
Sequential Changepoint Detection in Neural Networks with
Checkpoints

Michalis K. Titsias
DeepMind

mtitsias@google.com

Jakub Sygnowski
DeepMind

sygi@google.com

Yutian Chen
DeepMind

yutianc@google.com

Abstract

We introduce a framework for online changepoint detec-
tion and simultaneous model learning which is applicable to
highly parametrized models, such as deep neural networks.
It is based on detecting changepoints across time by se-
quentially performing generalized likelihood ratio tests that
require only evaluations of simple prediction score func-
tions. This procedure makes use of checkpoints, consisting
of early versions of the actual model parameters, that al-
low to detect distributional changes by performing predic-
tions on future data. We define an algorithm that bounds the
Type I error in the sequential testing procedure. We demon-
strate the efficiency of our method in challenging continual
learning applications with unknown task changepoints, and
show improved performance compared to online Bayesian
changepoint detection.

1 Introduction

Online changepoint detection is concerned with the prob-
lem of sequential detection of distributional changes in data
streams, as soon as such changes occur. It can have nu-
merous applications ranging from statistical process con-
trol, e.g. financial times series and medical conditioning
monitoring (Hawkins et al., 2003; Bansal and Zhou, 2002;
Aminikhanghahi and Cook, 2017; Truong et al., 2018),
to problems in machine learning which can involve train-
ing very complex and highly parametrized models from
a sequence of learning tasks (Ring, 1994; Robins, 1995;
Schmidhuber, 2013; Kirkpatrick et al., 2017). In this lat-
ter application, referred to as continual learning, it is of-
ten desirable to train online from a stream of observations a
complex neural network and simultaneously detect change-
points that quantify when a task change occurs.

However, current algorithms for simultaneous online
learning and changepoint detection are not well suited for
models such as neural networks that can have millions
of adjustable parameters. For instance, while state of
the art Bayesian online changepoint detection algorithms
have been developed (Fearnhead, 2006; Fearnhead and

Liu, 2007; Adams and MacKay, 2007; Caron et al., 2012;
Yildirim et al., 2013), such techniques can be computation-
ally too expensive to use along with neural networks. This
is because they are based on Bayesian inference procedures
that require selecting suitable priors for all model param-
eters and they rely on applying accurate online Bayesian
inference which is generally intractable, unless the model
has a simple conjugate form. For instance, the popu-
lar techniques in Fearnhead and Liu (2007); Adams and
MacKay (2007) are tested in simple Bayesian conjugate
models where exact integration over the parameters is feasi-
ble. Clearly, such Bayesian computations are intractable or
very expensive for highly non-linear models such as neural
networks, which can contain millions of parameters.

In this article, we wish to develop a framework for joint
sequential changepoint detection and online model fitting,
that could be easily applied to arbitrary systems and it will
be particularly suited for highly parametrized models such
as neural networks. The key idea we introduce is to se-
quentially perform statistical hypothesis testing by evalu-
ating predictive scores under cached model checkpoints.
Such checkpoints are periodically-updated copies of the
model parameters and they are used to detect distributional
changes by performing predictions on future/unseen data
(relative to the checkpoint), i.e. on data observed after a
checkpoint and up to present time. An illustration of the
approach is given by Fig. 1, while detailed description of
the method is given in Section 3 and Algorithm 1. In statis-
tical testing for change detection we use generalized like-
lihood ratio tests (Csorgo and Horváth, 1997; Jandhyala
et al., 2002) where we bound the Type I error (false pos-
itive detection error) during the sequential testing process.
The overall algorithm is easy to use and it requires by the
user to specify two main hypeparameters: the desired bound
on the Type I error and the testing window size between a
checkpoint and the present time.

We demonstrate the efficiency of our method on time se-
ries as well as on continual learning of neural networks from
a sequence of supervised tasks with unknown task change-
points. For these challenging continual learning problems
we also consider a strong baseline for comparison, by us-
ing a variant of the Bayesian online changepoint detec-

1

ar
X

iv
:2

01
0.

03
05

3v
1 

 [
cs

.L
G

] 
 6

 O
ct

 2
02

0



tt-T

! !"t-T

t+ Dt-T+ D

"t-T+D

"t-T-D

t- Dt-T- D

(a) (b)

Figure 1: (a) Visualization of Algorithm 1. Model checkpoints are cached parameters stored (and deleted) periodically
every D = T − 2α time steps: θt−T−D,θt−T ,θt−T+D. Every D steps (e.g. t −D, t, t +D) the checkpoint that lags T
iterations performs the statistical test. E.g. given current time t the active checkpoint is θt−T (see highlighted magenta
segment) which tests for a changepoint in the region (t − T +α, t −α] where α is the minimum sample size in each
segment; see Section 3.2. (b) An example in a time series dataset (black dots) where the model is a moving average
parameter shown by the blue line and the checkpoints are cached values of the moving average indicated by the coloured
circles.

tion algorithm by Adams and MacKay (2007) that is eas-
ily applicable to complex models. This is done by applying
the Bayesian algorithm on data that correspond to predic-
tive scores provided by the neural network during online
training. Our proposed method consistently outperforms
this and others baselines (see Section 6), which shows that
model checkpoints provide an easy to use and simultane-
ously effective technique for changepoint detection in on-
line learning of complex models.

The paper is organized as follows. Section 2 introduces
the problem of changepoint detection and online model
learning. Section 3 develops our framework for change-
point detection using checkpoints and Section 4 consid-
ers applications to continual learning with neural networks.
Section 5 discusses related work, while Section 6 provides
numerical experimental results and comparisons with other
methods. The Appendix contains further details about the
method and additional experimental results.

2 Problem Setup

2.1 Streaming Data with Unknown Change-
points

We consider the online learning problem with unknown
changepoints in a stream of observations {yt}t≥0. Each
yt includes an input vector and possibly additional outputs
such as a class label or a real-valued response. For instance,
in a supervised learning setting each observation takes the
form yt ≡ (xt ,ct) where xt is the input vector and ct the de-
sired response such as a class label, while in unsupervised
learning yt is an input vector alone, i.e. yt ≡ xt . In addition,
for many applications, e.g. in deep learning (LeCun et al.,

2015), yt can be a small set or mini-batch of individual i.i.d.
observations, i.e. yt = {yi

t}b
i=1, that are received simultane-

ously at time t.
In the generation process of {yt}t≥0 we assume that there

exist certain times, referred to as changepoints and denoted
by {τk}k=1,2,..., that result in abrupt changes in data distri-

bution so that yt∈[0,τ1)
iid∼P1,yt∈[τ1,τ2)

iid∼P2 and in general

yt∈[τk−1,τk)
iid∼Pk, k = 1,2, . . . (1)

where Pk−1 6= Pk and with the convention τ0 = 0. Each
Pk is the segment or task-specific distribution that gener-
ates the k-th data segment. These assumptions are often
referred to as partial exchangeability or the product parti-
tion model (Barry and Hartigan, 1992). To learn from such
data we wish to devise schemes that can adapt online a
parametrized model without knowing the changepoints τk
and the distributions Pk. Accurate sequential detection of
changepoints can be useful since, knowing them, the learn-
ing system can dynamically decide to switch to a different
parametric model or add new parameters to a shared model
and etc. In Section 3, we introduce a general online learn-
ing and changepoint detection algorithm suitable for arbi-
trary models ranging from simple single-parameter models
to complex deep networks having millions of parameters.

2.2 Online Model Learning with Change-
points

We consider a probabilistic model p(y|θ) with parameters
θ that we wish to train online and simultaneously use it to
detect the next changepoint τk. Online training of θ means
that for each observation yt we perform, for instance, a gra-

2



dient update

θt ← θt−1−ρt∇`(yt ;θt−1), (2)

where ρt is the step size or learning rate. Given the non-
stationarity of the learning problem this sequence should
not satisfy the Robbins-Monro conditions (Robbins and
Monro, 1951) and, for instance, ρt could be constant
through time. The loss function in Eq. (2) is typically the
negative log-likelihood function, i.e.

`(yt ;θt−1) =− log p(yt |θt−1)

and θt denotes the parameter values after having seen t ob-
servations including the most recent yt . We will refer to the
evaluations of the loss `(yt ′ ,θt−T ), or any other score func-
tion v(yt ′ ,θt−T ) on any future data yt ′ (relative to θt−T ), with
t ′ > t−T , as prediction scores. Notice that given yt ′s have
been drawn i.i.d. from the same data segment, the prediction
scores are also i.i.d. random variables.

Suppose at time t the data segment or task is k and we
observe yt , t ≥ τk−1 where τk−1 is the most recently de-
tected changepoint, i.e. when the k-th task started as shown
in Eq. (1). If we decide that data yt comes from a new task
k+ 1, we could set τk = t, instantiate a new model with a
fresh set of parameters θ (k+1) and repeat the process. All
these models could have completely separate parameters,
i.e. θ (k)∩θ (k′) = /0,∀k 6= k′ or allow parameter sharing, i.e.
θ (k)∩θ (k′) 6= /0, as further discussed in Section 4 where we
describe applications to continual learning.

3 Changepoint Detection with
Checkpoints

Throughout this Section we will be interested to detect the
next changepoint τk. Thus, to simplify notation we will
drop index k and write this changepoint as τ and the cur-
rent parameters as θ when it does not cause confusion. We
will also assume that the previously detected changepoint is
at time zero.

The iterative procedure for changepoint detection with
checkpoints is illustrated in Fig. 1. This algorithm assumes
that together with the current parameter values θt we cache
in memory one or multiple copies of early values of the pa-
rameters referred to as model checkpoints or simply check-
points. Checkpoints are cached and deleted periodically
and statistical testing for changepoint detection is also per-
formed periodically. When at iteration t, where model pa-
rameters are θt , we need to perform a changepoint detection
test the algorithm activates the checkpoint θt−T , that has
been cached T iterations before. This checkpoint forms pre-
dictions on all subsequent data (not seen by the checkpoint)
in order to detect a change in the data distribution that pos-
sibly occurs in the data segment in (t−T, t]. Pseudo-code
of the algorithm is provided in Algorithm 1.

In the remaining of this Section we will be discussing in
detail how Algorithm 1 works. Some useful summarizing
remarks to keep in mind are the following. The algorithm
caches checkpoints every D = T − 2α iterations with the
first checkpoint cached at t = 0. T is the window size, D
is the stride and α > 0 is the minimum sample size when
computing the testing statistics. The first testing occurs at
time t = T , i.e. when the data buffer Bt becomes full and
the first cached checkpoint used is the initial parameter val-
ues θ0. This constrains also the minimum size of the data
segment (i.e. the distance between two consecutive change-
points) to be T . After the first test, testing occurs every D
iterations and given that each checkpoint is deleted after a
test the number of checkpoints in memory is roughly T/D.

3.1 Offline Changepoint Detection in a Win-
dow

Suppose a sliding window of observations yt ′ , t−T < t ′ ≤ t
(recall that yt ′ can generally be a set or mini-batch of b i.i.d.
individual observations) of size T , i.e. all data observed
strictly after the model checkpoint θt−T . Given a scalar pre-
diction score function:

v(yt ′ ,θt−T ) =
1
b

b

∑
i=1

v(yi
t ′ ,θt−T ),

or vt ′ for short, we consider the offline changepoint detec-
tion problem in the interval (t−T, t] with the independent
and normal distribution assumption:

Assumption 1. vt ′ ∼N (µt ′ ,σ
2
t ′ ) independently for all t ′.

We consider the following hypothesis testing problem
with unknown change time, mean and variance:

• H0 : ∃µ,σ2 s.t. µt ′ = µ,σ2
t ′ = σ2,∀t ′ ∈ (t−T, t].

• H1 : ∃τ ∈ (t−T +α, t−α],µ1,σ
2
1 ,µ2,σ

2
2 s.t.

µt ′ = µ1,σ
2
t ′ = σ2

1 , ∀t ′ ∈ (t−T,τ),
µt ′ = µ2,σ

2
t ′ = σ2

2 , ∀t ′ ∈ [τ, t],

where α ∈ (0,T/2) is the minimum sample size in each seg-
ment of H1 for estimating the mean and variance. Using a
model checkpoint and applying the testing on predictions is
important to satisfy the independent assumption on scores.

Following the generalized likelihood ratio (GLR) test, we
denote by Λτ the likelihood ratio of the two hypotheses at
a changepoint of τ with the unknown variables taking the
maximum likelihood estimates,

Λτ =

sup
µ,σ2

p(v(t−T,t]|µ,σ2)

sup
µ1,σ

2
1

p(v(t−T,τ)|µ1,σ2
1 ) sup

µ2,σ
2
2

p(v[τ,t]|µ2,σ2
2 )

, (3)

3



and compute the statistics as follows:

Z = max
τ∈(t−T+α,t−α]

(−2logΛτ)

= max
τ∈(t−T+α,t−α]

{
T logS(v(t−T,t])

− (τ− t +T −1) logS(v(t−T,τ))

− (t− τ +1) logS(v[τ,t])
}
, (4)

where S is the sample variance, v(t−T,τ) denotes the set of
all values vt ′ , t−T < t ′ < τ , v[τ,t] the values vt ′ ,τ ≤ t ′ ≤ t
and v(t−T,t] their union.

Asymptotic distribution of the statistics Z as T → ∞ has
been well studied in the literature for the normal distribu-
tion of vt ′ (Csorgo and Horváth, 1997; Jandhyala et al.,
2002). For a finite window size T , we can also compute
the critical region, Z > h(δ ) at a given confidence level
1− δ numerically; see the Appendix. When the null hy-
pothesis is rejected, we claim there is a changepoint in the
current window (t − T, t], and the changepoint is selected
with τ = argmaxτ ′(−2logΛτ ′).

It is important to note that the alternative hypothesis H1
is not a complement of the null, and we consider the candi-
date changepoint τ in a subset (t−T +α, t−α]⊂ (t−T, t]
for reliable estimate of sample mean and variance. This
means that when a true changepoint exists in the right bor-
der [t−α + 1, t], it might cause a rejection and show up in
the nearest location on the subset, i.e. t−α , which subse-
quently could increase the error of the changepoint location
estimation. To reduce this effect we can compute Λτ in the
extended subset (t−T +α, t−α +1], and do not reject H0
if Z <−2logΛt−α+1 (Z is still taken in (t−T +α, t−α]).
Notice that there are α samples in the right side when
t ′ = t−α +1, satisfying our requirement for the minimum
sample size.

We repeat the offline detection using a sliding window of
size T with a stride D = T − 2α . This ensures that every
time location will be included in the candidate subset for
exactly one test. An illustration of this is shown in Fig. 1
where the green border is precisely the location t −α + 1
in the extended subset, which is ignored if the maximum
occurs there, but it could be accepted in the next iteration
where the green location becomes the first location in the
new subset. Similarly, the possibility that a changepoint
occurs in the left border (t−T, t−T +α] can be detected
in a previous window.

3.2 Online Changepoint Detection across
Windows

As the interval between two changepoints spans over multi-
ple test windows, we would like to control the overall error
δ of making a false rejection of the null hypothesis, that is
making a false claiming that data distribution changes, in
every data segment. Since the model checkpoints change at

Algorithm 1 Changepoint detection with checkpoints
Procedure: changepoint detection(θ0,α,T,δ ,η ,update step)
Input: Initial parameters θ0, minimal sample size α , win-
dow size T , error schedule parameters {δ ,η}, optimization step
function update step
Output: Changepoint location τ∗, model parameter θ

Initialize: test region size D = T − 2α , test index i = 0, time
step t = 0, data buffer B0 = /0.
for t = 1,2, . . . do

Receive mini-batch yt , update data buffer Bt = {yt ′ :
max(0, t−T )< t ′ ≤ t}
θt = update step(θt−1,yt)
if t mod D = 0 then cache checkpoint θt
if t = iD+T then

Compute scores with cached checkpoint θt−T :
vt ′ ≡ v(yt ′ ,θt−T ), t−T < t ′ ≤ t

δi = (1−η)η iδ

(reject,τ∗) = offline detection(v(t−T,t],α,δi)
if reject then

return (τ∗,θt)
end if
i← i+1, delete checkpoint θt−T

end if
end for

Algorithm 2 Offline changepoint detection
Subroutine: offline detection(v,α,δ )
Input: Scores v(t−T,t], minimal sample size α , error δ

Output: Boolean reject, candidate location τ∗

Compute the threshold h = quantile(1−δ )
for t ′ = t−T +α +1, . . . , t−α +1 do

Compute Λt ′ using Eq. (3)
end for
Compute Z using (4), τ∗ = argmax

t−T+α<τ≤t−α

(−2logΛτ )

reject = Z > h and Z >−2logΛt−α+1
return reject,τ∗

every test window, it is difficult to apply a standard sequen-
tial likelihood ratio test across windows. Instead, we select
the confidence level with an annealing schedule so that the
overall error is bounded:

δi = (1−η)η i
δ , (5)

where δi is the confidence level for the i-th (0-based) test
window after a new task is detected and η is the decaying
rate.

Proposition 1. Given Assumption 1 holds, the probabil-
ity of making a Type I error (false changepoint detection)
by Algorithm 1 between two real changepoints is upper
bounded by δ .

Proof. Let y1,y2, . . . ,yN be the segment of data stream with
the same distribution P where N is the time of last mini-
batch of data, yN = {yi

N}b
i=1. Offline change point detection

is conducted in windows (0,T ], (D,T +D], (2D,T + 2D],

4



. . . , (nD,T + nD] before a changepoint occurs, where n is
the maximum integer with T +nD≤ N. Under Assumption
1, the probability of rejecting the null hypothesis at the i-th
testing window with input error argument δi is

Pr(rejecti)≤ Pr(Z > h(δi)) = δi, (6)

where the first inequality is due to the possibility to ig-
nore the rejection when Z ≤−2logΛt−α+1, and the second
equality follows the definition of h in Algorithm 2 as the
1−δ quantile.

The probability that the null hypothesis is rejected in at
least one testing window is then upper bounded with the
union bound by

Pr(∪n
i=0{rejecti})≤

n

∑
i=0

Pr(rejecti) =
n

∑
i=0

δi

=
n

∑
i=0

(1−η)η i
δ < δ . (7)

The time complexity of running Algorithm 1 on a datas-
tream of length t is O(tbT/D) where b is the mini-batch size
and D = T −2α is the stride of the sliding window, and the
space complexity for storing the checkpoint and data buffer
is O(T/DSm +T bSy) where Sm and Sy denotes the size of a
model checkpoint and a data point.

3.3 Setting the Hyperparameters and Predic-
tion Scores

There are a few hyperparameters in our proposed algorithm,
including the window size T , minimum sample size in a
window α , Type I error δ , and the error decaying factor η .

A large window size provides more data for every offline
detection and usually leads to a higher accuracy. However,
the space complexity increases linearly as the window size
in order to keep a data buffer of size T , and it has to be up-
per bounded by our prior assumption on the minimum dis-
tance between two consecutive changepoints. Also, when
the score function v(yt ′ ,θt−T ) requires a good model fit in
order to be discriminative between tasks, a smaller win-
dow size can be beneficial at the beginning of a new task
because it would update the model checkpoint more fre-
quently and thereby improve the discriminative power in
detecting a changepoint more quickly. We study the effect
of T empirically in our experiments.

A sufficiently large minimum sample size α is important
to obtain reliable estimate of the sample variance and stabi-
lize the distribution of the statistics Z. But too large value
in α reduces the range of candidate locations and decreases
the power in a single offline detection test. Also, because
the sliding window has a stride of D = T − 2α , the time
complexity increases with α . In our experiments, we use a

default value α = bT/4c, giving D≈ T/2. Notice that with
such default settings only two checkpoints are needed to be
kept in memory (since T/D = 2) resulting in small memory
cost.

Given a total Type I error δ , the decaying factor η con-
trols the exponential distribution of the error across win-
dows with mean D/ log(1/η). In principle, we would like
the mass of the error to be distributed in the support of
our prior about the changepoint frequency. In lack of this
knowledge, we use η = 0.99 in all the experiments.

The prediction score function v(yt ′ ,θt−T ) must be dis-
criminative with respect to data streams from different
tasks. When the model parameter θt is well fitted to the cur-
rent task, a properly chosen score function is usually sensi-
tive to the change of the task. Nevertheless, we emphasize
that being fitted to the current task is not a necessary con-
dition for our changepoint detection method to work. As
demonstrated in the example of Section 6.1, our algorithm
in some cases can detect the changepoints robustly regard-
less of the learning rate in the update rule in Eq. (2) that
affects how well the model is fitted to the data.

A key assumption about our detection algorithm is the
normal distribution of the score function defined on every
mini-batch of data. In experiments with continuous obser-
vations we use the average negative log-likelihood as score
vt ′ = 1/b∑

b
i=1− log p(yi

t ′ |θt−T )), and in experiments with
discrete observations, we find it works better by applying
another logarithm operation as

vt ′ = 1/b
b

∑
i=1

log(− logPr(yi
t ′ |θt−T )+ ε),

where ε > 0 is a small jittering term for numerical stabil-
ity. Fig. 2 shows typical histograms of scores in a testing
window from our continual learning experiments with real-
world data; see Section 6. We also apply the D’Agostino
and Pearson’s normality test (d’Agostino Ralph B, 1971;
D’Agostino and Pearson, 1973) on a sample of 100 scores
in this setting and show the p-value in the caption of each
plot. It is clear that the normality improves with a larger
size b of mini-batch due to the central limit theorem, and
the distribution of scores in the log-domain is closer to a
normal distribution. We show in the experiments that the
performance of our detection improves significantly with
the mini-batch size.

4 Application to Continual Learning
To test our method on a challenging online model fitting
and changepoint detection problem we consider continual
learning (CL) (Ring, 1994; Robins, 1995; Schmidhuber,
2013; Goodfellow et al., 2013), which requires training
neural networks on a sequence of tasks. Many recent CL
methods, see e.g. (Kirkpatrick et al., 2017; Nguyen et al.,

5



0 1 2 3 4 5 6 7 8
Score

0

50

100

150

200

250

300

350

400

Hi
st

og
ra

m

(a) Batch size = 10, p-value = 0.002.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Score

0

50

100

150

200

250

300

Hi
st

og
ra

m

(b) Batch size = 50, p-value = 0.001.

0.5 1.0 1.5 2.0 2.5 3.0
Score

0

50

100

150

200

250

300

350

Hi
st

og
ra

m

(c) Batch size = 100, p-value = 0.32.

15.0 12.5 10.0 7.5 5.0 2.5 0.0
Score

0

50

100

150

200

250

300

350

Hi
st

og
ra

m

(d) Batch size = 10, p-value = 0.42.

10 8 6 4 2
Score

0

50

100

150

200

250

300

350

Hi
st

og
ra

m

(e) Batch size = 50, p-value = 0.93.

8 7 6 5 4 3
Score

0

50

100

150

200

250

300

350

Hi
st

og
ra

m

(f) Batch size = 100, p-value = 0.29.

Figure 2: Typical histogram of scores in the Split-MNIST experiment when no changepoint occurs. Top row use the score
of the mean negative log-likelihood, and bottom row applies another logarithm transformation. The mini-batch size from
left to right is 10, 50 and 100 respectively. p-value of the normality test based on 100 samples is shown in the subfigure
caption.

2017; Rusu et al., 2016; Li and Hoiem, 2017; Farquhar and
Gal, 2018), typically assume known task changepoints, also
called task boundaries. Instead, here we wish to train a CL
method without knowing the task boundaries and investi-
gate whether we can accurately detect the changepoint lo-
cations that quantify when the data distribution is chang-
ing from one task to the next. The sequential learning
and changepoint detection Algorithm 1 can be easily in-
corporated to existent CL algorithms, since the essential
component of the algorithm is the prediction score func-
tion v(·) used in hypothesis testing. In the following, we
combine our algorithm with a standard experience replay
CL method (Robins, 1995; Robins and McCallum, 1998;
Lopez-Paz et al., 2017; Rebuffi et al., 2017), which regular-
izes stochastic gradient descent model training for the cur-
rent task by replaying a small subset of observations from
previous tasks, as detailed next.

As the main structure for the CL model we consider a
feature vector φ(x;θ s) ∈ RM , obtained by a neural net-
work with parameters θ s, where these parameters are shared
across all tasks. For each detected k-th task there is a set of
task-specific or private parameters θ p,k, which are added
dynamically into the model each time our algorithm returns
a detected changepoint indicating the beginning of a new
task. In the experiments, we consider CL problems where
each task is a binary or multi-class classification problem,
so that each θ p,k is a different head, i.e. a set of final output
parameters, attached to the main network consisted of the
feature vector φ(x;θ s). For instance, if the task is multi-
class classification, then θ p,k is a matrix of size C×M,

where C denotes the number of classes. In this case, such
task-specific parameter allows the computation of the soft-
max or multinomial logistic regression likelidood

p(c|x,k) = exp{∑M
m=1[θ

p,k]cmφm(x;θ s)}
∑

C
c′=1 exp{∑M

m=1[θ
p,k]c′mφm(x;θ s)}

,

that models the categorical probability distribution for clas-
sifying input data points from the k-th task.

We assume that the CL model is continuously trained so
that tasks occur sequentially and they are separated by ran-
dom changepoints. For simplicity, we also assume that pre-
viously seen tasks never re-occur. At time t = 0, the shared
parameters θ s are initialized to some random value, and the
parameters θ p,1 of the first task are also initialized arbitrar-
ily, e.g. to zero or randomly. Then, learning of the model
parameters progresses so that whenever a changepoint τk
occurs a fresh set of task-specific parameters θ p,k is instan-
tiated while all existing parameters, such the shared param-
eters θ s, maintain their current values, i.e. they are not re-
initialized. However, this continuous updating can cause the
shared feature vector φ(x;θ s) to yield poor predictions on
early tasks, a phenomenon known in the literature of neural
networks as catastrophic forgetting (Robins, 1995; Good-
fellow et al., 2013; Kirkpatrick et al., 2017), and the pre-
vention of this is one major challenge CL methods need to
deal with.

More specifically, at each time instance the model re-
ceives a mini-batch of training examples yt = {ci

t ,x
i
t}b

i=1,
where ci

t is a class label and xi
t is an input vector. At

6



each time step the current detected task is k, so that in
the shared feature vector φ(x;θ s) we have attached so far
k heads each with task-specific parameters θ p,i, i = 1, . . . ,k.
The full set of currently instantiated parameters is denoted
by θ (k) = (θ s,{θ p,i}k

i=1) to emphasize the dependence on
the k-th task. Training with the current k-th task is per-
formed by using the standard negative log-likelihood, i.e.
cross-entropy loss, regularized by adding a sum of replay
buffers, which correspond to negative log-likelihoods terms
evaluated at small data subsets from all previous tasks,

L(θ (k)) = Lk({ci
t ,x

i
t}b

i=1;θ
p,k,θ s)+λ

k−1

∑
i=1

Li(Ri;θ
p,i,θ s),

(8)
where λ > 0 is a regularization parameter and each Li(·) is
a sum of negative log-likelihood terms over the individual
data points. Each Ri is a small random subset of data from
the i-th task that is stored as soon as this task is detected
and then used as an experience replay (to avoid forgetting
the i-th task) when training in future tasks.

Pseudo-code of the whole procedure for training the
CL model with simultaneous changepoint detection based
on our checkpoint framework is outlined in Algorithm 3.
For simplicity in Algorithm 3 we assumed that the replay
buffers R = {Ri}k−1

i=1 are global variables that affect the
subroutine cl update step without having to be passed as in-
puts. A second simplification is that each task replay buffer
Rk in practice is actually created inside Algorithm 1, where
a few data mini-batches of the current task are stored into
the fixed-size memory to form Rk.1

Finally, an interesting aspect of using checkpoints for
changepoint detection in CL is that once the next change-
point τk is detected, and thus we need to instantiate a new
task parameters θ p,k+1, we can reuse one of the check-
points to avoid the full set of model parameters θt ≡
(θ s,{θ p,i}k

i=1) being contaminated by training updates us-
ing data from a new task in iterations t ′ ∈ [τk, t], without
knowing yet the task change. Specifically, we can re-set this
full parameter vector to the nearest checkpoint that exists
on the left of the changepoint location τk. This allows the
checkpoint to act as a recovery state that can mitigate for-
getting of the current k-th task parameters caused by these
extra updates, i.e. for t ′ ∈ [τk, t].

5 Related Work
Changepoint detection methods are categorized into of-
fline and online settings (Aminikhanghahi and Cook, 2017;
Truong et al., 2018). Offline algorithms such as the re-
cent linear time dynamic programming algorithms (Killick
et al., 2012; Maidstone et al., 2017) operate similarly to the

1This second simplification was made to keep the structure of Algo-
rithm 1 in its general form, while the minor modification regarding the
replay buffers is only needed for this specific CL application.

Algorithm 3 Continual learning
Procedure: continual learning
Input: Initial shared model parameter θ s, parameters for
changepoint detection: α , T , {δ ,η}
Output: Model parameters Θ, list of changepoints T
Initialize: list of parameters Θ = θ s, list of replay buffers R =
[], and list of changepoints T = []
for k = 1,2, . . . do

Initialize task private parameter θ p,k

Concatenate all current parameters: θ (k) = (θ s,{θ p,i}k
i=1)

τ∗,θ (k)=changepoint detection(θ (k),α,T,δ ,η ,cl update step)
Append τ∗ to list T
Construct a task replay buffer Rk and append it to the list R
Θ = θ (k)

end for
return (Θ,T,R)

Subroutine: cl update step(θ (k),yt)
Input: Full set of model parameters θ (k), data mini-batch yt ,
Output: Updated model parameters θ (k)

θ (k)← θ (k)−ρt∇L(θ (k)), where L is from Eq. (8)
return θ (k)

Viterbi algorithm in hidden Markov models (Bishop, 2006),
where they need to observe the full data sequence in order
to retrospectively identify multiple changepoints. In con-
trast, in online changepoint detection the aim is to detect
a change as soon as it occurs while data arrive online. On-
line detection has a long history in statistical process control
(Page, 1957; Hawkins et al., 2003) where typically we want
to detect a change in a mean parameter in time series. More
recently, Bayesian online changepoint detection methods
have been developed in (Fearnhead, 2006; Fearnhead and
Liu, 2007; Adams and MacKay, 2007), that consider con-
jugate exponential family models and online Bayesian up-
dates. These latter techniques can be extended to also allow
online point estimation of some model parameters (Caron
et al., 2012; Yildirim et al., 2013), but they remain com-
putationally too expensive to use in deep learning where
models consist of neural networks. This is because they are
based on Bayesian inference procedures that require select-
ing suitable priors over model parameters and they rely on
applying accurate online Bayesian inference which is gen-
erally intractable, unless the model has a simple conjugate
form. Also approximate inference can be too costly and in-
accurate for highly non-linear and parametrized models.

The method we introduced differs from these previous
approaches, since it relies on the idea of a checkpoint
which allows to detect changepoints by performing multi-
step ahead predictions. This setup provides a stream of 1-
dimensional numbers with a simple distribution on which
we can apply standard statistical tools to detect whether
there exists an abrupt change in a window of these pre-
dictions. The checkpoint is updated over time by tracking
slowly (within a distance T ) the actual model, which can

7



improve the discriminative power overtime as the task per-
sists and the checkpoint becomes more specialized to the
task distribution. The method can be considered as a com-
bination of offline and online detection (Aminikhanghahi
and Cook, 2017) since, while model parameter learning is
online, each testing with a checkpoint involves an offline
subroutine; see Algorithm 2.

More distantly related work is from the recent contin-
ual learning literature such as the so-called task-free or
task-agnostic methods (Aljundi et al., 2018, 2019; Kapla-
nis et al., 2018; Zeno et al., 2018; Rao et al., 2019) that
learn without knowing or assuming task boundaries. How-
ever, the objective there is typically not to explicitly detect
changepoints, but instead to maintain an overall good pre-
dictive performance, by avoiding catastrophic forgetting of
the neural network model. In contrast, our method aims to
explicitly detect abrupt changes in arbitrary online learning
systems, either traditional few-parameter models or neural
networks used in continual learning. As we discussed in
Section 4 and will demonstrate next in Section 6 our al-
gorithm can be combined with existent continual learning
methods and enhance them with the ability of changepoint
detection.

6 Experiments

6.1 Time Series Example
Fig. 3 shows online changepoint detection on an artificial
time series dataset, a small snapshot of which was used in
the illustrative example in Fig. 1(b). The task is to track
a data stream of 1-dimensional noisy observation (each yt
is a scalar value) with abrupt changes in the mean. The
model has a single parameter θ : a moving average that is
updated as data arrive online, where the underlying loss is
0.5(yt − θ)2 (which up to a constant is the negative log-
likelihood of a normal distribution with a fixed variance).
Fig. 3 shows changepoint detection achieved by the pro-
posed algorithm. The panel on the top row shows the data,
the moving average parameter and the testing windows to-
gether with the corresponding checkpoints that lead to all
seven detections. The panel on the bottom row shows the
GLR statistics, −2logΛτ , computed through time which
clearly obtains maximal values at the changepoint loca-
tions. The window size was T = 50, α = bT/4c = 12 and
δ = 10−3. All the changepoints are detected by our algo-
rithm without a false alarm. Every changepoint corresponds
to a clear spike in the GLR statistics significantly higher
than the normal range of values.

We also study the impact of a sub-optimal choice of
learning rate of the tracking model to our changepoint de-
tection algorithm in Fig. 4. As discussed in Section 3.3,
as long as the score function, negative log-likelihood in
this example, is able to differentiate between different tasks

the changepoints can still be robustly detected regardless of
whether the model is under-fit or over-fit to the data. We
should point out, however, that in more complex models
might not be feasible to come up with such discriminate
scores. For example, a neural network with random weights
most likely will not be so discriminative, i.e. it shall provide
similar (random) predictions for data coming from different
tasks. Nevertheless, with reasonable training the neural net-
work can become more specialized to a certain task and pro-
vide predictions that can significantly differ from those as-
sociated with data from other tasks, that the network hasn’t
trained on. Therefore, in more complex models the learning
rate needs to be chosen carefully to allow quick adaptation
to the task data so that the score function, computed un-
der checkpoints, can become more discriminative of task
changes.

6.2 Experiments on Continual Learning

In all CL experiments throughout this section the pro-
posed Algorithm 1, checkpoint-based changepoint detec-
tion (CheckpointCD) is applied, in conjunction with Algo-
rithm 3, with the following settings:

δ = 10−4,η = 0.99,T = 100,α = bT/4c= 25.

Note that η = 0.99 and α = bT/4c are default values, while
δ and T were specified by few preliminary runs on one of
the datasets (Split-MNIST). I.e. the cutoff value of the Type
I error was set to δ = 10−4 to maximize performance (Jac-
card index) on Split-MNIST while for all remaining exper-
iments the same cutoff is used and is never re-optimized.
The effect of the window size T is also analyzed in Fig. 6.

As a strong baseline for comparison we consider
Bayesian online changepoint detection (BayesCD) by
Adams and MacKay (2007); see also Fearnhead and Liu
(2007). We define an instant of this method that is fully ap-
plicable to complex models such as deep neural networks.
This is expressed by treating the one-step predictive scores
vt = v(yt ,θt−1) (averaged over the mini-batch at time t so
they are close to normality) as sequential observations fol-
lowing a univariate Gaussian, yt ∼N (yt |µ,σ2), where the
parameters (µ,σ2) are task-specific. Then, the algorithm
detects when (µ,σ2) undergoes an abrupt change, by per-
forming full Bayesian inference and estimating recursively
the marginal posterior probability of each time being a
changepoint, i.e. the so-called task or run length value to
return to zero value (Adams and MacKay, 2007). This in-
volves placing a conjugate normal inverse-gamma prior on
(µ,σ2)2:

(µ,σ2)∼N (µ|µ0,σ
2/κ)IG(σ2|α,β ),

2The values of the hyperparameters where chosen as µ0 = 0,α =
0.1,β = κ = 1.

8



0 500 1000 1500 2000
0.2

0.4

0.6

0.8

1.0

1.2

1.4
D
a
ta

0 500 1000 1500 2000
Time

0

10

20

30

40

50

60

G
e
n
e
ra

lis
e
d
 L

ik
e
lih

o
o
d
 R

a
ti

o

Figure 3: Changepoint detection in an 1-D time series. The moving average parameter θ is initialized at 0 and updated
in each step with the gradient update θ ← θ +0.1(yt −θ), where ρ = 0.1 is the learning rate. (Top) Data (black dots), θ

(blue line) and the detected changepoints, shown as green stars, while the red diamonds are the ground-truth values. For
each detection all data used in the corresponding testing window are highlighted by the shaded areas. The blue dots on the
left-borders of these areas are checkpoints. (Bottom) The GLR test values, −2logΛτ (solid back line) and the detection
threshold, i.e. h(δi) = quantile(1− δi) (dotted line), where the latter increases with any new test and resets to its initial
value after a detection.

0 250 500 750 1000 1250 1500 1750 2000
0.25

0.50

0.75

1.00

1.25

1.50

Da
ta

0 250 500 750 1000 1250 1500 1750 2000
0.25

0.50

0.75

1.00

1.25

1.50

Da
ta

Figure 4: Effect of misspecified learning rate. (Top) Detection under a very small learning rate having value ρ = 0.001
that leads to under-fitting of the data. (Bottom) Detection under a very large learning with value ρ = 0.5 that leads to
over-fitting. Despite that both rather bad choices of the learning rate result in poor fits to the data, changepoint detection
remains accurate with no errors.

together with a prior distribution p(τ) over changepoints,
defined through a Hazard function on the run length (Adams
and MacKay, 2007), that models the prior probability of
each time being a changepoint. Then Bayesian online learn-
ing requires marginalizing out all unknowns, i.e. (µ,σ2)
and the run length. Because of the conjugate and Markov
structure of the model all computations are analytic and
the marginal posterior probability of a changepoint, p(t =
τ|data), across time follows a simple and efficient recur-

sion; see Adams and MacKay (2007) for full details. To ap-
ply the algorithm to CL we need to choose a cut-off thresh-
old for p(t = τ|data) that will allow to claim a changepoint.
We consider a search over different cut-offs and we report
the best-performing values in Table 1. As a changepoint
prior we consider a constant hazard H = 1/500.

We also included in the comparison a simpler (Sim-
pleCD) baseline based on purely online statistical test-
ing scheme (without requiring storage of checkpoints)

9



0 500 1000 1500 2000 2500 3000
Time

0

50

100

150

200

250
G

e
n
e
ra

lis
e
d
 L

ik
e
lih

o
o
d
 R

a
ti

o

0 1000 2000 3000 4000 5000
Time

0

50

100

150

200

250

G
e
n
e
ra

lis
e
d
 L

ik
e
lih

o
o
d
 R

a
ti

o

(a) Split-MNIST (b) Permuted-MNIST

0 2000 4000 6000 8000 10000 12000 14000
Time

0

50

100

150

200

250

G
e
n
e
ra

lis
e
d
 L

ik
e
lih

o
o
d
 R

a
ti

o

0 1000 2000 3000 4000 5000 6000
Time

0

50

100

150

200

250

G
e
n
e
ra

lis
e
d
 L

ik
e
lih

o
o
d
 R

a
ti

o

(c) CIFAR100 (d) Incr-Class-MNIST

Figure 5: GLR test values, −2logΛτ , for Split-MNIST, Permuted-MNIST, CIFAR100 and Incr-Class-MNIST. The mini-
batch size for all cases was 10.

using the one-step ahead predictive score values vt =
{v(yi

t ,θt−1)}b
i=1, where here vt is a vector of b values and

b is the mini-batch size. Then a standard paired Welch’s t
test t(vt−1,vt) can be used to detect a changepoint by us-
ing a cut-off critical value. In all experiments we consid-
ered a set of different critical values and we report the best-
performing one in Table 1.

Furthermore, for both BayesCD and SimpleCD algo-
rithms we added the constraint that after a detection the al-
gorithm must wait T = 100 time steps to search for a new
changepoint, i.e. the minimum distance between two con-
secutive detections was set to T . Without this constraint
the behaviour of these algorithms can become very noisy
resulting in many false positive detections around a previ-
ous detected changepoint. Note that this T minimum dis-
tance constraint is by definition satisfied by CheckpointCD,
as shown in Algorithm 1, where T is the window size hy-
perparameter.

6.2.1 Datasets, CL tasks and results

We first applied the algorithms to three standard CL classi-
fication benchmarks: Split-MNIST, Permuted-MNIST and
Split-CIFAR100. Split-MNIST, introduced by Zenke et al.
(2017), assumes that five binary classification tasks are
constructed from the original MNIST (LeCun and Cortes,
2010) hand-written digit classes and they are sequentially

presented to the algorithm in the following order: 0/1, 2/3,
4/5, 6/7, 8/9. Each task is a binary classification problem
so that any mini-batch yt = {xi

t ,c
i
t}b

i=1 is such that each
ci

t ∈ {0,1}, i.e. the task identity cannot be revealed by in-
specting these binary labels. In Permuted-MNIST (Good-
fellow et al., 2013; Kirkpatrick et al., 2017), each task is
a variant of the initial 10-class MNIST classification prob-
lem where all input pixels have undergone a fixed (random)
permutation. A sequence of 10 tasks is considered so that
each task is a 10-class classification problem. For the Split-
CIFAR100 we assume a sequence of 20 tasks of 5 classes
each from the initial CIFAR100 dataset that contains im-
ages of 100 visual categories, indexed as 1,2, . . . ,100. We
follow Lopez-Paz et al. (2017), so that the first task contains
the classes (1,2,3,4,5) the second (6,7,8,9,10) and etc.

For Split and Permuted-MNIST we consider a neural
network with a shared representation φ(x;θ s) obtained by
a fully connected multi-layer perceptron (MLP) network
with two hidden layers of size 100 and rectified linear
units (ReLU) activations. For the Split-CIFAR100 we used
a much more complex residual network architecture (He
et al., 2016) with 18 layers (ResNet-18), as used by Lopez-
Paz et al. (2017). We created a simulated experiment where
a true task changepoint can occur independently at each
time step with some small probability with the additional
constraint that we need to observe at least a minimum num-
ber of mini-batches from each true task before the next

10



Table 1: Average Jaccard index scores, with one standard deviations, and tolerance 5 on all CL changepoint detection
tasks. The numbers inside brackets for the BayesCD method indicate different cut-offs in the changepoint posterior
probability p(t = τ|data).

Dataset method batch size=10 batch size=20 batch size=50 batch size=100

Split-MNIST CheckpointCD 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.3) 0.38±0.12 0.71±0.12 0.93±0.15 1.00±0.00
BayesCD(0.4) 0.48±0.16 0.89±0.14 1.00±0.00 1.00±0.00
BayesCD(0.5) 0.58±0.16 0.91±0.11 1.00±0.00 0.97±0.07
BayesCD(0.6) 0.71±0.18 0.93±0.11 0.97±0.07 0.95±0.10
SimpleCD 0.35±0.21 0.82±0.13 0.98±0.06 0.92±0.13

Permuted-MNIST CheckpointCD 0.77±0.13 1.00±0.00 0.98±0.06 1.00±0.00
BayesCD(0.3) 0.42±0.09 0.97±0.05 0.99±0.03 1.00±0.00
BayesCD(0.4) 0.44±0.09 0.93±0.12 1.00±0.00 1.00±0.00
BayesCD(0.5) 0.57±0.11 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.6) 0.66±0.13 0.99±0.03 1.00±0.00 1.00±0.00
SimpleCD 0.30±0.08 0.92±0.06 0.96±0.07 0.99±0.03

Split-CIFAR100 CheckpointCD 0.98±0.04 1.00±0.00 0.99±0.03 1.00±0.00
BayesCD(0.3) 0.96±0.04 0.95±0.07 0.98±0.02 1.00±0.00
BayesCD(0.4) 0.93±0.04 0.99±0.02 0.99±0.02 1.00±0.00
BayesCD(0.5) 0.93±0.05 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.6) 0.85±0.08 0.99±0.02 1.00±0.00 1.00±0.00
SimpleCD 0.14±0.08 0.76±0.06 0.99±0.02 0.95±0.04

Incr-Class-MNIST CheckpointCD 0.72±0.14 0.96±0.06 0.96±0.09 0.98±0.07
BayesCD(0.3) 0.41±0.09 0.64±0.15 0.85±0.10 0.81±0.07
BayesCD(0.4) 0.41±0.12 0.75±0.11 0.82±0.10 0.85±0.09
BayesCD(0.5) 0.45±0.13 0.68±0.12 0.74±0.08 0.86±0.07
BayesCD(0.6) 0.43±0.11 0.60±0.17 0.81±0.12 0.81±0.06
SimpleCD 0.04±0.05 0.09±0.08 0.58±0.19 0.89±0.09

Incr-Class-CIFAR44 CheckpointCD 0.24±0.05 0.80±0.06 0.98±0.03 0.98±0.05
BayesCD(0.3) 0.07±0.04 0.43±0.04 0.81±0.05 0.96±0.03
BayesCD(0.4) 0.04±0.02 0.36±0.09 0.76±0.04 0.92±0.03
BayesCD(0.5) 0.02±0.02 0.26±0.06 0.71±0.06 0.88±0.04
BayesCD(0.6) 0.02±0.02 0.20±0.05 0.64±0.05 0.86±0.05
SimpleCD 0.00±0.01 0.01±0.01 0.12±0.04 0.74±0.05

11



3050 100 200 300 400
Window size T

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Av
er

ag
e 

Ja
cc

ar
d 

in
de

x

Figure 6: Jaccard index averaged over 100 repeats in Incr-
Class-MNIST for varying window sizes T and fixed mini-
batch size 10.

changepoint.3 We compare the proposed CheckpointCD
method with BayesCD and SimpleCD under four different
values of the mini-batch size b: 10, 20, 50, 100. Train-
ing of each CL model was based on Algorithm 3, modified
accordingly for BayesCD and SimpleCD so that to apply
their respective changepoint detection subroutine instead of
Algorithm 1 used by CheckpointCD. The learning rate se-
quence ρt in stochastic gradient optimization of the objec-
tive in Eq. (8) was set in a dimension-wise manner by using
the Adam optimizer (Kingma and Ba, 2014) which the stan-
dard approach for training neural networks; see Appendix
for further details.

To measure performance we used the intersection over
union score (also called Jaccard index) defined as the num-
ber of correctly detected changepoints divided by the union
of the detected and the true changepoints

Jaccard index =
|True∩Detected|
|True∪Detected|

∈ [0,1],

where the larger the score the better. Note that the Jaccard
index is the hardest among other related scores such as re-
call, precision and F1, which are softer/upper bounds (i.e.
closer to 1) than Jaccard index. For completeness full tables
with precision and recall score values are given in the Ap-
pendix. When computing Jaccard index we also allow some
tolerance when declaring that a pair (τ tr,τdet) of a true and
detected locations correspond to the same true changepoint
τ tr. A tolerance equal to 5 time steps distance was used
which means that only when |τ tr − τdet | ≤ 5 the detected
τdet is considered correct.

Furthermore, in order to create harder changepoint de-
tection problems, we consider two class-incremental vari-
ants of MNIST and and CIFAR so that each task dif-

3In all experiments this number was 500 and the probability of having
a changepoint at each step (after the 500 steps) was 0.005.

fers from the previous task by changing only a single
class and without affecting the labeling of the remain-
ing classes. This creates the Incr-Class-MNIST with 9
tasks: 0/1,2/1,2/3, . . . ,8/7,8/9. To speed up the exper-
iment in CIFAR we consider only the first 44 classes and
create a very challenging changepoint detection problem,
Incr-Class-CIFAR44, with 40 tasks: (1,2,3,4,5), (6,2,3,4,5),
(6,7,3,4,5) and etc.

Table 1 reports all results obtained by 10 random repeti-
tions of the experiments. The table shows that the proposed
algorithm is consistently better than the other methods and
it provides accurate changepoint detection even with mini-
batch size as small as 20. Notice also that, as expected, all
methods improve as the mini-batch size increases.

Fig. 5 visualizes the GLR values, −2logΛτ , in some of
the runs with Split-MNIST, Permuted-MNIST, CIFAR100
and Incr-Class-MNIST. Similarly, to Fig. 3 most change-
points are detected by our algorithm and every changepoint
corresponds to a clear spike in the GLR statistics. Note that
the plots in Fig. 5 are obtained for the most difficult case
where the data mini-batch size when fitting the CL model is
10, while for larger mini-batch sizes the detection is more
robust and the spikes of the GLR statitics become sharper.

Finally, Fig. 6 studies the effect of the window size T in
changepoint detection performance, which shows that too
small value of T could decrease the performance presum-
ably due to very small sample size when performing each
test. This corroborate our discussion in Section 3.3 that a
large value of T increases the power of hypothesis testing,
although it should not be larger than the minimum length of
a task from our prior knowledge to avoid including multiple
changepoints in the same testing window.

7 Discussion
We have introduced an algorithm for online changepoint de-
tection that can be easily combined with online learning of
complex non-linear models such as neural networks. We
have demonstrated the effectiveness of our method in chal-
lenging continual learning tasks for automatically detecting
the task changepoints. The use of checkpoints allowed us to
define a sequential hypothesis testing procedure to control a
predetermined Type I error upper-bound, and evaluate em-
pirically the overall performance of both Type I and II error
using Jaccard index and or other metrics.

The simplicity of checkpoints means that practitioners
can use them for changepoint detection without having to
modify their preferred way of estimating or fitting models
to data. For instance, in deep learning (LeCun et al., 2015)
the dominant approach to model fitting is based on point pa-
rameter estimation with stochastic gradient descent (SGD),
where the model is typically a neural network. As seen
in this paper this can be easily combined with checkpoints
to detect changepoints, without having to modify this stan-

12



dard SGD model fitting procedure. Similarly, checkpoints
could be also combined with other ways of fitting models
to data, e.g. Bayesian approaches, since the essence of the
algorithm is a cached model representation (not necessar-
ily a point parametric estimate) that together with a predic-
tion score can detect changes. For instance, if we follow a
Bayesian model estimation approach, online learning will
require updating a posterior probability distribution pt(θ)
through time. Then, a checkpoint becomes an early ver-
sion of this posterior distribution, i.e. pt−T (θ), while the
predictive score will be obtained by averaging some func-
tion under this checkpoint posterior. In this setting, the
use of the algorithm remains the same and the only thing
we need to modify, to accommodate this Bayesian way of
model fitting, is to change the online model update rule (i.e.
the line θt = update step(θt−1,yt) in Algorithm 1) together
with the definition of the score function v(·), where the lat-
ter should correspond now to a Bayesian predictive score.
While Bayesian model fitting is very difficult for complex
models, such as neural networks, it is certainly feasible for
simple conjugate Bayesian models where we could apply
the checkpoint method as outlined above. We leave the ex-
perimentation with this more Bayesian way of using check-
points as a future work.

Finally, another topic for future research is to consider
checkpoints to detect changes at different time scales, such
as long-term and short-term changes.

References
Adams RP, MacKay D (2007) Bayesian online changepoint

detection. Tech. rep.

Aljundi R, Kelchtermans K, Tuytelaars T (2018) Task-free
continual learning. CoRR abs/1812.03596

Aljundi R, Lin M, Goujaud B, Bengio Y (2019) On-
line continual learning with no task boundaries. CoRR
abs/1903.08671

Aminikhanghahi S, Cook DJ (2017) A survey of methods
for time series change point detection. Knowl Inf Syst
51(2):339–367

Bansal R, Zhou H (2002) Term structure of interest rates
with regime shifts. The Journal of Finance 57(5):1997–
2043

Barry D, Hartigan JA (1992) Product partition models for
change point problems. Annals of Statistics 20(1):260–
279

Bishop CM (2006) Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA

Caron F, Doucet A, Gottardo R (2012) On-line changepoint
detection and parameter estimation with application to
genomic data. Statistics and Computing 22(2):579–595

Csorgo M, Horváth L (1997) Limit theorems in change-
point analysis. John Wiley & Sons Chichester

D’Agostino R, Pearson E (1973) Tests for departure from
normality. empirical results for the distributions of b2 and
b1. Biometrika pp 613–622

Farquhar S, Gal Y (2018) Towards Robust Evaluations of
Continual Learning. arXiv preprint arXiv:180509733

Fearnhead P (2006) Exact and efficient Bayesian inference
for multiple changepoint problems. Statistics and Com-
puting 16(2):203–213

Fearnhead P, Liu Z (2007) Online inference for multiple
changepoint problems. Journal of the Royal Statistical
Society, Series B 69:589–605

Goodfellow IJ, Mirza M, Xiao D, Courville A, Bengio Y
(2013) An empirical investigation of catastrophic forget-
ting in gradient-based neural networks. arXiv preprint
arXiv:13126211

Hawkins DM, Qiu P, Kang CW (2003) The changepoint
model for statistical process control. Journal of Quality
Technology 35(4):355–366

He K, Zhang X, Ren S, Sun J (2016) Deep residual learn-
ing for image recognition. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, IEEE Computer
Society, pp 770–778

Jandhyala VK, Fotopoulos SB, Hawkins DM (2002) De-
tection and estimation of abrupt changes in the variabil-
ity of a process. Computational statistics & data analysis
40(1):1–19

Kaplanis C, Shanahan M, Clopath C (2018) Continual
reinforcement learning with complex synapses. arXiv
preprint arXiv:180207239

Killick R, Fearnhead P, Eckley I (2012) Optimal detection
of changepoints with a linear computational cost. Journal
of the American Statistical Association 107(500):1590–
1598

Kingma DP, Ba J (2014) Adam: A method for stochastic
optimization. Cite arxiv:1412.6980Comment: Published
as a conference paper at the 3rd International Conference
for Learning Representations, San Diego, 2015

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Des-
jardins G, Rusu AA, Milan K, Quan J, Ramalho T,

13



Grabska-Barwinska A, et al. (2017) Overcoming catas-
trophic forgetting in neural networks. Proceedings of the
National Academy of Sciences p 201611835

LeCun Y, Cortes C (2010) MNIST handwritten digit
database

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436–444, DOI 10.1038/nature14539

Li Z, Hoiem D (2017) Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence

Lopez-Paz D, et al. (2017) Gradient episodic memory for
continual learning. In: Advances in Neural Information
Processing Systems, pp 6470–6479

Maidstone R, Hocking T, Rigaill G, Fearnhead P (2017) On
optimal multiple changepoint algorithms for large data.
Statistics and Computing 27(2):519–533

Nguyen CV, Li Y, Bui TD, Turner RE (2017) Variational
continual learning. arXiv preprint arXiv:171010628

Page ES (1957) On problems in which a change in a pa-
rameter occurs at an unknown point. Biometrika 44(1-
2):248–252

d’Agostino Ralph B (1971) An omnibus test of normal-
ity for moderate and large size samples. Biometrika
58(2):341–348

Rao D, Visin F, Rusu A, Pascanu R, Teh YW, Hadsell R
(2019) Continual unsupervised representation learning.
In: Neural Information Processing Systems

Rebuffi SA, Kolesnikov A, Sperl G, Lampert CH (2017)
icarl: Incremental classifier and representation learning.
In: 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), IEEE, pp 5533–5542

Ring MB (1994) Continual learning in reinforcement en-
vironments. PhD thesis, University of Texas at Austin
Austin, Texas 78712

Robbins H, Monro S (1951) A stochastic approximation
method. Ann Math Statist 22(3):400–407, DOI 10.1214/
aoms/1177729586

Robins A (1995) Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science 7(2):123–146

Robins A, McCallum S (1998) Catastrophic forgetting and
the pseudorehearsal solution in hopfield-type networks.
Connection Science 10(2):121–135

Rusu AA, Rabinowitz NC, Desjardins G, Soyer H,
Kirkpatrick J, Kavukcuoglu K, Pascanu R, Hadsell
R (2016) Progressive neural networks. arXiv preprint
arXiv:160604671

Schmidhuber J (2013) Powerplay: Training an increasingly
general problem solver by continually searching for the
simplest still unsolvable problem. Frontiers in psychol-
ogy 4:313

Truong C, Oudre L, Vayatis N (2018) Selective review of
offline change point detection methods. 1801.00718

Yildirim S, Singh SS, Doucet A (2013) An online ex-
pectation–maximization algorithm for changepoint mod-
els. Journal of Computational and Graphical Statistics
22(4):906–926

Zenke F, Poole B, Ganguli S (2017) Continual learn-
ing through synaptic intelligence. arXiv preprint
arXiv:170304200

Zeno C, Golan I, Hoffer E, Soudry D (2018) Task agnostic
continual learning using online variational bayes

A Quantile of Z statistics in Algo-
rithm 2

For every window size T , we compute the quantile of the Z
statistics (threshold h(δ ) = quantile(1−δ ) in Algorithm 2)
numerically with 108 simulations, and fit a linear function
for h(δ ). Table ?? show the computed threshold values as a
function of T , border size α , and eror δ . We also show the
fitted line of hT (δ ) when α = bT/4c as used in the experi-
ments in Figure 7. We observe that the threshold is close to
convergence when T ≥ 100.

Table 2: Z-statistics Quantile for T=30.

Error δ α = 5 α = 7

0.1 10.024 9.245
0.05 11.909 11.084
0.01 16.089 15.173

0.001 21.837 20.786
0.0001 27.464 26.273
1e-05 33.124 31.706
1e-06 38.882 37.244

Table 3: Z-statistics Quantile for T=50.

Error δ α = 5 α = 10 α = 12

0.1 10.661 9.318 8.948
0.05 12.518 11.095 10.711
0.01 16.633 15.043 14.635

0.001 22.283 20.454 20.018
0.0001 27.824 25.721 25.253
1e-05 33.200 30.771 30.429
1e-06 38.841 35.969 35.716

14

1801.00718


Table 4: Z-statistics Quantile for T=100.

Error δ α = 5 α = 10 α = 15 α = 20 α = 25

0.1 11.270 10.303 9.726 9.244 8.789
0.05 13.099 12.069 11.471 10.976 10.507
0.01 17.143 15.971 15.334 14.818 14.332
0.001 22.705 21.315 20.628 20.088 19.578

0.0001 28.152 26.500 25.769 25.180 24.676
1e-05 33.576 31.591 30.852 30.249 29.740
1e-06 38.957 36.549 35.712 35.165 34.720

Table 5: Z-statistics Quantile for T=200.

Error δ α = 5 α = 20 α = 35 α = 50

0.1 11.780 10.257 9.505 8.833
0.05 13.587 11.989 11.223 10.537
0.01 17.588 15.817 15.028 14.323

0.001 23.080 21.057 20.248 19.516
0.0001 28.482 26.173 25.320 24.611
1e-05 33.874 31.153 30.254 29.514
1e-06 38.938 35.961 35.187 34.499

Table 6: Z-statistics Quantile for T=300.

Error δ α = 5 α = 25 α = 45 α = 65 α = 75

0.1 12.023 10.466 9.769 9.171 8.877
0.05 13.823 12.194 11.486 10.879 10.578
0.01 17.799 16.007 15.285 14.666 14.357
0.001 23.271 21.214 20.471 19.848 19.534

0.0001 28.667 26.270 25.498 24.868 24.546
1e-05 34.061 31.411 30.528 29.960 29.650
1e-06 39.142 36.424 35.684 35.072 34.756

Table 7: Z-statistics Quantile for T=400.

Error δ α = 5 α = 35 α = 65 α = 95 α = 100

0.1 12.182 10.431 9.682 9.017 8.907
0.05 13.974 12.154 11.396 10.721 10.609
0.01 17.935 15.957 15.187 14.496 14.382

0.001 23.389 21.160 20.378 19.681 19.567
0.0001 28.729 26.232 25.423 24.730 24.621
1e-05 34.091 31.130 30.309 29.661 29.568
1e-06 39.388 35.642 35.106 34.543 34.319

B Further details and results

For all CL experiments in Section 6 we used the Adam op-
timizer (Kingma and Ba, 2014) with its default parameter
settings and with base learning rate value α = 0.1/b where
b is the mini-batch size in each experiment. The hyperpa-
rameter λ in the loss function in Eq. (8) was set to λ = 1
and the size of the replay buffer of each previous task was
set to 100, i.e. |Ri|= 100.

Table 8 provides the precision scores and Table 9 the re-

10 6 10 5 10 4 10 3 10 2 10 1

Error 

10

15

20

25

30

35

40

Th
re

sh
ol

d 
h

T=30, =7
T=50, =12
T=100, =25
T=200, =50
T=300, =75
T=400, =100

Figure 7: Threshold as a function of error h(δ ) for different
window size T . The border size α is set as bT/4c. The
circles are computed numerically, and the straight lines are
linearly fitted functions.

calls for all algorithms applied to the CL benchmarks.

15



Table 8: Average precision, with one-standard deviations, and tolerance 5 on all CL changepoint detection tasks. The
numbers inside brackets for the BayesCD method indicate different cut-offs in the changepoint posterior probability
p(t = τ|data).

Dataset method batch size=10 batch size=20 batch size=50 batch size=100

Split-MNIST CheckpointCD 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.3) 0.41±0.12 0.72±0.11 0.94±0.12 1.00±0.00
BayesCD(0.4) 0.51±0.15 0.89±0.14 1.00±0.00 1.00±0.00
BayesCD(0.5) 0.63±0.14 0.96±0.08 1.00±0.00 1.00±0.00
BayesCD(0.6) 0.88±0.15 1.00±0.00 1.00±0.00 1.00±0.00
SimpleCD 0.62±0.31 0.96±0.09 0.98±0.06 0.94±0.10

Permuted-MNIST CheckpointCD 0.79±0.12 1.00±0.00 0.99±0.03 1.00±0.00
BayesCD(0.3) 0.44±0.09 0.97±0.05 0.99±0.03 1.00±0.00
BayesCD(0.4) 0.45±0.09 0.94±0.10 1.00±0.00 1.00±0.00
BayesCD(0.5) 0.59±0.12 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.6) 0.66±0.13 0.99±0.03 1.00±0.00 1.00±0.00
SimpleCD 0.77±0.18 0.94±0.05 0.97±0.05 0.99±0.03

Split-CIFAR100 CheckpointCD 0.99±0.02 1.00±0.00 0.99±0.02 1.00±0.00
BayesCD(0.3) 0.98±0.03 0.95±0.07 0.98±0.02 1.00±0.00
BayesCD(0.4) 0.98±0.03 0.99±0.02 0.99±0.02 1.00±0.00
BayesCD(0.5) 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.6) 0.99±0.03 1.00±0.00 1.00±0.00 1.00±0.00
SimpleCD 0.54±0.27 0.94±0.07 0.99±0.02 0.96±0.04

Incr-Class-MNIST CheckpointCD 0.95±0.08 1.00±0.00 0.97±0.05 0.99±0.04
BayesCD(0.3) 0.47±0.08 0.76±0.13 0.97±0.07 0.97±0.05
BayesCD(0.4) 0.52±0.12 0.89±0.10 1.00±0.00 1.00±0.00
BayesCD(0.5) 0.62±0.15 0.89±0.11 0.99±0.04 1.00±0.00
BayesCD(0.6) 0.73±0.16 0.94±0.13 1.00±0.00 1.00±0.00
SimpleCD 0.11±0.14 0.37±0.37 0.92±0.11 0.99±0.03

Incr-Class-CIFAR44 CheckpointCD 0.96±0.05 0.96±0.02 0.99±0.02 0.99±0.02
BayesCD(0.3) 0.71±0.27 0.89±0.06 0.97±0.02 1.00±0.01
BayesCD(0.4) 0.75±0.25 0.94±0.05 0.98±0.04 0.99±0.01
BayesCD(0.5) 0.58±0.44 0.95±0.10 1.00±0.01 1.00±0.00
BayesCD(0.6) 0.60±0.49 0.98±0.05 1.00±0.00 1.00±0.00
SimpleCD 0.02±0.05 0.11±0.17 0.86±0.18 0.96±0.03

16



Table 9: Average recall, with one-standard deviations, and tolerance 5 on all CL changepoint detection tasks. The numbers
inside brackets for the BayesCD method indicate different cut-offs in the changepoint posterior probability p(t = τ|data).

Dataset method batch size=10 batch size=20 batch size=50 batch size=100

Split-MNIST CheckpointCD 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.3) 0.85±0.17 0.97±0.07 0.97±0.07 1.00±0.00
BayesCD(0.4) 0.85±0.17 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.5) 0.85±0.17 0.95±0.10 1.00±0.00 0.97±0.07
BayesCD(0.6) 0.80±0.19 0.93±0.11 0.97±0.07 0.95±0.10
SimpleCD 0.42±0.23 0.85±0.12 1.00±0.00 0.97±0.07

Permuted-MNIST CheckpointCD 0.97±0.05 1.00±0.00 0.99±0.03 1.00±0.00
BayesCD(0.3) 0.91±0.07 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.4) 0.91±0.10 0.98±0.04 1.00±0.00 1.00±0.00
BayesCD(0.5) 0.94±0.06 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.6) 0.99±0.03 1.00±0.00 1.00±0.00 1.00±0.00
SimpleCD 0.34±0.10 0.98±0.04 0.99±0.03 1.00±0.00

Split-CIFAR100 CheckpointCD 0.99±0.02 1.00±0.00 0.99±0.02 1.00±0.00
BayesCD(0.3) 0.98±0.03 0.99±0.02 1.00±0.00 1.00±0.00
BayesCD(0.4) 0.94±0.03 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.5) 0.93±0.05 1.00±0.00 1.00±0.00 1.00±0.00
BayesCD(0.6) 0.86±0.08 0.99±0.02 1.00±0.00 1.00±0.00
SimpleCD4.0 0.15±0.09 0.81±0.05 1.00±0.00 0.99±0.02

Incr-Class-MNIST CheckpointCD 0.74±0.12 0.96±0.06 0.97±0.05 0.99±0.04
BayesCD(0.3) 0.74±0.16 0.78±0.12 0.88±0.08 0.82±0.06
BayesCD(0.4) 0.64±0.13 0.82±0.10 0.82±0.10 0.85±0.09
BayesCD(0.5) 0.61±0.13 0.74±0.12 0.75±0.08 0.86±0.07
BayesCD(0.6) 0.51±0.13 0.61±0.15 0.81±0.12 0.81±0.06
SimpleCD 0.05±0.06 0.10±0.09 0.60±0.18 0.90±0.09

Incr-Class-CIFAR44 CheckpointCD 0.24±0.05 0.82±0.05 0.99±0.02 0.99±0.02
BayesCD(0.3) 0.07±0.04 0.45±0.04 0.83±0.04 0.96±0.02
BayesCD(0.4) 0.04±0.02 0.37±0.09 0.77±0.03 0.92±0.03
BayesCD(0.5) 0.02±0.02 0.27±0.06 0.72±0.06 0.88±0.04
BayesCD(0.6) 0.02±0.02 0.20±0.05 0.63±0.05 0.86±0.05
SimpleCD 0.00±0.01 0.01±0.01 0.13±0.05 0.76±0.04

17


	1 Introduction
	2 Problem Setup 
	2.1 Streaming Data with Unknown Changepoints
	2.2 Online Model Learning with Changepoints

	3 Changepoint Detection with Checkpoints
	3.1 Offline Changepoint Detection in a Window
	3.2 Online Changepoint Detection across Windows 
	3.3 Setting the Hyperparameters and Prediction Scores

	4 Application to Continual Learning 
	5 Related Work 
	6 Experiments 
	6.1 Time Series Example
	6.2 Experiments on Continual Learning
	6.2.1 Datasets, CL tasks and results


	7 Discussion
	A Quantile of Z statistics in Algorithm 2
	B Further details and results

