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Abstract

The Matérn covariance function is ubiquitous in the application of Gaussian pro-
cesses to spatial statistics and beyond. Perhaps the most important reason for this
is that the smoothness parameter ν gives complete control over the mean-square dif-
ferentiability of the process, which has significant implications for the behavior of
estimated quantities such as interpolants and forecasts. Unfortunately, derivatives of
the Matérn covariance function with respect to ν require derivatives of the modified
second-kind Bessel function Kν with respect to ν. While closed form expressions of
these derivatives do exist, they are prohibitively difficult and expensive to compute.
For this reason, many software packages require fixing ν as opposed to estimating
it, and all existing software packages that attempt to offer the functionality of esti-
mating ν use finite difference estimates for ∂νKν . In this work, we introduce a new
implementation of Kν that has been designed to provide derivatives via automatic dif-
ferentiation (AD), and whose resulting derivatives are significantly faster and more
accurate than those computed using finite differences. We provide comprehensive
testing for both speed and accuracy and show that our AD solution can be used to
build accurate Hessian matrices for second-order maximum likelihood estimation in
settings where Hessians built with finite difference approximations completely fail.

Keywords: Matérn covariance, Bessel functions, Gaussian processes, maximum likelihood,
automatic differentiation
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1 Introduction

Gaussian process modeling is a ubiquitous tool in a variety of disciplines. One attrac-
tive feature of a Gaussian process is that it is specified by its first two moments: for a
Gaussian random field Z with (often multivariate) index x, one needs only to select a
mean function EZ(x) =: m(x)1 and a positive-definite covariance function K such that
Cov(Z(x), Z(x′)) =: K(x,x′) to completely specify the multivariate law. A classical ap-
plication of Gaussian process modeling in the mean-zero setting with data z is to select a
parametric family of positive-definite functions {Kθ}θ∈Θ and then optimize the negative
log-likelihood over the parametric family to obtain the estimator

θ̂MLE := argmin
θ∈Θ

−ℓ(θ | z) = argmin
θ∈Θ

1

2

[
log |Σ(θ)|+ z⊤Σ(θ)−1z

]
. (1.1)

It is common practice to then treat this MLE as a known true value and compute subsequent
estimators like interpolants or forecasts using the Gaussian law specified by the MLE.

One of the most popular isotropic covariance functions, the Matérn covariance function
[21], is given by

Kθ=(σ,ρ,ν) = Mν(x,x
′) := σ2 2

1−ν

Γ(ν)

(√
2ν ‖x− x′‖

ρ

)ν

Kν

(√
2ν ‖x− x′‖

ρ

)
, (1.2)

where Γ is the gamma function, Kν is the second-kind modified Bessel function [8], and
σ, ρ, and ν are scale, range, and smoothness parameters respectively. The Matérn class is
distinguished from other standard covariance functions by the flexibility that the parameter
ν gives, as it controls the mean-square differentiability of the process [30]. While the above
functional form is complicated, the Matérn covariance is most naturally motivated by its
Fourier transform pair (also called the spectral density), which for d-dimensional processes
has the form S(f ) = τ 2(ζ2+‖f‖2)−ν−d/2 , where τ and ζ are functions of (σ, ρ, ν) and d. As
it turns out, ν has significant effects on the behavior of derived quantities. Interpolants and
forecasts, for example, are fundamentally different when ν < 1, corresponding to a process
that is not mean-square differentiable, and when ν ≥ 1, corresponding to a process with
at least one mean-square derivative. Special concern about whether processes are (mean-
square) differentiable dates back to at least Matheron [22] in the geostatistical community.
For a complete discussion on the importance of this parameter and the value in estimating
it, see [30].

A widely acknowledged challenge in GP modeling is that the log-likelihood surface
created by ℓ(θ | z) is non-convex and difficult to optimize over. Figure 1 provides an
example of the log-likelihood surface (profiled in σ, see Appendix B) for a Matérn process
that illustrates the non-quadratic shape of level surfaces and the difficulty of estimating
both smoothness and range parameters. A similar but arguably worse challenge occurs for
estimating the range and scale even when the smoothness parameter is known [36]. An
effective way to combat the log-likelihood’s lack of convexity is to optimize using derivative

1For convenience we consider only mean-zero processes, however extensions to parametric mean func-
tions are straightforward.

2



0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1.2 1.25 1.3 1.35 1.4 1.45 1.5

ρ

ν

0

2

4

6

8

10

12

Figure 1: A centered profile log-likelihood surface for a Matérn process (so that 0 corre-
sponds to the log-likelihood at the MLE). The colorbar range has been artificially truncated
to emphasize the non-quadratic structure near the minimizer. Level contours at 1
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information. Until recently the use of derivatives to aid Gaussian process optimization
was not particularly common (see [31, 23, 11, 16] for examples of separate strategies for
optimization at scale using approximated derivative information). The gradient of ℓ(θ | z)
is computable in closed form and is given by

−2
∂

∂θj
ℓ(θ | z) = tr

(
Σ(θ)−1Σj(θ)

)
− z⊤Σ(θ)−1Σj(θ)Σ(θ)−1z , (1.3)

where we use the shorthand Σj(θ) :=
∂
∂θj

Σ(θ). Setting aside the computational challenges

this presents for large matrices, computing this quantity requires derivatives of the covari-
ance function with respect to all parameters in order to assemble the Σj(θ) matrices. This
is the step in the process where attempting to estimate ν from data becomes problematic.
Until recently, no closed form expressions for the derivative ∂νKν were available in the lit-
erature, and by extension accurate computation of the derivatives ∂νMν was not possible.
While these derivatives have been studied [6], including very recent work providing com-
pletely closed-form derivatives [12], the expressions are cumbersome, for example involving
higher-order generalized hypergeometric functions, and as such are difficult to implement
reliably. Considering that these functions are significantly more general than Kν , existing
software implementations for them are understandably complex and in our experience come
at significant speed costs on at least some parts of the domain, even if they are reliably
accurate on the entire domain of Kν .

The non-convex optimization problem posed by maximum likelihood for Matérn co-
variance functions may not be practically solvable using only gradient information. In an
attempt to introduce higher-order information to further aide in optimization, several recent
works have used the expected Fisher information matrix as a proxy for Hessians [11, 16].
True Hessians (also referred to as observed information matrices), however, while coming
with an additional computational burden, are more effective than expected information
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matrices in our experience as well as arguably being preferable as proxies for second-order
information of estimated parameters [7]. They can be computed as

−2[Hℓ(θ | z)]j,k = tr
(
Σ(θ)−1Σj(θ)Σ(θ)−1Σk(θ)

)
− tr

(
Σ(θ)−1Σjk(θ)

)

+ zT

(
∂

∂θk

{
Σ−1Σj(θ)Σ

−1
})

z ,

where Σj,k is the second derivative ∂2

∂θj∂θk
Σ(θ). The derivative in the last quadratic form

can be expanded using matrix calculus but is left in this form for clarity (see the appendix of
[11] for the full expression). As can be seen, the Hessian of ℓ(θ) requires second derivatives
of Kν , making the second-order optimization for the Matérn class of covariance functions
more challenging still. To our knowledge, no existing literature gives explicit forms for these
second derivatives. These considerations indicate that a primary bottleneck in performing
maximum likelihood estimation for Matérn models is the robust evaluation of the second-
kind modified Bessel function, Kν and its first two derivatives. While we have not directly
verified that the inaccuracies of finite-difference derivatives pose a substantial problem in
gradient-based Bayesian methods, such as Hamiltonian Monte Carlo [25], it is possible that
the improvements we discuss here could also provide meaningful gains in those methods.

Kν is a special function defined as one of the two linearly independent solutions of
a second order differential equation [8]. Alternative expressions for Kν , such as series
expansions, integrals on the real line, path integrals, as well as confluent and generalized
hypergeometric functions have been used in existing special function libraries [8, 2, 32]. The
primary difficulty of practical implementations is that no single strategy for accurate and
efficient evaluation is valid on the entire real axis and a domain partitioning is required to
obtain an optimal method to evaluate Kν . Current libraries focus entirely on evaluations of
Bessel functions, neglecting their derivatives, and even if they provide access to the source
implementation, they are not easily extended to the problem of computing derivatives. Due
to this difficulty in computing the derivatives of Kν with respect to the order ν, it is common
practice to fix ν prior to performing the optimization instead of treating it as a parameter
to be estimated (see, for example, the popular GPyTorch software library [10], or the
RobustGaSP softare [15, 14], both of which only offer a few special half-integer values of ν).
This often constitutes a significant sacrifice, as ν can have important practical implications
for many tasks performed after maximum likelihood estimation, such as interpolation [30].

In an attempt to offer the functionality of estimating ν from data, several software
libraries for fitting Matérn models provide simple finite difference approximations for the
derivative approximation as ∂νKν(x) ≈ h−1(Kν+h(x)−Kν(x)), where a typical choice is h =
10−6. For special function libraries that provide only function evaluations this is one of the
few possible choices. And for a suitable choice of h, these approximations may be reasonably
accurate when x is not near the origin and ν is not overly large, although finite difference
approximations are known to be prone to round-off errors. This is particularly problematic
for second derivatives, as those calculations involve a divisor of h2. Combined with the finite
precision representation of the numerator, this division can lead to severe floating point
errors. To our knowledge no software library currently attempts to offer second derivative
information for Kν with respect to ν, or, by extension, for Mν . Considering that the
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evaluation of Kν is the dominant cost in evaluating the entire Matérn covariance function,
finite differences, which require at least twice as many evaluations as direct computations,
also come with a burdensome computational cost. A more efficient approach, essentially
free of round-off errors for first derivatives, is the complex step method [29, 9]. This was
studied for modified Bessel function order derivatives in [20], however not for edge cases
such as ν ∈ Z, since they are less problematic for complex step method evaluations but are
highly significant for the current work. Adaptive finite difference methods, uncommon in
the statistical community, are more reliable since they select h adaptively based on function
values in the vicinity of differentiation points. But while they provide higher accuracy, it
comes at a significant performance cost due to the many function evaluations required.
And so while a sufficiently high-order adaptive finite difference method can be used to
solve the problem we discuss here, the performance cost is so significant that we do not
consider them further.

Arguably the most powerful differentiation approach when derivatives are not com-
putable by hand or easily programmed manually is automatic differentiation (AD), which
avoids issues such as round-off errors and allows highly efficient implementations. In this
work, we develop a new implementation of Kν that is purposefully designed to be auto-
matically differentiable with high accuracy. The negligible accumulation of errors in the
first-order derivatives using AD computations further enables highly accurate computations
of second-order derivatives of Kν with respect to ν. We take this approach here, making
use of the Julia [5] programming language, which we consider to be an ideal tool due to its
type system and powerful AD tools such as ForwardDiff.jl [27].

In the next section, we provide an overview of AD, focusing on the challenges associated
with an automatically differentiable implementation of Kν . In Section 3, we present our
choices for direct evaluations and their derivatives on the entire domain of definition of Kν .
Next, in Section 4, we verify the accuracy and efficiency of the derivatives as well as the
Matérn covariance. Finally, we provide a demonstration of second-order optimization in
Section 5, where we compare the results of optimizing using derivatives of the log-likelihood
built using our AD implementation to optimization results building the same objects with
finite difference derivatives. We conclude that optimization using the software we provide
here yields correct MLEs, and that the AD-generated derivatives are fast and sufficiently
accurate that even very complicated derived functions such as Hℓ(θ | z) are computed to
high accuracy in settings where building the same objects using finite difference derivatives
results in a complete loss of precision.

2 Derivatives via Automatic Differentiation

Automatic differentiation (AD) refers to the algorithmic transformation of function imple-
mentations f into code that computes the derivative f ′. In the forward-mode paradigm,
which is the only one that will be discussed in this work, an implementation of f , repre-
senting a multivariate vector function y = f(x),Rn 7→ R

m with n inputs and m outputs is
transformed by an AD tool into an implementation of the product ẏ = ∇f(x)·ẋ = Jv (x, ẋ),
where Jv is the Jacobian vector product of the Jacobian J(x) and the vector ẋ. The tangent
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vectors ẋ and ẏ are the input directional derivatives and the output sensitivities, respec-
tively. This technique can be employed recursively by applying AD to the Jacobian vector
product implementation ẏ = Jv(x, ẋ) with inputs x and ẋ. We refer to [13] for an extensive
introduction to AD.

An AD tool applies differentiation at the programming language intrinsic function level,
having hard-coded differentiation rules covering most algebraic operations, some special
functions, and optionally higher-level constructs like linear solvers. In Julia, the pro-
gramming language of choice in the current work, these rules are implemented by Chain-
Rules.jl [34]. The tool then generates code that computes the function value and derivative
value at each program statement. As an example, we illustrate as pseudocode a forward-
mode AD tool which generates f ′(x) from the implementation of y = f(x1, x2) = e(x1·x2):
function(x1, x2)

tmp = x1*x2

return exp(tmp)

end

function(x1, dx1, x2, dx2)

tmp = x1*x2

dtmp = dx1 * x2 + x1 * dx2

return exp(tmp), exp(tmp)*dtmp

end

with the prefix ’d’ denoting the generated tangents. Together with the chain rule for more
complex expressions, this purely mechanical work can be fully automated. Using compiler
code analysis, like the LLVM backend of Julia, modern AD tools provide highly efficient
implementations that rival any hand-optimized derivative code [24]. An immediate advan-
tage of AD is that it enables a user to compute derivatives of a program seamlessly without
tediously differentiating by hand or contending with concerning issues such as tuning the
step size h for finite differences. The reliance of AD on basic calculus rules implemented
at the lowest computational level, as opposed to finite differences which operate at the top
level once evaluations are available, reduces the impact of round-off errors and thus limits
the propagation of errors while being very efficiently compiled, providing even more sig-
nificant advantages for higher-order derivatives. There are, however, challenges associated
with using automatic differentiation in the setting of special functions, especially if applied
to existing libraries, as will be briefly discussed.

Differentiation of truncated series approximations One of the most common imple-
mentations of special functions for direct evaluations is via series or asymptotic expansions.
Term-wise derivatives of convergent series expansions are, for the functions considered here,
also convergent series, but their convergence properties may differ from those of the original
series. Thus, more terms may be needed when calculating derivatives to assure no loss of
accuracy. Similar difficulties can occur with term-wise differentiation of asymptotic series,
whose convergence properties hold as the argument of the function tends to some limit
rather than as the number of terms increases. From an AD perspective a similar numerical
challenge is encountered in the application of AD to iterative methods, e.g. [3]. In this
work, this problem occurs primarily in one special setting that will be discussed at length
in the implementation section and is effectively remedied by adding additional terms in the
series truncation.
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Limit branch problems for special functions AD differentiated code where the con-
trol flow is dependent on the input x may yield discontinuous derivatives at code branches
for limiting values. We refer to this problem as the limit branch problem, and refer curious
readers to [4] (which calls it the if problem) for a thorough investigation and discussion.

As an example, consider a function pertinent in this work given by

f(x) :=
1

2x

(
1

Γ(1− x)
− 1

Γ(1 + x)

)
,

where at x = ±2, ±3, ... one of the two gamma functions will evaluate to infinity. A
code implementation that computes Γ(x) using a special functions library may also throw
an error at x = 0 because there the division of 0 by 0 will return NaN per the floating
point standard. The function f is analytic at x = 0,±2, ±3, . . ., however, and admits
finite limits, so any implementation of f should return the correct value for these inputs.
Focusing for simplicity on the particular value of x = 0, one workaround is to specify the
function value using a special branch shown here as pseudocode given by

function f_focus_on_0(x)

if x == 0

return 0.57721566... # Euler-Mascheroni constant

else

return (1/gamma(1-x) - 1/gamma(1+x))/(2*x)

end

end

Applying AD using a tool such as ForwardDiff.jl [27] will incorrectly return a derivative of
0 at x = 0. By manually supplying limits, the programmer has cut the dependency graph
of f with respect to x at x = 0, and the program reduces to a constant function with
derivative 0. To solve this issue, the code expression in the if branch has to be given in a
form that preserves local derivative information in the vicinity of x = 0. Local expansions
in the if code branch allow for the limit to be computed and differentiated numerically
and ultimately preserve derivative information. In this example, due to the smoothness of
f at x = 0 there exists a polynomial P such that f(x) ≈ P (x) at x ≈ 0 (see Section 3.5).
A (pseudo)-code implementation given by

function f_focus_on_0(x)

if is_near(x, 0)

return poly_eval(x, p_0, p_1, p_2, ...)

else

return (1/gamma(1-x) - 1/gamma(1+x))/(2*x)

end

end

will now provide very accurate derivative information at x = 0. This approach still of
course technically gives a program implementation with discontinuities in the derivative
due to the inexact local approximations. But if the polynomials are only substituted in a
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suitably small neighborhood of the expansion points then the inexactness can be reduced
to the same order as the intrinsic inexactness of finite-precision computer arithmetic and
is thus not a concern for the present work.

For special function implementations this concern is far from purely academic. Many
definitions of Kν , for example when ν is an integer, are given as limiting forms whose
implementations do not provide correct automatic derivatives. For this reason, applying
AD transformations to existing special function libraries without additional scrutiny is
unlikely to provide correct derivatives, which is further motivation for the current work.
As indicated in [19], one alternative that would sidestep these concerns would be to use a
neural network model instead of a series implementation, since automatic differentiation is
an inherent feature of neural networks, and the accuracy could be controlled in the training
phase.

3 A Fast and Accurate Implementation of Kν and ∂
k
νKν

To devise a robust implementation for Kν and derivatives ∂kνKν , with k = 1, 2, we par-
tition the domain of definition, R2

+ (this is sufficient since Kν(x) = K−ν(x)), into several
intervals. This strategy of breaking up the domain and applying different strategies for
different regions is ubiquitious in the implementation of all special functions, even ones as
basic as trigonometric functions, and certainly has been applied in every commonly used
implementation of Bessel functions (see, for example, the domain partitioning of the AMOS
library [2]). A particular goal in our domain partitioning and method selection, however,
is to obtain accurate and efficient automatic derivatives as well as accurate evaluations. In
Figure 2, we summarize the domain partitioning based on intervals for pairs (x, ν), which
splits real axis into different sub-intervals, i.e. R = (0, a1) ∪ [a1, a2) ∪ [a2, a3) ∪ [a3,∞),
with recommended selections for the parameters ai, i = 1, 2, 3. Even in the most rigorous
settings of error analysis, however, there is an element of personal judgment in the exact
choices of domain partitioning parameters. While in broad strokes they are guided by when
different representations that can be exactly evaluated by a computer are accurate, such
as large-argument expansions being picked when the argument is “large enough”, they are
also guided by practical metrics like numerical tests. This is the case in this work, and
as such the boundary values we recommend here can be altered slightly without major
impacts on accuracy.

Each interval is studied in its associated subsection, accompanied by discussions on
implementation details for the selected method in that interval (typically a suitable series-
type representation) and adjustments necessary to expedite and preserve the accuracy of
automatic derivatives. Each separate expansion is truncated at different levels {tj}, and
these parameters have a meaningful impact on both efficiency and accuracy. In the present
work we chose the {tj} levels that provide close to computer precision. A user willing to
sacrifice a few digits of accuracy to increase the efficiency may prefer to truncate the series at
lower levels than the suggested values, but a comprehensive study of accuracy and efficiency
impacts at such levels may be lengthy and is not considered in this work. Special values of
the order ν, such as integers and half-integers must be be considered separately. Since Kν for
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these values of ν is commonly expressed in a limiting form, substantial work is required to
develop an implementation that avoids the limit branch problem. As the rescaled function
xνKν(x) appears in the Matérn covariance function, we also provide discussion of special
optimizations for this function in Section A of the appendix.

Kν(x)

∂kνKν(x)

x ∈ (0, a1)

Sec. 3.1

x ∈ [a1, a3)

Sec. 3.2

x > a3

Sec. 3.3

ν + 1
2
∈ Z

Sec. 3.4

ν ≈ integer, truncation t1

(i) Eq. 3.7-3.9

ν 6≈ integer, truncation t1

(ii) Eq. 3.2

x < a2, truncation t2

(iii) Eq. 3.4

x ≥ a2, truncation t3

(iii) Eq. 3.4

ν > ν1, truncation t3

(iii) Eq. 3.4

ν ≤ ν1, truncation t4

(iv) Eq. 3.5

direct evaluation

(iv) Eq. 3.5

AD evaluation

(v) Eq. 3.6

Figure 2: An overview of the branched implementation for Kν and derivatives ∂kνKν(x).
The parameters ai, ti can be tuned for performance by the user: we recommend a1 = 8.5,
a2 = 15, a3 = 30, t1 ≈ 20, t2 = 12, t3 = 8, t4 = 5, and ν1 = 1.5. Roman numerals are used
by equation numbers for easy cross-referencing with Table 1.

3.1 Small arguments and small-to-moderate orders

While truncated direct series implementations may pose numerical difficulties in certain
regimes, they can nonetheless be fast and accurate when applicable. Here, we identify
a numerically stable series representation that extends the small argument interval up
to x ≈ 8.5 while controlling the accumulation of round-off errors at satisfactory levels.
Consider the definition of Kν , for non-integer orders ν, given in terms of the modified
Bessel function of the first kind, Iν as

Kν(x) =
π(I−ν(x)− Iν(x))

2 sin πν
, with Iν(x) = (1

2
x)ν

∞∑

k=0

(x2/4)
k

k!Γ(ν + k + 1)
. (3.1)
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The function Iν exhibits fast growth (asymptotically on the order of ex/
√
2πx); thus for

large arguments Equation 3.1 leads to significant floating-point errors. Although the ex-
pression is valid for all arguments, it has practical use only for sufficiently small x. The
threshold for what constitutes “sufficiently small” is chosen based on accuracy and efficiency
considerations, and in [32], values in the vicinity of x = 4 are chosen as the cutoff.

An improved series expansion, however, can be derived using basic properties of the
Gamma function Γ(x). Using Euler’s reflection property (which states that sin πx =
π(Γ(1 − x)Γ(x))−1) and regrouping terms conveniently, we obtain a particularly conve-
nient form for the series expansion of Kν given by

Kν(x) =
∞∑

k=0

(x
2

)2k 1

2k!

(
Γ(ν)

(x
2

)−ν Γ(1− ν)

Γ(1 + k − ν)
+ Γ(−ν)

(x
2

)ν Γ(1 + ν)

Γ(1 + k + ν)

)
. (3.2)

One advantage that the series in Equation 3.2 has over the expression in Equation 3.1 is
that it is less prone to cancellation errors by avoiding the subtraction of terms that grow
rapidly with the series index or argument x. The series as stated in Equation 3.2 is infinite;
however a computer implementation of the infinite series in 3.2 requires a truncation level or
stopping criterion. To promote accuracy we chose to stop the accumulation of terms when
a tolerance of ǫ ≤ 10−12 is met, which in practice corresponds to approximately 20 or fewer
terms in the sum. For consistency across all computational branches we specify in Figure 2
a truncation at t1 ≈ 20, while reminding the user that in practice the stopping criterion is
tolerance-based and can be adjusted. Furthermore, using the property Γ(x+1) = xΓ(x), it
is possible to evaluate this series (in fact its numerical truncation) using entirely algebraic
operations after only evaluations of Γ(ν) and Γ(−ν). Applying AD to Equation 3.2 with the
same stopping criterion as for the direct evaluation results in convergence in approximately
as many terms for both first and second order derivatives. Although we do not derive a
formal convergence proof, we will show in Section 4 that the performance of this expression
is one of the best across the entire domain of definition.

For integer orders, the sin πν term in the denominator of Equation 3.1 leads to a singu-
larity, and the expression is no longer valid in such cases. The function is defined at these
orders, however, and by taking appropriate limits, Kν can be written at integer orders as

2(−1)n−1Kn(x) :=

(
∂Iν(x)

∂ν

∣∣∣∣
ν=n

+
∂Iν(x)

∂ν

∣∣∣∣
ν=−n

)
. (3.3)

While such integer-order expressions are valid in the limit and may be convenient to eval-
uate, they lead to limit branch problems that cause incorrect automatic derivatives, as
described in Section 2. Therefore the integer case will be considered separately in Sec-
tion 3.5. Additionally, we comment in the Appendix on implementation specializations to
compute xνKν(x) directly, which in some cases can improve speed and accuracy.

3.2 Intermediate arguments

Asymptotic expansions resemble series expansions in that they are also cumulative sums
which require similar implementations, but they may diverge outside a prescribed range.
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Within the range of large orders ν and intermediate arguments x ∈ [a1, a2) we introduce
the uniform asymptotic expansion (UAE) in ν for Kν . As indicated by the word uniform,
this approximation is not highly oscillatory in the argument x, and as such it can be applied
in argument ranges where round-off errors can be problematic. The UAE is given by

Kν(νx) ∼
ν→∞

√
π

2ν

e−νη(x)

(1 + x2)1/4

∞∑

k=0

(−1)kν−kUk(p(x)) (3.4)

where, as in [8, Eq. 10.41.4], we have

η(x) :=
√
1 + x2 + log

(
x

1 +
√
1 + x2

)
, p(x) := (1 + x2)−1/2 ,

and the polynomials Uk are given by U0(p) ≡ 1 and

Uk+1(p) =
1

2
p2(1− p2)U ′

k(p) +
1

8

∫ p

1

(1− 5t2)Uk(t)dt .

Tables of the coefficients for the Uk polynomials exist (see [8, Sec. 10.41]), but they may be
difficult to find digitally. Since they are not difficult to compute using symbolic operations,
our software computes them directly (but ahead of time, to be re-used) such that the
truncation order of the approximation can be arbitrarily chosen by the user.

For reasonably large truncation orders (which in our case default to t2 = 12 or t3 = 8
depending on the magnitude of x), this approximation is very fast to compute. As briefly
noted in [8, Sec. 10.41], due to the uniqueness property of asymptotic expansions, this
expansion must agree with the more commonly encountered expansion for large arguments
to be introduced in Section 3.3. From this perspective, it comes as little surprise that the
approximation quality of Equation 3.4 for any fixed truncation order improves as the ar-
gument or order increases, although not necessarily at the same rate (see [8, 10.41(iv)] for
some discussion and a precise error bound when viewing (3.4) as a generalized asymptotic
expansion in x). This strategy for evaluating Kν is preferable in cases where small-argument
methods start to lose accuracy but where the large-argument asymptotic expansion is not
yet of satisfactory accuracy (for example, x = 10 and ν = 3). Moreover, since this expres-
sion reduces to polynomial computations, it is highly stable under automatic differentiation
and less prone to round-off errors.

3.3 Large arguments

For large arguments it is preferable to use a reduced asymptotic expansion, equipped with
precise error bounds derived in [26] (see the next section for more explicit details), given
as in [8, Eq. 10.40.2] by

Kν(x) ∼
x→∞

√
π

2x
e−x

∞∑

k=0

x−kak(ν) , (3.5)
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where ak(ν) is generated via a0(ν) ≡ 1 and

ak(ν) : =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

8kΓ(k + 1)
.

For arguments x > 30 and moderate truncation orders such as t4 = 5 (the default in our
implementation), this approximation is accurate to computer precision (see [8, 10.40(iii)]
for details on the error term, which without the exponential improvement introduced in
the next section is challenging to work with). The automatically differentiated implemen-
tation is extremely fast since it involves differentiation of algebraic expressions, thus free
of numerical artifacts, and is applied to a very low number of terms up to t4 = 5, which
leads to a very small operation count.

3.4 Half-integer orders

An interesting property of Kν expressed via the asymptotic expansion in Equation 3.5
is that, when ν + 1/2 ∈ Z, terms with k > ν drop out, and thus (3.5) is exact for all
x. These cases reduce to simpler forms that can be manually included in a program (for
example, returning the simplified K1/2(x) =

√
π/(2x)e−x for ν = 1/2), but this type of

program implementation would cause limit branch problems with respect to ν (as discussed
in Section 2), and as such requires additional scrutiny in our setting to ensure accurate
automatic derivatives with respect to order.

As noted in Section 2, a converged direct evaluation may not yield a differentiated series
that has converged to the same degree. This can be remedied using what [8, Sec. 10.40(iv)]
refers to as exponentially-improved asymptotic expansions. The asymptotic expansion in-
troduced in Equation 3.4 can be re-written as

Kν(x) =

√
π

2x
e−x

(
l−1∑

k=0

x−kak(ν) +Rl(ν, x)

)
, (3.6)

where the remainder term Rl(ν, x), itself reasonably complicated to bound neatly (see [8,
10.40(iii)]), can then be expanded as

Rl(ν, x) = (−1)l2 cos(νπ)

(
m−1∑

k=0

x−kak(ν)Gl−k(2x) +Rm,l(ν, x)

)
.

Here Gp(x) = ex

2π
Γ(p)Γ(1 − p, x), where Γ(s, x) is the upper incomplete gamma function

[8, Eq. 10.17.16], and Rm,l is a new and even more finely controlled remainder term that
admits a much simpler controlling bound of O(e−2xx−m) [26, 8]. While direct evaluations
of Kν in the case where ν + 1

2
∈ Z are exact, the remainder term is required to preserve

derivative information, as the above additional expansion makes clear that ∂kνRl(v, x) is
not zero for any k. As such, additional terms from the Rl approximation are necessary to
preserve accurate derivative information.

12



3.5 Integer orders and small arguments with large orders

A common strategy for computer implementations of Kν is to develop an implementation
for ν in a neighborhood of 0 and use a standard recursion with respect to order, valid for
Kν at any ν ∈ R, given by

Kν+1(x) =
2ν

x
Kν(x)−Kν−1(x) . (3.7)

For integer orders, several options are available to compute the initial recursion terms K0

and K1, for example direct polynomial or rational function approximations for K0 and K1

(as provided by [1]). However, this strategy will not be helpful in providing ∂kνKν for ν ∈ Z

due to the limit branch problem at ν = 0 and ν = 1.
A suitable approach, provided in [32], is to consider series expansions of the recursion

terms Kν and Kν+1, which due to (3.7) (and the property that Kν(x) = K−ν(x)) need
only be considered on the interval ν ∈ [−1/2, 1/2]. Reproducing the notation of [32], we
consider the expressions

Kν(x) =

∞∑

j=0

cjfj(ν, x) and (3.8)

Kν+1(x) =
2

x

∞∑

j=0

cj(pj(ν, x)− jfj(ν, x)) , (3.9)

where for µ(x) = ν log(2/x) we have

f0(ν, x) =
νπ

sin πν
[Γ1(ν) cosh µ(x) + Γ2(ν) log(2/x) sinh(µ(x))/µ(x)] , (3.10)

Γ1(ν) =
(
Γ(1− ν)−1 − Γ(1 + ν)−1

)
/(2ν), Γ2(ν) =

(
Γ(1− ν)−1 + Γ(1 + ν)−1

)
/2,

and all subsequent fk terms can be computed via a direct recursion using

p0(ν, x) =
1

2

(x
2

)−ν

Γ(1 + ν), pj = pj−1/(j − ν) ,

q0(ν, x) =
1

2

(x
2

)ν
Γ(1− ν), qj = qj−1/(j + ν) , and

fj = (jfj−1 + pj−1qk−1)/(j
2 − ν2) .

With these expressions, the problem of obtaining an automatically differentiable program
for Kn(x) for all n is reduced to obtaining an AD-compatible implementation of f0(ν, x)
for ν in a vicinity of the origin. As indicated in Section 2, the limit branch problem can be
resolved using Taylor expansions in Equation 3.10 about ν = 0:

Γ1(ν) ≈ 1 +
γ2 − π2/6

2
ν2 +

60γ4 − 60γ2π2 + π4 − 240γψ(2)(1)

1440
ν4 ,

Γ2(ν) ≈ γ +
2γ3 − γπ2 − 2ψ(2)(1)

12
ν2 +

+
12γ5 − 20γ3π2 + γπ4 − 120γ2ψ(2)(1) + 20π2ψ(2)(1)− 12ψ(4)(1)

1440
ν4 ,

sinhµ

µ
≈ 1 + µ2/6 + µ4/120, and

πν

sin πν
≈ 1 + (πν)2/6 + 7(πν)4/360 .

13



With this strategy, we obtain an expression for f0 which is exact at ν = 0 and very accurate
for ν ≈ 0. By precomputing the coefficients of Taylor expansions, this entire apparatus
yields function evaluations that are only approximately twice the cost of the direct series
that we introduce above, and whose AD performance is quite satisfactory both with respect
to speed and accuracy. For specific details on this recursion, such as accurate and efficient
evaluations of Γ1 and Γ2 using Chebyshev expansions, we refer to [32]. As with Section
3.1, we additionally provide in the appendix a discussion of extending this method to the
direct computation of xνKν(x) for slight additional gains in accuracy and speed.

4 Speed and Accuracy Diagnostics

This section will focus on the verification and efficiency of our implementation of Kν and its
derivatives, which we will denote either ∂1νKν or ∂2νKν . We compare our implementation,
denoted K̃ν , with the one provided by the AMOS library [2], KA

ν , using a reference solution
KR

ν , considered to be the ground truth and computed using the arbitrary-precision Arb
library [18]. Derivatives of up to second order computed in two ways will be compared,
namely AD-generated derivatives of our implementation, ∂kAD

ν K̃ν , and non-adaptive finite
difference-based derivatives of the AMOS library, ∂kFDν Kν . These two values will be com-
pared against a reference derivative computed using tenth-order adaptive finite difference
methods of KA

ν , denoted as ∂kRν Kν , computed using FiniteDifferences.jl [35].
To offer access to a wider audience, we have packaged the code in the Julia language

as the library BesselK.jl2. The source repository additionally contains example R language
bindings as well as the scripts used to generate the results and figures in this work.

4.1 Pointwise accuracy

While BesselK.jl is not designed to be a competitor of existing special functions libraries
like AMOS with respect to the accuracy of direct evaluations of Kν , we show that our
implementation exhibits competitive absolute accuracy on the entire testing domain, both
for direct evaluations as well as derivatives. Our chosen testing region is (a dense grid on)
(ν, x) ∈ [0.25, 10]×[0.005, 30], which we pick for several reasons. For one, the ν range gener-
ously over-covers what we consider to be the range of sensible values of ν for fitting Matérn
covariance parameters. With regard to the x domain, we pick 30 as an upper end point to
verify accuracy in tail values that are small but numerically relevant. Moreover, beyond
that point any software implementation for Kν will be using an asymptotic expansion, and
so naturally there will be good agreement. Secondly, we illustrate in log10-scale the relative
gain of BesselK.jl over finite difference methods with AMOS for derivative computations.

Direct evaluations Figure 3 asseses direct evaluations error for both AMOS and BesselK.jl

using the absolute differences
∣∣KA

ν −KR
ν

∣∣ (left) and
∣∣∣K̃ν −KR

ν

∣∣∣ (right). The error behavior

is qualitatively similar for both implementations, with the intermediate argument range
accurate to computer precision, and a small ridge for very small arguments x and large

2https://github.com/cgeoga/BesselK.jl
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orders ν showing increasing inaccuracy. The implementation in BesselK.jl was tailored to
optimize AD computations for different argument ranges and these ranges are clearly de-
limited in Figure 3. The loss of accuracy encountered for small to intermediate arguments,
approximately 10−12 error, is attributed to the difference in numerical treatment and the
choice of truncation levels tuned for accuracy in derivatives. Such a small accuracy loss in
trailing digits will be shown to have a negligible impact on properties of Matérn covariance
matrices relevant to numerical optimization.
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Figure 3: Absolute accuracy of direct evaluations with respect to a reference solution:

AMOS library
∣∣KA

ν −KR
ν

∣∣ (left) and BesselK.jl
∣∣∣K̃ν −KR

ν

∣∣∣ (right).

Derivatives For first derivative computations, illustrated in Figure 4, we see that BesselK.jl
(right) is noticeably superior to finite difference estimates with AMOS (left) in the small
argument range. The latter method incurs rather large errors well within the intermedi-
ate argument range x > 8.5, while BesselK.jl consistently out-performs as the argument
increases. As higher-order derivatives are taken, as illustrated in Figure 5 for second deriva-
tives, this behavior becomes even more pronounced and automatic differentiation clearly
overtakes finite difference computations by a significant margin.

To provide a relative comparison of derivative computations using finite differences with
AMOS versus BesselK.jl, we introduce the quantity

log10

∣∣∣∂kRν Kν(x)− ∂kAD
ν K̃ν(x)

∣∣∣− log10
∣∣∂kRν Kν(x)− ∂kFDν Kν(x)

∣∣ (4.1)

for both first derivatives (k = 1) and second derivatives (k = 2). By assessing the error in
log10-scale, we can identify correct digits, and by taking the difference between the errors
of the two methods, we outline the regions where AD outperforms finite differences. In
Figure 6 negative numbers (blue hues) indicate regions where ∂AD

ν K̃ν is more accurate than
∂FDν Kν (with a value of −1 indicating one additional digit of accuracy for the AD method),
and we note there are almost no positive values (red hues) over the entire domain. Upon
close scrutiny we observe that the branch at x ≈ 8.5 may incur losses of one to two digits
in a few discrete locations (visible as traces of red), which could be remedied by branching
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Figure 4: Absolute accuracy of first derivatives with respect to a reference solution: AMOS

using finite differences
∣∣∂1FDν Kν − ∂1Rν Kν

∣∣ (left) and BesselK.jl using AD
∣∣∣∂1AD

ν K̃ν − ∂1Rν Kν

∣∣∣
(right).
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Figure 5: Absolute accuracy of second derivatives with respect to a reference solu-
tion: AMOS using finite differences

∣∣∂2FDν Kν − ∂2Rν Kν

∣∣ (left) and BesselK.jl using AD∣∣∣∂2AD
ν K̃ν − ∂2Rν Kν

∣∣∣ (right).

earlier than recommended at a1 < 8.5. This is a fine-tuning aspect which vanishes for
second derivatives and was not explored extensively since it had no noticeable impact on
our results. Finite differences, notoriously inaccurate for second-order derivatives since they
involve a division by h2, incur increasingly higher round-off errors. In this context AD is
expected to exhibit superior accuracy, and in Figure 6 its advantage over finite differences
is clearly visible, consistently yielding 5 or more extra digits of accuracy.

4.2 Efficiency diagnostics

In order to compare the efficiency of ∂kAD
ν K̃ν with ∂kFDν Kν , we select pairs (ν, x) that cover

every code branch (outlined in Figure 2) in the implementation ofKν and provide evaluation
and derivative evaluation timings performed on an Intel Core i5-11600K CPU in Table 1.
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Figure 6: A log10-scale comparison between ∂kAD
ν K̃ν and ∂kFDν Kν using Equation 4.1: first

derivatives (left) and second derivatives (right).

As can be seen, the speedup of K̃ν is substantial, including in regions of the domain in which
its accuracy rivals that of KA

ν , as well as for all derivatives. The accuracy and efficiency
considerations discussed here are summarized in Table 2 to serve as a convenient reference
to the reader.

(ν, x) K̃ν KA
ν ∂AD

ν K̃ν ∂FDν Kν ∂2 AD
ν K̃ν ∂2 FD

ν Kν case
(0.500, 1) 9 51 67 455 82 510 half-integer (iv)
(1.000, 1) 136 159 178 447 328 605 whole integer (i)
(3.001, 1) 139 285 181 570 337 847 near-integer order (i)
(3.001, 8) 227 300 284 597 557 892 near-integer order, borderline arg (i)
(1.850, 1) 85 229 139 460 307 686 small order (ii)
(1.850, 8) 103 241 293 483 531 722 small order, borderline arg (ii)
(1.850, 14) 167 209 281 416 568 624 intermediate arg (iii)
(1.850, 29) 94 191 149 380 293 565 large intermediate arg (iii)
(1.850, 35) 92 183 148 368 293 548 large argument (iii)

Table 1: Timings for evaluating KA
ν and K̃ν and their derivative methods (in units of ns) at

various pairs (ν, x). The case column additionally provides references to the branch labels
used in Figure 2.

Comparison Higher accuracy Higher efficiency

KA
ν vs. K̃ν KA

ν (≈ 2-5 digits) K̃ν (≈ factor of 1-3)

∂FDν Kν vs. ∂AD
ν K̃ν ∂AD

ν K̃ν (≈ 2-5 digits) ∂AD
ν K̃ν (≈ factor of 2-3)

∂2FDν Kν vs. ∂2AD
ν K̃ν ∂2AD

ν K̃ν (≈ 5+ digits) ∂2AD
ν K̃ν (≈ factor of 2-5)

Table 2: A summary of the accuracy and speed diagnostics performed in this section. The
accuracy comparison is given in correct digits, while efficiency is given as speedup factor.
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4.3 Selected diagnostics for Matérn covariance matrices

The differences in accuracy and efficiency between the AMOS library and BesselK.jl are
most relevant in the context of Matérn covariance matrices. To this end we compare in
Table 3 several key quantities for the Matérn covariance matrices Σ and Σ̃, generated using
KA

ν and K̃ν respectively. Points are chosen on a 24 × 24 grid on the domain [0, 1]2, and
pairs (ρ, ν) are chosen to cover various argument ranges and branches in K̃ν with respect to
ν, with both parameters having significant effects on the condition of covariance matrices.

(ρ, ν) T̃assembly Tassembly λ̃min λmin |λdif| log |Σ̃| log |Σ| | log |Σ̃| − log |Σ||
(0.010, 0.40) 4.3e-02 4.3e-02 9.52e-01 9.52e-01 1.22e-12 -2.60e-01 -2.60e-01 3.11e-13
(0.010, 1.25) 4.4e-02 4.3e-02 9.79e-01 9.79e-01 3.47e-12 -3.45e-02 -3.45e-02 9.23e-12
(0.010, 3.50) 3.5e-02 3.5e-02 9.93e-01 9.93e-01 0.00e+00 -3.14e-03 -3.14e-03 0.00e+00
(1.000, 0.40) 2.8e-02 4.8e-02 3.78e-02 3.78e-02 9.76e-15 -1.40e+03 -1.40e+03 1.84e-11
(1.000, 1.25) 2.6e-02 5.4e-02 1.03e-04 1.03e-04 6.56e-14 -4.04e+03 -4.04e+03 1.19e-09
(1.000, 3.50) 2.4e-02 3.5e-02 7.18e-11 7.18e-11 1.02e-14 -1.02e+04 -1.02e+04 2.76e-03
(100.000, 0.40) 2.7e-02 4.5e-02 9.50e-04 9.50e-04 1.15e-14 -3.51e+03 -3.51e+03 6.96e-10
(100.000, 1.25) 2.5e-02 4.6e-02 1.03e-09 1.03e-09 2.03e-15 -1.06e+04 -1.06e+04 3.87e-05
(100.000, 3.50) 1.7e-02 3.8e-02 -3.43e-13 -2.72e-13 7.15e-14 NaN NaN NaN

Table 3: Summary properties of Σ and Σ̃ for various pairs (ρ, ν). Quantities with tildes,
such as λ̃, are derived from Σ̃, which has been built using K̃ν . Quantities with no tildes
were derived from Σ, which was built with KA

ν . In the last row, values of NaN are a result
of the Cholesky factorization failing, which occurred for both implementations.

As expected from the previous benchmarks, the matrix assembly speed, T̃assembly for
BesselK.jl, is superior to AMOS in regions where the predominant evaluation strategies
for Kν is different for each library (thus excluding, for example, cases like ρ = 0.01 in
which both software libraries are using asymptotic expansions) and approximately equal
otherwise. As a preliminary investigation of matrix similarity, we compare the smallest
eigenvalues of each matrix, λ̃min and λmin, and note that they agree to almost computer
precision in all cases. We also compare log-determinants, as they are directly used in
maximum likelihood estimation, and in most cases the log-determinants agree to high
precision, although two situations stand out as being slightly inaccurate compared to the
others. These two cases have a combination of sufficiently large ρ and ν parameters,
yielding especially ill-conditioned matrices that pose numerical challenges even when Kν

is computed to double precision accuracy. With this in mind, we consider the numerical
agreement in these two cases to be satisfactory.

5 A Demonstration with Simulated Data

In this section, we demonstrate that in some cases even the slightest numerical inaccuracy
in finite difference derivatives can accumulate so catastrophically as to yield completely
incorrect Hessian matrices of the Gaussian log-likelihood, which can in turn lead to failure
in second-order maximum likelihood estimation.

To demonstrate this we select 512 random locations on the unit square [0, 1]2 and
simulate ten independent realizations from a Matérn Gaussian process with parameters
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(σ, ρ, ν) = (1.5, 2.5, 1.3). Subsequently, we perform maximum likelihood estimation with
the Ipopt library [33] using manually computed gradients and Hessians via the formulae
provided in the introduction. In all cases, for derivatives involving only σ and ρ, we use
analytical derivatives of the Matérn covariance function. To study the effect of using finite
difference derivatives versus our proposed AD derivatives, we consider six different opti-
mization problems. First, we compute the first two derivatives of Mν(x,x

′) with respect
to ν using finite difference approximations to compute Hessian matrices. In the second
setting, we compute gradient and Hessian information using AD-generated derivatives and
again optimize with true Hessians. In the next two settings, we again use finite differences
and AD for derivatives that pertain to ν, but instead of Hessians we use expected Fisher
matrices as proxies. Recalling that Σj(θ) = ∂

∂θj
Σ(θ), the expected Fisher information,

given by Ij,k := 1
2
tr (Σ(θ)−1Σj(θ)Σ(θ)−1Σk(θ)) , is, under appropriate regularity condi-

tions, the asymptotic precision of maximum likelihood estimators. Unfortunately, these
conditions are not often met for spatial processes under fixed-domain asymptotics [30];
nonetheless it is a valuable proxy for Hessian information. Moreover, it only requires first
derivatives of the covariance function to compute, providing a natural way to separately
investigate the effect of first and second finite difference derivatives. The final two settings
are in a similar spirit and again investigate using only first derivative information, but now
using the more general-purpose BFGS approximation for Hessian information.

While the parameters for the simulated data have been chosen purposefully, they are not
implausible for much environmental data. The range parameter ρ = 2.5 is large compared
to the domain radius, which, even with 10 replicates, makes estimating the range difficult
[36]. This level of dependence could occur in, for example, daily values of meteorological
quantities such as temperature or pressure over a region of diameter on the order of 100 km.
A smoothness of ν = 1.3 is likewise a very plausible value for a quantity like atmospheric
pressure, which should be smooth but not too smooth. The primary challenge with these
parameter values is that they require derivatives of Kν very near the origin, which we
have demonstrated in the previous section to be particularly problematic. With this said,
computing the upper 2 × 2 block of the Hessian with analytical derivatives in both cases
limits the scope of impact of finite difference approximations as much as possible. Using
finite difference derivatives directly on Mν , which is well-behaved when its argument is
near 0, rather than on Kν directly, should also be favorable to finite differences.

Table 4 summarizes the results of the estimation procedures. In the case of true second-
order optimization with finite difference derivatives used for Hessians, the optimization
completely fails. Optimization using the expected Fisher matrix built with finite difference
derivatives does successfully reach the MLE parameters to high accuracy, but due to slight
inaccuracies in derivatives fails to reach the termination criteria tests used by Ipopt. Using
AD derivatives to assemble the expected Fisher matrix solves this problem, and the opti-
mization successfully terminates after 58 iterations. Finally, optimization with the Hessians
built with AD-generated derivatives is fast, accurate, and terminates successfully in just
25 iterations. These results are consistent across various starting values and termination
criterion tolerances.

To better understand why the second-order optimization with FD-based Hessians fails,
we inspect these Hessians at several values. Starting at the initializer, we look at Hessian
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method convergence #iterations terminal log-likelihood MLE∗

FD (BFGS) No 100 −19192.36 (1.574, 2.642, 1.060)∗

FD (Fisher) No 100 −21548.71 (1.576, 2.642, 1.293)∗

FD (Hessian) No 100 −21473.38 (47.428, 24.628, 1.380)∗

AD (BFGS) No 100 −21548.71 (1.576, 2.642, 1.293)∗

AD (Fisher) Yes 58 −21548.71 (1.576, 2.642, 1.293)
AD (Hessian) Yes 25 −21548.71 (1.576, 2.642, 1.293)

Table 4: A comparison of optimization results using second-order optimization with fi-
nite difference derivatives of the Matérn covariance versus automatic differentiation of the
Matérn covariance with BesselK.jl. In the MLE column, asterisks indicate terminal return
parameters in the case of failed optimization by reaching the maximum allowed number of
iterations, here chosen to be 100.

matrices computed using the two different sources of input derivatives. As a point of
reference, we also provide a very high-order adaptive finite difference Hessian using the
log-likelihood function itself. As above, the parameter order here is (σ, ρ, ν), so that the
third column and row are the entries that pertain to derivatives of Mν with respect to ν.
Looking at the generic initializer of all parameters being equal to 1, we inspect the third
column, using the shorthand 13 for (σ, ρ, ν) = (1, 1, 1):

[
Hrefℓ13

]
·,3

=



−1104.05
3712.60
5173.03


 [

HADℓ13

]
·,3

=



−1104.05
3712.60
5173.03


 [

HFDℓ13

]
·,3

=



−1100.47
3716.86
4533.61


 .

What immediately stands out in this comparison is that the component pertaining to the
second derivative ∂2νKν with finite difference-built Hessians is grossly inaccurate. For in-
accuracies at this level, one has reason to be concerned that very important quantities for
optimization, for example the unconstrained Newton direction −Hℓ−1

θ
∇ℓθ, will be materi-

ally affected in a way that inhibits the progress of an optimizer.
Looking now at the third columns of these three matrices at the MLE, we see this

problematic inaccuracy progressing further, using θ̂ as shorthand for the MLE:

[
Hrefℓ

θ̂

]
·,3

=



−23920.00
18431.04
145597.78


 [

HADℓ
θ̂

]
·,3

=



−23920.01
18431.04
145597.79


 [

HFDℓ
θ̂

]
·,3

=



−23919.54
18430.66
135175.16


 .

We observe once again that the AD-generated Hessians are very accurate. The FD-based
Hessian is reasonably accurate save for the component pertaining to ∂2νKν . But as before,
this quantity is sufficiently inaccurate that it necessarily will change important optimization
quantities. Moreover, the matrix HFDℓ

θ̂
is not even close to being positive semi-definite

(with a minimum eigenvalue of −192.1 compared to HADℓ
θ̂
’s minimum eigenvalue of 4.036).

Observing FD-generated Hessian matrices as the range parameter continues to increase, one
will see a continual worsening of this specific component, which is arguably a particularly
serious issue because it introduces structured inaccuracy to the optimization problem. This
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inaccuracy’s effect on derived quantities for optimization such as search directions is a
very likely explanation for the complete failure in the optimization using Ipopt, which
unlike simpler optimization software will pursue candidate directions in search of a feasible
minimizer even if they do not immediately decrease the objective function value.

The conclusion from these results is clear: second-order optimization using finite dif-
ference methods for second derivatives of Mν , and by extension Kν , presents a significant
risk. As a final observation, we reiterate that the demonstration chosen here is the best
possible case for finite differences in that only the third row and column of these Hessians
involve any approximation, and only one element of the Hessian matrix was incorrect to
a degree of obvious concern. Even with the numerical issues of finite differences restricted
to this small setting, the optimization results were a complete failure. For even slightly
more complicated parametric models, such as adding a geometric anisotropy, the number
of Hessian entries that involve finite difference derivatives will be greater, further increasing
the risk of accumulated inaccuracies and severely incorrect point estimates.

6 Summary and Discussion

In this work, we identified a set of numerical approaches whose regions of accuracy and
efficiency cover the entire domain of Kν and that are well-suited to high-order automatic
differentiation. After assessing the computational gains for first and second derivatives
our approach provides, we demonstrated the practical significance of the accuracy gains
through an example of maximum likelihood estimation via second-order optimization that
completely fails when finite difference derivatives are employed, despite the finite difference
derivatives being computed with the highly accurate AMOS library.

As modern datasets have continued to grow in size and complexity, accurately modeling
dependence structure is more important than ever, and Gaussian processes have continued
to serve as among the most popular tools for that purpose. We consider the full three-
parameter isotropic Matérn model, in which one estimates ν, to be a bare minimum level
of flexibility, at least for many datasets in the physical sciences. We thus hope that this
work will empower practitioners to fit ν as easily as they do any other parameter. In
order to make this as straightforward as possible, we provide the methods described in
this paper in a convenient and freely available software package. While this work provides
no discussion of scalable approximations to Gaussian likelihoods, they are a popular and
important area of contemporary research in the field (see [17], for example, for a non-
exhaustive but nonetheless expansive introduction to the topic). Particularly in the fixed-
domain asymptotic regime, large datasets are especially informative about the smoothness
parameter ν, and so there is particular synergy between the kernel derivatives we discuss
here and scalable likelihood approximations that can use the information of significantly
more data than would traditionally be possible with direct dense linear algebra.

Additionally, we hope that this work will reduce the complexity barrier to using Hessian
matrices of the log-likelihood. Beyond the demonstration that we provide here of the value
of true second-order optimization for maximum likelihood estimation, Hessian matrices of
the log-likelihood are crucial to other common methods, such as Laplace approximations,
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including the method of integrated nested Laplace approximations (INLA) [28]. It is thus
our hope that this work will be helpful to a wide variety of scientists and will make the use
of the full three-parameter Matérn covariance a more standard practice.
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A Modifications for rescaling

In certain cases a scaled modified Bessel function, exKν(x), may be useful in extending the
interval of definition to larger arguments and avoiding numerical issues such as underflow.
In the Matérn covariance function, a different prefactor comes up: xνKν(x). This function,
while more sensitive to floating point round-off errors than its unscaled counterpart, is
bounded at the origin for all orders ν > 0.

This rescaled modified Bessel function is primarily useful for small arguments, and
the two routines that can benefit the most from this rescaling are the direct series from
Section 3.1 and the Temme recursion in Section 3.5. In Equation 3.2, one can simply
bring the xν term inside the sum to cancel the x−νxν product, completely removing the
singularity at the origin as well as lowering the operation count, for both direct evaluations
and AD computations.

To modify the expressions in Section 3.5 is slightly more complicated, since integer
values of ν are computed via a recursion starting from the K0 and K1 terms. However, at
ν = 0 the term x0K0 contains a (logarithmically growing) singularity, problematic also for
integer orders ν when x = 0. We have observed this can be avoided since the recursion can
be re-arranged to be

xν+1Kν+1(x) = 2ν(xνKν(x))− x2(xν−1Kν−1(x)),

where for x = 0 the term starting offK0, i.e. Kν−1, cancels entirely, simplifying the recursion
for all integer orders. Introducing a branch in the code that checks for this condition results
in AD-compatible differentiations of xνKν(x) for non-zero integer values ν.
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When ν 6∈ Z and x = 0, as the terms xν sinh(µ)/µ and xν cosh(µ) cannot be evaluated
directly, and we have a secondary set of limit branch problems. In this case we observed
that xν cosh(ν log(2/x)) can be re-written as

xν cosh(ν log(2/x)) =
xν(2νx−ν + 2−νxν)

2
.

By again manually performing the cancellations, we can preserve the derivative information
for xν cosh(µ), and similarly for sinh(µ). This minor accountancy addition, which intro-
duces special routines for xνKν(x) for all orders ν, pays off in terms of accuracy, speed, and
AD-simplicity.

B Profile likelihoods

For a collection of parameters θ = (σ2, ρ, ν, ...), let θ1 denote the collection (1, ρ, ν, ...).
Through a small amount of algebra, it can be observed that, given all parameters besides
σ2, the value of σ2 that maximizes the log-likelihood can be computed in closed-form as
n−1zTΣ(θ1)z. Due to the observation thatΣ(θ) = σ2Σ(θ1) and some subsequent algebraic
manipulations, one can thus re-write the likelihood ℓ(θ) as a function of all parameters
besides σ2 to obtain

−2ℓp(θ1 | z) = log |Σ(θ1)|+ n log
(
zTΣ(θ1)

−1z
)
.

The value of this reformulation is that the dimension of the parameter estimation problem
(and thus the challenging nonconvex optimization problem) has been reduced by one. For
this paper, however, we only utilize the profile log-likelihood in order to visualize likelihood
surfaces that would otherwise be three-dimensional.
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M. Brzezinski, A. Zhabinski, M. Besançon, P. Vertechi, S. Gowda, A. Fitzgibbon,
C. Lucibello, C. Vogt, D. Gandhi, and F. Chorney. Juliadiff/chainrules.jl: v1.15.0,
December 2021. doi:10.5281/zenodo.5750776.

25

https://papers.nips.cc/paper/2021
https://doi.org/10.5281/zenodo.5750776


[35] L. White, W. Tebbutt, M. Zgubic, W. Bruinsma, R. Luo, N. Robinson, A. Ar-
slan, S. Axen, S. Schaub, R. Finnegan, A. Robson, B. Richard, C. Vogt,
E. Davies, and V. B. Shah. Juliadiff/finitedifferences.jl: v0.12.20, November 2021.
doi:10.5281/zenodo.5724087.

[36] H. Zhang. Inconsistent estimation and asymptotically equal interpolations in model-
based geostatistics. J Am Stat Assoc, 99(465):250–261, 2004.

26

https://doi.org/10.5281/zenodo.5724087

	1 Introduction
	2 Derivatives via Automatic Differentiation
	3 A Fast and Accurate Implementation of  and k
	3.1 Small arguments and small-to-moderate orders
	3.2 Intermediate arguments
	3.3 Large arguments
	3.4 Half-integer orders
	3.5 Integer orders and small arguments with large orders

	4 Speed and Accuracy Diagnostics
	4.1 Pointwise accuracy
	4.2 Efficiency diagnostics
	4.3 Selected diagnostics for Matérn covariance matrices

	5 A Demonstration with Simulated Data
	6 Summary and Discussion
	A Modifications for rescaling
	B Profile likelihoods

