form Y Y T where

columns of Y belong to Null(WTA). This fact fol-

lows from spectral decomposition of Ψ , Ψ ≥ 0 and

WTAΨ = 0. Since Range(P1) = Null
(
WTA

)
we

know that P1Y = Y . This allows us to take G =

Y Y T for which the covariance matrix reads

Σ0 = V V T + P1Y (P1Y )
T

= V V T + Y Y T = V V T + Ψ.
(16)

So with the appropriate choice of G we can repro-

duce arbitrary covariance matrix from Lemma 2.

We would like to point out that it is natural to

use projector P1 to quantify uncertainty. It is known

from general theory of iterative methods (see Chapter 2

from Hackbusch (2016)) that linear iteration of the form

x(n+1) = x(n) + N [A]r(n) ≡ M [A]x(n) + N [A]b, where

M [A] and N [A] are matrices depending on A such that

the consistency condition M [A] +N [A]A = I holds. In

our case N [A] = V
(
WTAV

)−1
WT approximates A−1,

and P1 = M [A] = I − N [A]A quantifies how well this

is done.

To compute projection operator P1 from Theorem 4,

one need not perform more complex operations that are

required for projection method itself: matricesW and V

are available as a byproduct of Arnoldi or Lanczos pro-

cesses and WTAV usually has a special form (Hessen-

berg or tridiagonal). Moreover, to store P , we need to
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keep matricesW , V , and
(
WTAV

)−1
, that is 2nm+m2

floating-point numbers in the worst case, which is much

better than n2 −mn in situations when m ≪ n.

Covariance matrix in Theorem 4 contains projec-

tion operator P1 which is not orthogonal. Later we will

see that orthogonal projectors are more suitable in the

context of statistical inference, so we formulate a result

similar to Theorem 4 but with an orthogonal projector.

Theorem 5. Let P2 = Y
(
Y TY

)−1
Y T , where columns

of Y are k = n −m linearly independent vectors from

Null
(
WTA

)
. If W and V result in a well-defined pro-

jection method, the following is true:

1. P2 is an orthogonal projector on Null
(
WTA

)
.

2. Covariance matrix Σ0 = V V T + P2GPT
2 , G ≥ 0,

leads to a posterior N (·|x̃, P2GPT
2 ), under linear ob-

servations and conditions defined in Theorem 2.

Proof. 1. P 2
2 = Y

(
Y TY

)−1
Y TY

(
Y TY

)−1
Y T = P2,

so P2 is a projection operator. Next, PT
2 = P2 so

P2 is an orthogonal projector. Finally, Range(P2) =

Null
(
WTA

)
by definition of Y .

2. From Range(P ) = Null(WTA) it follows thatWTAP2 =

0, and Σ0A
TW = V V TATW . Since the proof of

Lemma 1 relies only on the fact that WTAΨ = 0,

we can substitute Ψ by P2 and obtain the same re-

sult. With that we conclude that the posterior dis-

tribution has a probability density N (·|x̃, P2GPT
2 ).

Note that to compute P2 one need no explicitly

form the orthonormal basis for Null
(
WTA

)
, which is

not feasible in typical practical situations when n ≫ 1

and m ≪ n. In place of that, one can use Ỹ ∈ Rn×m

with columns such that Range
(
Ỹ
)

= Range
(
ATW

)
.

Since Range
(
ATW

)
⊥ Null

(
WTA

)
we conclude that

P2 = I − Ỹ
(
Ỹ T Ỹ

)−1

Ỹ T . Unlike Y , computation of

Ỹ is feasible. Moreover, for some projection method Ỹ

can be available as a byproduct of the method itself.

For example, vectors from Range
(
ATW

)
are available

in case of Lanczos biorthoganolization (see (Saad, 2003,

Subsection 7.2)). These vectors are discarded when only

the solution of the linear system is of interest, however

as we see from Theorem 5 they can be used to construct

a covariance matrix. Conjugate gradient iteration pro-

vides the other example. In this case A > 0 andW = V ,

so the residuals can be used to form orthonormal basis

for Range (AV ).

6 When probabilistic projection methods are

sound

The validity of Theorem 1 and Bayesian conjugate gra-

dient Method proposed in Cockayne et al. (2019), as

well as all results of the present paper, depend on the

assumption that the joint distribution of x and ym is a

multivariate normal. This fact can be shown via compu-

tation of characteristic function if search directions Sm

and prior covariance matrix Σ0 are independent of x.

When Krylov subspace Km (A, b) is used to build Sm,

as it is done in almost all Krylov subspace methods,

information ym becomes a nonlinear function of x, and

the joint distribution of ym and x is not a multivariate

normal. This implies that algorithms based on Theo-

rem 1 and Bayesian conjugate gradient cannot stand as

probabilistic Krylov subspace methods. Moreover, even

when Sm is unrelated to x, as in the Lanczos biorthog-

onalisation algorithm, V , that still depends on x, is

not allowed to appear in prior covariance matrix Σ0.

These restrictions render probabilistic Krylov projec-

tion methods incorrect. We can think of three possible

solutions to this problem.

The first solution is to focus on projection methods

that do not use Km (A, b) to construct approximate so-

lution. For example, a two-grid operator in the Alge-

braic Multigrid (AMG) framework has the same form

as a projection method (1), given V is a matrix of in-

terpolation operator and W is a matrix of restriction

operator. The same is true for Gauss-Seidel method,

which is equivalent to the sequence of projection steps

with L = K = span {ei} repeated for i = 1, . . . , n until

convergence.

Another way is to use Arnoldi or Lancsoz processes

to build basis in Km (A, ρ), where ρ is independent

of b. For this kind of projection processes, probabilis-

tic methods are rigorously justified. On the downside,

there are few theoretical results and estimations avail-

able from numerical linear algebra. One can also expect

a deterioration of the convergence rate. In addition to

that, memory-friendly algorithms like Conjugate Gra-

dient should be rederived (if this is possible at all), be-

cause they explicitly rely on the fact that the first search

direction is parallel to an initial residual vector.

Finally, it is possible to apply the results obtained

under the assumption that W and V are independent

of x to actual Krylov subspace methods and try to tune

prior probability to get well-calibrated uncertainty. We

consider this option in the next section.
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7 Uncertainty calibration for Krylov subspace

methods

For Krylov subspace methods, uncertainty is poorly cal-

ibrated. In the present section we put forward a statis-

tical procedure that allows us to adjust a single scalar

parameter in such a way, that Z−statistic as well as

S−statistic (to be defined) are well-calibrated.

Before the main results we prove the following sup-

plementary lemma.

Lemma 5. Let p(s|α, β) = IG (s|α, β) be the inverse-

gamma distribution, and p(x|s,Σ, µ) = N (x|µ, sΣ),

Σ ≥ 0, then

p(x|Σ,µ, α, β) =

∫
dx p(x|s,Σ, µ)p(s|α, β)

= St2α

(
x

∣∣∣∣µ, βαΣ

)
.

(17)

Proof. The result is a slight generalisation of a stan-

dard Bayesian hierarchical modelling for multivariate

normal distribution Bernardo and Smith (2009). Using

definition of inverse-gamma distribution and probabil-

ity density function of multivariate normal distribution

(4) we obtain

p(x|s,Σ, µ)p(s|α, β) = βα

Γ (α)
s−(α+1) exp(−β

/
s)

exp
(
−(x− µ)TΣ†(x− µ)

/
(2s)

)
(2πs)

k
/
2 √

detD
Ind
[
UTx ̸= UTµ

]
=

βα

Γ (α)

Γ (α)

β
α

IG
(
s|α, β

)
Ind
[
UTx ̸= UTµ

]
(2π)k

/
2
√
detD

,

(18)

where α = α + k
/
2, β = β + (x − µ)TΣ†(x − µ)

/
2.

Probability density function IG
(
s|α, β

)
disappears after

integration, and it is easy to see that the remaining

factors form St2α
(
x
∣∣∣µ, β

αΣ
)
defined in (5).

The first result is based on the rescaling of the full

covariance matrix from Theorem 2 as proposed in Cock-

ayne et al. (2019).

Lemma 6. Let conditions of Theorem 2 be fulfilled. For

covariance matrix Σ0 = s
(
V V T + Ψ

)
, s > 0, WTAΨ =

0, Ψ ≥ 0; and prior p(s|α, β) = IG (s|α, β) the following

is true:

1. Probability density function p
(
s|WTAx = WT b

)
is

the inverse-gamma distribution with parameters α̃ =

α+m/2, β̃ = β+δT δ/2, δ =
(
WTAV

)−1
WT (b−Ax0).

2. Predictive distribution for x|WTAx = WT b is mul-

tivariate Student distribution St2α̃

(
x|x̃, β̃

α̃Ψ
)
.

Proof. 1. We define random variable z = WTAx. Since

x = x0+s1/2V δ1+s1/2Ψ1/2δ2, where δi, i = 1, 2 are

independent standard multivariate normal random

variables and WTAΨ1/2 = 0, probability density

function for z reads

p(z) = N
(
z|WTAx0, sW

TAV
(
WTAV

)T)
. (19)

Using definition of posterior distribution we find

p
(
s|WTAx = WT b

)
∝ p(z = WT b)IG(s|α, β)

∝ s−m
/
2 exp

(
−δT δ

/
(2s)

)
s−(α+1) exp

(
−β
/
s
)
,

(20)

where δ =
(
WTAV

)−1
WT (b−Ax0). From the last

line we can identify parameters of the posterior dis-

tribution α̃ = α+m/2, β̃ = β + δT δ/2.

2. Predictive distribution is

p
(
x
∣∣WTAx = WT b

)
=

∫
ds p

(
x
∣∣WTAx = WT b, x0, sΣ0

)
p(s|α, β),

(21)

where the first factor under the integral is multivari-

ate normal N (x|x̃, sΨ) (see Theorem 4), and the

second is IG(s|α̃, β̃). Using the result from Lemma 5

we obtain St2α̃

(
x|x̃, β̃

α̃Ψ
)

as a predictive distribu-

tion.

Lemma 6 is straightforward from the point of view

of the implementation, because approximate solution

(1) is x̃ = x0+V δ, where δ =
(
WTAV

)−1
WT (b−Ax0),

scalar ∥δ∥22, required for uncertainty calibration, can

be readily computed for arbitrary projection method.

Common factor s appears in Lemma 6 because if we

takeΣ0 = V V T+sΨ , posterior distribution for the scale

p
(
s|WTAx = WT b

)
coincides with IG (s|α, β), that is

available information is insufficient to fix the scale. Since

a scale of an error can be completely unrelated to the

L2 norm of projection of A−1b on V , additional infor-

mation can be valuable to tune s. This is explored in

the following result.

Lemma 7. Let conditions of Theorem 5 be fulfilled and

G = sI for s > 0, so Σ0 = V V T +sP2, the solution is a

multivariate normal variable p(x) = N (x|x0, Σ0). For

a prior distribution p(s|α, β) = IG(s|α, β) and i.i.d. ob-

servations X⋆i, i = 1, . . . , k of random variable P1(x−
x0) (here P1 is as in Theorem 4) the following is true:

1. Posterior distribution of s|X is IG(s|α̃, β̃), where

α̃ = α+ k(n−m)
/
2, β̃ = β + tr

(
XTX

)
/2.
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2. Predictive distribution of x|WTAx = WT b,X is

multivariate Student St2α̃

(
x
∣∣∣x̃, β̃

α̃P2

)
.

Proof. 1. We define random variable z = P1(x − x0).

To find probability density function of z we use three

facts. First, P1V = 0, which follows from defini-

tion of P1. Second, because Range(P2) = Range(P1),

we conclude that P1P2 = P2. Finally, x = x0 +

s1/2V δ1 + s1/2P2δ2, where δi, i = 1, 2 are inde-

pendent standard multivariate normal distributions.

Using these three facts we find p(z) = N (z|0, sP2).

Now, it is easy to find a posterior distribution

p(s|X) ∝

(
k∏

i=1

p (zi = X⋆i)

)
p(s|α, β) ∝ exp(−β

/
s)

s−(α+1)s−k(n−m)/2 exp

(
−

k∑
i=1

XT
⋆iP

†
2X⋆i

/
(2s)

)
.

(22)

Because P2 is orthogonal projector P †
2 = P2. In ad-

dition to that, X⋆i belongs to Range(P1), so each

term of the quadratic form simplifies XT
⋆iP

†
2X⋆i =

XT
⋆iX⋆i. Using the definition of inverse-gamma dis-

tribution we can identify new parameters α̃ = α +

k(n−m)
/
2, β̃ = β + tr

(
XTX

)
/2.

2. Predictive distribution is

p
(
x
∣∣WTAx = WT b,X

)
=

∫
ds p

(
x
∣∣WTAx = WT b, x0, sΣ0

)
p(s|X),

(23)

where the first factor under the integral is multi-

variate normal N (x|x̃, sP2) (this follows from The-

orem 5 with G = sI), and the second is IG
(
s|α̃, β̃

)
.

Using the result from Lemma 5 we confirm that the

predictive distribution is St2α̃

(
x|x̃, β̃

α̃P2

)
.

The reason why we take P1x as an additional ob-

servation to fix the scale is that an exact solution has

a representation x⋆ = (I − P1)x
⋆ + P1x

⋆. If x0 = 0 the

first term (I−P1)x
⋆ = x̃, so P1x

⋆ is an error. To collect

independent sample xP we need to run the same pro-

jection method second time, starting from a sample x⋆

from a prior distribution that we presume to be avail-

able. As a result, application of Lemma 7 doubles (for

k = 1) numerical costs of any projection method. This

is summarized in Algorithm 1.

Note, that prior from Lemma 7 leads to simple form

of Z−statistic Z(x⋆) = ∥x⋆ − xm∥Σ†
m
, where x⋆ = x0+

V δ1 + s1
/
2P2δ2 is an exact solution, Σ†

m and xm are

posterior covariance matrix and posterior mean vector

Algorithm 1 Uncertainty calibration.

1: Input: distributions for exact solution p(x⋆), x⋆ ∈ Rn;
a projection method V,W ← Proj (A, b,m); a number of
search directions m; parameters of inverse-gamma distri-
bution α, β; a number of observations k; statistic either S
or Z.

2: Output: modified parameters of inverse-gamma distri-

bution α̃, β̃.

3: α̃ = α+ k(n−m)
/
2

4: β̃ = β
5: for i = 1 : k do
6: x⋆ ∼ p(x⋆)
7: b = Ax⋆

8: V,W ← Proj (A, b,m)

9: x⋆ ←
(
I − V

(
WTAV

)−1
WTA

)
x⋆

10: if statistic = Z then
11: δ = (x⋆)T (x⋆)
12: end if
13: if statistic = S then
14: δ = (x⋆)T A (x⋆)
15: end if
16: β̃ = β̃ + δ/2
17: end for

respectively and δi, i = 1, 2 are standard multivariate

normal random variables. Indeed, because P2 is an or-

thogonal projector P †
2 = P2. Moreover, an error x⋆−xm

belongs to Range(P2) = Range(P1) which follows from

the fact that x⋆ − xm = P1(x
⋆ − x0). So we can con-

clude that test statistic is simply a squared L2 norm

of the error ∥x⋆ − xm∥22. In light of this observation,

Algorithm 1 simply samples an error from a known x⋆

and use its squared L2 norm to estimate an error for a

given right-hand side b for which the exact solution is

unknown.

Both Lemma 6 and Lemma 7 are designed for test

Z−statistic. Recently Reid et al. (2020) propose a dif-

ferent test statistic S(x) = (x− xm)A (x− xm), where

x is drawn from a posterior distribution given linear

observations as in Theorem 2. In what is following we

call this random variable S−statistic. To calibrate the

scale for S−statistic we use the following result.

Lemma 8. Let A > 0, W = V , columns of Y in

Theorem 2 are A−orthogonal, i.e., Y TAY = I and

G = sI, s > 0. Let Z⋆i, i = a, . . . , k be a set of i.i.d. ob-

servations of random variable A1/2P1(x− x0) (here P1

is as in Theorem 4). For the prior distribution p(s) =

IG(s|α, β) under condition of Theorem 2 the following

is true:

1. Posterior distribution of s|Z is IG
(
s|α̃, β̃

)
, α̃ = α+

k(n−m)
/
2, β̃ = β + tr

(
ZTZ

) /
2.

2. Predictive distribution of x|WTAx = WT b, Z is mul-

tivariate Student St2α̃

(
x
∣∣∣x̃, β̃

α̃Y Y T
)
.
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Proof. 1. We define random variable z = A1/2P1(x −
x0). To find probability density function of z we use

three facts. First, P1V = 0, which follows from defi-

nition of P1. Second, because Range(P1) = Range(Y ),

we conclude that P1Y = Y . Finally, x = x0+V δ1+

s1/2Y δ2, where δi, i = 1, 2 are independent stan-

dard multivariate normal random variables. Using

these three facts we find a probability density func-

tion p(z) = N
(
z|0, sA1/2Y Y TA1/2

)
. It is easy to

see that P3 = A1/2Y Y TA1/2 is an orthogonal pro-

jector. Indeed, from A−orthogonality we conclude

that

P 2
3 = A1/2Y Y TAY Y TA1/2 = P3. (24)

The orthogonality PT
3 = P3 follows from AT = A.

Now, it is easy to find a posterior distribution

p(s|Z) ∝

(
k∏

i=1

p (zi = Z⋆i)

)
p(s|α, β) ∝ exp(−β

/
s)

s−(α+1)s−k(n−m)/2 exp

(
−

k∑
i=1

ZT
⋆iP

†
3Z⋆i

/
(2s)

)
.

(25)

Using that P †
3 = P3 (P3 is an orthogonal projec-

tor) and that z ∈ Range(A1/2Y ) (this follows from

Range(P1) = Range(Y )) we simplify quadratic form

ZT
⋆iP

†
3Z⋆i = ZT

⋆iZ⋆i. Using the definition of inverse-

gamma distribution we can identify new parameters

α̃ = α+ k(n−m)
/
2, β̃ = β + tr

(
ZTZ

) /
2.

2. Predictive distribution is

p
(
x
∣∣WTAx = WT b, Z

)
=

∫
ds p

(
x
∣∣WTAx = WT b, x0, sΣ0

)
p(s|Z),

(26)

where the first factor under the integral is multivari-

ate normal N
(
x|x̃, sY Y T

)
(this follows from Theo-

rem 2 with G = sI), and the second is IG
(
s|α̃, β̃

)
.

Using the result from Lemma 5 we confirm that the

predictive distribution is St2α̃

(
x|x̃, β̃

α̃Y Y T
)
.

The uncertainty calibration is summarized in Algo-

rithm 1. As explained in the next result, the covariance

matrix from Lemma 8 leads to simple S−statistic.

Lemma 9. Under conditions of Lemma 8 distribution

of S(x) = (x − x̃)A(x − x̃) is the same as distribution

of sχ2
n−m.

Proof. Distribution of x− x̃ is N (·|0, sY Y T ), so x− x̃ =

s1/2Y δ1, where δ1 is standard multivariate normal vari-

able. Using this we find S(x) = sδT1 Y
TAY δ1 = sδT1 δ1,

where the last equality follows from A−orthogonality

of columns of Y .

Note, that zT z from Lemma 8 is an independent

sample from eTAe, where e is a current error vector.

So, if α = β = 0, mean value of s is approximately∑k
i=1 e

T
i Aei

/
(k(n−m)), so S−statistic takes a form

S(x) ≃ 1

k

(
k∑

i=1

eTi Aei

)
χ2
n−m

(n−m)
. (27)

Since E
[
χ2
n−m

]
= n−m we can expect that S−statistic

is well calibrated.

Comparison of uncertainty calibration provided by

Lemma 6, Lemma 7 and Lemma 8 appears in Section 9.

8 Comparison with Reid et al. (2020)

In recent contribution Reid et al. (2020), authors ex-

plore related ideas to the construction of probabilistic

projection methods. In this section we show that the co-

variance matrix introduced in (Reid et al., 2020, Defini-

tion 3.1) corresponds to a particular choice of Y and G

in Theorem 2, we formulate a conjecture about optimal-

ity of the low-rank posterior in Reid et al. (2020), and

comment on uncertainty calibration adopted in Reid

et al. (2020).

8.1 Covariance matrix

In Reid et al. (2020) authors propose to use the follow-

ing covariance matrix:

Σ0 =

m+d∑
i=1

(
γi ∥ri−1∥22

)
ṽi (ṽi)

T
, ṽi = vi

/√
ηi (28)

where ηi, vi, ri are as in Algorithm 2, and d ≪ n −m

is a small number of additional CG iterations used to

calibrate uncertainty. For this covariance matrix they

show that posterior covariance after projection on the

first m search directions reads

Σm =

m+d∑
i=m+1

(
γi ∥ri−1∥22

)
ṽi (ṽi)

T
. (29)

We are going to show that covariance matrix (28)

is in line with Theorem 2. We start with the following

supplementary result.

Lemma 10. Mean vector x̃ in Theorem 2 does not

depend on the choice of bases in subspaces Range (V ),

Range (W ).

Proof. Let columns of Ṽ and W̃ be new bases in sub-

spaces Range (V ) and Range (W ). It is always possible

to find invertible square matrices G1, G2 that perform
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Algorithm 2 Conjugate gradient.

1: Input: positive definite matrix A, right-hand side b, ini-
tial guess x, number of sweeps m.

2: Output: approximate solution x.

3: r0 = b−Ax
4: v1 = r0
5: for i = 1 : m do
6: ηi = vTi Avi
7: γi = rTi−1ri−1

/
ηi

8: xi = xi−1 + γivi
9: ri = ri−1 − γiAvi
10: δi = rTi ri

/
rTi−1ri−1

11: vi+1 = ri + δivi
12: end for
13: x = xm

a change of bases, i.e., V = Ṽ G1 and W = W̃G1. After

the substitution of Ṽ and W̃ in (1) yields

x̃ = x0 + Ṽ G1

(
GT

2 W̃
TAṼ G1

)−1

GT
2 W̃

T (b−Ax0)

= x0 + Ṽ
(
W̃TAṼ

)−1

W̃T (b−Ax0) .

So the mean vector does not depend on the choice of

basis.

Now, we show that the following result holds.

Theorem 6. For A > 0 let Y , G and V = W be cho-

sen as follows. Columns of Y ∈ Rn×(n−m) are search

directions ṽi = vi
/√

ηi, i = m + 1, . . . , n, matrix G ∈
R(n−m)×(n−m) is diagonal with elements Gii = γi ∥ri−1∥22,
i = m+1, . . . , n, where vi and η, ri, γi are defined by Al-

gorithm 2. Columns of matrix V form a basis for Krylov

subspace Km (A, r0) = Span
{
r0, Ar0, . . . , A

m−1r0
}
.

Let the solution to Ax = b be a normal random vari-

able with probability density function p(x) = N (x|x0, Σ0),

where Σ0 = V V T + Y GY T .

Under this condition the mean of posterior distri-

bution p(x|WTAx = WT b) coincides with projection

method (1) (and with the output of Algorithm 2 in ex-

act arithmetic), and the covariance matrix is Y GY T =∑n
i=m+1

(
γi ∥ri−1∥22

)
ṽi (ṽi)

T
.

Proof. By construction ṽi, i = 1, . . . ,m form an A-

orthogonal basis for Km (A, r0). Using Lemma 10 we

can transform matrix V , such that columns of new ma-

trix Ṽ are ṽi, i = 1, . . . ,m.

To apply Theorem 2 we need to check that Range(Y ) =

Null(WTA). Indeed, if y ∈ Range(Y ) it has a form y =∑n
i=m+1 yiṽi, we can see that WTAy = V TAy = 0, be-

cause ṽTi Aṽj = 0 for i = 1, . . . ,m, j = m+1, . . . , n. This

means Range(Y ) ⊂ Null(WTA). Now, if y ∈ Null(WTA)

it is A−orthogonal to the first m vectors ṽi, because

ṽi, i = 1, . . . , n form a complete set2, we conclude that

y ∈ Range(Y ) and Null(WTA) ⊂ Range(Y ).

Because, Range(Y ) = Null(WTA) we can apply The-

orem 2 which gives us (1) as mean and Y GY T as a

covariance matrix.

From Theorem 6 we can conclude that the covari-

ance from Reid et al. (2020) can be considered as a

special case of general result given in Theorem 2.

Before the comparison on uncertainty calibration we

want to discuss a low-rank approximation (29) to a full-

rank matrix Σm from Theorem 6. Is it the “best” low-

rank approximation? We believe, that in some sense

it is. To motivate this we start with a supplementary

statement.

Lemma 11. For A > 0 we define the following oper-

ator norm ∥B∥A,A−1 ≡ supx ∥Bx∥A
/
∥x∥A−1 . If B =∑K

j=1 djuju
T
j where d1 ≥ d2 ≥ · · · ≥ dK > 0,K ≤ n

and uT
j Auk = δjk, the operator norm of B is ∥B∥A,A−1 =

d1.

Proof. Let columns of U be uj , j = 1, . . . ,K and D be

a diagonal matrix with Djj = dj . Using the definition

we get

sup
x

√
xTUDUTAUDUTx√

xTA−1x
= sup

y

√
yTAUD2UTAy√

yTAy
,

where we used A−orthogonality and define y = A−1x.

Now, without the loss of generality we take y = Uα to

obtain

∥B∥A,A−1 = sup
α

√
αTD2α√
αTα

= d1.

Next we extend a well-known optimal low-rank ap-

proximation result on norm ∥·∥A,A−1 .

Lemma 12. Let B be the same as in Lemma 11, and

Bm =
∑m

j=1 djuju
T
j , m < K. Then

∥B −Bm∥A,A−1 = inf
rankC≤m

∥B − C∥A,A−1 = dm+1.

Proof. From Lemma 11 we know that ∥B −Bm∥A,A−1 =

dm+1. For the second part we use a proof by contradic-

tion from (Trefethen and Bau, 1997, Theorem 5.8).

Suppose that there is C, rank(C) ≤ m for which the

norm of the difference is smaller, i.e., ∥B − C∥A,A−1 <

2 We do not consider “lucky breakdowns” (Saad, 2003, Sec-
tion 6.3.1)
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Fig. 2: Figure demonstrates γi ∥ri−1∥22 for matrix bc-

sstm07 from SuiteSparse matrix collection.

dm+1. Because C has rank m there is a n −m dimen-

sional subspace R ⊂ Rn : ∀r ∈ R ⇒ Cr = 0. This

implies

∥Br∥A,A−1 = ∥(B − C) r∥A,A−1

≤ ∥B − C∥A,A−1 ∥r∥A−1 < σm+1 ∥r∥A−1 .

We know that in the subspace R̃ spanned by uj , j =

1, . . . ,m+1 the norm of the matrixB fulfills ∥Br̃∥A,A−1 ≥
dm+1 ∥r̃∥A−1 . Because for these subspaces

∣∣∣R̃∣∣∣ + |R| =
n + 1, there is a vector that belongs to both of them.

Thus by contradiction ∥B − C∥A,A−1 ≥ dm+1, and the

bound is attained by Bm.

Lemma 12 implies that approximation (29) is opti-
mal (best d−rank approximation) in ∥·∥A,A−1 norm if

γi ∥ri−1∥22 , i = 1, . . . , n form a non-increasing sequence.

Unfortunately, this is not the case, because ∥ri∥ can in-

crease in the course of iterations.

However, because ∥ri∥ → 0 in exact arithmetic, it

seems, we still can obtain an optimal low rank approx-

imation for an appropriate choice of d in (29). This is

exemplified in Figure 2. Evidently, if m = 91 for d ≤ 4

we obtain optimal d−rank approximation to the whole

covariance matrix Σm from Theorem 6. However if we

take 4 < d < 8 we achieve no improvement over d = 4

because the next peak i = 110 has larger γi ∥ri−1∥22.
Less favourable situation occurs when m = 159. In this

case all d < 5 does not result in optimal d−rank ap-

proximation, and d = 5 gives an optimal 1−rank ap-

proximation. Based on these observations we formulate

the following conjecture.

Conjecture 1. For almost any positive definite ma-

trix A ∈ Rn×n, for any iteration m ≤ n, there is a

d(m) ≪ n and r(d) ≤ d(m) such that a covariance ma-

trix Σm =
∑m+d(m)

i=m+1

(
γi ∥ri−1∥22

)
ṽi (ṽi)

T
is an optimal

r(d)−rank approximation to the full covariance matrix

Σ̃m =
∑n

i=m+1

(
γi ∥ri−1∥22

)
ṽi (ṽi)

T
with respect to the

operator norm ∥·∥A,A−1 .

Note, that the conjecture, if correct, merely ensures

an optimality of approximation (29) to the full covari-

ance matrix. Conjecture 1 does not tell whether the full

matrix is optimal for uncertainty quantification in some

(yet undefined) sense.

8.2 Comparison of uncertainty calibration

Unlike previous works Bartels et al. (2019), Cockayne

et al. (2019) in article Reid et al. (2020) authors focus

on A−norm of error. For this choice it is easy to con-

struct an underestimate for an error ∥x⋆ − xm∥2A using

information, available as a byproduct of Algorithm 2.

Namely, this is done by the following expression (Reid

et al., 2020, 4.1), (Hestenes et al., 1952, Theorem 5:3)

∥x⋆ − xm∥2A − ∥x⋆ − xm+d∥2A =

m+d∑
m+1

γi ∥ri−1∥22 , (30)

from which we conclude that

∥x⋆ − xm∥2A ≥
m+d∑
m+1

γi ∥ri−1∥22 . (31)

The advantage of a posterior covariance matrix defined

by (29) is that to compute it one needs to perform a

few additional iterations of conjugate gradient and store

A−orthogonal directions vi and scales γi ∥ri−1∥22. So

the estimation of Σm is cheap and justified by (31).

However, in our opinion there are several disadvantages.

First, even when ∥ei∥A is small ∥ei∥ can remain large in

the subspace corresponding to small eigenvalues of A.

Second, (31) provides only underestimate, which can be

misleading in case of slow convergence (see Figure 5 for

an example of this behavior for biharmonic equation).

Our approach to uncertainty calibration is based on

Lemma 8 and Algorithm 1 with statistic = S. Algo-

rithm 1 simply perform an additional run of a pro-

jection method (conjugate gradient in this case) for

a known x⋆, and records ∥x⋆ − xm∥2A. This norm is

then used as an estimation for an error with a tar-

get right-hand side b for which x⋆ is unknown. We

will see that this approach leads to more reasonable

S−statistic. The obvious disadvantage is a much higher

cost of uncertainty calibration. However, our approach

can be cheaper in case one needs to solve a set of linear

equation with different right-hand sides and the same

matrix A (Section 9 contain a relevant example).
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9 Numerical experiments

Julia Bezanson et al. (2017) code that reproduces ex-

periments in this section is available at https://github.

com/VLSF/BayesKrylov.

9.1 Comparison with Bartels et al. (2019)

To assess the uncertainty calibration, we compare the-

oretical distributions for test statistics with empirical

probability density functions averaged over many ma-

trices. Note, that unlike S−statistic, Z−statistic for

perfectly calibrated uncertainty does not depend on the

matrix for both point estimation and hierarchical mod-

elling. This makes averaging over A legitimate. Details

of this procedure are summarized in Algorithm 3.

Algorithm 3 UQ assessment.

1: Input: Distributions for matrix p(A); exact solution
p(x⋆); number of search directions m; projection method
V,W ← Proj (A, b,m),; number of samples N ; statistics
p(z)← Stat(e1, . . . , eN ); number of matrices M .

2: Output: test statistic.

3: for i = 1,M do
4: Ai ∼ p(A)
5: for j = 1, N do
6: x⋆

j ∼ p(x⋆)
7: bij = Aix⋆

j

8: Vij ,Wij ← Proj (Ai, bij ,m)

9: x̃ij = Vij

(
WT

ijAiVij

)−1
WT

ijbij

10: eij ← x̃ij − x⋆
j

11: end for
12: end for
13: p(z)← Stat(e11, . . . , eNN )

Details on components of Algorithm 3 are as follows:

p(A): To draw symmetric positive definite matrices A =

UDUT we sample stacked eigenvectors U from uni-

form distribution over O(n), and eigenvalues from

exponential distribution with scale s̃.

p(x⋆): As a distribution of exact solution we take standard

multivariate normal N (·|0, I) as in Cockayne et al.

(2019).

Proj : Two projection processes are used. The first one

with W = V =
(
b̃ Ab̃ · · · Am−1b̃

)
, b̃ = b

/
∥b∥2

is equivalent to conjugate gradient in exact arith-

metic. The second one with W = AV , and V =(
b̃ Ab̃ · · · Am−1b̃

)
, b̃ = b

/
∥b∥2 is equivalent to GM-

RES under the same condition.

Stat : For distribution p(x) = N (x|µ,Σ), rank(Σ) = n−m

test statistic is z = (x− µ)
T
Σ† (x− µ) ∼ χ2

n−m,

and for multivariate Student distribution Stν (µ,Σ),

test statistic is z = (x− µ)
T
Σ† (x− µ) /(n−m) ∼

F (n−m, ν).

In all experiments, the size of the problem is n =

100, the scale is s̃ = 10, number of matrices M = 500,

number of samples is N = 20. We also take G = I,

α = β = 03 in both Lemma 6 and Lemma 7, and use

Algorithm 1 with statistic = Z and k = 1, i.e., a single

additional sample, to calibrate uncertainty. Results of

Lemma 6 and Lemma 7 are used in two regimes. The

first one is point estimation. In this case parameters α̃,

β̃ of inverse-gamma distribution are used to find a mean

value E[s] = β
/
(α− 1), and this mean value is used as

a scale in covariance matrix sP2. As a result, the statis-

tic Z(x) is compared with ∼ χ2
n−m. The second one is

a hierarchical modelling. In this case s is marginalized

(as in second parts of Lemma 6 and Lemma 7) and the

resulting statistic Z(x) is compared with F (n−m, 2α̃).

More precisely, according to Lemma 6 for prior with

covariance matrix s(V V T + P2) and no additional ob-

servations the target distribution is F (n−m, 2α+m) =

F (n −m,m), whereas Lemma 7 implies that for prior

with covariance matrix V V T + sP2 and k additional

observations (see Algorithm 1) we should use F (n −
m, 2α + k(n − m)) = F (n − m, k(n − m)) as a target

distribution.

As a distance between distributions we choose stan-

dard L1 norm d(p1, p2) ≡
∫
dx |p1(x)− p2(x)| approxi-

mated by central Riemann sum. Probability density is

computed with RBF kernel density estimator.

The results are presented in Figure 3 (k = 1 in Al-

gorithm 1) and Figure 4 (k = 1, 5, 25 in Algorithm 1).

From data presented on Figure 3 it follows, that covari-

ance matricesA−1,A−1A−T and s(V V T+P2) (Lemma 6

with Ψ = P2) fail to provide meaningful uncertainty cal-

ibration. The only reasonably tuned variant is given by

covariance V V T +sP2 (Lemma 7), where s is fixed with

additional observation Px. We can also see that the hi-

erarchical modelling is marginally better than the point

estimation. Figure 4 describes how uncertainty calibra-

tion depends on the number of observations k. We can

see that when k increases, the calibration for point es-

timation slightly improves, whereas the increase in k

leads to the degradation of uncertainty calibration for

the hierarchical modelling. Nowhere the convergence to

theoretical distribution is observed when k is increased.

This pathological behaviour supports the discussion in

Section 6, where we state that probabilistic projection

3 Note that the choice α = β = 0 leads to the improper
prior. In the present case the posterior distribution is always
proper, so noninformative prior seems harmless. Moreover, s
is a scale parameter so p(s) ∝ s−1 is a reasonable choice (see
(Gelman et al., 2013, Section 2.8)).

https://github.com/VLSF/BayesKrylov
https://github.com/VLSF/BayesKrylov
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Fig. 3: Figures demonstrate theoretical test statistics and empirical distributions for different prior distributions.

Common legends for each column appear in the first row. The legend provides specifications of covariance matrices.

For example, s
(
V V T + P2

)
refers to posterior described in Lemma 6 with Ψ = P2. The first two columns contain

point estimation and hierarchical modelling for five projection steps. The first row presents results related to the

conjugate gradient method and the second to GMRES. In the last column we show how L1 norm of the difference

between empirical pe and target pt (χ2 or F as explained in Section 9) distributions changes with the number

of projection steps. Perfect uncertainty calibration corresponds to zero value of discrepancy. The worst possible

mismatch corresponds to L1 norm of the error equals two. Overall we can see that the method proposed in Lemma 7

provides a reasonable uncertainty for both projection processes.

methods in they current form are unsuitable for Krylov

subspace methods.

9.2 Comparison with Reid et al. (2020)

In this case, we use Algorithm 1 with statistic = S and

k = 1. Note, that because for large m the effect of

rounding errors is significant, we use conjugate gradi-

ent to compute projection operator P1. If one computes

P1 as in Algorithm 1, it gives an underestimation of er-

ror for large m, because in this case methods based on

projection method (1) converge much faster than the

conjugate gradient as defined in Algorithm 2.

For a given matrix A > 0 we compare uncertainty

calibration as follows. For method described in Reid

et al. (2020) we sample δ from N (·|0, Σm), where Σm

is a posterior covariance matrix (29) and plot l = 100

samples from S−statistic δTAδ for m in regular inter-

vals (each 10 or each 20 iterations). For our approach

we use Algorithm 1 with statistic = S and k = 1, take

E[s] = β̃
/
(α̃ − 1) and sample from E[s]χ2

n−m, which is

equivalent to S−statistic as explained in Lemma 9. Re-

sults for test problems can be found in Figure 5. Over-

all, we can see that our approach leads to much better

uncertainty calibration in all cases. The price for it is

much more expensive uncertainty calibration than the

one adopted in Reid et al. (2020). Results for individual

matrices are discussed below.

We use three positive definite matrices A:

9.2.1 bcsstm07

The first example is a symmetric positive definite n =

420 matrix from SuiteSparse Matrix Collection: https:

//sparse.tamu.edu/HB/bcsstm07.

From the first column of Figure 5 we can conclude

that the method of Reid et al. (2020) leads to underes-

timation for approximately an order of magnitude for

each iteration. Our approach gives almost exact error

estimation in this case.

https://sparse.tamu.edu/HB/bcsstm07
https://sparse.tamu.edu/HB/bcsstm07
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Fig. 4: Figures summarize the dependence of proposed uncertainty calibration (Algorithm 1) on the number of

additional observations k. First row corresponds to results for conjugate gradient iteration and the second row – for

GMRES iteration. The second and the third columns, which contain point estimation and hierarchical modelling,

respectively, share common legends that appeared in the first row. Graphs in these last two columns show how

L1 norm of the difference between empirical pe and target pt (χ2 or F as explained in Section 9) distributions

changes with the number of projection steps for k = 1, 5, 25 additional observations in Algorithm 1. Figures in the

first column allow for visual inspection of empirical and target distributions for Z-statistic. Namely, for CG, we

sketch the probability density function of Z-statistic for point estimation in the first row (the target distribution

is χ2), whereas the second row contains the same quantity but for hierarchical modelling (the target distribution

is F ). We can see that for point estimation, additional observations marginally improve uncertainty calibration,

whereas, for hierarchical modelling, the situation is reversed. We conclude that, first, it makes little sense to use

k > 1 for the chosen family of linear systems. Second, such behaviour clearly indicates that the chosen statistical

model is inadequate for Krylov subspace methods.

9.2.2 Biharmonic equation

For the second test problem we take biharmonic equa-

tion

∂4

∂x4
u(x, y) + 2

∂4

∂x2∂y2
u(x, y) +

∂4

∂y4
u(x, y) = f(x, y),

x, y ∈ [0, 1]
2
, u(x, y)|∂Γ = 0, ∂nu(x, y)|∂Γ = 0,

(32)

here ∂n is a derivative along the normal direction to the

boundary ∂Γ . To discretize this equation, we use cen-

tered second-order finite difference approximation given

by a 13 point stencil

s =


1

2 −8 2

1 −8 20 −8 1

2 −8 2

1

 , (33)

with appropriate modification near the boundary (see

(Tong et al., 1992, Section 4)). Along each direction we

take nx = ny = (27−1) which results in size n = 16129

positive definite matrix.

Results for this equation are in the second column

of Figure 5. The condition number is large and the con-

vergence is extremely slow. As a result, uncertainty cal-

ibration from Reid et al. (2020) is poor. For example

at m = 1200 the exact error norm is about ≃ 10−3,

whereas an estimation is ≃ 10−6. Our statistical uncer-

tainty calibration results in a mild overestimation of the
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Fig. 5: Figures demonstrate exact error eTmAem on iteration m, and samples from S−statistic for three matrices.

First row corresponds to uncertainty calibration proposed in Reid et al. (2020). Second row shows samples from

S−statistic calibrated according to Algorithm 1 with statistic = S. We can see that the statistical uncertainty

calibration proposed in this article leads to better uncertainty in all three cases.

exact error, which is better than the uncertainty from

Reid et al. (2020).

9.2.3 shallow water2

The third example is symmetric positive definite n =

81920 matrix from SuiteSparse matrix collection: https:

//sparse.tamu.edu/MaxPlanck/shallow_water2.

Last column of Figure 5 provides a summary of re-

sults. The convergence is good and for all practical pur-

poses both our approach and the method from Reid

et al. (2020) provide a reasonable estimation of error.

The only difference is that our approach leads to smaller

variance of the test statistic.

9.3 Uncertainty quantification for PDE-constrained

optimization

As a last example we consider an optimal heating prob-

lem. Consider a diffusive heat transfer (Pletcher et al.,

2012, Section 5.1.3) from four point heat sources with

unit heat fluxes in simple geometry

− ∂2T (x, y)

∂x2
− ∂2T (x, y)

∂y2
=

4∑
i=1

δ(x− xi)δ(y − yi),

x, y ∈ Γ ≡ [0, 1]
2
, T (x, y)|∂Γ = 0,

(34)

where xi, yi are located in vertices of the square:

x1 = r cos
(
π
/
4
)
, y1 = r sin

(
π
/
4
)
;

x2 = −r cos
(
π
/
4
)
, y2 = r sin

(
π
/
4
)
;

x3 = −r cos
(
π
/
4
)
, y3 = −r sin

(
π
/
4
)
;

x4 = r cos
(
π
/
4
)
, y4 = −r sin

(
π
/
4
)
.

(35)

We consider the following PDE-constrained optimiza-

tion problem

min
r

∫
dxdy (T (x, y)− Ttarget)

2
s.t. T (x, y) solves (34).

(36)

Physically, the solution to the problem (36) is a distri-

bution of sources that results in a smallest deviation of

temperature field from the target temperature.

We use the finite element method (see Ciarlet (2002)

for introduction) to discretise equation (34). Namely,

we approximate temperature field by finite sum

T̃ (x, y) =

2L−1∑
i=1

2L−1∑
j=1

T̃ijϕ
L
i (x)ϕ

L
j (y), (37)

https://sparse.tamu.edu/MaxPlanck/shallow_water2
https://sparse.tamu.edu/MaxPlanck/shallow_water2
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Fig. 6: Figures demonstrate comparison of exact loss function (40) with an estimation obtained from probabilistic

projection method from Theorem 5 with W = V =
(
b̃ Ab̃ · · · Am−1b̃

)
, b̃ = b

/
∥b∥2 for m = 20, 30, 50. Shaded

region is enclosed by curves µm(r) ± σm(r), where µm(r) is an approximate mean value of L(r) and σm(r)2 is

approximate variance, both estimated using 30 samples from the posterior distribution specified in Theorem 5.

where ϕL
i (x) = ϕL(x−xi), i = 1, . . . , 2L−1 are rescaled

and translated copies of a tent function

ϕL(x) =
(
1 + x

/
2L
)
Ind

[
−1
/
2L ≤ x ≤ 0

]
+

+
(
1− x

/
2L
)
Ind

[
0 < x ≤ 1

/
2L
]
.

(38)

We then enforce the PDE in a weak form (34), i.e., we

apply the same Petrov–Galerkin condition that is in use

for projection methods∫
Γ

dxdy ϕL
i (x)ϕ

L
j (y)

(
− ∂2T̃ (x, y)

∂x2
− ∂2T̃ (x, y)

∂y2

−
4∑

i=1

δ(x− xi)δ(y − yi)

)
= 0.

(39)

Weak form (39) leads to the system of linear equations4∑
k,l AikjlT̃kl = bij that approximate continuous prob-

lem (34). As a discrete counterpart of the continuous

PDE-constrained optimization problem (36) we use the

following

L(r) ≡ 1

(2L − 1)
2

2L−1∑
i,j=1

(
T̃ij(r)− Ttarget

)2
,

min
r

L(r) s.t.
2L−1∑
k,l=1

AikjlT̃kl = bij(r).

(40)

To test the uncertainty calibration, we approximate a

solution of linear system using probabilistic projection

method with W = V =
(
b̃ Ab̃ · · · Am−1b̃

)
, b̃ = b

/
∥b∥2

4 This equation can be rearranged into an ordinary linear
system Ax = b, where A is a matrix with two indices, by the
use of lexicographic order. We do not cover this here in de-
tails, consult https://github.com/VLSF/BayesKrylov for the
implementation.

and sample T̃ from the posterior distribution. This pro-

cedure turns loss function L(r) into a random variable.

The resulting uncertainty and the loss function are

depicted in Figure 6. We take L = 6, so the size of the

matrix is n = 3969, Ttarget = 0.5, and access three ap-

proximate solutions using rank(V ) ≡ m = 20, 30, 50. In

each case we retrieve 30 samples from L(r) and estimate

mean µm(r) and variance σ2
m(r). The shaded region in

Figure 6 lies in-between curves µm(r) ± 5σm(r). Ac-

cording to the Chebyshev inequality it contains a given

sample from L(r) with probability 0.96. In addition to

µm(r) and variance σ2
m(r), Figure 6 contains an “exact”

loss function obtained from (40), where linear system is

solved with LU decomposition. Note, that since for all

r the same linear system is solved, we perform the un-

certainty calibration (using E[s] from Lemma 7) only

once. So, the present example demonstrates that our

uncertainty calibration can be cheaper than the one,

proposed in Reid et al. (2020).

From Figure 6 we can see that the uncertainty cali-

bration is not ideal. For example, in the casem = 30 the

exact value of L(r) is confidently rejected for r ≤ 0.2

and 0.3 ≤ r < 0.5, the same is true for m = 20 for

r ≤ 0.5. Despite this fact, we argue that the present

uncertainty is useful. Observe, that for m = 20 the

largest value σ20(r) resides in the region that corre-

sponds to the smallest value of the exact loss. This

fact can be exploited as follows. A natural way to per-

form a PDE-constrained optimization is to fit a surro-

gate model (Peherstorfer et al., 2018, Section 5), us-

ing multifidelity Gaussian process (see Kennedy and

O’Hagan (2000) for a well-known example of a multifi-

delity model). The most widely used exploration rules

(see (Shahriari et al., 2015, Section IV)) are directly

related to the variance σ(r), which contains σm. To ex-

https://github.com/VLSF/BayesKrylov
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emplify, the well known principle coined “optimism in

the face of uncertainty” (see (Lattimore and Szepesvári,

2020, Section 7.1)) used in the construction of UCB

exploration rules, prescribes to choose the next point

according to argmin (µm(r)− σm(r)). As such, with

the present uncertainty calibration Gaussian process

favours a correct region for the further exploration.

10 Conclusion

In the present work, we solved a problem of vanishing

posterior covariance matrix from Bartels et al. (2019).

Our prior distribution allows for reconstructing the ar-

bitrary projection method and results in a useful com-

putationally inexpensive covariance matrix. We demon-

strate on a set of linear problems that our statistical un-

certainty calibration matches or outperforms the other

existing approaches. As an application we consider a

PDE-constrained optimization problem, for which we

find that uncertainty is reasonable, albeit is not ideal.

We would like to stress that currently no probabilis-

tic projection method (including the one developed in

the current contribution) can rigorously reconstruct re-

alistic Krylov subspace methods. However, a Bayesian

interpretation of a two-grid AMG operator is possible.

Since uncertainty is perfectly calibrated for AMG, it

should be possible to exploit the proposed covariance

matrix to construct an optimal projection operator.
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