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Abstract This paper presents a statistical model for station-
ary ergodic point processes, estimated from a single realiza-
tion observed in a square window. With existing approaches
in stochastic geometry, it is very difficult to model processes
with complex geometries formed by a large number of parti-
cles. Inspired by recent works on gradient descent algorithms
for sampling maximum-entropy models, we describe a model
that allows for fast sampling of new configurations reproduc-
ing the statistics of the given observation. Starting from an
initial random configuration, its particles are moved accord-
ing to the gradient of an energy, in order to match a set of
prescribed moments (functionals). Our moments are defined
via a phase harmonic operator on the wavelet transform of
point patterns. They allow one to capture multi-scale interac-
tions between the particles, while controlling explicitly the
number of moments by the scales of the structures to model.
We present numerical experiments on point processes with
various geometric structures, and assess the quality of the
model by spectral and topological data analysis.
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1 Introduction

In order to generate new realizations of a stochastic process
of which we have only one realization, we have to build a
probabilistic model which approximates the distribution of
this process, and from which we can sample. In this article,
we are interested in generative models for stationary, ergodic
point processes. Such models are of interest in a wide range
of applications (Illian et al. 2008, Chapter 6), for instance
biology (Diggle et al. 2006; Baddeley et al. 2014), ecology
(Wiegand and Moloney 2013), turbulent flows in atmosphere
science (Ducasse and Pumir 2008, 2009; Matsuda and Onishi
2019; Oujia et al. 2020), or cosmology (Stoica et al. 2005;
Tempel et al. 2016). In some of these domains, the observed
patterns exhibit complex structures, with a large number of

ar
X

iv
:2

01
0.

14
92

8v
3 

 [
st

at
.M

L
] 

 1
5 

Se
p 

20
22



2 Antoine Brochard et al.

particles (such as filaments in cosmology, or vortexes in
turbulent flows). Our work is motivated by the simulation of
such processes.

In this paper, we seek to generate realizations formed by
a large number of particles, with both short and long range
interactions. Figure 1 shows some examples of distributions
that we shall consider. Currently, for such complex and di-
verse geometries, which naturally appear e.g. in cosmology or
turbulent flows in physics and atmosphere science, no model
has been proposed in the literature on point processes. To ad-
dress this problem, we shall introduce a statistical model de-
veloped from the maximum-entropy principle (Jaynes 1957),
to approximate such point process distributions and simulate
new realizations.

Maximum-entropy models are based on the description
of the distribution with a set of moments. Intuitively, this
means that the model is ’as random as possible’ under cer-
tain constraints, based on the information captured by the
moments. There are three underlying problems in defining
such models:

1. Choosing the moments that will describe the distribution.
They should be informative enough to capture the geo-
metric structures characterizing the distribution. On the
other hand, they should be accurately estimated from a
single observation, so the number of moments should not
be too large.

2. Specifying a model deriving from these moments. This
can be done by defining a maximum entropy model such
as the macro-canonical model (maximizing the entropy
under expectation constraints), or the micro-canonical
model (maximizing the entropy under path-wise con-
straints).

3. Generating new samples from the model. In the micro-
canonical setup, this can be done by minimizing an en-
ergy, that defines the set of admissible realizations. The
minimization method must make it possible to generate
diverse low energy samples without being too costly in
terms of calculation.

In this paper, we shall place our model in the micro-
canonical setup, detailed in Section 2. The main challenges
reside in the problems 1 and 3. In this regard, we present
multi-scale moments, new in the literature on point process,
as well as a fast sampling algorithm based on gradient de-
scent.

In Section 3, we present our method to address the prob-
lem of generating new samples: we minimize the energy of a
new sample by moving the particles of an initial random con-
figuration using the gradient of its energy with respect to the
particles positions. In the point process literature, a classical
method (Tscheschel and Stoyan 2006) consists in updating
an initial random configuration by successively replacing the
particles one by one, with new particles located at random

positions (we shall call this method random search in this
paper). The major drawback of this method is its computa-
tional cost, as the optimization, which does not use gradient
information to minimize the energy, requires a large number
of energy evaluations. In fact, this method has been applied to
generate point processes formed by a few hundred particles.
On the other hand, advanced methods in the modelling of
textures and non-Gaussian stationary processes allow for fast
sampling by first drawing from an initial Gaussian distribu-
tion, and minimizing an energy by gradient descent on the
amplitudes of the pixels of the image (Portilla and Simoncelli
2000; Gatys et al. 2015; Bruna and Mallat 2019; Zhang and
Mallat 2021). Our approach leverages the efficiency of this
sampling method, while ensuring that the resulting samples
are atomic measures. The idea of moving the points according
to their gradient is often used in molecular dynamics (Zhang
et al. 2015a,b), however it requires knowledge of the physical
mechanisms behind the underlying process. Our statistical
modeling approach has a potential to simulate new, complex
particle configurations directly from one observation, when
the underlying physical phenomena are very complicated to
model.

This brings us to the other challenge that we address in
this work: choosing the moments that we shall use to charac-
terize the distribution. In Section 4, we present the wavelet
phase harmonic covariance moments for point processes.
These are spatial statistics based on coefficients computed
from a wavelet transform of atomic measures, i.e. the convo-
lution of the atomic measures with continuous local functions.
It is known that the covariance between the wavelet coeffi-
cients capture only second-order correlations (Brémaud 2002,
Section 5.2), which are equivalent to the Bartlett spectrum
(Bartlett 1964). To capture information beyond second-order
correlations, we apply a non-linear phase harmonic operator
to the wavelet coefficients. This operator acts on the com-
plex phase of the wavelet coefficients, without changing their
amplitude (Mallat et al. 2020). The covariance between the
resulting coefficients allows one to capture particles interac-
tions across different scales. Compared to high-order correla-
tion functions (Torquato 2002, Section 12.4.2), our moments
have the potential to define a sufficient set of statistics, while
maintaining a small estimation error, which is similar to the
second-order statistics. Other statistics often used in the point
process literature (e.g. the k nearest neighbour distribution
function suggested in Tscheschel and Stoyan (2006)) have
a number of elements that grows with the intensity. Since
there is only one observation, the number of moments should
be limited, in order to control their estimation variance. The
wavelet transform allows for direct control over the scales
of the structures that we wish to capture, regardless of the
intensity of the process. This property allows one to model
point processes formed by a large number of particles with a
limited number of moments.
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Fig. 1 Samples of point processes of various geometries. The number of points ranges from 1000-13000.

The wavelet phase harmonic covariance descriptors are
defined as spatial averages evaluated over a point process
realization (Zhang and Mallat 2021). In practice, the calcula-
tion of such descriptors can be done by discretization of the
observation window in the form of a grid of pixels. However,
making these descriptors differentiable with respect to the
positions of the particles remains a challenge. In this regard,
we describe in Section 5 a complete numerical scheme allow-
ing one to solve this problem. It is based on a differentiable
discretization of atomic measures. We further present a multi-
scale optimization in the gradient descent, intended to avoid
unwanted shallow minima of the energy.

In Section 6, we evaluate our model on some distributions
exhibiting various geometric structures, like Cox point pro-
cesses on the edges of Poisson-Voronoi tessellations and on
the Boolean model with circular grains. Other processes we
consider are Matern hard-core and cluster processes driven
by Poisson processes with turbulent intensities. Their in-
tensities are sampled from a turbulent flow simulated from
Navier-Stokes equations (Schneider et al. 2006). Besides the
visual inspection of the samples from our generative model,
we evaluate second order correlations and compare the per-
sistent homology diagrams, that has been proven useful for
topological data analysis (see e.g. Chazal and Michel (2017)).

In Section 7, we numerically compare our method with
the classical approach developed in Tscheschel and Stoyan
(2006) in terms of the speed of simulation, and the quality
and diversity of the syntheses. Besides using the evaluation
methodologies in Section 6, we also use a statistical moment
matching approach suggested in Illian et al. (2008, Chapter
6). All the results can be reproduced by a software which is
available at https://github.com/abrochar/pp_syn. A
longer version of this paper is available, see Brochard et al.
(2020).

Notations: For any integer n≥ 1 and any z∈Cn, we note
|z| the Euclidean norm of z, and z∗ is its complex conjugate.
Let Cov(A,B) = E[AB∗]−E[A]E[B∗] denote the covariance
between two complex random variables A and B. Let 〈a,b〉
denote the Euclidean inner product between two vectors
a ∈ R2 and b ∈ R2.

2 Point process framework

In Section 2.1, we define the elementary objects of point pro-
cess theory and the notations that we will use in this paper. A
more detailed introduction to point processes and stochastic
geometry can be found e.g. in Daley and Vere-Jones (2008);
Chiu et al. (2013). We then review, in Section 2.2, the classi-
cal maximum-entropy models for point processes.

These models are theoretically well founded, but hard to
sample from in general. Our model, presented in Section 3,
takes inspiration from these, while being amenable to fast
sampling.

2.1 General definitions

Configurations of points (on the plane) are represented as
counting measures on (R2,B), with B denoting the natu-
ral Borel σ -algebra on R2. Recall that counting measures
are locally finite measures taking values in N̄ := N∪{+∞}.
Let M denote the space of all such measures on (R2,B),
endowed with the σ -algebra M generated by the mappings
µ 7→ µ(B), for B ∈ B. For µ ∈M, we will often use the
following representation:

µ = ∑
1≤i≤I

δxi , I ∈ N̄, (1)

where δx is the Dirac measure having a unit atom at x.
Recall, a push-forward F#µ of a point measure µ by a

(measurable) function F : R2 −→ R2 is simply the displace-
ment of its atoms by the function F

F#µ = ∑
i

δF(xi).

As a special case, for x ∈ R2, we define the translation Sxµ

of µ by x, i.e. Sxµ(B) := µ(B+ x).
A counting measure µ ∈M is called simple if for all

x∈R2, µ({x}) = 0 or 1 (in other words all atoms of µ in the
representation (1) are distinct). Simple counting measures
can be identified with their supports Supp(µ) := {x ∈ R2 :
µ({x})> 0} and in this regard we shall also write x ∈ µ if x
is an atom of µ , i.e., if µ({x})> 0.

https://github.com/abrochar/pp_syn
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A point process Φ is a measurable mapping from an
abstract probability space (Ω ,F ,P) to (M,M ). We will
denote by LΦ the distribution of Φ , that is the pushforward
of the probability measure P by Φ on (M,M ). We say that
a point process Φ is simple if P(Φ is a simple measure) = 1.
In this paper, for simplicity we shall only consider simple
point processes.

Point process Φ is called stationary if its distribution LΦ

is invariant with respect to all shifts Sx, x ∈R2. It is said to be
ergodic if the empirical averages (of real, measurable func-
tions f on M, integrable with respect to LΦ ) over windows
Ws = [−s,s[×[−s,s[ increasing to R2 converge almost surely
to the mathematical expectations

lim
s→∞

1
|Ws|

∫
Ws

f (SxΦ)dx = E[ f (Φ)] =
∫
M

f (µ)LΦ(dµ),

(2)

where |Ws| stands for the Lebesgue measure of Ws, see Daley
and Vere-Jones (2008, Chapter 12) for more details.

For a given s > 0, we denote by Ms the set of counting
measures on Ws, and M s its induced σ -algebra. We will con-
sider Ws with addition and scalar multiplication modulo Ws.
Also we shall denote by S̄x the corresponding shift operator
on Ms with torus correction on the window Ws.

Let Φ be a point process on R2. One can only observe re-
alizations of Φ on bounded subsets of R2. For the remainder
of this paper, we shall consider realizations of point processes
observed on a finite square window Ws = [−s,s]2, for some
s > 0. We denote by Φ̄ the restriction of Φ to Ws, that is Φ̄

is a point process on Ws such that, ∀n ∈ N,∀(B1, ...,Bn) ∈
B(Ws)

n, (Φ(B1), ...,Φ(Bn)) = (Φ̄(B1), ...,Φ̄(Bn)) in distri-
bution (where B(Ws) stands for the Borel σ -algebra on Ws).
A realization of Φ observed on Ws is therefore a realization
of Φ̄ , and will be noted φ̄ .

2.2 Maximum entropy models for point processes

Maximum entropy models are based on the following intu-
itive idea: given an observation pattern, we aim at finding new
patterns that are similar to, but different from the observation.
To this end, we define a notion of similarity by choosing a set
of statistics that will be computed on the observation and on
the new patterns. The two will be considered similar if their
statistics match. Furthermore, if the chosen statistics describe
sufficiently well the point process behind our observation,
we do not want to add any more constraints, that is, we want
to find new patterns ’as random as possible’, under the con-
straints defined by the statistics. This can be formalized by
maximizing the entropy of the model.

This section defines both macro-canonical and micro-
canonical models for a point process Φ̄ observed in the
square window Ws. These models rely on maximizing the

entropy a probability distribution under a set of moment
constraints. They are used in large classes of stochastic mod-
els (Geman and Geman 1984), and will inspire our particle
gradient descent model.

2.2.1 Point process entropy

The notion of entropy is naturally defined only for random
objects in discrete state spaces. Even if a mixture of the dif-
ferential and discrete entropy can be considered for point pro-
cesses (Baccelli and Woo 2016), it is more natural to consider
in this context the Kullback-Leibler (KL) divergence with
respect to a reference distribution, naturally taken to be the
homogeneous Poisson point process distribution (Dereudre
2019). More specifically, let us denote by L0 the Poisson
distribution on Ws. We define the KL divergence of a point
process Φ̄ on Ws with distribution LΦ (here, we replaced Φ̄

by Φ for notations simplicity),

KL(LΦ ;L0) :=
∫
Ms

dLΦ

dL0
(µ) log

dLΦ

dL0
(µ)L0(dµ), (3)

provided LΦ is absolutely continuous w.r.t. L0, denoting by
dLΦ

dL0
the corresponding density (otherwise KL is set to ∞).

2.2.2 Maximum entropy models

With the KL divergence as a notion of entropy for point pro-
cesses, we can now define the macro-canonical and micro-
canonical models. These models are distributions of max-
imum entropy under different types of constraints. When
considering these models as approximations of a point pro-
cess Φ̄ , the constraints are usually built as functions of the
distribution of Φ̄ , or functions of samples from Φ̄ . Consider
a mapping K : Ms −→ Cd , for some d < ∞ (one can think
of, for instance, estimators of the k nearest neighbours dis-
tribution functions, Dk(r), such as in Tscheschel and Stoyan
(2006)).

Macro-canonical model The macro-canonical model is de-
fined as the distribution L of a point process Ξ on Ms

that minimizes the KL divergence KL(L ,L0) under expec-
tation constraints: E(K(Ξ)) = a, for some vector of con-
straints, e.g. a = E(K(Φ̄)) or a = K(φ̄). Under some techni-
cal assumptions (in particular, having density with respect
to the reference Poisson distribution), the solution of the
macro-canonical model is given by the Gibbs point process
(Dereudre 2019, Section 1.3). Sampling from the macro-
canonical model is usually computationally very expensive
(Bruna and Mallat 2019). Therefore, we shall focus on the
micro-canonical model, defined in the following.
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Micro-canonical model The micro-canonical model is de-
fined by replacing the expectation constraints E(K(Ξ)) = a
with pathwise constraints. Let φ̄ ∈Ms be our observation
sample, of unknown distribution. For all µ ∈Ms, we define
the energy of µ as:

Eφ̄ (µ) :=
1
2
|K(µ)−K(φ̄)|2. (4)

The micro-canonical set of level ε , for some ε > 0, is
defined as

Ωε := {µ ∈Ms : Eφ̄ (µ)≤ ε}. (5)

The micro-canonical model is defined as the distribution L
that minimizes the KL divergence with respect to the refer-
ence distribution L0 under pathwise constraints requiring L
to be supported on Ωε :

argmin
L

KL(L ,L0) (6)

given
∫
Ms
1(µ ∈Ωε)L (dµ) = 1, (7)

where 1(·) is the indicator function. If L0(Ωε)> 0, the so-
lution to this problem (6) (7), is the measure L having a
uniform density on Ms given by dL

dL 0(µ) =
1

L0(Ωε )
1(µ ∈

Ωε), L0−a.s.
In order to consider the micro-canonical model as a good

approximation of the observation distribution, one usually
aims at finding K satisfying the following properties:

(P1) Concentration property: The value of K(Φ̄) should con-
centrate around its mean, i.e. K(Φ̄)'E[K(Φ̄)] with high
probability. A natural assumption is that the variance of
K(Φ̄) is small.

(P2) Sufficiency property: The moments E(K(Φ̄)), should
characterize the unknown distribution as completely as
possible. It requires that K has a strong (distributional)
discriminate power.

A natural framework allowing one to address (P1) and
(P2) is by defining the descriptors K = (K1, . . . ,Kd) as a
vector of empirical averages

Ki(µ) =
1
|Ws|

∫
Ws

fi(S̄xµ)dx µ ∈Ms, (8)

for a sufficiently rich class of functions fi on Ms, and relying
on the ergodic assumption (2) regarding Φ .

These properties are needed in order to have a model that
reproduces typical geometric structures in Φ , and generates
diverse samples.

In this paper, we shall consider that the number of points
of our model in Ws is fixed. In such a case, it is customary
to take the homogeneous Poisson point process distribution
conditioned on having exactly n points in Ws as the reference

measure, which is equivalent to n points sampled uniformly,
independently in Ws. We will note this distribution L n

0 .
Sampling from the uniform density on Ωε efficiently re-

mains an open problem. In the literature on stochastic process
modelling, most sampling algorithms rely on the following
method: one first samples from an initial, high-entropy mea-
sure, and iteratively minimize the energy (cf. (4)) of this
sample until it reaches Ωε . By choosing a high entropy ini-
tial measure, one hopes that the resulting model also has
a high entropy. Recall that the micro-canonical model has
the highest entropy supported on Ωε . Contrary to the classi-
cal methods in the point process literature (Tscheschel and
Stoyan 2006; Koňasová and Dvořák 2021), which relies on
random search, popular methods in image modelling use gra-
dient descent to perform fast sampling in the micro-canonical
set. However, optimizing the values of the image pixels does
not guarantee that the resulting sample is an atomic measure.
For these reasons, in what follows we propose a model based
on the transport of a Poisson point process via a gradient
descent algorithm.

3 Particle gradient descent model

In Section 3.1, we introduce the particle gradient descent
model, that uses gradient descent on the positions of the
particles of the sample. This model consists in using the
gradient of a prescribed energy to move the points of an
initial random configuration, until we obtain a pattern similar
(in an informal sense) to the observation. We then present
in Section 3.2 a theorem stating that this model preserves
some basic invariances of the original distribution. This result,
allowing us to gain some understanding about the entropy of
our model, extends the results of Bruna and Mallat (2019).
In Appendix C, we present some ideas about how to relax
the hypotheses made in this paper, in order to build a model
better suited for real world data.

3.1 Particle gradient descent model

As in Section 2.2, let φ̄ ∈Ms be our observation sample of
unknown distribution, and K : Ms −→ Cd , for some d < ∞

a mapping defining our descriptors. We note the resulting
energy Eφ̄ (cf. (4)).

Let φ̄0 sample from an initial distribution that we choose
as L

φ̄(Ws)
0 (i.e. the same number of particles as φ̄ , drawn

uniformly and i.i.d.). We minimize the energy of φ̄0 through
its gradient with respect to the particles positions. More pre-
cisely, we define the mapping

F : Ms −→ Ms

µ = ∑i δxi 7−→∑
i

δxi−γ∇xi Eφ̄
(µ)

(9)
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for some gradient step γ > 0. The measure F(µ) can be
seen as the push-forward Fµ#µ of the measure µ by the
mapping Fµ(x) := x− γ∇xEφ̄ (µ) (see e.g. Molchanov and
Zuyev (2002) for more details about steepest descent methods
on spaces of measures). Note that the function Fµ depends on
the measure µ which is pushed forward. For any initial point
measure φ̄0 ∈Ms we define the successive point measures:

φ̄n := Fφ̄n−1#φ̄n−1, n≥ 1. (10)

Pushforward of the point process distributions The pushfor-
ward operation F#µ on Ms induces the corresponding pushfor-
ward operation on the probability measures on Ms, which are
distributions of point processes. We denote this latter by F#:
For a probability law L on Ms F#L (Γ ) := L ({µ ∈Ms :
Fµ#µ ∈Γ }), for any Γ ∈M s. Then, for an initial probability
law Lφ̄0

on Ms we define the successive probability laws

LΦ̄n
:= F#LΦ̄n−1

, n≥ 1. (11)

Note that LΦ̄n
is the distribution of the point process Φ̄n

obtained by n iterations of (10) starting from Φ̄0 having
law LΦ̄0

= L
Φ̄(Ws)

0 . Our model is defined by setting a fixed
number of iterations as a stopping rule.

Observe that our model takes inspiration from the micro-
canonical model, however there is no guarantee that the op-
timization reaches Ωε (defined in (5)), for any ε > 0. By
setting a fixed number of iterations and not rejecting any con-
figuration, we make the implicit assumption that our model
reaches a low energy level. In practice, one can use classical
line-search methods in the optimization to adjust the γ in (9),
so as to ensure that the energy decreases as n grows.

3.2 Leveraging invariances

One can leverage some a priori known invariance properties
of Φ (for instance stationarity or isotropy), by building a
model that satisfies the same invariance properties as Φ . By
using the descriptor K with the same invariance, the particle
gradient model respects these invariance properties. In par-
ticular, we obtain a stationary point process model when K
is defined by the empirical averaging (8).

This requires some explanation, since invariance prop-
erties of the distribution of Φ do not, in general, imply any
natural invariance of its restriction Φ̄ to Ws. Indeed, while
some invariances can be observed on the torus for the dis-
tribution of Φ on R2 (the most popular being translation
invariance), it does not imply the same for Φ̄ with respect to
the translation on Ws. The latter, called in this paper circular
stationarity, requires also Φ to be periodic. However, circular
stationarity of the generated point process on large window
Ws (as a distributional approximation of Φ̄) can be consid-
ered as a desirable ersatz of the stationarity of Φ . Indeed, in

what follows we shall formulate a result saying that, when
K and the distribution of Φ̄0 are invariant with respect to
some subset of rigid circular transformations on Ws, then the
resulting model satisfies this property as well.

More specifically, a rigid circluar transformation on Ws
is an invertible operator T on Ws of the form T x := Ax+ x0
for some orthogonal matrix A with entries in {−1,0,1} and
x0 ∈Ws. Note that the matrix A is restricted in integer entries
for T to be a well defined invertible operator. It encapsulates
translations, flips, and orthogonal rotations.

We say that:

– The initial probability law LΦ̄0
of the model is invariant

to the action of T if ∀Γ ∈Ms,LΦ̄0
(T−1

# (Γ )) =LΦ̄0
(Γ ).

– The descriptor K is invariant to the action of T if ∀µ ∈
Ms, K(T#µ) = K(µ).

Theorem 1 Let T be a rigid circular transformation. Let
Φ̄0 be a point process on Ws such that its distribution LΦ̄0
is invariant to the action of T and let K be a descriptor
invariant to the action of T . Then, for all n ∈N, LΦ̄n

defined
as the push-forward of LΦ̄0

by (11) is invariant to the action
of T .

A proof of the above result is given in Appendix A.
This property can guarantee distributional symmetries in our
model with respect to the original distribution, not stated in
the classical approach of Tscheschel and Stoyan (2006). The
result itself is inspired from Bruna and Mallat (2019), where
the preservation of invariance is proven for the gradient de-
scent model in the pixel domain. Observe, the invariance of
the distribution of the point process Φ̄n increases the diversity
of the generative model samples. Our descriptor K proposed
in Section 4.2 will be invariant with respect to all circular
translations. This will be achieved by computing statistics of
Φ̄ in the form of spatial averages (8) with periodic bound-
ary condition. This boundary condition means the use of the
shift operator S̄x in (8), which can be interpreted as a torus
correction on Ws.

A drawback is that such a boundary condition introduces
a statistical bias to the spatial average (8) as an estimator of
E[K(Φ̄)] in the case of a non periodic Φ over Ws. One can
expect, however, that when the window size is large enough
and spatial correlations of the patterns are not too large, this
border effect becomes negligible.

4 Wavelet phase harmonic descriptors

In this section we present a family of descriptors that we
will use, in conjunction with the particle gradient descent
model, to capture and reproduce complex geometries of point
processes.

Classical descriptors for spatial point process usually
include statistics more or less directly related to the pair
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correlation function, such as Ripley’s K-function, Besag’s L-
function, or the radial distribution function (Chiu et al. 2013,
Section 4.5). All of these functions only capture second or-
der correlations of the process. Other usual functions are
the empty space function or the k-nearest neighbors function
(see Chiu et al. (2013, Section 2.3.4 and 4.1.7)). In Tscheschel
and Stoyan (2006), the authors advocate the use of the k-
nearest neighbors distribution function, with a k significantly
greater than 1. In addition to being non-differentiable, these
moments suffer from another drawback. If one wants to cap-
ture geometric structures formed by the particles, up to a fixed
scale, the number of moments (i.e. the k nearest neighbours)
will grow linearly with the number of particles forming such
structures. This can become a problem if the intensity of the
process is large, both computationally, and from a statistical
point of view, as the variance of the moments may become
large when estimated from a single observation.

For this reason, we choose in this paper to use descriptors
for which the spatial range of structure captured is indepen-
dent of the intensity of the process, and the computational
time is linear in the number of points. As a result, this method
would become much faster for large samples, as the number
of statistics would remain constant. These descriptors, built
upon the wavelet transform of a random configuration, are
adapted from Zhang and Mallat (2021). They have shown
high quality results in modelling geometric structures in tex-
ture images and turbulent flows.

We begin, in Section 4.1, by presenting wavelet transform
for counting measures, and their so called phase harmonics,
which are derived from complex wavelet coefficients by ap-
plying a multiplication operator on their phase. In Section
4.2, we explain how wavelet phase harmonics can be used
to capture dependencies between the wavelet coefficients of
counting measures, and detail the choice of the descriptors
that we use for numerical experiments.

4.1 Wavelet transforms and their phase harmonics

Informally, a wavelet ψ : R2 7→ C is a function that is local-
ized both in the space and the frequency domains. Convoluted
with an input signal, they allow one to capture its local ge-
ometric structure, at a given scale (see e.g. Mallat (2001,
Section 7)). To capture information at different scales in the
signal, we build a family of wavelets by rotations and dila-
tions of the wavelet ψ . They constitute the foundation of the
descriptors that we propose to use, in conjunction with our
generative model described in Section 3.1.

4.1.1 Wavelet transform

The wavelet transform is a powerful tool in image processing
to analyze signals presenting local geometric structures of

different scales. Oriented wavelets have already been con-
sidered, e.g. to analyze anisotropy properties of planar point
processes (see e.g. Rajala et al. (2018)). We shall also use
oriented wavelets which allow to capture edge-like geometric
structures in the observation. Specifically, we choose bump
steerable wavelets introduced in Mallat et al. (2020). They
are defined by the translations, dilations and rotations of a
complex analytic function ψ(x) ∈ C with

∫
ψ(x)dx = 0 and∫

|ψ(x)|dx < ∞.
In what follows we first define the wavelet transform for

the counting measures in Ms which are constructed from
the function ψ . Let us denote the Fourier transform of ψ for
ω ∈ R2 by ψ̂(ω) =

∫
ψ(x)e−i〈ω,x〉dx. By construction, the

function ψ is centered at a frequency ξ0 ∈ R2, and it has a
compact support in the frequency domain, as well as a fast
spatial decay. Assume that |ψ(x)| is negligible if |x|>C, for
some C > 0.

Let rθ denote the rotation by angle θ in R2. Multiscale
steerable wavelets are derived from ψ with dilations by fac-
tors 2 j for j ∈ Z, and rotations rθ over angles θ = 2`π/L for
0≤ ` < L, where L is the number of angles between [0,2π).
The wavelet at scale j and angle θ is indexed by its central
frequency λ := 2− jr−θ ξ0 ∈ R2, and it is defined by

ψλ (x) = 2−2 j
ψ(2− jrθ x) ⇒ ψ̂λ (ω) = ψ̂(2 jrθ ω).

Since ψ̂(ω) is centered around ξ0, it results that ψ̂λ (ω) is
centered around the frequency λ . The wavelet ψλ at scale j
has negligible amplitude for |x|> 2 jC.

For a counting measure µ ∈Ms, we typically consider
only the wavelets having spatial support 1 contained in Ws by
limiting the scale j < J such that 2JC ≤ 2s. Scales equal or
larger than J are carried by a low-pass filter whose frequency
support is centered at λ = 0. It is denoted by ψ0. Let Λ

be a frequency-space index set including λ = 2− jr−θ ξ0 for
0 ≤ j < J, 0 ≤ ` < L, and λ = 0. As we eliminate j < 0 in
Λ to ignore structures smaller than C in Ws, the parameter ξ0
will be adjusted in Section 5.1 for a suitable choice of C.

The wavelet transform of a counting measure µ ∈Ms

observed in the finite window Ws, is a family of functions
obtained by the convolution of µ with periodic wavelets ψs

λ
,

µ ?ψλ (x) =
∫

Ws

ψ
s
λ
(x− y)µ(dy), λ ∈Λ . (12)

They are defined with periodic edge connection, i.e. at x =
(x1,x2)∈Ws, ψs

λ
(x1,x2) :=∑n1,n2∈Z ψλ (x1+2sn1,x2+2sn2).

The integral (12) can be interpreted as a shot-noise, which is
thus well-defined because

∫
R2 |ψλ (x)|dx < ∞. We denote the

wavelet coefficients of µ ∈Ms by {µ ?ψλ (x)}λ∈Λ ,x∈Ws .
Remark: As the wavelet transform is a linear transfor-

mation of a counting measure, it is known that the covariance
between Φ̄ ? ψλ (x) and Φ̄ ? ψλ ′(x′) depends only on the

1 More precisely, where the wavelet norm is non negligible
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mean intensity and second-order correlations of a stationary
point process Φ (Brémaud 2002, Eq. (5.27)), which only
gives partial information on the process distribution.

4.1.2 Wavelet phase harmonics

To capture random geometric structures of different scales
occurring simultaneously (i.e. at nearby x and x′) in a given
process, one can compute the covariance of the wavelet co-
efficients at different scales. However, due to the frequency
localization property of the wavelets, such covariance can
be close to 0, even though the wavelet coefficients are not
independent. To capture such dependencies, one can use a
non linear operator on the transforms, to superimpose their
frequency support. This section, along with the following,
details this non linear operator, and the resulting covariance
moments.

Phase harmonics (Mallat et al. 2020) of a complex num-
ber z ∈ C are defined by multiplying its phase ϕ(z) by inte-
gers k, while keeping the modulus constant, i.e.

∀ k ∈ Z, [z]k := |z|eikϕ(z).

Note that [z]0 = |z|, [z]1 = z, and [z]−1 = z∗ (complex conju-
gate of z). More generally, ([z]k)∗ = [z]−k and |[z]k|= |z| for
k ∈ Z.

We apply the phase harmonics to adjust the phase of
the wavelet coefficients. For all x ∈W 2

s ,λ ∈Λ , k ∈ Z, let’s
denote the wavelet phase harmonics of φ ∈Ms by

[φ ?ψλ (x)]
k = |φ ?ψλ (x)|eikϕ(φ?ψλ (x)).

The phase of the wavelet coefficient ϕ(φ ?ψλ (x)) is mul-
tiplied by k, whereas the modulus |φ ?ψλ (x)| remains the
same for all k. Note that the wavelet phase harmonics at k = 1
are exactly the wavelet coefficients .

As illustrated in Zhang and Mallat (2021), when φ is a
realization of a stationary process, the frequency support of
φ ?ψλ , which is centered around λ , is shifted and dilated
by the phase harmonics. As a consequence, [φ ?ψλ ]

k has
a frequency support roughly centered around kλ . This non-
linear frequency transposition property is crucial to capture
dependencies of the wavelet coefficients across scales and
angles, as we shall detail next.

4.2 Wavelet phase harmonic covariance descriptors

A classical way to capture dependencies between wavelet
coefficients is to compute their higher order moments. How-
ever, as the order grows, so does the variance of the moment
estimator (which may violate (P1)). Based on the frequency
transposition property of the phase harmonics (see Section
4.1.2), we shall explain how to capture dependencies between

the wavelet coefficients at different locations and frequen-
cies by computing the covariance between wavelet phase
harmonics. Note that the wavelet phase harmonics do not
increase the amplitude of the wavelet coefficients with k > 1.
This approach may thus significantly reduce the variance
of the descriptor K (to satisfy (P1)) compared to the higher
order correlations, while still capturing information beyond
second-order correlations (to satisfy (P2)).

The wavelet phase harmonic covariance of Φ̄ is defined
by

Cov([Φ̄ ?ψλ (x)]
k, [Φ̄ ?ψλ ′(x

′)]k
′
), (13)

for pairs of (x,x′) ∈Ws×Ws, (λ ,λ ′) ∈Λ 2, and (k,k′) ∈ Z2.
In particular when k 6= 1 or k′ 6= 1, the covariance mea-

sures the dependencies between the wavelet coefficients. As
explained in Mallat et al. (2020); Zhang and Mallat (2021),
for a stationary process Φ , the overlap between the frequency
support of [Φ̄ ?ψλ ]

k and that of [Φ̄ ?ψλ ′ ]
k′ is necessary for

the wavelet phase harmonic covariance to be large. Due to
the frequency transposition property of the wavelet phase
harmonics, it is empirically verified that the covariance at
kλ ≈ k′λ ′ is often non-negligible when the process is non-
Gaussian (i.e. has structures beyond second order correla-
tions). We shall also follow this empirical rule to select a
covariance set ΓH (specified in detail in Section 4.3) to de-
scribe point processes.

Let vλ ,k = E([Φ̄ ?ψλ (x)]k). We define the descriptors
K(µ) using (8), as empirical estimators of moments. Addi-
tionally, let us denote µλ ,k(x) := [µ ?ψλ (x)]k− vλ ,k. Taking
the spatial average (8) gives the descriptor of the form:

K(µ) =

(
1
|Ws|

∫
Ws

µλ ,k(x)µλ ′,k′(x− τ
′)∗dx

)
(λ ,k,λ ′,k′,τ ′)∈ΓH

.

(14)

As Φ̄ is circular-stationary, (13) depends only on x− x′, it
suffices to use the vectors τ ′ to measure the differences be-
tween x and x′. Note also that K(µ) is invariant with respect
to any circular translation S̄x of µ ∈Ms on x ∈Ws.

In the numerical computation, we shall replace vλ ,k in
(14) by v̄λ ,k =

1
|Ws|

∫
Ws
[φ̄ ?ψλ (x)]kdx as a plug-in estimator

for the first-order moment vλ ,k. The K(φ̄) modified in this
way becomes an empirical estimator of the covariances in
(13). This is a good approximation of K(µ) as the estimation
variance of the covariance moments is typically much larger
than that of the first-order moments.

4.3 Choice of the covariance set ΓH in (14)

Rather than detailing the full list of elements in ΓH , we pro-
vide an intuitive way to choose the set ΓH . For the full list, see
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Brochard et al. (2020, Section 4). Overall, the total number
of elements in ΓH is in the order of O(L2J2). Note that the
smallest structures that the descriptors can capture depend
on the spatial support C of the wavelet ψ . Information about
structures smaller than C can be added in a post-processing
step will be explained in Section 5.

– Choice of J: The covariance set ΓH depends on the pa-
rameter J, which is the maximal scale of the wavelet
transform. A suitable choice for this parameter J would
be one allowing for a good trade-off between satisfying
the sufficiency of K, while maintaining the concentration
property (cf. properties (P1) and (P2) from Section 2.2).

– The parameter τ ′ is chosen so that each wavelet is trans-
lated in a particular direction in order to capture correla-
tions along nearby edges in the observation.

– Choice of (λ ,λ ′,k,k′): These parameters are chosen in
order to capture 2nd-order correlations, as well as depen-
dencies between wavelet coefficients at different scales
and orientations, both with and without phase informa-
tion, based on a rule of thumb that kλ ≈ k′λ ′ due to the
frequency transposition property of the wavelet phase
harmonics. Figure 2 shows the impact of using phase
harmonics coefficients (with k,k′ 6= 1) compared to 2nd-
order correlations (only k = 1,k′ = 1). We see that both
syntheses deviate from complete spatial randomness, but
important structures, such as vortexes, are better repro-
duced when incorporating the non-linear coefficients.

Fig. 2 Left: Observation of a turbulence Poisson process (original),
middle: synthesis with wavelet covariances without phase harmonics
non-linearity (i.e. only k = k′ = 1 in ΓH in (14)), right: synthesis with
wavelet phase harmonic covariance descriptors (full ΓH )

5 Numerical scheme for particle gradient descent

Calculating the wavelet phase harmonic covariances can be
computationally demanding (due to the calculation of two
integrals). In order to gain some efficiency, we can perform
the computations in a discrete domain. However, the energy
needs to remain differentiable with respect to the positions of
the points in the pattern. We propose a method, consisting of a
Gaussian smoothing of the configuration of points, to address

this problem. Building on that method, we then present two
technical aspects of the sampling method.

In this section, we discuss a complete numerical scheme
to generate samples from the particle gradient descent model,
defined with the wavelet phase harmonic descriptors pre-
sented in Section 4. It is composed of the following ideas:

– Discretization for an approximate calculation of the co-
variance of the wavelet phase harmonics: necessary to
accelerate the calculation of the descriptor and the gradi-
ents.

– Multiscale optimization: allowing one to avoid shallow
local minima in the gradient descent model. At each
scale, we use a quasi-Newton gradient-descent method
for greater efficiency.

– Final blurring (optional): to add a priori information on
structures whose size is smaller than C into the model
samples. It helps to get rid of some clusterisation (clump-
ing) artifact caused by the initial discretization.

5.1 Discretization

5.1.1 Differentiable discretization of atomic measures

To compute the descriptor K in (14) for a point measure µ ,
we need to integrate functions over the observation window
Ws (first for the convolution operators, then for the averages).
Computationally efficient integration requires discretization
of the atomic measure. The main difficulty is to do it in such a
way that the (periodic) convolutions of the discretized atomic
measures with wavelets, as in (12), remain differentiable with
respect to the positions of the original atoms in µ , so that we
can still perform gradient descent. Classical finite element
methods may not achieve this goal efficiently.

We are going to approximate our atomic measures on
Ws by matrices (images) of given size N ×N (the image
resolution), and then use the automatic differentiation soft-
ware Pytorch (Paszke et al. 2019) to perform the following
operations. It allows one to compute the derivative of a modi-
fied energy w.r.t. any point xi in µ . The following paragraph
details this discretization:

We first map a given point measure µ on Ws to a continu-
ous function µσ by the convolution

µσ (x) := µ ?gσ (x) = ∑
xi∈µ

e−
|x−xi |2

2σ , x ∈Ws, (15)

with a (periodized) Gaussian function gσ of given standard
deviation σ . Then we evaluate µσ on the N ×N regular
grid inside Ws and denote the resulting matrix µN

σ , with en-
tries called (values of) pixels. The convolution with a Gaus-
sian function makes each entry of µN

σ smoothly depend on
the atom positions of µ . We then compute K̄(µN

σ ) instead
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Fig. 3 The differentiable discretization of a courting measure µ into a
point-image µN

σ on a N×N regular grid.

of K(µ), where K̄ is this discrete analogy of the descrip-
tor (14) (cf. Zhang and Mallat (2021)). Note that, because
the value of a pixel continuously depends on the positions
of the atoms, this discretization makes our descriptor only
invariant to discrete translations (multiple of the pixel size
2 s

N ), for which Theorem 1 applies. The gradient of the energy
|K̄(µN

σ )− K̄(φ̄ N
σ )|2 with respect to each atom position of µ

can therefore be computed using automatic differentiation
(with the Pytorch software). Indeed, we know that K̄ is dif-
ferentiable w.r.t. each entry of µN

σ , as a combination of linear
and non-linear operators. Moreover, for any i, j ∈ {1,N}2,
noting ĩ =−s+2si/N, j̃ =−s+2s j/N, (15) gives us that

µ
N
σ (i, j) = µ ?gσ (ĩ, j̃) = ∑

xi∈µ

e−
|(ĩ, j̃)−xi |2

2σ , (16)

which is differentiable w.r.t. any xi in µ . This discretization
step is illustrated in the Figure 3.

In signal processing, the Gaussian function acts as a low-
pass filter. It is needed to cut-off high frequency information
of µ so that µσ can be discretized into an image with negligi-
ble alisaing effect. This means that µσ carries the information
on the positions of µ up to some precision which depends
on σ . The subsequent evaluation of µσ on the grid N×N in
µN

σ implies that σ cannot be taken too small. Indeed, we take
σmin =

s
N as the lowest value of σ .

5.1.2 Wavelet discretization and choice of scales

As stated in section 4.1.1, the family of wavelets used in our
descriptor is constructed by dilating the mother wavelet ψ

in the range of the scales 0 ≤ j < J. Based on the choice
of N, we set C = 2s

N . In this way, the spatial support of ψ

has a radius C of one pixel of the image. As a consequence,
this smallest-scale wavelet ψ can also be discretized (with-
out significant aliasing) in order to compute the discretized
descriptor K̄.

The choice of the largest scale J can be decided based on
the visual structures in the observation. For example, if we
want to model structures whose spatial size is close to the
size of the window [0,1/8]2 ⊂Ws, we shall set 2JC = 1/8,
i.e. J = log2(N)−3− log2(2s).

5.2 Multiscale optimization

Phase harmonic covariance moments of point process im-
ages (i.e. point patterns converted into regular pixel grids,
as described above) may have large values at high frequen-
cies (large values of |λ |, |λ ′| in (14)), due to the fact that the
point-images are composed of local spikes when σ is small.
This implies that these high frequency statistics have an im-
portant impact on the gradient of K̄, which in turn can lead
to the gradient descent model being trapped at shallow local
minima, where only the high frequencies are well optimized
to match the observation.

This optimization issue can be overcome by matching
the descriptors from low frequency to high frequency in a
sequential order, through an appropriate modulation of the
parameter σ ∈ {σ0,σ1, ...,σJ−1} of the Gaussian functions
used to discretize µ , introduced in Section 5.1.

Indeed, since Gaussian functions are low-pass filters, we
can interpret the convolution in (15) as a blurring, limiting the
space localization of Dirac measures. When such smoothing
of the point pattern is done by a Gaussian function that has a
large σ , the high frequencies of the signal function are close
to 0 and the same holds true for the phase harmonics, because
wavelets are localized in frequency. Therefore the wavelet
phase harmonics are dominated by the low frequencies. Thus,
by smoothing the observed sample and generating the op-
timal one with high variance Gaussian function, we create
a new objective leading, in the gradient descent optimiza-
tion, to a point configuration for which only low frequencies
moments (small values of |λ |, |λ ′| in (14)) are matched with
the ones of our observed sample. Thus, we propose a mul-
tiscale gradient descent procedure that consists in choosing
first a high value for precision parameter σ , run the optimiza-
tion algorithm, and then reduce the value of σ to run the
optimization again, starting from the result of the previous
run (and repeat this operation until σ = σJ−1). We choose
σ j := s

N 2J− j−2. Note that σJ−1 is equal to σmin. For numer-
ical efficiency, we perform the gradient descent procedure
using the L-BFGS optimization algorithm (Liu and Nocedal
1989).

5.3 Final blurring

We observed that the contrast between the continuous nature
of our objects and the discrete approximation described in
Section 5.1 creates undesired artificial structures at frequen-
cies higher than the image resolution: when the number of
particles in a configuration is large with respect to the number
of pixels in the image, or if the configuration exhibits strong
clustering behaviour, several pixels may contain more than
one particle. In such cases, our algorithm produces samples
having an artificial clustering structure inside each of these
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pixels (see Brochard et al. (2020, Section 5) for an illustration
of this phenomenon).

To remove this artificial clustering, we chose to force
these high frequencies to be “as random as possible”, i.e. to
have Poisson-like structure. To this end, we introduce a uni-
form i.i.d. perturbation of the positions of points after the last
optimization run. It can be viewed as an additional, this time
stochastic, measure transport, following the deterministic
one from the particle gradient descent. This final randomiza-
tion can be viewed as enforcing a-priori information on high
frequency structures of the process: Poisson-like structure.

6 Numerical experiments

In this section we present numeral experiments involving
our generative model. We begin by presenting in Section 6.1
our numerical settings, in particular the distributions of point
processes whose samples are used as original point patterns.
We next evaluate how well our generative model with the
phase harmonic covariance descriptor can generate samples
similar to those given by the original point processes. In Sec-
tion 6.2, we evaluate these models by comparing samples
from the original distributions to samples from our models,
visually as well as by estimating their power spectrum, which
we define in Appendix B. The power spectrum gives infor-
mation equivalent to the second order correlation function
of the process (Brémaud 2002), which captures clustering
or repulsive behaviour between atoms of a realization. Such
information cannot always be detected visually. In order to
further quantify how well our model captures visual geomet-
ric structures, and to gain some insight into the ability of our
model to produce diverse samples, we shall use the topologi-
cal data analysis (TDA), derived from the theory of persistent
homology. The comparison will be done in Section 6.3.

6.1 Numerical settings

We first describe the original point processes that we shall
evaluate the particle gradient-descent model, then specify the
parameters of the model in the numerical experiments.

6.1.1 Original point process distributions

For our experiments, we choose point process distributions
that show complex geometric structures, for which we can
visually recognize geometric structures. We begin by pre-
senting results for Cox (double-stochastic Poisson) processes
with Poisson points living on one dimensional structures gen-
erated by two famous stochastic geometric models, namely
edges of the Voronoi tessellation, see e.g. Skare et al. (2007),
and the Boolean model with circular grains of fixed radius,

considered in Chiu et al. (2013, Example 10.6). Both under-
lying geometric models are generated by a Poisson parent
process within the observation window Ws, and we construct
these models in a periodic way to avoid border effects. We
call the respective Cox processes Voronoi and Circle pro-
cesses. Note that, for these two processes, Poisson points live
on different geometric shapes: polygons for the Voronoi and
possibly overlapping circles for other one. Additionally, we
consider two different radii of circles.

Then, we take interest in distributions having turbulent in-
tensity (derived from the simulations of a decaying isotropic
turbulent vorticity field driven by 2d Navier-Stokes equations,
see e.g. Schneider et al. (2006)). Such fields exhibit complex
mulsticale structures, and are representations of physical
phenomena, known to be difficult to model faithfully. Fur-
thermore, the distributions we consider have much greater
intensities that the previous Cox models. From the turbu-
lent intensity, we sample three different processes, exhibiting
distinct microscopic structures (repulsive, independent or
clustering): a Matern cluster process, a Poisson point process
and a Matern II hard-core process, see Chiu et al. (2013, Ex-
ample 5.5 and Section 5.4, respectively). We study the ability
of our model to reproduce simultaneously the macroscopic
(i.e. the turbulent intensity) and microscopic structures (i.e.
at small scales) of the process.

The number of points in the Cox Voronoi, Small circles,
Big circles, and the Turbulent Hardcore, Poisson, ad Cluster
processes are around, respectively, 1 900, 2 500, 2 000, 1 700,
3 800 and 13 000. Note that, for comparison, point patterns
considered in Tscheschel and Stoyan (2006) have around 400
points.

6.1.2 Choice of model parameters

Image resolution As discussed in Section 5.1, point configu-
rations are convoluted with Gaussian densities and evaluated
on N×N grid (as images) in order to efficiently compute
our descriptors, and move the particles with gradient descent.
For simplicity, we fix s = 1/2 for all the examples that we
shall consider. The ultimate Gaussian variance (precision) of
this mapping is thus σmin = 1

2N . The larger N is, the more
information we are able to keep (in high frequencies), but
the larger the computation time. We chose for our experi-
ments a resolution of N = 128. We show one example where
a higher resolution, N = 256, is used to capture most of the
high frequency information.

Number of iterations The number of iterations of the L-
BFGS optimization is chosen to be 100 for each scale σ j (a
total of 400 iterations for N = 128, and 500 iterations for
N = 256).
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Other parameters and computation time Empirical evidence
in Section 6.2 shows that the multi-scale optimization pro-
cedure in Section 5.2 allows one to reconstruct (modulo
translation) the observed sample when using K̄ defined with
J = log2(N)−2, which is not the case when simultaneously
optimizing all frequencies. In order to preserve the ability to
reproduce geometric structures at all scales, we shall also ap-
ply this multiscale optimization method to our model defined
with J = log2(N)−3. The number of angles in the steerable
wavelets is L = 8.

An overview of the main parameters of our model is
given in Appendix D. The average computation time on 4
GPU (Nvidia Tesla P100) for a sample for a turbulent process
having roughly 13 000 points with resolution N = 256 is be-
tween 5 and 10 minutes while the same task at the resolution
N = 128 takes between 1 and 2 minutes.

6.2 Visual evaluation and spectrum comparison

We evaluate the ability of our model to capture and reproduce
geometric structures exhibited by realizations of the point
processes described in Section 6.1. A natural first method to
assess the sufficiency of a generative model (property (P2))
is visual evaluation, which is widely used in image analysis
but subjective. We then compare the power spectra (cf. Ap-
pendix B for the definition) of our models and the original
distributions. To estimate the power spectra, we generate (for
each original distribution) 10 i.i.d. samples from the same
model (i.e. from the same observation sample φ̄ , but with
different initial configurations φ̄0). We average the power
spectra of the 10 syntheses, and compare it to the average of
10 i.i.d. samples from the original distribution. All these sam-
ples will also serve in Section 6.3 to compare their geometric
similarities.

Figure 4 shows a study of our three Cox distributions. The
first line presents samples from the original distributions. The
second line presents samples from the model using our de-
scriptor with J = log(N)−2. In this setup, the concentration
property is not satisfied (see property (P1) in Section 2.2.2),
and the result is the memorization of the observation sam-
ple φ̄ . Indeed, this line shows quite faithful reconstructions
of the original samples subjected to a periodic translation,
up to some precision error due to a finite image resolution
N. This is however not a good model because it essentially
only contains the observation φ̄ . It suggests that we need to
improve the concentration property (P1) of the descriptors
in order to enlarge the ensemble Ωε . Note that, in the work
of Tscheschel and Stoyan (2006), the authors use the term
’reconstruction’ to refer to random sampling method, which
we call in this paper ’synthesis’.

In order to improve (P1), we shall reduce the parameter
J in the wavelet transform. The third line of Figure 4 shows

realizations sampled using J = log(N)−3 for different origi-
nal distributions. Our analysis in Section 5.1.2 suggests that
this range of J can model structures whose spatial size is at
most 1/8 of the window Ws. Observe that most polygons and
circles are well reproduced in the synthesis of Voronoi and
Small circles. The Big Circles are harder to model since the
size of each circle is slightly larger than 1/8 of Ws.

In the last line of Figure 4, we present the power spec-
tra for k ∈ N∩ [1,128[ (cf. Appendix B) from the original
distributions and as well as from our model. Larger errors
can be observed at k near zero (say k=1,2 and 3). This is be-
cause only the average spectral information is captured (and
matched) using the low-pass filter ψ0 in the wavelet trans-
form, which is included in the descriptor K(µ) (c.f. (14)).
Moreover, the variance of the empirical information at small
k can create extra error since it can be far away from its
expectation. Similarly, because the wavelet convolutions av-
erage the spectral information over different frequency bands
when using a reduced number of τ ′ in K(µ), our descriptor
does not capture fast oscillations in the power spectra in the
range of k ≤ N/2 = 64 (see Zhang and Mallat (2021) for
more details about how to capture these oscillations). This is
observed in the cases of Small and Big Circles Cox processes.
See Brochard et al. (2020, Appendix C) for a theoretical for-
mula of the power spectrum in the case of Small and Big
circles. When k > N/2 = 64, the descriptor K̄ (cf. 5.1) does
not contain accurate spectral information due to a finite im-
age resolution N. In this regime, we observe a smooth decay
of the (log) power spectrum towards 0. We observed that if
we apply the final blurring (cf. Section 5.3), then the error
of the model spectrum becomes larger. Therefore, for these
three processes, no final blurring has been applied.

All models discussed up to now are Cox processes, with
Poisson (hence independent) points sitting on some random
macroscopic structures. Figure 5 presents our analysis of
three turbulent point processes having different microscopic
structures: a hardcore, a non-correlated (Poisson) and a clus-
tering one. We see that our generated samples capture to some
extent this microscopic structure. For the clustering model,
the presented synthesis is done with N = 256. We see that
our model (using J = log(N)−3) can generate samples with
similar macroscopic and microscopic structure. The power
spectrum at small k has larger errors, as we have observed
in the Cox models. However, since the power spectra are
mostly smooth in these Turbulent processes, we observe a
relatively small spectrum error over a wide range of k. This
is also due to the use of the final blurring which helps to
remove some artificial spectrum errors for k > N/2. For the
clustering model, we also compare the power spectrum of
two models with different resolutions: N = 128 and N = 256.
We see that setting a higher resolution reduces significantly
the error, allowing to match the spectrum up to k ' 80. we
still observe some small error when k≥ 80, probably because
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Fig. 4 Three Cox models; original sample, reconstruction, and synthesis. For the power spectrum plots, the full lines (in blue) correspond to the
original distributions, and the dashed lines (in orange) correspond to the models. The y-axis is presented in log scale.

of the final blurring (cf. Section 5.3), which may also im-
pact the high frequencies that we optimize. Overall, both the
visual and the spectral analysis suggest that our model can
generate well various Turbulent points processes.

6.3 Persistent homology and topology analysis

As previously mentioned, power spectrum evaluation corre-
sponds to the comparison of second order moments, which

only partially capture geometric structures. Visual evalua-
tion can be more discriminate, but is subjective. To evaluate
more precisely the ability of our model to capture the geo-
metric structures of the given distributions, we shall use a
representation of objects derived from persistent homology
theory, which is a powerful algebraic tool for studying the
topological structure of shapes, functions, or in our case point
clouds. We shall perform this evaluation by comparing the
persistence diagrams of the generated samples to those of the
original ones. Furthermore, this representation allows us to
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Fig. 5 Synthesis of turbulence processes with various microscopic structures (Hardcore, Poisson, and Cluster), and their power spectrum plots. Full
lines (in blue) correspond to the original processes, dashed lines (in orange) correspond to the model. For the Cluster distribution, the dotted line (in
red) corresponds to our model defined with the resolution N = 256.

evaluate in a simple way the ability of our model to produce
diverse samples.

We begin by a brief, intuitive presentation of persistence
diagrams, and the whole comparison method that will be
simply referred to as topology data analysis (TDA). For more
details we refer the reader to Boissonnat et al. (2018, Sec-
tion 11.5). We then present the TDA of our point process
distributions and models. TDA can be seen as a complemen-
tary tool with respect to the spectrum analysis, being more
consistent with visual perception (see Brochard et al. (2020,
Appendix C) for more details about this link).

Persistence diagram Persistent homology theory describes
a way to encode the topological structure of a point cloud
through a representation called persistent diagram (PD). It
is constructed, for a given point configuration φ ∈Ms, from
the family (Gr)r≥0 of Gilbert graphs, where the vertices are
the positions of atoms of φ , and the edges are pairs of points
closer to each other than r.2 Then, we fill-in the triangles

2 In our case we use the periodic metric.

(triplets of points joined by edges) of the graph. Points, edges
and filled-in triangles constitute the so-called 2-skeleton of
the Vietoris-Rips (VR) complex. For any r≥ 0, we study two
characteristics of the skeleton: its connected components, and
its holes (this latter notion is well formalized in the algebraic
topology, in our case they correspond to the natural idea of a
hole). Each connected component “is born” at time (radius)
r = 0 and it “dies” at some time r > 0 when it is merged
with another connected component. Similarly, each hole has
a birth time (r > 0) corresponding to the minimal radius at
which it appears, and a (larger) death time corresponding to
the minimal radius for which the hole is completely filled-in
by the triangles. The persistence diagram of φ is the col-
lection of pairs of birth and death times of the connected
components and holes. It is hence a point process in the
positive orthant of the plane, offering a multiscale (as our
wavelet-base descriptor) description of the topology of φ . As
our descriptor, it is also stable to small deformations of φ . It
is hence interesting to use this alternative tool to evaluate our
generative model.
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Topological data analysis Our approach in this matter is
inspired by Chazal and Michel (2017), and we refer the
reader to this paper for a more detailed description. We use
the ’holes’ birth-death process, as it appears more relevant
to capture information in the Cox distributions, such as the
polygons and the circles.

In order to compare the distributions of our models to the
original distributions, we compute the PDs of our samples
from each distribution (cf. Section 6.2 for a description of
these samples). Recall, these PDs can be viewed again as
point clouds in two dimensions. Therefore, a distance be-
tween two PDs can be computed, and we use in this regard
a periodic version of the Wasserstein distance between two
point clouds on the plane (we found that the bottleneck dis-
tance, also suggested in Chazal and Michel (2017), is not
sufficiently discriminating for our point patterns). We ob-
tain in this way a distance matrix between different PDs
(reflecting topological similarities or differences of the point
processees realizations for which PDs were calculated). We
then apply a standard dimension reduction algorithm (namely
Multi Dimensional Scaling) to this distance matrix, to repre-
sent every PD (and hence the corresponding sample) as one
point on the plane, and we visualize the representation of all
samples.

TDA of our experiments In the plots on the first line of Fig-
ure 6, we study separately the Cox Voronoi and Big circles
processes, and the turbulent hardcore process. In each plot,
we observe 20 dots (having different shapes), each represent-
ing one configuration of points in Ws (the term ”dot” is used
to avoid confusion with points in Ws). For each model there
are 10 dots representing i.i.d. realizations of the original dis-
tribution and 10 representing realizations from the generative
model. For each plot, the sample additionally marked with
a black dot represents the observation used in our model to
produce the 10 syntheses.

We see in the first two Cox examples a clear separa-
tion between the original process and the model, implying
a lack of sufficiency (P2) in our model. This is probably
because, in order to satisfy (P1) and produce diverse sam-
ples, we have chosen to reduce J, and therefore lose some
information about large scale structures of the process. On
the other hand, we observe that this separation is smaller for
the Turbulence hard-core case, where there is a better bal-
ance between (P1) and (P2). The error in the Cox models is
probably due to the difficulty to reproduce highly constrained
structures (perfect circles or convex polygons). These obser-
vations agree with our visual evaluation of the syntheses: the
Voronoi and (more particularly so) the Big circles models are
easily discriminated from their original distributions (their
highly constrained structures are not perfectly reproduced
in the syntheses), but this discrimination is harder for the
Turbulent hardcore case. Moreover, these figures indicate, by

the spread of the dots representing the syntheses, that our
model reproduces, to some extent, the diversity in the sam-
ples of the original distributions (suggesting a certain entropy
in our model). To further reduce the distances between the
model samples and the original samples of a process, while
maintaining a similar diversity (and hence a similar entropy
between the model distribution and the original distribution)
remains an interesting problem for future works.

The two plots in the second line present the TDA of
the three Cox distributions together, and the three turbulent
distributions together. We observe that, for the Cox distribu-
tions, the Small circles model is about as close to the original
Small circles distribution as it is to the original Big circles
distribution. Nevertheless, the original distribution of the Big
circles and the Small circles are well separated, suggesting
that there is a topological distinction that is not well respected
in the small circles. However, this kind of error is hard to
perceive visually. On the other hand, the Voronoi case is well
separated from the other two, suggesting that the model is
better than the ones of the circles distributions. For the tur-
bulence case, we observe that the three distributions (both
original and model) are well separated, and each respective
model is closer to its original distribution than to the other
distributions. This agrees with our earlier visual and spec-
tral analysis, suggesting that our model is able to capture
complex geometric structures formed by a large amount of
points.

It remains an open question to quantify the influence of
the range parameter on the distances between patterns. We
chose to include all radii (0≤ r ≤ 1

2 ), as we want to include
information pertaining to individual point patterns, in order
to measure the diversity in the distribution. In order to get an
idea of the influence of this range parameter, it is possible
to look at the Euler-Poincaré characteristic (see e.g. Illian
et al. (2008, Chapter 4)), which is closely linked to TDA (See
Section 7 for further discussions). Other related methods to
compute distances between point patterns, such as in Müller
et al. (2020), could constitute an interesting line of research
for other evaluation methods.

Remark: We used the R packages TDAstats (Wadhwa
et al. 2018) to calculate the PDs of our point patterns and TDA
(Fasy et al. 2014) to calculate their Wasserstein distances.
Due to memory constraints, for second line, the analysis was
done using a random thinning to reduce the number of points
of each sample to 2 000, which could artificially impact the
results. The experiments were repeated several times and
the variability in the random thinning did not impact our
conclusions.
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Cox Voronoi Cox Big circles Turbulence hardcore

Cox — three distributions Turbulence — three distributions

Fig. 6 TDA of the distributions presented in this paper, and their respective models.

7 Comparison between our method and Tscheschel and
Stoyan (2006)

In this section, in order to illustrate the advantages of the
method presented in this paper, we present a brief comparison
between the method presented in Tscheschel and Stoyan
(2006) and ours.

7.1 Differences between the two methods

Both methods are based on the following idea: to produce
similar but different point patterns to a given observation, one
first defines what should be ’similar’ between the observation
and the synthesis, by choosing a set of statistical constraints,
computed on the observation. Then, starting from an initial
random configuration of points, one iteratively modifies this
configuration in order to match the set of prescribed statistics
(by minimizing an energy E, related to the square difference
between the statistics of the original and the synthesised
point patterns). If the set of statistics does not describe the
observation itself, but rather its underlying distribution, then
the output of the optimization procedure should be a new
point pattern, similar but different to the observation.

However, the two methods differ on two major points:

– First, the optimization method to match the set of statis-
tics. In Tscheschel and Stoyan (2006), the optimization
steps can be described as follows: given the point config-

uration being synthesized φk =
N

∑
i=1

δxi,k at some step k, a

point in the configuration is chosen uniformly at random,
say x j,k, for j ∈ {1, · · · ,N}. A candidate for a new point
y ∈W is chosen uniformly at random in the observation
window. Then, if the energy of φ̃k := φk− δx j,k + δy is
lower than the energy of φk, we define φk+1 = φ̃k. Other-
wise, φk+1 = φk. We call this optimization random search
(RS).

In our method, φk+1 =
N

∑
i=1

δxi,k−∇xi,k E(φk), where ∇xi,k E(φk)

is the gradient of the energy with respect to the point xi,k
of φk, see (9). This optimization method will be noted
(GD).

– Second, the set of statistical constraints used to describe
the geometry of the point patterns. In Tscheschel and
Stoyan (2006), the authors use the k nearest neighbour dis-
tance distribution functions (d.f.) Dk(r), for k∈{1, · · · ,kmax},
kmax≥ 1, and evaluated at a sequence of radii r∈{r0, · · · ,rmax},
rmax > 0, (Stoyan and Stoyan 1994, p. 267). We call this
statistical descriptor nearest neighbour distances (NND).
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Our statistics are based on the covariance between phase
harmonics of the wavelet phase harmonics coefficients
(WPH) of the point patterns (see 4).

7.2 Preliminary discussion

Before presenting a numerical comparison between the two
methods, we briefly explain what the limitations of the method
in Tscheschel and Stoyan (2006) are, and why our method
could overcome such limitations.

The optimization method in Tscheschel and Stoyan (2006)
is based on random search. This implies that for some con-
figuration φk at some step k, there may be a lot of failing
new candidates to replace some point in φk before finding
one that reduces the energy of φk. This means that there may
be a lot of energy evaluations before updating the current
configuration. Furthermore, each iteration, requiring one en-
ergy evaluation, only moves one point in the configuration.
Conversely, at each iteration, our algorithm computes the
energy as well as the gradient of the energy, and all the points
are moves according to the gradient. This implies that, for
some energy level e > 0, the gradient descent method may
reach this level in less iterations.

Moreover, the statistical constraints used in Tscheschel
and Stoyan (2006) are based on 3 parameters: the number of
neighbours for the points in the configuration, the maximal
radius at which to evaluate whether or not there is a neigh-
bour, and the number of radii between 0 and this maximal
radius. While the latter relates to the precision of the d.f.’s,
kmax and rmax have to be chosen carefully, so as to describe
the geometry formed by the points, up to some scale. The
maximal radius rmax can be seen as the maximal scale up to
which the constraints describe the geometric structure. This
can be fixed depending on the observation, but should not be
too large, in order to satisfy the ergodic averaging property.
However, for a fixed sequence of radii, the parameter kmax
can change significantly depending on the observation. Even
if two configuration exhibit structures up to similar scales,
the number of nearest neighbours inside some ball may differ
depending on the intensity of the process. For instance, con-
sider the Cox Circles distribution, where points are located
on circles of fixed radius r0, with the center of those circles
forming a Poisson point process. If the observed pattern has
around 10 points per circle, one would probably need to fix
rmax = 2r0, and kmax = 10. However, if the circles contain an
average of 100 points, then one would have to increase kmax
up to 100, even if the circles have the same size as before.
This would increase significantly the number statistics to
compute at every step. Conversely, our descriptors only de-
pend on a number of scales at which we compute the wavelet
coefficients, which does not depend on the intensity of the
process. The only parameters to fix are the maximal scale J,
and the minimal scale, set by the resolution N, which relates

to the precision set by the number of radii in the k nearest
neighbours case. In the above Cox Circles example, if the
points have Poisson distribution on the circles, then the size
of the descriptor will not change between the two setups (10
or 100 points per circles).

7.3 Numerical comparison

In this section we present a numerical comparison between
the two methods. This comparison aims at illustrating the
three following points:

1. For the same energy, the gradient descent optimization
method reaches low energy levels in less time (i.e. less
evaluations of energy value) than the optimization method
used in Tscheschel and Stoyan (2006). To highlight this
point, we shall consider the Cox Voronoi example, and
use the WPH descriptors (c.f. (14)) to define the energy,
and compare the RS and GD optimization methods.

2. The amount of information captured by the kth nearest
neighbours d.f.’s depends on the intensity of the process,
regardless of the scales of the structures. Considering the
Turbulent Poisson example with different intensities, we
shall see that, for a fixed descriptor (i.e. fixed kmax, rmax,
number of r), the quality of the syntheses decreases with
the intensity of the process.

3. We perform an overall comparison of the two methods,
on the Cox Voronoi and Turbulence Poisson examples.
Besides the visual and TDA comparison, we further pro-
vide statistical performance metrics to illustrate the better
performance of our method.

7.3.1 Comparison between RS and GD (Cox Voronoi
example)

For this experiment, we study the Cox Voronoi example,
and define the energy from the wavelet phase harmonics
covariances, presented in Section 4. Let K be our descriptor
(defined in (14)), φ̄ our observation sample, and Eφ̄ (·) =
1
2 |K(·)−K(φ̄)|2 the corresponding energy. We define the
relative energy by

e(·) = 2
EΦ̄(·)
|K(φ̄)|2

=
|K(·)−K(φ̄)|2

|K(φ̄)|2
. (17)

We ran the optimization of the energy with the random
search method from Tscheschel and Stoyan (2006), and ob-
serve the relative energy of the syntheses (for 10 syntheses),
after n = 19870 and n = 29805 iterations, i.e. respectively
10 and 15 iterations per point. After n = 19870 iterations,
the algorithm reaches a relative energy of e = 9,00.10−4

(with a std of 9,23.10−5), and after n = 29805 iterations, we
found e = 4,76.10−4 (std= 2,47.10−5), indicating that the
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optimization has reached a low energy level. It took an av-
erage of 1h04min and 1h36min respectively. We observed
the respective relative energies, and ran our gradient descent
optimization algorithm (without the multi-scale procedure)
until the relative energy reaches the levels from the random
search method. The results and comparisons with our method
are summarized in Table 1. The computations have been run
on a single GPU Nvidia Tesla P100.

Random search Gradient descent
e = 9,00.10−4 19870 (1h04m) 52 (0m35s)
e = 4,76.10−4 29805 (1h36m) 69 (0m45s)

Table 1 Speed comparison between random search and gradient de-
scent, in number of iterations (computation time in parenthesis) for
the synthesis of Poisson Voronoi patterns. The time per iteration in the
gradient descent method is larger, due to the possible several energy
(and gradient) evaluations for the line search. However, the total amount
of time is much lower.

7.3.2 Dependence of WPH and NND on the intensity of
points (Turbulence Poisson example)

To illustrate our second point, for NND descriptor we fix the
parameters of the k th nearest neighbours d.f.’s to kmax = 16,
rmax = .125 (on a window of size 1), and discretize Dk(r),
r ∈ (0,rmax], regularly by 250 values of radii r. With this
fixed descriptor, we perform a synthesis using RS optimiza-
tion for three different observations: the Turbulence Poisson
observation randomly thinned to have 500 points, the same
observation thinned to 2000 points, and the raw observation,
which contains 3784 points. We set the number of iterations
to 400 iterations per point, (which is the same for both meth-
ods). Figure 7 shows examples of syntheses for the 3 different
patterns, as well as syntheses from our method using WPH
descriptor with GD multiscale optimization. We observe that
the method using the RS+NND fails to reproduce the geo-
metric structures in the example with the largest number of
points.

Statistical evaluation metrics we present the estimations of
two statistics. The first one is the spherical contact distri-
bution function (SCDF), defined for a point process Ξ as
Hs(r) := 1−P(Ξ ∩B(0,r) = /0), where B(0,r) denotes the
ball of radius r, centered at 0. The second one is the Euler-
Poincaré characteristic, defined from the persistence diagram
of a point pattern (cf. 6.3) as the number of connected compo-
nents minus the number of holes, in function of the radius r.
For these two statistics, each radius r, and each distribution,
we estimate their value by averaging over 10 realizations. A
confidence interval is computed using a bootstrap method,
see e.g. Efron and Tibshirani (1994), with 9999 resamples,
a confidence level of .95, and the ’BCa’ method. We also

compare this estimation with the normalized standard devia-
tion of our samples, under Gaussianity assumptions (see for
instance Efron and Tibshirani (1994, Chapter 5)).

The curves of Figure 8 confirm our visual evaluation: as
the number of points in the pattern grows large, the error (de-
viation from the curve of the true distribution) becomes larger
for the RS+NND model. In the example with the largest num-
ber of points, the SCDF curve of this model is significantly
above the curve of the true distribution, because the obser-
vation contains clusters formed by a large number of points,
which is not captured by the NND descriptor with kmax = 16.
Therefore, large empty regions are not reproduced, and the
probability of having a point inside some ball of given radius
is too high. Similarly, the curve of the Euler characteristic
(χ) of the RS+NND model deviates from the one of the true
distribution when the number of points is large.

To quantify more precisely these errors, we report in
Table 2 values of the two statistics for several relevant radii r.

500 points 3784 points
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Fig. 7 Syntheses from the RS+NND model and our model, from obser-
vations containing 500 points (left) 3784 points (right).
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1.5e-2 2.4e-2 3.3e-2 4.1e-2 5.0e-2
True 5.8e-1(1.1e-2, 1.2e-2) 7.7e-1(1.0e-2, 1.0e-2) 8.9e-1(8.3e-3, 8.5e-3) 9.5e-1(6.3e-3, 6.5e-3) 9.8e-1(4.3e-3, 4.3e-3)

RS+NND 6.0e-1(2.1e-3, 2.1e-3) 8.1e-1(3.9e-3, 4.0e-3) 9.3e-1(4.4e-3, 4.4e-3) 9.8e-1(3.0e-3, 3.1e-3) 1.0e+0(1.5e-3, 1.5e-3)
GD+WPH 5.7e-1(4.2e-3, 4.2e-3) 7.6e-1 (6.2e-3, 6.4e-3) 8.9e-1(6.7e-3, 6.9e-3) 9.6e-1(5.6e-3, 5.8e-3) 9.9e-1(3.8e-3, 3.9e-3)

Table 2 Comparison of the SCDF for Turbulence distributions without thinning, on a range of relevant values of r. In parenthesis, the half 95%
confidence interval, estimated with bootstrap and standard deviation respectively. Bold numbers indicate values significantly closer to the true
distribution.

8.6e-3 1.6e-2 2.4e-2 3.2e-2 4.0e-2
True 2.7e+1(1.3e+1, 1.3e+1) -4.1(5.8, 5.7) -2.7e+1(2.3, 2.4) -3.1e+1(2.8, 2.9) -2.3e+1(1.7, 1.7)

RS+NND 9.9e+1(8.2, 8.5) -1.5e+1(6.1, 5.1) -4.0e+1(4.0, 4.0) -4.2e+1(3.1, 3.1) -2.1e+1(1.4, 1.5)
GD+WPH 4.6e+1(1.4e+1, 1.4e+1) -3.0(4.7, 4.5) -2.7e+1(4.2, 4.2) -3.2e+1(3.9, 3.9) -2.9e+1(2.5, 2.5)

Table 3 Comparison of the Euler characteristic for Turbulence distributions without thinning, on a range of relevant values of r. In parenthesis, the
half 95% confidence interval, estimated with bootstrap and standard deviation respectively. Bold numbers indicate values significantly closer to the
true distribution.

Thinning No thinning
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Fig. 8 Spherical contact distribution function (SCDF) and Euler-
Poincaré characteristic, for the thinned and not thinned distributions. We
compare the statistics of the true distribution, as well as the RS+NND
and WPH+GD models.

7.3.3 Direct comparison

On the two examples treated above, we shall illustrate the
overall performance of both methods. We ran 10 simulations
of syntheses from the method of Tscheschel and Stoyan
(2006), with kmax = 64 for the Cox Voronoi example, and
kmax = 128 for the Turbulence Poisson example, with 400
iterations per point. For both models we perform also the
syntheses from our multiscale gradient descent method (with
400 iterations).

The two families of examples of syntheses share the same
corresponding observation coming from the original distri-
butions. We also simulate 9 other patterns for the original
distributions, to compare the averaged statistics and the di-
versity among the original distribution and the models.

We compare the different distributions with visual eval-
uation (Figure 9), TDA (Figure 10), and by estimation of
the SCDF and Euler characteristic (Figure 11, Tables 4 and
5). For the evaluation with TDA, in addition to the visual-
ization of a 2-dimensional representation of the distance

matrix between (the PD of) all original and synthesized
point patterns (cf. Section 6.3), we also compute the av-
erage Wasserstein distance between all pairs of point pat-
terns belonging to different distributions. In more details, for
a given distribution (Cox Voronoi or Turbulence Poisson),
let M := Morig/GD+WPH be the 10×10 distance matrix be-
tween the 10 realizations of the original distribution and the
10 realizations of our model. We compute dorig/GD+WPH =

1
100 ∑i, j Mi, j. Similarly, we compute dorig/RS+NND for the RS+NND
model. We obtained, for the Cox Voronoi example, dorig/GD+WPH =

0.75, and dorig/RS+NND = 1.52, showing a significant advan-
tage to our method. Our experiments on the Turbulence Pois-
son example gave dorig/GD+WPH = 0.61, and dorig/RS+NND
= 0.62. These results are coherent with the visual evaluation,
that indicates a better performance of our model, particularly
for the Cox Voronoi example.

Figure 11 also confirms our visual evaluation. The curve
of the χ function clearly shows a larger error for the RS+NND
model. Indeed, we can observe from the alignment of points
in the observation that the number of connected components
quickly decreases in the patterns of the true distribution. As
this alignment is not as well reproduced in the RS+NND
model as in ours, we observe that the curve of the χ function
decreases more slowly for the RS+NND model. Addition-
ally, the SCDF curves for the Turbulence example show a
significant error for the RS+NND model, for which the curve
is above the true distribution curve, indicating the presence
of fewer large empty areas around clusters. For the Voronoi
example however, our model also shows a significant error
on the SCDF curve, similar to the RS+NND model, possibly
due to the presence of points inside the formed cells (only
one is needed to impede the presence of an empty region or
a hole). This can also explain the error observe on the TDA
plot of the Voronoi distributions (Figure 10, left).
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1.5e-2 2.3e-2 3.0e-2 3.7e-2 4.5e-2
True 5.8e-1(1.1e-2, 1.2e-2) 7.5e-1(1.0e-2, 1.1e-2) 8.6e-1(8.8e-3, 8.9e-3) 9.3e-1(7.1e-3, 7.3e-3) 9.7e-1(5.5e-3, 5.6e-3)

RS+NND 5.9e-1(1.4e-3, 1.4e-3) 7.8e-1(1.8e-3, 1.8e-3) 8.9e-1(2.5e-3, 2.6e-3) 9.6e-1(3.3e-3, 3.3e-3) 9.9e-1(2.9e-3, 3.0e-3)
GD+WPH 5.7e-1(4.2e-3, 4.2e-3) 7.4e-1(6.1e-3, 6.3e-3) 8.6e-1(7.0e-3, 7.1e-3) 9.3e-1(6.2e-3, 6.3e-3) 9.7e-1(4.8e-3, 4.9e-3)

Table 4 Comparison of the SCDF for Turbulence distributions, on a range of relevant values of r. In parenthesis, the half 95% confidence interval,
estimated with bootstrap and standard deviation respectively. Bold numbers indicate values significantly closer to the true distribution.

1.0e-2 2.0e-2 3.0e-2 4.0e-2 5.0e-2
True 1.5e+2(7.2, 7.4) -5.3e+1(5.0, 5.2) -6.4e+1(4.2, 4.3) -4.4e+1(3.2, 3.2) -2.3e+1(1.7, 1.7)

RS+NND 2.5e+2(3.9, 3.7) -6.5(2.1, 2.1) -5.4e+1(3.3, 3.4) -3.2e+1(3.0, 3.1) -1.2e+1(1.2, 1.2)
GD+WPH 1.8e+2(3.1, 3.1) -4.1e+1(3.2, 3.3) -7.1e+1(2.1, 2.2) -4.6e+1(1.9, 1.9) -1.3e+1(8.5e-1, 8.6e-1)

Table 5 Comparison of the Euler characteristic for Voronoi distributions, on a range of relevant values of r. In parenthesis, the half 95% confidence
interval, estimated with bootstrap and standard deviation respectively. Bold numbers indicate values significantly closer to the true distribution.
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Fig. 9 Visualization of syntheses for the Cox Voronoi and Turbu-
lence Poisson examples. Top: observations, middle: RS+NND, bottom:
GD+WPH.

8 Conclusion

In this paper, we present a particle gradient descent model
to simulate stationary and ergodic point processes, based on
a single observation in a square window. This model is able
to synthesize processes formed by a large number of points,
exhibiting interactions at multiple scales. Our method is built
upon recent works on gradient descent methods to approx-
imate the micro-canonical model. To characterize complex

Cox Voronoi Turbulence Poisson

dorig/RS+NND = 1.52 dorig/RS+NND = 0.62
dorig/GD+WPH = 0.75 dorig/GD+WPH = 0.61

Fig. 10 Visualization of the TDA of the three distributions (Original,
GD+WPH, RS+NND), for the Cox Voronoi example (left), and the
Turbulence Poisson example (right). The black point represents the
observation pattern used for the syntheses. The averaged (true) distances
between the original and synthesized patterns (via Wasserstein distance
of persistence diagrams) are given as well.

geometric point patterns, we use the wavelet phase harmonic
descriptors that allow to explicitly control the scales of the
structures to model. Numerical results on Cox and Turbu-
lent distributions validate the ability of the model to capture
various geometric structures in the observation. Compared
to the classical approaches developed in Torquato (2002);
Tscheschel and Stoyan (2006), our approach brought a new
perspective to the modeling of point processes, through the
lens of wavelet analysis and image modeling.
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A Proof of Theorem 1

In order to prove Theorem 1, we need to formally define Eq. (9). Recall
that in this section and in what follows, Ws is interpreted as endowed
with the addition and scalar multiplication modulo Ws.

For µ ∈Ms and any x ∈ Supp(µ), we define the following func-
tions:

hµ
x : R2 −→ Ms

y 7−→ µ−δx +δx+y,

Kµ
x : R2 −→ Cd ≡ R2d

y 7−→ K ◦hµ
x (y),

Eµ
x : R2 −→ R+

y 7−→ Eφ̄ ◦hµ
x (y).

The function Kµ
x can be complex valued. However, as our energy

function is the square Euclidean norm, it is equivalent to consider that
Kµ

x has values in R2d . Moreover, we assume in what follows that the

function K is such that for all µ ∈ Ms and all x ∈ Supp(µ), Kµ
x is

differentiable. We can then define from chain rule, for any µ ∈Ms and
any x ∈Ws

∇xK(µ) :=

{
Jac[Kµ

x ](0) if x ∈ Supp(µ)
0 otherwise , (18)

and

∇xEφ̄ (µ) :=

{
Jac[Eµ

x ](0) if x ∈ Supp(µ)
0 otherwise , (19)

where Jac[ f ] denotes the Jacobian matrix of the function f . When x ∈
Supp(µ), the chain-rule gives Jac[Eµ

x ](0) = (∇xK(µ))t(K(µ)−K(φ̄)).
We can now give the proof of Theorem 1.

Proof We are going to show that if Φn follows a distribution invariant to
T , then Φn+1 = Gφ̄ (Φn) also follows a distribution that is invariant to T .
The gradient descent procedure thus produces a sequences of measures
Φn that are all invariant to T because the initial random measure Φ0 is
invariant invariant to T .

Denote Gφ̄ (µ) by the measure configuration transported from µ , by
performing one gradient-descent step on the energy Eφ̄ . More precisely,
for µ = ∑i δxi , we define for a fixed γ > 0, the gradient-descent step by

Gφ̄ (µ) := ∑
i

δxi−γ∇xi E
φ̄
(µ).

For any transform T x = Ax+b on Ws, where A is an orthogonal matrix
A with entries in {−1,0,1}, and b ∈Ws. As A is a linear transformation
on the torus Ws, ∀x,y ∈Ws, A(x+y) = Ax+Ay. We shall first prove that

Gφ̄ (T#µ) = T#Gφ̄ (µ). (20)

Let yi = T xi, then by definition,

Gφ̄ (T#µ) = ∑
i

δyi−γ∇yi Eµ̄ (T#µ),

and

T#Gφ̄ (µ) = ∑
i

δT (xi−γ∇xi E
φ̄
(µ)).

We are going to show that for each i-th particle, yi− γ∇yi Eφ̄ (T#µ) =

T (xi−γ∇xi Eφ̄ (µ)). This implies that (20) is correct. The key is to show
that

A∇xi Eφ̄ (µ) = ∇yi Eφ̄ (T#µ) (21)

which will imply that ∀i,

T (xi− γ∇xi Eφ̄ (µ)) = Axi− γA∇xi ,

Eφ̄ (µ)+b = yi− γA∇xi Eφ̄ (µ) = yi− γ∇yi Eφ̄ (T#µ).

To show (21), we recall that by the definitions in Section 3.1,

∇xi Eφ̄ (µ) = Jac(Kµ
xi
)(0)t(K(µ)−K(φ̄)), (22)

∇yi Eφ̄ (T#µ) = Jac(KT#µ
yi

)(0)t(K(T#µ)−K(φ̄)), (23)

with Jac(KT#µ
yi )(0)= Jac(KT#µ

yi ◦A◦A−1)(0)= Jac(K◦hT#µ
yi ◦A)(0)A−1.

Furthermore, ∀x ∈Ws,

K ◦hT#µ
yi
◦A(x) = K(T#µ−δyi +δyi+Ax) = K(T#(µ−δxi +δxi+x))

= K(µ−δxi +δxi+x) = K ◦hµ
xi
(x), (24)
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where we used the fact that T is affine, and the invariance of K w.r.t. T .
The equality in (21) follows directly from (22),(23),(24) and the fact
that A−1 = At . From (21), we conclude that (20) holds.

Based on (20), it remains to show that for any Borel set Γ on Ws,
P(Φn ∈ T−1

# Γ ) = P(Φn ∈ Γ ). This can be shown by induction, since
by assumption it holds at n = 0: assume now that this statement holds
at n≥ 0, then we have,

P(Φn+1 ∈ T−1
# Γ ) = P(Gφ̄ (Φn) ∈ T−1

# Γ ) (25)

= P(T#Gφ̄ (Φn) ∈ Γ )

= P(Gφ̄ (T#Φn) ∈ Γ )

= P(Gφ̄ (Φn) ∈ Γ )

= P(Φn+1 ∈ Γ ). (26)

The second last equality in (26) is due to the invariance of Φn, i.e.

P(Gφ̄ (T#Φn) ∈ Γ ) = P(Φn ∈ T−1
# G−1

φ̄
Γ )

= P(Φn ∈ G−1
φ̄

Γ )

= P(Gφ̄ (Φn) ∈ Γ ).

B Fourier spectrum and power spectrum

We define the discrete Fourier transform (DFT) Fm(µ) of a counting
measure µ = ∑u δxu ∈Ms on the (square) window [−s,s[2 at integer
frequency m ∈ Z2 by

Fm(µ) :=
∫

Ws

e−iπmx/s
µ(dx) = ∑

u
e−iπmxu/s.

Observe, Fm(µ) at frequency m = (0,0) specifies the number of points
of the measure µ on Ws. The empirical Fourier spectrum (or power
spectrum ) is often defined by taking the square modulus of the Fourier
coefficients Fm(µ); Um(µ) := |Fm(µ)|2. Note that |Fm(µ)|2, and conse-
quently Um(µ) is invariant with respect to (circular) translations of µ

on Ws. By selecting the frequencies in a limited range m ∈ΓF ⊂ Z2, one
obtains a translation-invariant Fourier spectrum. As we shall focus on
isotropic point processes, we further reduce the variance of our statistics
by averaging Fourier coefficients along frequency orientations. More
precisely, let us define Γ̃F := {b|m|c, m ∈ ΓF}. For each k ∈ Γ̃F , we
define Ũk(µ) := 1

#k ∑ m∈ΓF
b|m|c=k

Um(µ), where #k denotes the cardinal of

{m∈ΓF : b|m|c= k}. The radial power spectrum P(k) is the expectation
of Ũk(µ) for k ∈ N = {1,2,3, ...} when µ follows some distribution,
divided by the intensity of the process (estimated over 10 realizations).

C Relaxing the assumptions on the data

In this paper, in order to present our model in a simple setting, strong
theoretical assumptions have been made on the data. However, in real
world applications, the data will most likely not satisfy these assump-
tions. This sections presents ideas on how to adapt our model in such
cases.

Non-periodic boundaries Recall that our descriptor, defined in
(14), applies periodic boundary correction to point patterns in a square
window. If the structure of the observed pattern is not periodic, one
can modify the descriptor by applying non-periodic integrals in (14)
over some smaller window. In particular, we suggest a scale-dependent
reduction of the integration window, pertinent when the wavelet ψ has
a compact (or approximately compact) spatial support. Specifically,
we consider a new descriptor K̃ by considering the integrals in (14)
with i = (λ ,k,λ ′,k′,τ ′) ∈ ΓH over smaller windows Wsi ⊂Ws, such that
boundary effects are negligible. Our current software can also handle
such non-periodic boundary conditions.

More general observation windows In this paper, we considered
that the observed pattern lies in a square observation window. If this
is not the case, one could use a similar idea to the non-periodic case:
embed the observation window in a square window and considering
integrals in (14) over the observation window.

Non stationary process In Koňasová and Dvořák (2021), the au-
thors focus on building a model for non stationary point processes
inspired by Tscheschel and Stoyan (2006). Similarly, one might adapt
our method to model non stationary processes. This could be done by
modifying two aspects of the method. First, the initial distribution Φ0
(cf. Section 3.1) could be chosen as a non stationary Poisson point
process, estimating the intensity with a kernel estimator, such as in
Koňasová and Dvořák (2021). In addition, as pointed out in Koňasová
and Dvořák (2021), the descriptor should be adapted not to be trans-
lation invariant. This could be done, for example, by applying local
integrals over patches of the observation window in (14) (this requires
some notion of ”local stationarity” of the process). Another method that
may be useful in this scenario is the regularization proposed in Brochard
et al. (2020), where a regularization term is added to the energy. This
term consists of the (Sliced Wasserstein) distance (Rabin et al. 2011)
between the initial configuration and the current configuration (the one
being optimized). By adding this regularization term to the energy, the
points of the configuration are forced not to move too far away from the
initial configuration, which could help preserve the non stationarity of
the initial distribution in the distribution of the model.

Processes in other dimensions While we focus in this paper on
planar point processes, our approach can readily be extended to any
dimensions. To model point processes in other dimensions such as 1d or
3d, one can consider similar type of wavelets proposed in the literature
(Chenouard and Unser 2011; Brumwell et al. 2018).

D List of important parameters of our model

In Table 6, we discuss the main parameters of our model in three
categories. The first two categories are the parameters that are relatively
standard to consider in most existing methods such as Tscheschel and
Stoyan (2006). The third category is more specific to our model, which
involves the discretization step, and the final blurring step.
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Category Parameter Discussion
Descriptor (c.f. Section 4.3 and 5.1.2) Number of wavelet scales J The scales of the wavelet transform are defined by

0≤ j < J. The minimal scale j = 0 is chosen though
the image resolution N of the discretization, and is re-
lated to the precision in high frequencies. This choice
should depend on the observed pattern. The maxi-
mal scale J should be as large as possible, to capture
enough structural information, but not too large, so
that the wavelet phase harmonic covariances remain
empirically well estimated.

Number of wavelet orientations L This determines the angular precision of the descrip-
tor. A larger L captures finer orientations of edge-like
structures.

Range of phase harmonics (k,k′) This determines the range of interactions between the
wavelet phase harmonics coefficients. The choice of
(k,k′) = (1,1) corresponds to the second order statis-
tics.

Optimisation (cf Section 3.1 and 6.1.2) Number of iterations In our experiments, we set a fixed number of iterations.
We found that increasing the number of iterations fur-
ther only decrease the energy of the configurations by
a small factor. Other standard stopping criteria based
on the norm of gradient can also be considered.

Extra steps (cf. Section 5) Image resolution N The larger the resolution, the smaller the structures of
point processes which we can model. However, there
is an extra computational cost when N increases. It
also results in a larger number of moments to estimate.

With or without multi-scale optimization Multi-scale optimization has been found useful in the
case where the maximal scale J is large, to avoid poor
local minima and reconstruct the observation. We have
also used it in our synthesis experiments, to reduce the
energy of the syntheses.

Final blurring The final blurring is useful in the cases where the
number of points per pixel is often larger than 1, to
remove artifacts due to the discretization.

Table 6 Discussion of the important parameters of our model.


	1 Introduction
	2 Point process framework
	3 Particle gradient descent model
	4 Wavelet phase harmonic descriptors
	5 Numerical scheme for particle gradient descent
	6 Numerical experiments
	7 Comparison between our method and Tscheschel2006
	8 Conclusion
	A Proof of Theorem 1
	B Fourier spectrum and power spectrum
	C Relaxing the assumptions on the data
	D List of important parameters of our model

