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Abstract

We propose a novel discrete method of constructing Gaussian Random Fields (GRF) based on

a combination of modified spectral representations, Fourier and Blob. The method is intended for

Direct Numerical Simulations of the V-Langevin equations. The latter are stereotypical descriptions

of anomalous stochastic transport in various physical systems. From an Eulerian perspective, our

method is designed to exhibit improved convergence rates. From a Lagrangian perspective, our

method offers a pertinent description of particle trajectories in turbulent velocity fields: the exact

Lagrangian invariant laws are well reproduced. From a computational perspective, our method is

twice as fast as standard numerical representations.
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I. INTRODUCTION

Stochastic phenomena are ubiquitous in nature and laboratory, being present in various

sciences: physics and chemistry [1], biology [2], finances [3], social sciences [4], etc. In

particular, physical stochastic processes such as turbulent flows [5], anomalous transport

in fusion plasmas [6, 7], flows through porous media [8], seismic motion [9] are complex

phenomena that are modeled by nonlinear stochastic (partial) differential equations [10].

Most of the theoretical studies [11–14] are based on direct numerical simulations (DNSs) (or

Monte Carlo simulations). Unfortunately, the ensemble statistics for the input processes as

well as for the solutions exhibit slow convergence rates, with fluctuations that decay, usually,

as M−1/2, where M is the dimension of the ensemble (the number of realizations). Thus,

the numerical effort involved in a DNS is a matter of concern, even in the context of the

computing power available nowadays [15].

The Gaussian random fields (GRFs) [16] are input stochastic processes for a large class

of models. A DNS requires the generation of a large ensemble of fields, which represents

an important fraction of the computing time. The topic of GRFs representation is old and

a large amount of constructing techniques are available [9, 17–19]. From all those, by far,

the most employed (especially in the context of DNSs of stochastic transport and trajectory

statistics [6, 10, 11, 20, 21]) is the spectral method of discrete Fourier decomposition [9]

implemented using the fast Fourier transform (FFT) algorithms. This standard method

exhibits some important flaws. Mathematically, the resulting fields and their covariance

functions are periodic, a feature that is not usually required by the statistical model. Com-

putationally, the convergence of the statistical properties is slow. Physically, invariants of

motion may be altered due to in-between grid points interpolation.

The aim of the present study is to derive and to analyze methods of generation of GRFs

having as main criterion the minimization of the computation time. We propose a novel

method (the hybrid Fourier-Blob (FB) representation) that has several advantages compared

to the FFT representation. It strongly improves the convergence rates of the field statistics

without imposing periodicity. These improvements reduce the computation time compared

to the FFT method by as much as an order of magnitude.

The theoretical results are presented in Section II. Starting from general, integral, repre-

sentations of a GRF, we derive discrete variants. They are modified by introducing additional
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random elements, which are expected to improve the convergence. Two particular types of

representations are chosen (Fourier- and Blob-like), which are shown to be canonically con-

jugated.

Section III contains a detailed study of the accuracy of these discrete representations.

Three variants of the Fourier and Blob representation are considered. Their ability to repro-

duce the characteristics of the GRFs is numerically analyzed at two levels. The basic level

consists of a comparison of the results on the standard Eulerian quantities (covariance and

distribution functions). The second level involves the DNS of a special test-particle advection

process: particle stochastic motion in two-dimensional, incompressible, time-independent ve-

locity fields. This is a Hamiltonian process with two Lagrangian invariants. One appears in

each trajectory (local invariant) and the other involves the distribution of the Lagrangian ve-

locity (statistical invariant). They provide strong benchmarks for the numerical simulation

and, implicitly, for the GRF generation method. The results on the diffusion coefficients and

on the distribution of the displacements are also compared. Finally, this detailed analysis

permitted to find the hybrid FB method, which appears as the fastest GRF generator able

to be used in DNS studies of complex stochastic advection processes. The conclusions are

summarized in Section IV.

II. THEORY

We consider a real GRF φ(x) on a d dimensional space φ : Rd → R with zero average

〈φ(x)〉 = 0 and covariance function E(x;y) = 〈φ(x)φ(y)〉, where 〈·〉 is the statistical averag-
ing operation. This field can be generally represented through a set of parametric functions

{F (x; s)} as:

φ(x) =

∫

dsF (x; s)ζ(s) (1)

E(x;y) =
∫

dsF (x; s)F (y; s) (2)

where ζ(s) is an uncorrelated random variable 〈ζ(s)ζ(s′)〉 = δ(s−s′). It can be easily proven

that Eqs. (1), (2) reproduce the correct covariance function E(x;y) while its Gaussian

character is guaranteed by the Central Limit Theorem. Before discussing the nature of the

parametric functions F (x; s) let us address the matter of discreteness.
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It is tempting to pass from the integral representation (1), (2) to a finite and discrete

form in two steps: truncate and discretize the domain of integration. As we shall see, the

operator F (x; s) can be, usually, safely neglected outside some finite domain in the s space

so the truncation is justified. But using a Riemann sum
∫

ds →
∑

s
to approximate the

integrals in Eqs. (1), (2) might not be the best approach (in the sense of errors, smoothness

and convergence).

A. Discrete representations

Let us define in the R
d parametric space {s} an equidistant grid of points {s0} with the

interspacing L, such that each point s0 is centered in the hypercubic domain D(s0) of volume

Ld. Accordingly, the integral over parameters can be broken as:

∫

ds ≡
∑

s0

∫

D(s0)

ds.

Considering that F (x; s) are infinitely differentiable, one can Taylor expand around a

grid point s0

F (x; s) =
∑

n

(s− s0)
n

n!
∇n

s0
F (x; s0),

and the field (1) can be written

φ(x) =
∑

s0

(

∑

n

α̂n

n!
∇n

s0

)

F (x; s0),

where the coefficients

α̂n =

∫

D(0)

dsζ(s)sn

are random with zero average and correlation 〈α̂nα̂m〉 ∝ L2d(L/2)n+m+1/(n + m + 1). In

essence, we pass from an integral (dense) representation (1) to a discrete one by recasting

the dense character in an infinite series of random variables α̂n. In the limit L → 0 we can

cut the series at the first order O(L2) and approximate:

φ(x) ≈
∑

s0

α0F (x; s0 + β) (3)
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where α0 is a Gaussian variable with Ld variance while β a Cauchy distributed variable with

the scale parameter L/
√
12. The representation (3) reproduces the correlation only in an

approximate manner (dependent on the magnitude of L). Also, the density of points

ρ =
∑

s0

〈δ[x− (s0 + β)]〉 (4)

is a periodic fluctuating profile around the average ρ = 1/Ld with roughly ρ/4 amplitude.

We propose a representation of the GRF that has the structure of (3) and eliminates the

above disadvantages:

φ(x) ≈ Ld/2
∑

j

ζjF (x; sj) (5)

where the random variables ζj are uncorrelated 〈ζjζi〉 = δi,j and the points sj are uniformly

random distributed with the average density ρ = 1/Ld.

B. Gaussian convergence

The discrete form (5) reproduces the exact covariance function even in the limit L→ ∞ (a

single term in the sum). The limit L→ 0 (large ρ = 1/Ld) is required in order to achieve the

multivariate Gaussian probability distribution function P ({ϕi}; {xi}) = 〈
∏k

i=1 δ[ϕi−φ(xi)]〉.
Our aim is to maximize the convergence rate towards Gaussian character of the series (5)

at a fixed density. In other words, we look for representations of φ(x) that are ”Gaussian

enough” with a minimal parametric density ρ.

We focus for simplicity further on the one-point PDF P (ϕ;x) = 〈δ[ϕ − φ(x)]〉. The

local rate of convergence for a sum of independent variables is bounded by the Berry-Esseen

theorem [22] as r < Cσ3/σ2. In our case:

σ2
2 =

∑

j

〈|ζjF (x; sj)|2〉

σ3 = max

(〈|ζjF (x; sj)|3〉
〈|ζjF (x; sj)|2〉

)

.

In order to reproduce the exact covariance function, σ2 is constrained to σ2
2 = 1. Thus,

one can maximize r under the constrain σ2 = 1 and obtain through a simple functional
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calculus that the ζj variables must take randomly the ±1 values, i.e. their PDF is

p(ζ) =
1

2
(δ[ζ + 1] + δ[ζ − 1]). (6)

C. Canonically conjugated representations: Fourier & Blob case

The functions F (x; s) (2) are not unique, but are defined up to any unitary transformation

U(x; s):

F ′(x; s) =

∫

ds1F (x; s1)U(s1; s) (7)

δ(s1 − s2) =

∫

dsU(s1; s)U(s2; s), (8)

where F ′(x; s) is solution of Eq. (2). We note that F (x; s) can be interpreted either as an

operator (the ”square root” of the covariance operator E(x;y)) or as a set of parametric

functions which reproduces the correlation.

A particularly important unitary transformation is the Fourier transform U(s1; s) = eis1s

which links two sets of canonically conjugated representations:

F ′(x; s) =

∫

ds1F (x; s1)e
is1s (9)

A particularly important representation is suggested by the relation (2) as scaled eigen-

vectors of the covariance operator F (x; s) =
√

λ(s)ψs(x) where ψs(x) is an eigenvector

and λ(s) its associated eigenvalue
∫

dyE(x;y)ψs(y) = λ(s)ψs(x). This choice yields the

Karhunen-Loeve representation [23].

We consider the case of homogeneous GRFs, E(x;y) ≡ E(x−y). The natural eigenvectors

for a translation invariant operator are plane waves ψk(x) = eikx while the corresponding

eigenvalues λ(k) = S(k) where S(k) is the spectrum, the Fourier transform of the covariance.

Thus, using the Karhune-Loeve decomposition and searching for real-valued fields, we

obtain a Fourier-like parametric function FF . Choosing the transformation U(a;k) = eiak

one gets from FF the ”Blob-function” FB:

ζFF (x;k) ≡
√

S(k)sin(kx+
π

4
ζ)

FB(x; a) =

∫

dk
√

S(k)e−ikxeika ≡ FB(x− a).
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Introducing these functions in the approximative discrete form derived (5) we obtain the

canonically conjugated Fourier and Blob representations

φF (x) ≈ L
d/2
k

Nc
∑

j=1

√

S(kj)sin(kjx+
π

4
ζj) (10)

φB(x) ≈ Ld/2
a

Nc
∑

j=1

ζjFB(x− aj) (11)

which differ from the discrete Fourier decomposition (FFT) or the discrete Moving-

Average methods (MA) [24] through the use of stochastic wave numbers kj, blob positions

aj and fixed phases ζj = ±1.

The series (5) becomes finite if the functions F (x; s) have a compact support in the

parametric space s. Consequently, the number of terms in the sum Nc is roughly the ratio

between the volume of the compact support and the chosen density of parameters ρ.

For the Fourier representation (10) the compact support is the domain in the reciprocal

space {ki} where the spectrum S(ki) has non-negligible values. For the Blob representation

(11) the compact support is the domain in the real space {ai} where the blob function

FB(x− ai) has non-negligible values. Thus, these two methods require a similar number of

terms Nc in the sum in order to calculate a realization of the field in a point x with a given

accuracy.

We note that the usual discrete Fourier decomposition (with fixed grid points) usually

needs larger values of Nc, as demonstrated in the next section.

D. Advantages of the Fourier and Blob representations

The FFT approach is usually considered as one of the fastest construction techniques

for GRFs. It allows one to compute the values of the field φ(x) on a physical, equidistant

grid, of dimension Ng using Ng equidistant wavenumbers, with a numerical complexity

O(Ng logNg). Using the Fourier/Blob methods (10),(11) with random {ki}/{ai} to compute

the values on the same grid requires a computational cost which scales as O(Ng×Nc) where

Nc is the number of parameters considered in the compact support. In general, we expect

logNg ≪ Nc. Even in this context, the proposed methods are particularly tempting because:
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1. The randomness of the parameters improves the convergence rates toward Gaussianity,

such that Nc is required to be only a few times larger than logNg (especially in low

dimensional spaces d = 1, 2).

2. The randomness of the parameters improves the way the parametric space is spanned,

allowing for smooth convergent covariance for any number of terms in the series. FFT

needs dense grids to achieve that.

3. The resulting fields are not spatially periodic.

4. The GRFs have a preserved structure of the equipotential lines (no interpolation

needed for the field values in-between grid points).

The disadvantages are that the random parameters must be generated at every realiza-

tions. The Blob method, requires a supplementary implementation of a nearest neighbor

algorithm. The Blob method might not have always analytical Blob functions.

III. ACCURACY STUDY AND DNS TESTS

The Fourier (10) and Blob (11) representations are tested in the case of a 2D homogeneous

GRF with the covariance

E(x, y) ≡ 〈φ(x′)φ(x′ + x)〉 = exp

(

− x2

2λ2x
− y2

2λ2y

)

, (12)

which yields the associated Blob functions

FB(x, y) =

√

πλxλy
2

exp

(

−x
2

λ2x
− y2

λ2y

)

. (13)

The correlation lengths are chosen λx = 0.3, λy = 0.4. The Fourier’s compact support is a

rectangle in which |ki|λi ≤ 5 which ensures that 99.91% of the spectrum is reproduced. The

Blob’s compact support is a rectangle in which |ai|/λi ≤ 4 which ensure that 99.99% of the

covariance is reproduced.

More precisely, we investigate numerically the effects of the additional stochastic ele-

ments introduced in the representations (10) and (11) and the ability of the simple discrete

distribution (6) to improve the convergence rate. For that, we shall use, further, six meth-

ods of computing the GRF, which are described in Table I. The notation for each type of
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FFC FRC FRD BFC BRC BRD

Method Fourier Fourier Fourier Blob Blob Blob

Parameters Fixed Random Random Fixed Random Random

ζ [0, 8) [0, 8) ±1 Gaussian Gaussian ±1

TABLE I: The numerical representations tested in this Section.

representation consists of three characters: the first letter for the method (Fourier or Blob),

the second for how the parameters are distributed (Fixed or Random) and the third for the

distribution of the random function ζ (Continuous or Discrete distributions).

A. Reproducing the covariance

We construct an ensemble of M = 103 realizations of the GRF φ(x) with the covariance

(12) on a rectangular domain [−π, π] × [−π, π] using all six methods. A small number of

parametric points Nc = 122 in the compact support was chosen for each method. The

fluctuations of the resulting covariance around the exact profile δE(x) = 〈φ(0)φ(x)〉 − E(x)
can be seen in Fig.1. All methods offer similar amplitudes except the FFC method, which,

due to its fixed equidistant grid in the k space has an unphysical periodicity.

The rate of convergence for the error of the covariance function |δE| =
∫

|E(x) −
Eapprox(x)|dx can be seen in Fig. 2 (Nc = 122) as function of M , the ensemble dimen-

sion. One can see that |δE| decays with the increase of M at approximately the same rate

for five of the above methods and that the FFC (standard FFT) has a much weaker conver-

gence at small values of Nc. These five methods are able to reproduce the covariance even at

small values of the number of elements in the sums in Eqs. (10),(11). On the contrary, the

FFC method (standard FFT) offers a poor representation of the covariance function on grids

with low densities of points, in comparison with the other proposed methods. Increasing

Nc, the decay rate of the error increases for the FFC method, but values similar to the other

representation are attained at very large Nc (of the order ∼ 1002). Essentially, the fail is

due to the weak stochastic character of FFC (fixed grid for the wave numbers). We note

that the corresponding fixed grid Blob method (the BFC) gives much better results in spite

of the same weak stochastic character.
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FIG. 1: The error δE(x) of the covariances averaged over ensembles of M = 1000 realiza-

tions with the FFC (a), FRD(b), FRC (c), BFC (d), BRD(e), BRC (f) methods.
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FIG. 2: Evolution of covariance error with the dimension of the ensemble for the FFC (red

square), FRD (green circle), FRC (magenta up-triangle), BFC (blue down triangle), BRD

(orange diamond), BRC (brown star) methods.

Thus, reasonable values of the error of the convolution are obtained with the FFC method

at much larger values of M and/or Nc. The computational time that scales asM×Nc is much

longer for the FFC than for the other five methods (by at least one order of magnitude).

B. Reproducing the Gaussian character

We have generated large ensembles (M = 107) of GRFs with all methods using even

fewer points Nc = 52. In order to test the Gaussianity of the resulting fields, we have

focused mainly on the one-point PDF of the field φ(0). We note that much larger values of

M are necessary in order to reduce the statitical fluctuations in the computed PDFs. The

results are presented in Fig. 3. One can see that the FFC has low quality for the potential

distribution, as for the covariance function (Fig. 1). The corresponding Blob representation

(with fixed grid, BFC) is even worse for P (φ) (see Fig. 3). It is obvious that the use of
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FIG. 3: PDFs of φ(0) obtained with the FFC (red square), FRD (green circle), FRC (ma-

genta up-triangle), BFC (blue down triangle), BRD (orange diamond), BRC (brown star)

methods and a statistical ensemble of M = 107 realizations.

random grids instead of fixed ones is a much better choice also in the matter of Gaussianity.

Moreover, as it has been stated in Section IIB, using discrete distributions ζj = ±1, instead

of distributions with continuous support, offers significant improvements in the profile P (φ):

FRD and BRD are better than FRC and BRC.

Table II quantifies these results computing the first even moments for the PDF of φ(0).

The global error defined as |δP | =
∫

|Pgauss(φ)− Pmethod(φ)|dφ and the 4-point correlation

function E(4) = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 with x1 = (0, 0), x2 = (λx, λy), x3 = (λx/2,−λy/3),
x4 = (−λx/3, λy/2) are also shown. One can see that fixed grids lead to sub-Gaussian

distributions while random grids to over-Gaussian ones (longer tails).

Thus, we have shown that the best choices for the representation of homogeneous GRFs

are based on random grids with ζ = ±1, i.e. on FRD (10) or BRD (11) methods. Further,

by Blob representation we shall refer to BRD while by Fourier to FRD methods in the

remaining part of this paper. Note that the Fourier is slightly better than the Blob method.
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FFC FRC FRD BFC BRC BR1 exact

< φ2 > 1.046 1.002 0.999 1.264 1.001 1.001 1

< φ4 > 2.504 3.424 3.223 3.257 3.976 3.543 3

< φ6 > 8.447 21.32 18.38 11.04 30.83 23.37 15

< φ8 > 35.13 199.82 145.48 44.19 372.89 235.67 105

|δP | 0.167 0.061 0.026 0.309 0.136 0.066 0

E(4) 0.744 1.041 0.948 0.694 0.906 0.850 0.789

TABLE II: Numerical values of the first odd moments of the PDF P (ϕ; 0) for all six

methods considered.

C. DNS of stochastic transport

We have proven until now that the Fourier (10) and Blob (11) representations offer the

best convergence rates from the perspective of their Eulerian properties. Now, we perform

additional tests regarding their Lagrangian abilities in the context of a DNS of a V-Langevin

equation. The following model has been chosen:

dx(t)

dt
= v(x(t)) = êz ×∇φ(x(t)) + Vdêy, (14)

where φ(x) is a GRF and Vdêy is an average velocity. This stochastic equation describes the

dynamics of test particles under electrostatic turbulence in magnetically confined plasmas

[12, 25] or for tracer transport in incompressible turbulent fluids. The stochastic potential

is considered frozen, i.e. the covariance is time independent. The covariance function is (12)

with λx = 1, λy = 2.

We have chosen this transport model because the ensemble of solutions exhibits two

invariants: a ”local” one characteristic to each trajectory and a global one, characteristic to

the entire ensemble. Both are a consequence of the null divergence ∇·v(x) = 0 property and

of the homogeneity of the stochastic field. The equation of motion (14) is of Hamiltonian

type, with φt(x) = φ(x) + Vdx the Hamiltonian function. The latter is invariant in each

realization of the potential φ(x), since the trajectories obtained from Eq. (14) evolve on the

contour lines of φt(x). At Vd = 0, x(t) are closed and have periodic dependence on time,

while at Vd 6= 0 some of the trajectories are opened.
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The second invariant is statistical and involves the Lagrangian velocity v(x(t)). According

to Lumley’s Theorem [5, 26], the statistics of the Lagrangian velocity is identical with the

statistics of the Eulerian velocity, at any time

PL[v(x(t))] = PE[v(x)],

where PL = 〈δ[v − v(x(t))]〉 is the Lagrangian probability and PE = 〈δ[v − v(x)]〉 is the

Eulerian probability. The latter is a space-independent Gaussian function

PE(v) = exp

(

− v2x
2Vxx

− (vy − Vd)
2

2Vyy

)

,

where Vii = 〈vi(0)vi(0)〉 = −∂jjE(x)|x→0 = 1/λ2j .

The existence of the constraints related to these invariants makes the transport process

very complicated, but it also provides strong benchmarks for the numerical simulations.

Regarding the numerical implementation, a second order Runge-Kutta numerical inte-

gration scheme has been used for a time interval of [0, tmax] = [0, 40] with a fixed time step

dt = 0.04. An ensemble ofM = 3×104 trajectories has been resolved. We have implemented

the Fourier (FRD) and Blob (BRD) representations with Nc = 62, 122. Two cases have been

considered: Vd = 0 and Vd = 0.4. A Fourier simulation with Nc waves is denoted by FNc

while a Blob one by BNc where Nc = 36 or 144.

We underline that M, the dimension of the ensemble and (especially) Nc, the number of

random parameters in the series (10), (11), are small compared to the usual values in DNS.

Thus, the DNS can be performed on personal computers, where the typical running times

are rather small, of the order of tCPU ∼ 102s.

First, we have checked that the numerical integration and the use of the generators

(10),(11) of the GRF do not affect the Hamiltonian character of the trajectories. We plot

in Fig. 4 a randomly chosen trajectory for almost 10 times its period. Qualitatively, the

trajectory remains closed. Apart from small oscillations δφ(t)/φ̄ ∼ 10−4, the potential is

perfectly conserved along the represented trajectory. Thus, the combined errors from the

approximation of the field and from the numerical integration remain small.

Second, we test the global invariants by computing the PDF of Lagrangian velocities

PL[v(x(t))] as well as its first moments 〈vji (t)〉, j = 1, 4. Figure 5 shows the components

of this distribution of the Lagrangian velocity at the moment t = 20, compared with the

exact, Gaussian profiles. The results are close to the theoretical distributions, even for the
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FIG. 4: A typical trajectory simulated over 10 periods.
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FIG. 5: Large time t = 20 distribution of velocities. The exact, Gaussian shapes are in

dashed lines.

cases Nc = 36. The statistical fluctuations can be analyzed more clearly in Figure 6 where

the moments 〈vji (t)〉 are shown. On average, the Lagrangian invariance is well reproduced

by both methods, the fluctuations being a consequence of a finite ensemble (M = 3× 104).

The deviations of the average values (for example 〈v̄4y〉 ≈ 3.3 instead of the exact value 3

for B36 method) are a consequence of a finite Nc. As seen in Figure 6, the increase of Nc

approaches the averages to the theoretical values and reduces the statistical fluctuations.

The results are satisfactory even at the small values taken here.

A property of the stochastic transport described by Eq. (14) is that the Gaussian,
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FIG. 6: Time dependence of average Lagrangian velocity moments.

time-invariant Lagrangian velocity does not yield a Gaussian distribution of the trajectories

P (x(t)) = 〈δ[x − x(t)]〉. The latter is a peaked function with long tails [27]. This happens

because of the trajectory trapping or eddying, produced by the invariance of the Lagrangian

potential that ties particle paths on its contour lines [25, 28]. An average velocity opens a

part of trajectories along its direction (êy), but trapped particles still exist [29], as seen in

Fig. 7 for Vd = 0.4.

There are no clear theoretical results on P (x(t)) that could be used as benchmark of

the present DNS. Instead, we compare the results of the four runs commented here. The

probability of the displacements x(t) and y(t) is shown in Fig 7. The only observable
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FIG. 7: Projected trajectory distributions P (x(t)), P (y(t))

difference appears in the distribution P [y(t)] obtained in the F36 run. It underestimates

the average displacement, the spreading of the free trajectories as well as the number of

trapped particles.

The time dependent diffusion coefficients 2Dii(t) = d 〈x2i (t)〉 /dt are presented in Fig. 8.

The decay of Dii at large time is the consequence of trajectory trapping. One can see that

all simulations yield practically the same result at t < 1 and that significant differences

appear at t > 1, especially between the calculations at Nc = 36 and those at Nc = 144. This

figure also shows that the F36 method underestimates the trapping of particles (it yields

a slower decay of Dii at large times t > 2 − 3). The converse is true for the B36 method

which overestimates the trapping by smaller values of Dii at large times. All methods give

a dependence of the diffusion coefficients as D ∝ tγ . For F36 γ ≈ −0.15 while for B36

γ ≈ −0.4. At larger values of Nc, F144 and B144, we can observe how the results and the

slope γ converge towards a common profile with γ ≈ −0.3, in accordance with well known

results [30].

D. The hybrid representations

The results from Fig. 8 with no bias Vd = 0 suggest that there are some intrinsic

pathologies within the Fourier and Blob representations. The first seems to produce very

long (quasi-free) trajectories, while the latter very small, closed and less complex trajec-

tories. The explanation is related to the specific form of the parametric functions of each

representation. Using waves (Fourier) with a small number of terms is more likely to pro-
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FIG. 8: Diffusion coefficients Dii(t) obtained with the methods B36 (red), F36 (blue),

B144 (green), F144 (brown).

duce long equipotential lines (which are, in fact, trajectories). A single plane wave is unable

to produce a closed field line. In contrast, even a single Blob function will generate an

inherently closed trajectory. A small number of Blob functions is unlikely to produce long

equipotential lines.

Also, the Table II suggests that the Blob method reproduces better than the Fourier

method the higher-order correlations (E(4)). The overestimation of these correlations corre-

sponds to smoother fields, which means less complex fields. But a less complex field has less

complex equifieldlines and, consequently, less complex Lagrangian solutions. The overesti-

mation of the correlation in the Fourier representation is natural: the waves are omnipresent,

thus, any two points are ”correlated” through the wave. Only the statistical averaging of

the phases can decouple them.

These shortcomings do not affect the Lagrangian distribution of velocities or the aver-

age velocity of the ensemble, as seen in Figs. 5,6. Their effect is visible in the diffusion
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FIG. 9: The diffusion coefficient Dyy obtained with the Fourier-Blob representation (15)

with Nc = 36 (for both Fourier and Blob terms) compared to the results presented in Fig.

8

coefficients, which show a much stronger dependence on Nc.

These structural properties of the Blob and Fourier methods can be exploited to yield

improved results for the diffusion coefficients without increasing Nc. We propose a hybrid

representation of the GRF that combines the Fourier and Blob methods:

φFB(x) = η1φF (x) + η2φB(x). (15)

with η21 + η22 = 1. We show that the systematic errors of the two methods compensate in

this Fourier-Blob (FB) representation. The results obtained for η1 = η2 = 1/
√
2 using the

Fourier-Blob approach (15) with Nc = 36 are shown in Fig. 9 for the diffusion coefficient

Dyy(t). The resulting profile is very close to the profiles obtained with F144 and B144

simulations at any time.

Finally, it must be emphasized that the hybrid approach enables the possibility of repro-

ducing accurate Lagrangian properties of stochastic transport while requiring roughly half

of the CPU time required by the use of only Fourier or Blob representations. A factor of
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two becomes highly relevant when dealing with more complex covariance functions which

may require apriori a larger number of parametric functions Nc.

IV. SUMMARY AND CONCLUSIONS

The general integral representation of the GRFs (1),(2), contains a parametric function

F (x; s) and an uncorrelated random variable ζ(s). We have derived from Eqs. (1),(2) a set

of discrete representations. They are of Blob and Fourier type, according to the paramet-

ric function that is a space structure FB (x− aj) in the first case and a wave amplitude

structure in the second case FF (x;kj) =
√

S(kj)sin(kjx). Additional stochastic elements

were introduced in both types of representations by considering the points aj and the wave

numbers kj as stochastic parameters with uniform distributions. The random variable ζ

was taken with discrete (ζ = ±1) support.

Six representations of the GRF, defined in Table I, were analyzed to prove that our

proposal Fourier (FRD) and Blob (BRD) me provide a better convergence of the Eulerian

properties than other standard representations.We have shown that reasonable errors in the

covariance and in the PDF of the potential are obtained at much smaller values of Nc andM

than in the usual Fourier representation (FFC). This leads to the decrease of the computing

times by at least one order of magnitude compared to the usual FFC method.

The convergence of the Lagrangian properties of these two methods were further analyzed

in the frame of the DNS of a special type of stochastic transport described by a V-Langevin

equation in two-dimensional, time-independent velocity fields with zero divergence. The

invariance of the Lagrangian potential in each realization and the statistical invariance of

the Lagrangian velocity provide benchmarks for the validation of the numerical results. We

have shown that simulations with both Fourier and Blob methods satisfy these constraints

with good precision for Nc & 100 and M & 104. The main difference between these repre-

sentations appear in their ability to describe the effects of trajectory trapping or eddying on

the contour lines of the potential.

The Fourier (FRD) results underestimate while the Blob (BRD) method overestimates

the effects of trapping on the diffusion coefficients. These systematic errors were strongly

reduced by a hybrid representation which combines linearly the Fourier and Blob series in

a single Fourier-Blob method. The result is a representation able to decrease the value of

20



Nc required for a certain accuracy and such to reduce the calculation time by a factor 2

compared to the BRD and FRD.

In conclusions, we have strongly improved the representation of the GRFs by introducing

additional random elements. We have shown that the hybrid Fourier-Blob method (15)

provides a fast tool that can be used in the numerical studies of complex stochastic advection

processes. This opens the possibility of performing such studied on personal computers. For

the case analyzed here, typical running times are of the order of 102s or even less for the

hybrid representation.
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