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Complexity of zigzag sampling algorithm for strongly

log-concave distributions

Jianfeng Lu ∗ Lihan Wang †

Abstract

We study the computational complexity of zigzag sampling algorithm for strongly log-
concave distributions. The zigzag process has the advantage of not requiring time discretization
for implementation, and that each proposed bouncing event requires only one evaluation of
partial derivative of the potential, while its convergence rate is dimension independent. Using
these properties, we prove that the zigzag sampling algorithm achieves ε error in chi-square

divergence with a computational cost equivalent to O
(
κ2d

1
2 (log 1

ε
)
3
2

)
gradient evaluations in

the regime κ≪ d
log d

under a warm start assumption, where κ is the condition number and d
is the dimension.

Keywords: Monte Carlo sampling; zigzag sampler; log-concave distribution; computational complex-
ity

1 Introduction and Main Results

Monte Carlo sampling from a high-dimensional probability distribution is a fundamental problem with
applications in various areas including Bayesian statistics, machine learning, and statistical physics. Many
sampling algorithms, especially those for continuous state space like R

d, are based on continuous time
Markov processes. Examples of these processes include the overdamped Langevin dynamics, whose invari-
ant measure is the target measure, the underdamped Langevin dynamics and Hamiltonian Monte Carlo
(HMC) [26], both augment the state space with a velocity variable v, and have the x-marginal distribution
of the invariant measure as the target measure. For strongly log-concave distributions, all these processes
converge to the equilibrium exponentially fast with rates independent of the dimension, making them
suitable for sampling purposes. On the other hand, all of these processes require time discretizations for
implementation, which not only induces further numerical errors but requires the time step to be small
as well, requiring higher computational complexity if a small bias is desired. To remove such bias due
to discretization, the conventional procedure is to introduce the Metropolis-Hastings acceptance-rejection
step, but rejections indicate waste of computational resources.

A very different line of sampling algorithms have been recently developed in statistical physics and
statistics literature [45], which are based on piecewise deterministic Markov processes (PDMPs) [21].
These processes are non-reversible, which may mix faster than reversible MCMC methods [22,47]. Exam-
ples of such samplers include the randomized Hamiltonian Monte Carlo [11], the zigzag process [3], the
bouncy particle sampler [12,45], and some others [4,42,48]. The zigzag and bouncy particle samplers are
appealing for big data applications, as they can be unbiased even if stochastic gradient is used [3, 12].
These algorithms, as they are still relatively new, have not yet been thoroughly analyzed. In particular, no
non-asymptotic computational complexity bounds on these algorithms have been established yet, to the
best of our knowledge. Our previous work [38] gives explicit exponential convergence rates for the PDMPs
with log-concave potentials, which opens the possibility of deriving such complexity bounds for PDMPs,
and provides the foundation of this work.
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1.1 Algorithm and Assumptions

Let x denote the state variable in R
d where d is the dimension. The target distribution we want to sample

from is denoted by
dµ(x) = Z−1 exp(−U(x)) dx,

where U(x) is the potential and Z =
´

Rd exp(−U(x)) dx is the normalizing constant. Although the zigzag
process can also be applied to sample non log-concave distributions, we will restrict our analysis to strongly
log-concave distributions, namely, we make the following assumption throughout:

Assumption 1. The potential function U(x) satisfies

mId ≤ ∇2U(x) ≤ LId, (1)

for some 0 < m ≤ 1 ≤ L. Moreover, U(x) has a unique minimizer at x = 0, and U(0) = 0.

For any random variable X, we use ρ(X) to denote its law. In this paper, we use chi-square divergence
to measure the difference between two probability measures: for probability measures ρ1, ρ2 that ρ1 ≪ ρ2,
it is defined as

χ2(ρ1 ‖ ρ2) :=
ˆ

Rd

( dρ1
dρ2

− 1
)2

dρ2.

The zigzag sampling algorithm is based on a piecewise deterministic Markov process, called zigzag
process. Besides the variable x, we augment the state space by an auxiliary velocity variable taking value
in R

d. A trajectory of the zigzag process, denoted by (Xt, Vt), can be described as follows. Given some
initial (X0, V0), the position Xt always evolves according to d

dt
Xt = Vt, while the velocity Vt is piecewise

constant which only changes when bouncing or refreshing events occur at some random time following
Poisson clocks. Bouncing events on the j-th direction occur with rate (V

(j)
t ∂xjU(Xt))+, and at such an

event the velocity Vt changes by flipping its j-th component to −V (j)
t . Refreshing events occur with rate

λ for some fixed λ > 0, when the velocity Vt is completely redrawn from the standard normal N (0, Id).

It has been established [1,8,38] that under Assumption 1, ρ(Xt, Vt) converges to the invariant measure
of the zigzag process, which is a product measure of the target measure in x and the standard Gaussian
in v:

dµ̄(x, v) = dµ(x) dν(v) where dν(v) = (2π)−
d
2 exp

(
−|v|2

2

)
dv.

Our analysis relies on the following more quantitative convergence result for zigzag process proved in [38],
which also specifies the optimal choice of refreshing rate λ.1 We would like to comment here that the choice
of λ =

√
L is completely technical since it optimizes the theoretical convergence rate (up to a universal

constant) of the zigzag process established in [38]. The zigzag process is ergodic even if λ = 0 and in
practice the choice λ = 0 is common.

Proposition 1.1. [38, Theorem 1] Under Assumption 1, there exists a universal constant K independent
of all parameters, such that for any initial density µ̄0, the zigzag process with friction parameter λ =

√
L

satisfies

χ2(ρ(XT , VT ) ‖ µ̄) ≤ K exp
(
− m

K
√
L
T
)
χ2(µ̄0 ‖ µ̄). (2)

The left-hand side of (2) controls desired divergence of ρ(X) with respect to the target measure µ, as
we have

χ2(ρ(XT , VT ) ‖ µ̄) =
ˆ

Rd×Rd

( dρ(XT , VT )

dµ̄

)2

dµ̄(x, v)− 1

=

ˆ

Rd

( dρ(XT )

dµ

)2(ˆ

Rd

( dρ(VT | XT )

dν(v)

)2

dν(v)
)
dµ(x)− 1

=

ˆ

Rd

( dρ(XT )

dµ

)2(
1 + χ2(ρ(VT | XT ) ‖ ν

))
dµ(x)− 1

≥
ˆ

Rd

( dρ(XT )

dµ

)2

dµ(x)− 1 = χ2(ρ(XT ) ‖µ).

Moreover, we would take initial condition in the form of

(X0, V0) ∼ µ̄0(x, v) = µ0(x)ν(v), (3)

1[38] shows exponential convergence for the backward equation. By duality the exponential convergence of the
backward equation in L2(µ̄) is equivalent to the exponential convergence of the forward equation in χ2 with the
same rate.
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which implies that χ2(µ̄0 ‖ µ̄) = χ2(µ0 ‖µ). Therefore, we get

χ2(ρ(XT ) ‖µ) ≤ K exp
(
− m

K
√
L
T
)
χ2(µ0 ‖µ), (4)

which suggests the total time T needed to achieve control of chi-square divergence.

Of course, in practice, we cannot simulate the zigzag process directly, as simulating the Poisson process
associated with the bouncing event would require integrating (V

(j)
t ∂xjU(Xt))+ along the trajectory. To

turn the zigzag process into an efficient and practical sampling algorithm, the Poisson process for the
bouncing events are usually simulated using the Poisson thinning trick (see e.g., discussions in [3, Section
3]). Under Assumption 1, we will use the following upper bound estimate for the rate:

(vi∂xiU(x+ vt))+ ≤ |vi∂xiU(x+ vt)| ≤ |vi||∂xiU(x+ vt)| ≤ L|vi|(|x|+ t|v|). (5)

This upper bound has the advantage of not involving evaluations of U and its partial derivatives, which
greatly reduces the computational cost, compared with using numerical quadrature for d Poisson clocks.
The price to pay is the increased frequency of potential bouncing events, which scales like O(

√
d) since

the pessimistic bound for the partial derivative |∂xiU(x)| ≤ |∇U(x)| ≤ L|x| typically sacrifices a factor of
O(

√
d) in the first inequality.

Following the above discussions, the zigzag sampling algorithm is described in Algorithm 1, where
Step 12 uses the upper bound estimate in (5), while Steps 19–23 correspond to the Poisson thinning step.
Note that for each potential bouncing event, the algorithm requires one evaluation of ∂xiU in Step 19. In
practice, typically accessing the partial derivatives of U is the most time consuming step, therefore, in our
complexity analysis, we focus on the number of access to partial derivatives.

Algorithm 1 The zigzag sampling algorithm

Input: Terminal time T , initial distribution µ0.

1: Draw x ∼ µ0.
2: Set t← 0.
3: Set refr← true.
4: while t < T do

5: if refr then
6: Draw v ∼ N (0, Id).
7: Draw trefr ∼ Exp (

√
L).

8: trefr ← min{trefr, T − t}.
9: refr← false.

10: end if

11: for i = 1, · · · , d do

12: Draw τi such that P(τi ≥ s) = exp
(

−sL|vi||x| − s2

2
|vi||v|

)

.
13: end for

14: Pick j = arg min
i=1,··· ,d

τi.

15: Λj ← L|vj |(|x|+ τj |v|).
16: t← t+min{τj , trefr}.
17: x← x+ vmin{τj , trefr}.
18: if τj < trefr then

19: λj ← (vj∂xjU(x))+.
20: Draw α ∼ Unif(0, 1);

21: if α <
λj

Λj
then

22: vj ← −vj .
23: end if

24: trefr ← trefr − τj .
25: else

26: refr← true.
27: end if

28: end while

29: return x.

We also need the following assumption for technical purposes, as will be discussed after stating the
main results:
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Assumption 2. The initial distribution µ0(x) satisfies a warm-start condition:

χ2(µ0 ‖µ) ≤ exp
( d

8Kκ log d

)
, (6)

where κ := L/m is the condition number, and K is the same universal constant as in (2). Furthermore,
the initial distribution is concentrated in the sense of

η := Pµ0

(
|x| >

√
2d

m

)
<

1

4
. (7)

Remark 1.2. The concentration condition (7) can be easily satisfied. By Gaussian Annulus Theorem,

if we pick µ0 = N (0, 1
m
Id), then Pµ0

(
|x| >

√
2d
m

)
≤ 3e−cd for some universal constant c. The failure

probability gets smaller if we take µ0 = N (0, 1
L
Id) or µ0 = µ. The warm start condition (6) is more

stringent but can be achieved by first running Langevin Monte Carlo (LMC). We will discuss that after
presenting our main result.

1.2 Main Results

Theorem 1. Under Assumption 1, for any prescribed accuracy ε > 0, Algorithm 1 outputs a random
variable X such that

χ2(ρ(X) ‖µ) ≤ ε, (8)

for terminal time T chosen as

T = K
(√

L

m

(
log

1

ε
+ log χ2(µ0 ‖µ) + logK

))
, (9)

where K is the universal constant in (2).

Moreover, if ε ≥ exp
(
− d

8Kκ log d

)
, then, under Assumption 2, with probability 1− C√

LT
−C log−

3
2 d−η,

Algorithm 1 returns an output with a computational cost of

O
(
d

3
2 κ2

(
log

3
2
1

ε
+ log

3
2 χ2(µ0 ‖µ)

))

evaluations of partial derivatives of U , where η is defined in (7) and C is a universal constant.

Remark 1.3. By repeated trials, the theorem implies that for any δ ∈ (0, 1
4
), with probability 1 − δ,

Algorithm 1 returns the desired output with a computational cost of

O

(
d

3
2 κ2

(
log

3
2
1

ε
+ log

3
2 χ2(µ0 ‖µ)

)
log

1

δ

∣∣∣log−1( 1√
LT

+ log− 3
2 d+ η

)∣∣∣
)
,

that is Õ(d
3
2 κ2) evaluations of partial derivatives of U , where Õ(·) hides logarithmic factors.

With the common computational model that d evaluations of partial derivatives of U is equivalent to

one evaluation of ∇U in complexity, the complexity of zigzag is equivalent to Õ(d
1
2 κ2) evaluations of ∇U .

Let us explain the choice of T in (9): For the zigzag sampling algorithm to reach the target ε accuracy
according to (4), the terminal time T needs to be large enough. Meanwhile, the Assumption 2 guarantees
that T is not too large, as otherwise we cannot effectively control the number of bouncing events either
due to a very large V drawn from a velocity refreshing event or the trajectory reaching regions with large
gradient. These motivate our previous Assumption 2 on the initial distribution µ0, as well as the restriction
on ε that it cannot be too small compared to d. We remark that the assumption on ε is not prohibitive as
we are interested in high dimensional cases and the error threshold is exponentially small in d.

The warm start condition (6) can be achieved if we start with a Gaussian distribution in x and run
Langevin Monte Carlo

Xn+1 = Xn − h∇U(Xn) +
√
2h ξn (10)

where h is the step size, and ξn are i.i.d. N (0, Id) random variables. This leads to the following corollary:

Corollary 1.4. Let d ≫ 1. Suppose the potential U satisfies Assumption 1 for some κ ≥ 1 such that

κ
9
5 ≤ d

4
5

C log3 d
for some computable (from [32]) universal constant C. Then, for any prescribed accuracy

ε > 0, if we initialize X0 ∼ N (0, 1
2L

Id), the hybrid algorithm by first running LMC (10) for N = d4/5κ16/5
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steps with step size h = 4
5
d−4/5κ−16/5m−1 log d

κ
and then Algorithm 1 up to time T = K

(√
L

m

(
log 1

ε
+

d
1
5 κ

4
5 log2 d

κ
+ logK

))
outputs a random variable X such that

χ2(ρ(X) ‖µ) ≤ ε. (11)

Moreover, if ε ≥ exp
(
− d

8Kκ log d

)
, with probability 1 − C√

LT
− C log−

3
2 d − C exp(Cd

1
5 κ

4
5 log2 d

κ
− cd),

Algorithm 1 returns an output with a computational cost of

O
(
d

1
2 κ2 log

3
2
1

ε
+ d

4
5 κ

16
5 log3

d

κ

)

evaluations of partial derivatives of U .

Proof. It is easy to verify that our choice of N, h satisfies h ≤ m
4L2 and Nh2 ≤ 1

196cκ2L2 (where c satisfies
[32, Lemma 14]). Therefore, we may appeal Lemmas 2, 14, 25, 26 of [32], so that the random variable XN

produced in (10) satisfies

χ2(ρ(XN)‖µ) ≤ exp
(
Cd exp(−Nhm) + CNh2κ2L2(d+ logN)

)
= exp

(
Cd

1
5 κ

4
5 log2

d

κ

)
(12)

for some universal constant C. This, combined with our assumption on κ, guarantees that (6) holds with
ρ(XN) playing the role of µ0. We can also check the validity of (7) by

Pρ(XN )

(
|x| >

√
2d

m

)
≤

(
1 + χ2(ρ(XN)‖µ)

) 1
2
(
Pµ

(
|x| >

√
2d

m

)) 1
2 ≤ C exp

(
Cd

1
5 κ

4
5 log2

d

κ
− cd

)
≪ 1.

Therefore we may apply Theorem 1 with µ0 = ρ(XN), and derive that the total computational cost (in
terms of number of evaluations of ∇U) equals to

O
(
N + d

1
2 κ2(log

3
2
1

ε
+ log

3
2 χ2(ρ(XN)‖µ)

))
= O

(
d

4
5 κ

16
5 log3

d

κ
+ d

1
2 κ2 log

3
2
1

ε

)
.

Theorem 1 guarantees that the zigzag sampling algorithm (Algorithm 1) outputs a sample from a
distribution with χ2-divergence at most ε away from the target density for a computational complexity

equivalent to Õ(d
3
2 κ2) partial derivative evaluations (i.e., amounts to Õ(d

1
2 κ2) gradient evaluations), in

the regime max{κ, log 1
ε
} ≪ d

log d
with a warm-start condition. Corollary 1.4 establishes that the hybrid

LMC-zigzag algorithm outputs a sample for a computational complexity Õ(d
4
5 κ

16
5 ) gradient evaluations.

The initialization using LMC is added only for technical reasons as we currently do not have complexity
guarantees otherwise with an explicit initial distribution, nor is it necessary for actual implementations.
We would also like to comment that our goal is to obtain the best possible scaling in d, and the scaling in
κ might be possibly improved by a more careful analysis.

Our analysis is based on the quantitative convergence rate of the zigzag process established in [38],
which is O( m√

L
) for m-convex and L-smooth potentials. The rest of our proof is based on estimating

sup |Xt| along a single trajectory of the zigzag process and subsequently turn this into an estimate on the
number of potential bouncing events, and hence number of partial derivative evaluations. Our analysis
utilizes the two important and desirable features of the zigzag sampling process:

• The implementation of the zigzag process does not need time discretization, as the velocity in
deterministic portion of the trajectory remains constant, which makes it possible to simulate the exact
trajectories of the zigzag process while eliminating an important source of error. This is the reason
that the complexity of the zigzag process only has logarithmic dependence on 1

ε
, without Metropolis

acceptance/rejection.

• Moreover, for each potential bouncing event of zigzag, only one evaluation of a partial derivative of
the potential is required, which is O(d) cheaper than a full gradient evaluation in computational cost for
usual model of computation.

We would also remark that we quantify the error of distribution in terms of χ2-divergence, which
provides stronger guarantee than total variation, KL divergence or 2-Wasserstein distance. While χ2-
divergence is relatively convenient for obtaining convergence rates of continuous processes based on Poincarè
inequality [15, 38], it does not seem easy to use for analyzing discretization error of SDEs. The work [49]
made assumptions of Poincarè inequality for the discrete invariant measure, which is difficult to verify. We
are fortunate to avoid such problem for zigzag sampler, thanks to the fact that zigzag does not need time
discretization. After the first version of this work appears online, [32] established convergence of LMC
in χ2- and Rényi divergence, using the exponential convergence of continuous time overdamped Langevin
dynamics in Rényi divergence [14,49].
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1.3 Previous Works

Here we focus on results on non-asymptotic analysis of sampling algorithms, which has been a focused
research area in recent years. Many sampling algorithms have been analyzed including algorithms based
on overdamped Langevin dynamics [19, 23, 27, 28, 37, 49], underdamped Langevin dynamics [18, 20, 24, 39,
43, 46], Hamiltonian Monte Carlo [10, 17, 36, 40, 41], or high order Langevin dynamics [44], among others.
These methods involve discretization of ODEs or SDEs, which yields an error that scales polynomially
with step size. Thus the complexity of these algorithms has polynomial dependence on ε−1, where ε is the
desired accuracy threshold.

Metropolized variants of sampling algorithms, including Metropolized HMC and Metropolis Adjusted
Langevin Algorithm (MALA), have also been studied in [16, 31, 35], the complexities of which have only
logarithmic dependence on ε−1, similar to the zigzag sampling process analyzed here. In [31] the complexity

upper bound for MALA is established as Õ(κd+ κ
3
2 d

1
2 ) under warm start condition, and Õ(κd2 + κ

3
2 d

3
2 )

with a feasible start. In [16] the complexity upper bound for MALA is improved to Õ(κd + κ
3
2 d

1
2 ) with

feasible start (where µ0 = N (0, 1
L
Id)). The work [16] also established bounds for Metropolized HMC,

which is Õ(κd
11
12 ) with warm start (which is in fact more stringent than our Assumption 2) in the regime

κ = O(d
2
3 ), and Õ(κ

3
4 d+κ

7
4 d

1
2 ) with feasible start if the target potential function has a bounded Hessian.

The complexity upper bound has been improved in [35] to Õ(κd) for both Metropolized HMC and MALA
with a feasible start, based on a refined analysis using concentration of gradient norm. In comparison, our
result for zigzag relies on a warm start (which is achievable by LMC), while the complexity upper bound
has better dependence in d. The issue of feasible start will be further discussed in Section 3.

Regarding asymptotic analysis for the convergence of zigzag process, the ergodicity was first established
in [8]. Exponential convergence of the zigzag process is established in [7, 33] using a Lyapunov function
argument. A central limit theorem of the zigzag process is established in [2], and a large deviation principle
is established for the empirical measure in [6]. The spectrum of the zigzag process has been studied in
[5,34]. A dimension independent exponential convergence rate for the zigzag process is established in [1],
using the hypocoercivity framework developed in [25]. Finally, a more quantitative convergence estimate
was established in [38], for which our analysis of the sampling algorithm is based on.

2 Strategy of the Proof

Since Algorithm 1 always simulates exact trajectories of the zigzag process, we see that (8) is guaranteed
with the correct choice of T . Therefore we only need to estimate the computational complexity. The
strategy of the proof is to first give an estimate on supt∈[0,T ] U(Xt) (Lemma 2.1), which directly controls
supt∈[0,T ] |Xt|. The upper bound on |Xt| in turn provides us an estimate of upper bound on the number
of partial derivative evaluations of U . The complexity upper bound we derive holds with high probability,
while it does not always hold (for example, the number of proposed bouncing events from the Poisson clock
might be atypically high), such events only occur with very small probability, which will be controlled in
the proof.

Let N + 1 be the total number of velocity refreshments (including the initial refreshment), therefore
N is a Poisson random variable such that

P(N = n) =
(
√
LT )n

n!
e−

√
LT . (13)

Let 0 = T0 < T1 < T2 < · · · < TN ≤ T < TN+1 be the refresh times, and VTk be the velocity variable after
refreshment at time Tk. For k = 1, · · · , N , we use tk = Tk − Tk−1 to denote the time duration between
refreshments. For convenience, we will also denote tN+1 = T − TN .

The first step of the proof is the following lemma which controls supt∈[0,T ] U(Xt) condition on some
high probability events. The proof will be deferred to the appendix.

Lemma 2.1. Under Assumptions 1 and 2, suppose the following conditions hold:

1

2

√
LT ≤ N ≤ 3

2

√
LT ; (14a)

|VTk · ∇U(XTk )| ≤
( d√

LT

)1/2

|∇U(XTk )|, ∀k = 1, · · · , N ; (14b)

|VTk | ≤ 2
√
d, ∀k = 1, · · · , N (14c)

U(X0) ≤ κd; (14d)

6



N+1∑

k=1

t2k ≤ 4T√
L
. (14e)

Then there exists a universal constant C such that

sup
t∈[0,T ]

U(Xt) ≤ C
√
LTd. (15)

The next element in the proof is to control the failure event that (14) does not hold. The control
of the first four events are relatively straightforward and will thus be directly carried out in the proof of
theorem below; we state the probability for the event (14e) to hold as the following lemma, which will also
be proved in the appendix.

Lemma 2.2. There exists a universal constant C such that, if
√
LT > C, then with probability 1− 2√

LT
,

condition (14e) holds.

The final component of the proof is to turn the estimate for supt∈[0,T ] U(Xt) to an upper bound for
the number of proposed bouncing events.

Proof of Theorem 1. Let pi be the probability that condition i in (14) of Lemma 2.1 fails. We start with
condition (14a) of Lemma 2.1. For Poisson process with ti as the arrival times, we may estimate the first
failure probability (here and for the rest of the proofs C denotes a universal constant that may change
from line to line)

pa ≤ exp(− 1

C

√
LT ) ≤ C√

LT
. (16)

We now check the conditions (14b) and (14c) of Lemma 2.1. By Gaussian Annulus Theorem, for each
refreshment, we have

P(|VTk | ≥ 2
√
d) ≤ 3e−cd, (17)

where c > 0 is some universal constant. We also require VTk to satisfy |VTk · n(XTk )| ≤
(

d√
LT

)1/2
, where

n(XTk ) =
∇U(XTk

)

|∇U(XTk
)| , which has failure probability

P(|V · n(X)| ≥
( d√

LT

)1/2

) =
1√
2π

ˆ ∞
(

d
√

LT

)1/2 exp(−
r2

2
) dr

≤ 1√
2π

ˆ ∞
(

d
√

LT

)1/2 exp
(
− r
2

( d√
LT

)1/2)
dr

≤
√

2

π

(√LT
d

)1/2

exp(− d

2
√
LT

).

Since we have to draw V for N times, cumulatively this yields a failure probability

pb + pc ≤ C

(
e−cd +

(√LT
d

)1/2

exp
(
− d

2
√
LT

))
EN. (18)

Recall the assumption ε ≥ exp(− d
8Kκ log d

) as well as (6) (and that κK logK ≤ d
4 log d

), which implies that√
LT ≤ d

2 log d
for our choice of T as in (9). Together with condition (14a), we derive (neglecting the

obviously smaller term e−cd)

pb + pc ≤ C
√
LT

(√LT
d

)1/2

exp
(
− d

2
√
LT

)
≤ C log−

3
2 d.

The failure probability for condition (14d) is straightforward to estimate. Using Assumption 1, we have

U(X0) ≤ L

2
|X0|2,

which indicates

pd ≤ η = P(|X0| ≥
√

2d

m
).

Finally, pe is already estimated in Lemma 2.2, which yields pe ≤ 2√
LT

. In summary, the total failure

probability of (14) can be bounded as

pa + pb + pc + pd + pe ≤ C√
LT

+ C log−
3
2 d+ η. (19)
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We now assume that condition (14) holds. Thus, Lemma 2.1 together with Assumption 1 implies that

sup
t∈[0,T ]

|Xt| ≤
( 2

m
sup

t∈[0,T ]

U(Xt)
)1/2

≤ C
(√L
m

Td
)1/2

. (20)

After each refreshment or bouncing event, Algorithm 1 runs d independent Poisson clocks {τi}i=1,··· ,d
defined in Step 12 where, noticing

∑
i|Vi| ≤

√
d|V | ≤ 2d,

P(min τi ≥ t) ≥ exp
(
−tL|X|

∑

i

|Vi| − t2

2
|V |

∑

i

|Vi|
)
≥ exp

(
−Cd 3

2 (L
5
4m− 1

2 T
1
2 t+ t2)

)
. (21)

This motivates us to consider the following counting process Ñt: suppose t̃1, · · · are i.i.d. random variables

with P(t̃i ≥ s) = exp(−As−Bs2) where A = Cd
3
2L

5
4m− 1

2 T
1
2 and B = Cd

3
2 , and let Ñt = infn{

∑n
i=1 t̃i >

t}. By construction, the probability of N > 8AT under condition (14) is controlled by P(ÑT > 8AT ).
Therefore, it suffices to estimate P(ÑT > 8AT ).

We compute the expectation of t̃1 (here notice A≫ B ≫ 1):

Et̃1 =

ˆ ∞

0

s(A+ 2Bs) exp(−As−Bs2) ds ≥
ˆ A

B

0

s(A+ 2Bs) exp(−2As) ds

=
1

4A
+

B

2A3
−

( 3A

2B
+

5

4A
+

B

2A3

)
e−

2A2

B ≥ 1

4A
. (22)

On the other hand,

Et̃21 ≤
ˆ ∞

0

s2(A+ 2Bs) exp(−As) ds = 2

A2
+

12B

A4
≤ 33

16A2
.

Therefore we may appeal to Kolmogorov’s inequality [30, Theorem 2.5.2] (here Sn denotes
∑n

i=1 t̃i):

P(ÑT > 8AT ) = P(S8AT < T ) = P(S8AT − ES8AT < T − ES8AT )
(22)

≤ P(S8AT − ES8AT < −T )

≤ 1

T 2
VarS8AT =

8A

T
Var t̃1 ≤ 16

AT
≤ C√

LT
.

To sum up, we have established that with high probability the number of partial derivative evaluations is
bounded by

O(AT ) = O(d
3
2L

5
4m− 1

2 T
3
2 ) = O

(
d

3
2 κ2(log

3
2
1

ε
+ log

3
2 χ2(µ0 ‖µ)

))
.

3 Discussion

We establish non-asymptotic complexity bounds for the zigzag sampling algorithm. While we focus on
zigzag sampler in this work, we expect that similar analysis for other PDMPs [4,12,42,48] can be carried
out. We leave these for future research.

We admit that our warm-start requirement (6) may be stringent. We observe that (6) implicitly requires
the condition number κ to be much smaller than d, as otherwise, if κ ∼ d, (6) requires χ2(µ0 ‖µ) = O(1)

which is unrealistic. Corollary 1.4 essentially requires κ≪ d
4
9 for the analysis to hold. This restriction on

condition number is not completely unexpected since the zigzag sampler does perform poorly for highly
anisotropic densities (see for example numerical results in [42]).

A major issue of the warm-start assumption comes from our choice of χ2 divergence, rather than total
variation, 2-Wasserstein distance, or KL divergence as in previous works for non-asymptotic analysis of
sampling algorithms. In particular, if we choose the initial condition

dµ0(x) = (
L

2π
)
d
2 exp(−L|x|

2

2
) dx, (23)

as in previous works, then for U(x) = m|x|2
2

, we have

χ2(µ0 ‖µ) = Z(
L

2π
)d
ˆ

Rd

exp(−L|x|2 + U(x)) dx− 1

= κ
d
2 (
L

2π
)
d
2

ˆ

Rd

exp
(
−(L− m

2
)|x|2

)
dx− 1 = κ

d
2 (

L

2L−m
)
d
2 − 1,

8



which violates (6). On the other hand, for the same choice of µ0, as long as U satisfies Assumption 1, one
can estimate

KL(µ0 ‖µ) = (
L

2π
)
d
2

ˆ

Rd

(d
2
log

L

2π
+ logZ − L

2
|x|2 + U(x)

)
exp(−L

2
|x|2) dx ≤ d

2
log κ.

This means log KL(µ0 ‖µ), and consequently the logarithm of total variation or 2-Wasserstein distances
are much smaller than any algebraic power of d, making it suitable for initialization. We hope the following
conjecture is true:

Conjecture 1. Under Assumption 1, there exists a universal constant K independent of all parameters,
such that for any initial density µ̄0, the zigzag process with friction parameter λ =

√
L satisfies

KL(ρ(XT , VT ) ‖ µ̄) ≤ K exp
(
− m

K
√
L
T
)
KL(µ̄0 ‖ µ̄).

If this is indeed true, we can establish the convergence in KL divergence of the pure zigzag sampler using
a feasible start, without using LMC for initialization.

Another interesting open question is whether one can find a tighter upper bound than Step 12 of
Algorithm 1 in order to reduce the computational complexity, since it magnifies the proposed bouncing
rates by O(

√
d). The following lemma, which might be of independent interest, provides a concentration

bound for |∂xiU | so that we might be able to give up a small probability to obtain a much sharper bouncing
rate control.

Lemma 3.1. Let U(x) satisfy Assumption 1, then for any c > 0,

Pµ

(
|∂xiU | ≥ 2

√
L+ 2c

√
L log d

)
≤ 3d−c. (24)

The proof of this lemma, deferred to the appendix, is inspired by [35], which uses the following Brascamp-
Lieb inequality [13]:

Lemma 3.2. Let U(x) satisfy Assumption 1, then for any g ∈ H1(µ),

Varµ g ≤
ˆ

Rd

∇g(∇2U)−1∇g dµ. (25)

With Lemma 3.1, it might be possible to improve Algorithm 1 while surrendering a small probability
by replacing Step 12 with P(τi ≥ s) = exp(−cs

√
L|vi| log d) since (vi∂xiU(x+ vs))+ ≤ c

√
L|vi| log d with

high probability. This motivates the following conjecture:

Conjecture 2. Under the Assumption 1, for any κ and log 1
ε
that are both smaller than some algebraic

power of d, there exists an algorithm that gives a random variable X such that

χ2(ρ(X) ‖µ) ≤ ε. (26)

Moreover, with high probability, the algorithm requires O
(
dκ log d

(
log 1

ε
+ log χ2(µ0 ‖µ)

))
evaluations of

partial derivatives of U .

Unfortunately there are several difficulties for proving the conjecture. One is that although ∂xiU does
not exceed O(log d) with high probability, we are unable to control the partial derivatives for a trajectory of
the zigzag process. Another issue is that since some trajectories of the zigzag process may go to regions with
partial derivatives exceeding O(log d), we do not always simulate the exact trajectories, which introduces
bias in the sampling.

Acknowledgment. This work is supported in part by National Science Foundation via grants CCF-
1910571 and DMS-2012286. We would like to thank Murat Erdogdu for pointing us to their complexity
analysis of Langevin Monte Carlo in chi-square divergence [32] to remove the warm start assumptions.

A Proof of Lemma 2.1

Proof. Let λ(t) = Vt · ∇xU(Xt). If no bouncing happens, then

d

dt
λ(t) = V ⊤

t ∇2
xU(Xt)Vt ≤ L|Vt|2.

9



In addition, λ(t) decreases when bouncing happens, since there is some positive V
(i)
t ∂xiU(Xt) being

changed to −V (i)
t ∂xiU(Xt) while Xt and other V

(j)
t ’s remain unchanged. Therefore, since |Vt| does not

change between refreshments, we have for any t ∈ (0, Tk+1 − Tk),
2

λ(Tk + t) ≤ λ(Tk) + tL|VTk |2. (27)

Notice for a convex function U(x) that satisfy Assumption 1, we have by co-coercivity

|∇U(x)|2 ≤ 2LU(x),

therefore for any t ∈ [0, Tk+1 − Tk), and any α > 0,

U(XTk+t) = U(XTk ) +

ˆ t

0

λ(Tk + τ ) dτ

≤ U(XTk ) + tλ(Tk) +
Lt2

2
|VTk |2

(14b),(14c)

≤ U(XTk ) + t
( d√

LT

)1/2

|∇U(XTk )|+ 2Lt2d

≤ U(XTk ) + t
(2d

√
L

T

)1/2√
U(XTk ) + 2Lt2d

≤ (1 + α)U(XTk ) + d
√
Lt2(

1√
2Tα

+ 2
√
L).

(28)

In particular,

U(XTk+1
) ≤ (1 + α)U(XTk ) + d

√
Lt2k+1(

1√
2Tα

+ 2
√
L).

Choosing α = 1√
LT

, we have

U(XTk+1
) ≤ (1 + α)U(XTk ) + CdLt2k+1.

Now we apply the above formula iteratively and derive

U(XT ) ≤ (1 + α)N+1U(X0) + CLd

N+1∑

k=1

(1 + α)N−k+1t2k

≤ (1 + α)N+1
(
U(X0) + CLd

N+1∑

k=1

t2k

)

(14d),(14e)

≤ C
√
LTd.

Here we used α = 1√
LT

= O( 1
N
) so (1 + α)N+1 = O(1), which is true due to (14a), and that κ ≤

√
LT ,

which is true with our choice of T in (9).

B Proof of Lemma 2.2

Proof. Let Ξ =
∑N+1

k=1 t
2
k. By properties of the Poisson process [29], if we condition on N , the distribution

of T1, T2, · · · , TN has the same joint distribution as that of N i.i.d. random variables uniformly distributed
in (0, T ). This means

E(Ξ | N) =
N !

TN

ˆ

t1+···+tN<T

( N∑

k=1

t2k +
(
T −

N∑

k=1

tk
)2)

dtN · · · dt1. (29)

To calculate E(Ξ | N), let us define

I1(N,T ) =

ˆ

t1+···+tN<T

( N∑

k=1

t2k +
(
T −

N∑

k=1

tk
)2)

dtN · · · dt1

2We remark here that λ(t) is not well-defined at the bouncing times. Nevertheless, (27) still makes sense since
λ(t) decreases at the bouncing events, and since we only use (27) in the time integral sense, this will not cause any
problem.

10



and compute I1(N,T ) by induction in N . For N = 0, as the sum contains only one term, I1(0, T ) = T 2.
An easy calculation shows that I1(1, T ) =

2
3
T 3. We will show in general

I1(N,T ) =
2(N + 1)

(N + 2)!
TN+2. (30)

Indeed, suppose (30) holds for N − 1, we want to prove (30) for N , the starting point of which is the
following observation:

I1(N,T ) =

ˆ

t1+···+tN<T

t21 dtN · · · dt1 +
ˆ T

0

I1(N − 1, T − t1) dt1.

The first integral can be treated by integrating the variables one by one, from tN to tN−1 and then tN−2,
etc.

ˆ

t1+···+tN<T

t21 dtN · · · dt1 =

ˆ

t1+···+tN−1<T

t21(T − t1 − · · · − tN−1) dtN−1 · · · dt1

=
1

2

ˆ

t1+···+tN−2<T

t21(T − t1 − · · · − tN−2)
2 dtN−2 · · · dt1

= · · ·

=
1

(N − 1)!

ˆ T

0

t21(T − t1)
N−1 dt1 =

2

(N + 2)!
TN+2.

(31)

By the induction assumption (30) for N − 1 we have

ˆ T

0

I1(N − 1, T − t1) dt1 =

ˆ T

0

2N

(N + 1)!
(T − t1)

N+1 dt1 =
2N

(N + 2)!
TN+2.

Combining above with (31) we finish the proof for N . Therefore

E(Ξ | N) =
N !

TN

2(N + 1)TN+2

(N + 2)!
=

2T 2

N + 2
.

The full expectation EΞ follows as N is a Poisson random variable

EΞ =
∞∑

n=0

E(Ξ | N = n)P(N = n)

=
∞∑

n=0

2T 2

n+ 2

(
√
LT )n

n!
e−

√
LT

= 2T 2e−
√

LT
∞∑

n=0

( (
√
LT )n

(n+ 1)!
− (

√
LT )n

(n+ 2)!

)

=
2T√
L

− 2

L
+

2e−
√

LT

L
≤ 2T√

L
.

To get the desired estimate, we apply Chebyshev’s inequality using the second moment. By the same
arguments leading towards (29), we have

E(Ξ2 | N) =
N !

TN

ˆ

t1+···+tN<T

( N∑

k=1

t2k + (T −
N∑

k=1

tk)
2
)2

.

Denote

I2(N,T ) =

ˆ

t1+···+tN<T

( N∑

k=1

t2k + (T −
N∑

k=1

tk)
2
)2

.

Using the same induction argument as the proof of (30), we can prove

I2(N,T ) =
4(N + 1)(N + 6)

(N + 4)!
TN+4.

This can be easily verified for N = 0, 1 and the induction follows form the calculation:

I2(N,T ) =

ˆ

t1+···+tN<T

t41 +

ˆ T

0

I2(N − 1, T − t1) dt1 + 2

ˆ T

0

t21I1(N − 1, T − t1) dt1

11



=
1

(N − 1)!

ˆ T

0

t41(T − t1)
N−1 dt1 +

4N(N + 5)

(N + 3)!

ˆ T

0

(T − t1)
N+3 dt1

+
4N

(N + 1)!

ˆ T

0

t21(T − t1)
N+1 dt1

=
4(N + 1)(N + 6)

(N + 4)!
TN+4.

This shows E(Ξ2 | N) = N!
TN I2(N,T ) =

4(N+6)
(N+2)(N+3)(N+4)

T 4, and therefore

EΞ2 =

∞∑

n=0

E(Ξ2 | N = n)P(N = n)

=

∞∑

n=0

4T 4(n+ 6)

(n+ 2)(n+ 3)(n+ 4)

(
√
LT )n

n!
e−

√
LT

= 4T 4e−
√

LT
∞∑

n=0

( (
√
LT )n

(n+ 2)!
− 6

(
√
LT )n

(n+ 4)!

)

=
4T 2

L
− 24

L2
+ 8e−

√
LT (

T 2

L
+

3T

L
3
2

+
3

L2
).

This means

E(Ξ− EΞ)2 =
8T

L
3
2

− 28

L2
+ 8e−

√
LT (

T 2

L
+

2T

L
3
2

+
4

L2
− 4e−

√
LT

L2
) ≤ 8T

L
3
2

,

where the inequality above holds for
√
LT larger than some universal constant (which we would assume

as it is the interesting parameter regime).
Finally, to conclude the proof, we apply Chebyshev inequality to estimate the failure probability as

P(Ξ ≥ 4T√
L
) ≤ P(Ξ− EΞ ≥ 2T√

L
) ≤ LE(Ξ− EΞ)2

4T 2
≤ 2√

LT
.

C Proof of Lemma 3.1

Proof. The first step is to show that
Eµ|∂xiU | ≤

√
L. (32)

This is straightforward, since using integration by parts,

Eµ|∂xiU |2 =

ˆ

Rd

(∂xiU)2 dµ =

ˆ

Rd

∂xixiU dµ ≤ L, (33)

and (32) then follows from Cauchy-Schwarz inequality.
The next step is to establish a concentration bound. Let G(x) = ψ(∂xiU), where ψ(a) = ψ(|a|) is a

smooth nonnegative increasing function satisfying

ψ(0) = ψ′(0) = 0, ψ(a) = |a| for |a| ≥ 1, and |ψ′(a)| ≤ 2,

and g(x) = exp( 1
2
λG(x)). By the construction of G, we have

EµG = Eµψ(∂xiU) ≤ 2Eµ|∂xiU | ≤ 2
√
L. (34)

Then ∇g(x) = λ
2
ψ′(∂xiU)∇(∂xiU)g(x). By Lemma 3.2 for g(x), we have

Eµ exp(λG)−
(
Eµ exp

(λG
2

))2
= Varµ g(x)

≤ λ2

4

ˆ

Rd

(ψ′(∂xiU))2∇(∂xiU)(∇2U)−1∇(∂xiU)g2(x) dµ

≤ λ2

ˆ

Rd

∇(∂xiU)(∇2U)−1∇(∂xiU)g2(x) dµ

= λ2

ˆ

Rd

∂xixiUg
2(x) dµ ≤ λ2LEµ exp(λG).

Thus for λ ≤ 1

2
√

L
we have

Eµ exp(λG) ≤ 1

1− λ2L

(
Eµ exp(

λG

2
)
)2
. (35)
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Now we use (35) recursively, and we obtain for H(λ) := Eµ exp(λG),

H(λ) ≤
∞∏

k=0

( 1

1− λ2L
4k

)2k

lim
ℓ→∞

H(
λ

ℓ
)ℓ. (36)

Notice

lim
ℓ→∞

H(
λ

ℓ
)ℓ = lim

ℓ→∞

(
Eµ exp(

λG

ℓ
)
)ℓ

= lim
ℓ→∞

(
1 + Eµ

λG

ℓ

)ℓ

= exp(λEµG). (37)

Moreover, by [9, Proposition 4.1],

∞∏

k=0

( 1

1− λ2L
4k

)2k

≤ 1 + λ
√
L

1− λ
√
L
. (38)

Substituting (37) and (38) into (36), we obtain

H(λ) ≤ 1 + λ
√
L

1− λ
√
L

exp(λEµG).

Finally, combining the above exponential moment bound of G with Chebyshev inequality, we get

Pµ

(
G(x) ≥ EµG + r

)
≤ exp(−λr)1 + λ

√
L

1− λ
√
L
.

Now take λ = 1/2
√
L, and r = 2c

√
L log d, and using (34) (noticing G(x) = |∂xiU | when G(x) ≥ r since

r ≥ 1), we arrive at

Pµ

(
|∂xiU | ≥ 2

√
L+ 2c

√
L log d

)
≤ 3d−c.
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