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Abstract

We discuss a generalisation of the approximate optimal experimental
design problem, in which the weight of each regression point needs to stay
in a closed interval. We work with Kiefer’s optimality criteria which in-
clude the well-known D- and A-optimality as special cases. We propose
a first-order algorithm for the generalised problem that redistributes the
weights of two regression points in each iteration. We develop a branch-
and-bound algorithm for exact optimal experimental design problems un-
der Kiefer’s criteria where the subproblems in the search tree are equiva-
lent to the generalized approximate design problem, and therefore, can be
solved efficiently by the first-order method. We observe that our branch-
and-bound algorithm is favourable to a popular exchange heuristic for cer-
tain problem instances.

1 The Exact Optimal Design Problem

We consider the following linear model

y = xT (t)θ + ε(t), (1)

where components of xT (t) = (x1(t), x1(t), . . . , xn(t)) are n linearly independent
continuous functions on some compact space and θ ∈ Rn is a vector of unknown
parameters to be estimated. We assume that observations are conducted inde-
pendently and the error terms ε(t) follow a multivariate distribution with mean
0 and standard deviation σ. Without loss of generality, we work with the fol-
lowing model function

y = xT θ + ε, (2)

in which the dependency of the vector x(t) on the actual experimental condi-
tions t is suppressed. We suppose that m regression points that span Rn are
already selected and denote this set as X := {x1, . . . , xm} ⊂ R

n.
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Definition 1.1 An experimental design of size N is given by a finite number of
regression points x1, . . . , xm in Rn and nonnegative integers (representing the number
of repetitions at each respective point) n1, . . . , nm such that

∑m
i=1 ni = N. The support of

an experimental design is the set of regression points on which at least one experiment
is conducted, i.e., xi is in the support if ni > 0.

The Exact Optimal Experimental Design problem aims to find integers ni so
that the information matrix, defined as M := N

σ2

∑m
i=1

ni
N xixT

i , is maximized with re-
spect to an information criterion. The most common approach is to use Kiefer’s
Φp criteria (see [19]), which uses the pth matrix mean of the information matrix,
defined over the cone of positive definite matrices as follows:

Φp(C) =


λmax(C) for p = ∞,(

1
n TraceCp

)1/p
for p , 0,±∞,

(det C)1/n for p = 0,
λmin(C) for p = −∞.

Well studied examples of Kiefer’s criteria are: (1) Φ0(M) = det(M) (D-optimality);
(2) Φ−1(M) = (Trace(M−1))−1 (A-optimality); (3) Φ−∞(M) = λmin(M) (E-optimality).
Note that the information matrix is the inverse of the dispersion matrix which
is a generalized measure of the variance (or the error) of the least squares esti-
mators of the model parameter θ. Therefore, maximizing an information crite-
rion is equivalent to minimizing a function of the estimation error of the linear
model built on the data of the experiment. Information matrices play a central
role in experimental design and estimation in general. The use of matrix means
is advantageous since they satisfy the necessary conditions to be an informa-
tion function. They map information matrices to nonnegative real numbers,
they are positively homogenous, superadditive, nonconstant, and upper semi-
continuous. The pth matrix mean of an information matrix and its derivative
can be calculated efficiently for a given design. In addition, for most common
values of p, they can be updated efficiently if a new experiment is added or
the weights of a few of the experiments in a design are changed after an initial
design is calculated.

Let us define ui := ni
N and M(u) :=

∑m
i=1 uixixT

i , then the following integer
nonlinear program can be used to calculate an exact optimal experimental design
with Kiefer’s Φp criteria:

max gp(u) := ln Φp(M(u))
s.t.

∑m
i=1 ui = 1,

ui ≥ 0, ∀i,
uiN ∈ Z, ∀i.

(3)

Problem (3) has mostly been studied for the D-criterion, while the interest
in solving the exact design problem for other criteria has been quite limited.
In particular, the exact D-optimal experimental design problem is shown to be
NP-hard in [37]. Recently, [24] has shown that A-optimal experimental design
is also NP-hard. To the authors’ knowledge, there are two main approaches to
solve this problem exactly:
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1. Branch-and-Bound Algorithms: The first B&B procedure was devised in
[38] for the D-criterion and [18] has proposed a similar procedure for a
generalization of the D-criterion.

2. Commercial Solvers: It is recently demonstrated in [27] that Problem (3)
can be represented as a Mixed Integer Second Order Conic Program for
p = 0 and p = −1, and therefore, can be solved by commercial MISOCP
solvers.

On contrast to the exact methods, the methods listed below aim to find near-
optimal feasible solutions to Problem (3). Someo f the inexact methods rely
on solving a relaxation of the problem, namely the Approximate Optimal Ex-
perimental Design problem, where integrality constraints are omitted. As its
integer restriction, the relaxed design problem is also extensively studied for
the D-criterion, while a smaller number of studies focus on the A-criterion (See
[1, 5, 7, 12, 17, 39, 41] for D-optimality and [2, 17] for A-optimality.)

1. Rounding fractional solutions: Once an optimal design for the relaxed
problem is found, the number of experiments at each design point can
be rounded to the closest integer. Unfortunately, this will not necessarily
lead to an exact design with N experiments, and the solutions need to be
modified accordingly, which may be done in a number of heuristic ways.
One can refer to Page 157 in [12], Chapter 12 in [25] or [32] for a valuable
discussion on how to come up with an exact experimental design for a
finite sample size once the optimal design for an infinite sample size is
found. A more sophisticated and efficient procedure is provided in [26].

2. Heuristics: Exchange heuristics in which an exact design is improved by
exchanging the weights of two design points is commonly used in the
literature. There are several variants of such methods (e.g., [4, 11, 12, 22,
23]) depending on how the points of exchange are determined, while the
KL-exchange algorithm of [4] is particularly popular. These methods can
be used to improve the solutions obtained by other inexact methods or
used on their own. Recently, several metaheuristics have also been used
for both the approximate and exact experimental design problems. (See
[15] and the references therein for a recent survey of such methods.)

3. Quadratic Approximations: Integer programming methods based on the
quadratic approximation of the design criterion in the neighbourhood of
the optimal approximate information matrix is proposed in [16] for p = 0
and improved and extended to general integer p including p = 0 and
p = −1 in [14] . These methods are well suited for large problem instances
of the problem and advantegous over the rounding algorithms discussed
above as demonstrated in [14]. They are especially useful if there are
linear constraints on the design weights.

4. Approximation Algorithms: For p = 0, a series of approximation al-
gorithms based on various convex relaxations of the problem have re-
cently been proposed in [8], [6] [36], [3], [29], and finally [21] proved
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that a simple local search algorithm (known as the Fedorov Exchange
method) finds an ε-approximate solution for N ≥ n + n

ε
. These approx-

imation algorithms also work for p = −1. In addition, [24] provided an
ε-approximation for N ≥ (1+ε)(n−1)

ε
. This paper also shows that finding a

constant approximation when N = n is NP-hard.

In common settings where experimental design is heavily used, such as
clinical trials in medicine, the cost of each experiment is high, therefore, the
number of actual experiments that will be conducted is moderate. This makes
the assumption N → +∞ used in approximate design undesirable. Interest-
ingly, the experimental design community, even those who collaborate closely
with medical research groups, seem to use the inexact designs mentioned above
with the belief that exact methods are out of reach for all but the smallest prob-
lem instances. We will demonstrate in the computational studies below that
although inexact methods are necessary for large scale problems, they can and
should be replaced by an exact method for smaller sized problems.

The main goal of this paper is to describe a Branch-and-Bound procedure
for the Exact Optimal Experimental Design Problem given in (3) for any p
and demonstrate how to implement it efficiently to decrease the number of
branches explored in the search tree and also to decrease the solution time of
each subproblem by an efficient first-order algorithm that makes use of the
information calculated at the parent notes. We will demonstrate that this cus-
tomized branch and bound procedure beats the exchange heuristics for certain
instances of the problem.

Our work is related to several papers some of which are introduced in the
discussion above. Here we would like to highlight the contributions in this
paper compared to these existing work.

1. First, we develop a branch-and-bound algorithm that has a different branch-
ing strategy than those in [18] and [35]. These papers build a search tree
by conditioning on the value of a given variable, i.e., each subtree con-
siders solutions where a set of variables are fixed already. In particular,
subproblems that are used in the later study are instances of approxi-
mate optimal design problems in which only a subset of design points
are considered, the weights of the rest of the design points are either 0 or
1/N as these points have already been used to branch-on. In contrast, we
build a general non-binary search tree. Each subproblem is constructed
by adding a lower and upper bound on the weight of a chosen design
point. Therefore it is equal to an approximate optimal design problem
with bounds on the design weights. The structure of the search tree and
the subproblems in our framework are instead similar to those used in
[38]. Nevertheless, we solve the subproblems more efficiently as we dis-
cuss in detail in the next section.

2. Our methods apply to exact experimental design problems with Kiefer’s
Φp criteria in general; while existing literature consider a few integer val-
ues of p such as 0 and -1. In particular, our framework can be applied
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to any value of p even though obvious sacrifices are needed in compu-
tational effort for p < {0,−1}. We argue that these neglected values are
useful in situations where robustness of the design with respect to differ-
ent criteria is desired. For example, an optimal design with p for some
value of p ∈ (−1, 0) may provide a good a trade-off between D-optimal or
A-optimal designs.

3. The approximation algorithms with explicit guarantees as well as meth-
ods based on quadratic approximations mentioned above work well for
large values of N, i.e., when the number of experiments is large compared
to the number of parameters in the model. The branch-and-algorithm
will still be very expensive in these situations; nevertheless in common
applications, such as clinical research, the number of experiments that
can be afforded is more modest and within the reach of the branch-and-
bound algorithm given in this paper. These ‘medium-size’ instances are
still too large for the commercial integer programming solvers and bene-
fit from our customized treatment.

4. Although various extensions and generalizations of the D-optimal ap-
proximate design problem have been studied in the literature, according
to our current knowledge, the box-constrained approximate design problem
with Kiefer’s Φp criteria proposed and solved in Section 3 is not studied
in detail before. In particular, the box-constrained problem is a spe-
cial case of experimental design problems with linear constraints stud-
ied in [9, 10, 27] and theory and solution techniques developed in these
references apply here. Similarly, although there are related results in
[13, 33, 34, 35], the equivalence theorem for this specific version of the
problem (see Theorem 3.1 below) is novel and will be useful in future
studies, potentially for different applications.

In Section 2, we will present the main steps of the B&B algorithm and in-
troduce the subproblems to be solved in each branch of the tree. The subprob-
lems correspond to a generalization of the Approximate Optimal Experimen-
tal Design in which the weights of the design points belong to a given inter-
val. We will call this problem as the box-constrained approximate design problem
(with Kiefer’s Φp criteria). In Section 3, we study the generalized approximate
design problem by introducing its dual and the necessary and sufficient op-
timality conditions that must be satisfied at its optimal solution. An efficient
algorithm to solve this problem will be provided in Section 4, where we will
also demonstrate how this algorithm can be tailored for specific criteria, es-
pecially for p = 0 and p = −1. We will discuss how to implement the B&B
algorithm efficiently in Section 5 and provide computational results in Section
6. We close by concluding remarks and further research questions in Section 7.
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Figure 1: B&B search tree

2 A Branch and Bound Algorithm for Φp criteria

As usual in B&B algorithms for maximization problems, we start with calcu-
lating a lower bound on the optimal value. A feasible solution, and therefore a
lower bound, can be obtained by any of the inexact methods mentioned above.
It is very important to start with a good lower bound since this dictates the
number of branches explored in the tree. We will present the algorithm of our
choice in Section 5. Once we have a lower bound, we start searching for a bet-
ter solution using a search tree (an example is given in Figure 1). At node 0, we
solve the relaxation of Problem (3) for the given p to obtain its optimal solution,
say u0. If u0N is not integer, we choose an index j such that u0

j N is fractional and

create two subproblems (Nodes 1 and 2 in Figure 1) by adding either u j ≥
bu jNc

N

(Node 1) or u j ≤
du jNe

N (Node 2) as an additional constraint to the approximate
design problem in Node 0. We refer Node 0 as the parent node of Nodes 1 and
2. Next we solve one of the subproblems, say Node 1, to obtain its optimal
solution, say u1. If the objective function at u1 is less than or equal to the lower
bound, we stop investigating this branch as there cannot be a better solution
in the subtree below Node 1. We refer to this as fathoming. Otherwise, there
are two options. First, u1N may be integral. In this case, we update the lower
bound since the objective function at u1 is greater than the current lower bound,
and fathom the branch. Second, when u1N is fractional, we choose an index k
such that u1

k N is fractional and branch the problem further using index k. This
creates two new subproblems (Nodes 3 and 4 in Figure 1) to be explored at a
later stage. We continue our search on the tree in this manner until all branches
are fathomed, i.e., all subproblems are investigated.
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At each node of the search tree, we solve the following box-constrained ap-
proximate design problem with Keifer’s Φp criteria,

max gp(u) := ln Φp(M(u))
s.t.

∑m
i=1 ui = 1,

αi ≤ ui ≤ βi, ∀i,
(4)

where α ≤ β ∈ [0, 1]m. For p = 0 or p = −1, this problem can be solved effi-
ciently when αi = 0 and βi = 1, for all i, by one of the methods in [1], [2] , [17],
[41]. For other values of α and β, the first order-methods presented in these
papers would fail since they all exploit the fact that the solution lies in the unit
simplex and therefore cannot deal with linear constraints even though they
are very simple. Although conic formulations can be adapted to include lin-
ear constraints, we will solve the subproblems by a first-order method which
is tailored to our specific needs, since solving the conic formulations is signif-
icantly more expensive than our approach as discussed in Section 6.2 below.
We will study the subproblem in detail in the next section before we present
the first-order method in Section 4.

3 The Box-Constrained Approximate Design Prob-
lem with Kiefer’s Φp Criteria

Let q be the conjugate of p, i.e., p, q ∈ (−∞, 1] and pq = p + q, and consider also
the following problem:

min fq(H) = − ln Φq(H)
s.t. xT

i Hxi + λi − λ̄i = n + λTα − λ̄Tβ, ∀i,
λi, λ̄i ≥ 0, ∀i,

H � 0,

(5)

where α ∈ Rm and β ∈ Rm are given lower and upper bounds on the weights of
design points and λ ∈ Rm and λ̄ ∈ Rm are auxilary variables whose meaning will
be apparent in the proof of the following theorem. This theorem will prove that
problems (4) and (5) are dual to each other, and therefore solving one to opti-
mality provides a solution for the other. This is a generalization of the known
primal-dual relationship between the approximate D-optimal experimental de-
sign and the minimum volume enclosing ellipsoid (MVEE) problem. (See [28]
for an early discussion of duality of these problems with D-criterion and [2] for
Kiefer’s criteria in general.) This relationship has been exploited many times
in the optimization literature as some of the most efficient methods to solve
the MVEE problem rely on solving its dual via first-order algorithms such as
in [1, 20, 31].
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Theorem 3.1 We have f (H) ≥ g(u) for any u and (H, λ, λ̄) feasible for (4) and (5), re-
spectively. Furthermore, the following conditions together with feasibility w.r.t. prob-
lem constraints are both necessary and sufficient for optimality of u and (H, λ, λ̄) for
(4) and (5), respectively.

1. H = n
Trace(M(u))p (M(u))p−1;

2a. if i ∈ A, then ωi(u) ≤ n∗, or equivalently, λi = n∗ − ωi(u) and λ̄i = 0,

2b. if i ∈ B, then ωi(u) ≥ n∗, or equivalently, λi = 0 and λ̄i = ωi(u) − n∗,

2c. otherwise, ωi(u) = n∗, or equivalently, λi = 0 and λ̄i = 0,

where ωi(u) = xT
i Hxi, A = {i|ui = αi}, B = {i|ui = βi}, and n∗ := n+

∑
i∈B βiωi−

∑
i∈A αiωi

1−
∑

i∈A αi+
∑

i∈B βi
.

Proof: For any feasible u and (H, λ, λ̄), we have

m∑
i=1

ui(xT
i Hxi + λi − λ̄i) = n + λTα − λ̄Tβ

m∑
i=1

ui(xT
i Hxi) = n −

m∑
i=1

λ̄i(βi − ui) −
m∑

i=1

(λi(ui − αi)

Tr(HM(u)) ≤ n. (6)

This, together with an application of the Hölder’s inequality (on the eigenval-
ues of the matrices at hand, see [25] for a detailed proof), proves weak duality:

fq(H) − gp(u) = − ln Φq(H) − ln Φp(M(u))
= − ln(Φq(H)Φp(M(u)))

≥ − ln
(

1
n

Trace(HM(u))
)

(7)

≥ − ln 1 = 0. (8)

Inequalities (7) and (8) hold as equality when the conditions (1, 2a-c) given in
the theorem are satisfied. This proves sufficiency, necessity follows from the
KKT conditions for (5). �

Note that for p = 0, αi = 0 and βi = 1, for all i, (4) and (5) reduce to the
approximate D-optimal design problem and the Minimum Volume Enclosing
Ellipsoid problem, respectively. The duality of these problems together with
necessary and sufficient conditions for optimality have already been estab-
lished for D-optimality as well as under the more general Kiefer’s optimality
criteria. (See [1], [2], and [25] for details.) Similar to these results, the optimal
solution H∗ for the dual problem (5) also correspond to an ellipsoid centered at
the origin. This ellipsoid covers all design points whose weights are lower than
their upper bounds, while the design points whose weights are set to their up-
per bounds may lie outside of the ellipsoid. The design points whose weights
lie between the lower and upper bounds (referred to as the critical points and
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l6

l8

l16

l18

Figure 2: Optimal solution of a problem with p = q = 0 in R2.

marked with blue in Figure 2) lie on the surface of an ellipsoid whose shape
matrix is proportional to the optimal dual solution H∗. Note that the ellip-
soidal distance of the critical points is equal to n∗ that is a function of the opti-
mal primal solution u∗. Theorem 3.1 will play an important role in developing
a first-order algorithm below, as it provides the necessary criteria to stop the
algorithm.

4 A First-Order Algorithm for the Box-Constrained
Approximate Design Problem

We now propose a simple iterative procedure that solves Problem (4). The out-
line of the algorithm is presented in Algorithm 4.1. Note that the input of the
algorithm is not necessarily a feasible point, and therefore, the first step is to
find a feasible point. Since the feasible region is the intersection of two convex
sets, the unit simplex and the hyperrectangle defined by the box constraints,
a feasible point can be found by the alternative projections method where so-
lutions are projected onto these two sets alternatively until a feasible solution
is obtained. After an initial feasible solution is found, Algorithm 4.1 preserves
primal feasibility in each iteration by updating the current iterate, say u, as
follows:

u+ = u + θe j − θek, (9)

where j, k represent two distinct indices whose design weights are to be re-
spectively increased and decreased by an amount θ and e j and ek are the jth

and kth unit vectors, respectively. Note that this leads a 2-rank update of the
information matrix, i.e.,

M(u+) = M(u) + θx jxT
j − θxk xT

k . (10)

Therefore, we will be able to update the objective function and its gradient in
an efficient way. The following lemma will be useful in choosing the indices
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j and k so that the iterative algorithm improves the objective function in each
iteration.

Lemma 4.1 Let u be a feasible solution and also j ∈ arg max{ωi : ui < βi} and k ∈
arg min{ωi : ui > αi}. If ω j ≤ ωk, then u is optimal. Otherwise, d = e j − ek is a feasible
ascent direction, i.e., gp(u+) > gp(u).

Proof: Assume that ω j ≤ ωk. Case 1: {i : αi < ui < βi} , ∅, then we have

ωk = min{ωi : αi < ui ≤ βi} ≤ min{ωi : αi < ui < βi}

≤ max{ωi : αi < ui < βi} ≤ max{ωi : αi ≤ ui < βi} = ω j.

This, together with ω j ≤ ωk, implies that ω j = ωk and therefore all inequalities
must be equalities and conditions (1, 2a-c) in Theorem 3.1 must hold. Case 2:
{i : αi < ui < βi} = ∅. In this case, since ω j ≤ ωk, we can always find an n∗, which
would satisfy the conditions (1, 2a-b) in Theorem 3.1 and Condition (2c) is void.
Therefore, whenever ω j ≤ ωk, we can conclude that u is optimal. Otherwise,
since ∇gp(u)T d = ω j −ωk > 0, u j < β j and uk > αk, d is a feasible ascent direction.
Hence, we can always find a positive θ such that gp(u+) > gp(u). �

In each iteration, we solve the following single variable maximization prob-
lem to determine the opimal step size θ∗:

maxθ gp(u + θe j − θek)
s.t. 0 ≤ θ ≤ β j − u j,

0 ≤ θ ≤ uk − αk.
(11)

For some values of p, this problem is easier to deal with as we will discuss
shortly below. For general p, we can apply a simple line search or Armijo’s
rule to determine the step size. In either case, the algorithm is guaranteed to
converge to the optimal solution. After the step size is chosen, we update u
as in (9) and the gradient ω(u), and check if the following optimality criterion
is satisfied: ω j

ωk
− 1 ≤ tol, where tol is a given small positive number. Note

that when tol = 0, this condition guarantees ω j ≤ ωk, and therefore, optimality
of the current iterate, but we stop once a predetermined level of accuracy is
achieved. When p = 0 and there are no constraints on the design weights, i.e.,
αi = 0 and βi = 1, for all i, then Algorithm 4.1 is similar to the vertex-exchange
algorithm of [7].

Algorithm 4.1
Require: X, u0, α, β, tol

Calculate u, the projection of u0 onto the feasible set {α ≤ u ≤ β,
∑

ui = 1}.
Calculate M(u) and ω(u).
Find j := arg max{ωi : ui < βi} and k := arg min{ωi : ui > αi}.
while ω j

ωk
− 1 > tol do

Replace u by u+ in (9), where θ∗ is the maximizer for Problem (11).
Update M(u) and ω(u).

end while
return u and g(u).

10



4.1 D-optimality

Let us assume that p = 0, in this case we have ωi = xT
i M(u)−1xi. Let also ω jk =

xT
j M(u)−1xk. The change in the objective value can be expressed as a function

of θ by an application of the matrix determinant lemma and the Woodbury
Sherman Morrison Identity for matrix inverses:

det(M(u+)) = det
(
M(u) + θx jxT

j − θxk xT
k

)
= det

(
M(u) + θx jxT

j

)(
1 − θxk(M(u) + θx jxT

j )−1xk

)
= det(M(u)) + (1 + θxT

j M(u)−1x j) . . .

. . .
(
1 − θxk(M−1(u) −

θ

1 + θxT
j M(u)−1x j

M(u)−1x jxT
j M(u)−1)xk

)
= det(M(u)) + (1 + θω j)

(
1 − θxk

(
M−1(u) −

θ

1 + θω j
M(u)−1x jxT

j M(u)−1
)
xk

)
= det(M(u)) + (1 + θω j)

(
1 − θωk +

θ2

1 + θω j
ω2

jk

)
= det(M(u)) + (1 + θω j)(1 − θωk) + θ2ω2

jk,

which gives

g(u+) = g(u) + ln
(
θ2(ω2

jk − ω jωk
)

+ θ(ω j − ωk) + 1
)
.

Hence, we can find the optimal solution θ∗ for Problem (11) exactly as fol-
lows:

θ∗ =

min{β j − u j, uk − αk}, if ω2
jk = ω jωk,

min{β j − u j, uk − αk, θ̄}, if ω2
jk < ω jωk,

where θ̄ =
ω j − ωk

2(ω jωk − ω
2
jk)

.

It is easy to see that θ∗ is the optimal solution. There are two cases: First,
we may have ω2

jk = ω jωk, then the objective function of (11) is an increasing
linear function, and therefore θ∗ = min{β j − u j, uk − αk} is the optimal solution.
Else, a simple application of Cauchy-Schwarz gives ω2

jk ≤ ω jωk, and hence
the objective function is a negative quadratic with root θ̄. Since the problem
constraints limit θ to min{β j − u j, uk − αk}, the maximizer is θ∗.

4.2 A-optimality

Although, it is more complicated than the D-criterion, we can also derive an
expression for the objective function when p = −1. First let E = M(u) + θx jxT

j ,

11



then Woodbury Sherman Morrison Identity for matrix inverse gives

E−1 = M(u)−1 −
θM(u)−1x jxT

j M(u)−1

1 + θxT
j M(u)−1x j

= M(u)−1 −
θ

1 + θω j
M(u)−1x jxT

j M(u)−1,

and Trace(E−1) = Trace(M(u)−1) − θζ j

1+θω j
where ζi = xT

i M(u)−2xi. Let also ζ jk =

xT
j M(u)−2xk. We can now calculate the objective function at the next iterate as a

function of θ as follows:

Trace(M(u+)−1) = Trace(A−1) +
θ

1 − θxT
k E−1xk

Trace(E−1xk xT
k E−1)

= Trace(A−1) −
θA + θ2B

1 + θC − θ2D
,

where A := ζ j − ζk, B := 2ω jkζ jk − ω jζk − ωkζ j, C := ω j − ωk and D := ω jωk − ω
2
jk.

Now we have closed form expression for g(u+) and can calculate the optimal
value of θ for which g(u+) is maximized as follows (see Proposition 1 in [17]):

θ∗ =


min{max{− B+

√
B2−A∆
∆

, u j}, uk}, if ∆ , 0,
min{max{− A

2B , u j}, uk}, if ∆ = 0 and B , 0,
uk, if ∆ = B = 0 and A > 0,

where ∆ := AD + BC.

5 Implementation of the B&B algorithm

We believe that the success of the algorithm depends on a number of choices
made during its implementation. We list below the most important ones ac-
cording to our practical experience. Items 2 and 3 below are commonly used
for branch and bound procedures and known to be effective.

1. Initial lower bound on the objective function: Any of the inexact methods
listed in Section 1 can be used to find a feasible design, and hence a lower
bound, for the exact design problem (3). We use a simple rounding up
procedure as follows: Solve the relaxed problem to obtain the optimal
approximate design say ũ. If Nũ is not integer, round each component Nũ j

to the closest integer. If the total number of experiments is less than N, i.e.,
N

∑
j ũ j < N, add one experiment to the design point in the support of ũ

with the least number of experiments; if the total number of experiments
is more than N, i.e., N

∑
j ũ j > N, take away one experiment from the

design point with most number of experiments. Repeat the process until
the total number of experiments is exactly N.
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2. Choice of indices to branch: We chose the index of the variable to branch
on according to the most fractional variable rule, i.e., we branch on the vari-
able with fractional part closest to 0.5. (Note that for variable u j the frac-
tional part is defined as min{u jN − bu jNc, du jNe − u jN}.)

3. Order of the subproblems to be solved: We maintain a priority queue
on the subproblems to be solved, where the subproblems are sorted in
descending objective function values of their parent nodes. By doing so,
we hope to solve ‘more promising’ subproblems first and are able to ‘cut
the tail of the queue’ whenever a new lower bound is obtained.

4. Fast calculation of step-sizes and gradients (while solving the subprob-
lems): In our opinion, the two key advantages of the first-order algorithm
for the subproblem are the availability of a fast update for the gradient
of the new iterate and the analytical formulae available for the optimal
step size for the most important p values (i.e., for D-optimality and A-
optimality). In particular, the calculation of the gradient and the step size
in each iteration of the algorithm requires the current values of ω jk(u) and
ζ jk(u). The most efficient efficient way of calculating these quantities is to
update the Cholesky factors of M(u)−1 and M(u)−2 from their previous
values, respectively. Since each iterate is a rank-2 update of the previ-
ous one, we employ two rank-1 updates in a row to update these factors
efficiently.

5. Information stored for each parent node and inherited by its descendants:
The solution at the parent node is stored and used as an initial point for
the subproblems branching from the parent. These initial points are in-
feasible but they are very close to the feasible region. Since the feasible
region of each subproblem is the intersection of the unit simplex with a
hyperrectangle, we use the alternating projections method to project the
infeasible solution onto the feasible region of the subproblem.

6 Computational Results

6.1 Experimental Setup

All experiments described in the rest of this section were carried out on a In-
tel(R) Xeon(R) W-2012 2.90GHz processor with 16 GB RAM using MATLAB
version R2019b. We have used the following two methods to generate our
datasets.

First-degree linear regression with randomly generated regressors: First,
we consider a simple first-degree linear regression model as follows:

E(y) =

n∑
j=1

θ jx j,
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and generate a set of random regression points following the experiments in
[1, 30]. We refer to these as the SFrandom data sets. These sets are generated
by mixing points from several independent Gaussian distributions, in order to
mimic the data points from one or more clusters as might be encountered in
practice. We use these to study the performance of the first-order algorithm
(Algorithm 4.1) discussed in Section 4. These data sets are usually more chal-
lenging (for the approximate design problem) than the model based data sets
used in statistics literature. Therefore, they are especially useful for bench-
marking algorithms for the approximate D- and A- optimal designs as well as
their generalization discussed in this paper.

Second-order response surface in f factors: We assume the model as in:

E(y) = θ0 +

f∑
j=1

θ jx j +

f−1∑
j=1

f∑
k= j+1

θ jk x jxk +

f∑
j=1

θ j jx2
j ,

and generate regressors from a 3 f factorial design, i.e., we let x j ∈ {−1, 0, 1} for
each j.

6.2 Performance of the First-Order Algorithm

In this section, we show that solving Problem (4) with the first-order method
given in Algorithm 4.1 is faster than solving the corresponding Second-Order
Conic Program following the formulation given in [27] and Semidefinite Pro-
gramming formulation of the problem using CVX calling the SDPT3 solver
using default parameters. The CPU times required by the three methods are
given in Table 1 when regressors generated from the second-order response
surface model in 2-7 factors for p = 0 (labelled as D-optimal) and p = −1 (la-
beled as A-optimal). The lower and upper bounds were generated randomly in
(1/4m, 0.5) and (0.5, 1), respectively, and only feasible instances were used in the
experiments. We set ε = 10−6 for the first-order algorithm to obtain solutions
with at least the same level of accuracy with the SDP solver. Note that the num-
ber of regression points to be considered in such a factorial design (denoted by
m as usual) increases exponentially as the number of factors f increase, there-
fore we are able to solve only upto f = 7 with the SDP solver. On the other
hand, the first-order algorithm can tackle larger number of factors. Similarly,
average CPU times for the two algorithms for SFrandom sets are given in Ta-
ble 2, where each row corresponds to the average of 10 random instances of
the given size. Both SOCP and SDP formulations are only available for some
of the criteria and are slower than the first-order method developed here, nev-
ertheless they have the advantage of being able to include any type of linear
constraints in the model formulation. If the constraints are only lower and up-
per bounds on the design weights such as the subproblems in the branch and
bound procedure discussed in this manuscript, then the first-order method is
applicable and has an obvious advantage.
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D-optimal A-optimal
f n m First-Order SOCP SDP First-Order SOCP SDP
2 6 9 0.006 0.3 1.4 0.005 0.2 1.3
3 10 27 0.003 0.5 1.7 0.01 0.3 1.4
4 15 81 0.018 0.7 2.1 0.03 0.8 2.9
5 21 253 0.2 1.3 4.5 0.2 3.4 16.8
6 28 729 0.5 3.1 13.6 0.9 63.4 256.8
7 36 2187 1.9 16.2 90.1 3.3 98.2 ≥ 3600

Table 1: CPU times (in seconds)to solve Problem (4) with Algorithm 4.1 versus SDPT3 for
Response Surface Models with f factors and 3 factorial design.

D-optimal A-optimal
n m First-Order SOCP SDP First-Order SOCP SDP
5 100 0.005 0.5 1.9 0.02 0.4 1.9
5 150 0.02 0.4 1.6 0.01 0.4 1.8
5 200 0.02 0.6 1.8 0.01 0.3 1.7

10 100 0.006 0.5 1.4 0.002 0.6 2.0
10 150 0.01 0.7 1.8 0.007 0.6 2.8
10 200 0.01 0.7 1.8 0.02 0.9 3.4
15 100 0.005 0.9 2.1 0.02 0.9 3.9
15 150 0.01 0.9 2.3 0.01 1.2 5.6
15 200 0.02 1.2 2.9 0.03 1.9 8.2
20 100 0.01 2.9 3.5 0.01 3.1 11.5
20 150 0.03 3.5 4.7 0.03 4.3 15.9
20 200 0.0172 4.8 5.1 0.05 7.6 23.8

Table 2: CPU times (in seconds) to solve Problem (4) with Algorithm 4.1 versus SDPT3 for
SFrandom data sets.

6.3 Performance of the B&B Algorithm

In this section, we compare the performance of the B&B algorithm with the
KL-exchange algorithm of [4]. There are multiple versions of the exchange al-
gorithm, we provide the details of the version we have coded in Algorithm
6.1. We denote maxL and minK as the set functions that return the L largest and
K smallest values in a list of numbers, respectively. We set L = m/4, K = n,
num trials = 5000 and num exchanges = 200. This means that the heuristic starts
at 5000 different solutions and for each start it performs at most 200 exchanges
as long as exchanging the weights of two points improves the objective func-
tion. We have chosen the “greedy” implementation that choses the two points
which maximize the objective function value among the candidate pairs which
are the L design points that have the maximum variance and K design points
that have the lowest variance and non-zero weights. The choices of the pa-
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rameters and which exchanges are chosen affect the run time of the heuristic
significantly as expected. However, the conclusions we draw here are mostly
unaffected by these changes.

Algorithm 6.1
Require: X,N,K, L, num trials, num exchanges

gKL = −∞

for trials=1:num trails do
Generate u randomly. (Uniformly sample N integers with replacement from the
set {1, . . . ,m} and assign 1/N weight to each of these points.)
exchanges = 0, opt2ex = 0
while exchanges < num exchanges and opt2ex = 0 do

Calculate ω(u) and g(u).
Find S L := arg maxL{ωi} and S K := arg minK{ωi : ui > 0}.
Find {l, k} := arg maxk∈S K ,l∈S L {|(1 − wk))(1 + wl + wkl)|}.
Calculate u+ as in (9), where θ = 1/N.
Update ω(u+) and g(u+).
if g(u+) < g(u) then

Set opt2ex = 1
else

u = u+, g(u) = g(u+), and exchanges + +

end if
end while
if g(u) > gKL then

uKL = u, gKL = g(u)
end if

end for
return uKL, gKL

We have generated 100 SFrandom datasets for several dimensions (combi-
nations of (n,m,N)) and report the min, mean, and max of CPU times required
to solve these instances in Table 3. By construction, the B&B method always
finds the optimal solution, while the KL-exchange algorithm doesn’t always
find the optimal solution. The penultimate column of the table stores the num-
ber instances among 100 that were not solved to optimality by the heuristic;
while the last column shows the minimum D-efficiency of the designs obtained
by the heuristic. We have repeated the same experiment for the response sur-
face models with f = 2 and f = 3 for various values of N. In all such exper-
iments the KL heuristic has found the optimal solution, but in slightly more
time than the branch and bound method. The computational results show that
the KL heuristic is very reliable, nevertheless when the size permits, the branch
and bound algorithm is capable of finding the exact solution in less amount of
time.
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B&B KL-exchange
n m N min mean max min mean max min D-eff #solved
3 25 8 0.0007 0.005 0.05 0.6 0.7 0.9 0.96 93
3 50 10 0.0001 0.005 0.01 0.8 0.9 2.5 0.97 87
3 75 12 0.0002 0.004 0.01 1.1 1.2 1.4 0.96 93
3 100 15 0.0002 0.005 0.02 1.4 1.7 2.1 0.98 91
5 25 8 0.007 0.01 0.03 0.7 0.8 0.9 0.99 98
5 50 10 0.0009 0.02 0.05 1.07 1.2 1.4 0.98 96
5 75 12 0.008 0.02 0.1 1.3 1.4 1.5 0.97 94
5 100 15 0.006 0.03 0.2 1.5 1.7 2.7 0.96 91

10 25 15 0.02 0.08 0.3 1.1 1.2 1.4 0.97 89
10 50 20 0.04 0.4 2.6 1.5 5.9 4.4 0.97 85

Table 3: CPU times (in seconds) to solve Problem (3) with the Branch-and-Bound algorithm
versus the KL-exchange algorithm for SFrandom data sets.

7 Conclusions

We have provided a branch-and-bound algorithm for the exact Optimal Ex-
perimental Design problem which can be implemented for any of the Kiefer’s
optimality criteria. The algorithm is fast when the problem size is moderate
and should be used instead of the inexact methods that (with the exception of
[26]) don’t have optimality guarantees.
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[2] S. D. Ahipaşaoğlu, A First-Order Algorithm for the A-Optimal Experimen-
tal Design Problem: A Mathematical Programming Approach, Statistics and
Computing, 25, 1113–1127 (2015)

[3] Z. Allen-Zhu and Y. Li and A. Singh and Y. Wang, Near-optimal design
of experiments via regret minimization. Proceedings of Machine Learning
Research, 126–135 (2017)

[4] A. C. Atkinson and A. N. Donev and R. D. Tobias, Optimum Experimental
Designs, with SAS, Oxford University Press, Oxford (1992)

[5] C. L. Atwood, Sequences converging to D-optimal designs of experiments,
The Annals of Statistics, 1(2), 342–352 (1973)

17



[6] H. Avron and C. Boutsidis, Faster subset selection for matrices and applica-
tions. SIAM Journal on Matrix Analysis and Applications, 34(4), 1464–1499
(2013)
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