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Abstract

One-shot coupling is a method of bounding the convergence rate between two copies of a Markov chain

in total variation distance, which was first introduced in [37] and generalized in [27]. The method is divided

into two parts: the contraction phase, when the chains converge in expected distance and the coalescing

phase, which occurs at the last iteration, when there is an attempt to couple. One-shot coupling does not

require the use of any exogenous variables like a drift function or a minorization constant. In this paper,

we summarize the one-shot coupling method into the One-Shot Coupling Theorem. We then apply the

theorem to two families of Markov chains: the random functional autoregressive process and the autoregressive

conditional heteroscedastic (ARCH) process. We provide multiple examples of how the theorem can be used

on various models including ones in high dimensions. These examples illustrate how the theorem’s conditions

can be verified in a straightforward way. The one-shot coupling method appears to generate tight geometric

convergence rate bounds.
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1 Introduction

The study of Markov chain convergence rates focuses on evaluating how fast a positive recurrent Markov chain

converges to its stationary distribution. On one hand, a great deal of progress has been made in bounding the
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convergence rate for Markov chains defined in discrete state spaces [43, 40, 38]. On the other hand, despite the

major developments made in bounding Markov chains in continuous state space, many applications of continuous

state space Markov chains do not have established convergence rate bounds. For example, convergence rate

bounds applied to Markov chain Monte Carlo (MCMC) models, which are useful for deciding the size of the

burn-in period [16, 11], do not have known upper bounds on their convergence rate [11]. Users need to rely on

ad-hoc convergence diagnostics (e.g., [10]), which offer no guarantees.

Methods using the drift and minorization conditions (e.g., [42, 2]), which guarantee geometric ergodicity

(definition 2.2), are the most studied techniques for bounding Markov chains in continuous state space [35, 16].

The minorization condition is satisfied for a Markov chain {Xn}n≥1 under the following circumstances: there

exists a small set K, a probability measure Q and a positive number ε > 0 such that P (· | Xn = x) ≥ εQ(·)

for x ∈ K. The drift condition is satisfied if there exists a positive function V , and constants α > 1 such that

E[V (Xn+1) | Xn = x] ≤ V (x)/α [28, 35]. Bounds generated using the drift and minorization conditions have

been applied to a wide array of problems such as [39, 47, 16].

Despite the widespread use of bounds generated by the drift and minorization conditions, there are drawbacks.

First, it can be a challenge to identify a small set K and drift function V [27]. Second, it is shown in [32] based

on results from [19] that bounds that use the minorization condition do not scale well in high dimensions.

Alternatively, methods for finding Markov chain convergence rate bounds on the Wasserstein distance have

been shown to scale well in high dimensions [8, 32], so bounding the total variation distance by first bounding

the Wasserstein distance is a common technique used in the literature [32, 27, 21].

One-shot coupling, which bounds the Wasserstein distance as an intermediate step [27], provides an upper

bound on the convergence rate in total variation distance of a Markov chain. This method does not need

to identify any exogenous sets or functions, like the drift and minorization conditions. Further, the one-shot

coupling method has already been shown to scale well in certain high dimensional examples [37, 30] and will be

shown in this paper to scale well in high dimensions for the Bayesian regression Gibbs sampler (Example 4.2)

and the Bayesian location Gibbs sampler (Example 4.3).

The one-shot coupling method described in [37] works by first converging the expected distance between

two copies of a Markov chain. At the last iteration, the probability of coupling is evaluated when the expected

3



distance between the copies is small. This contrasts with the drift and minorization technique, which attempts

to couple the two Markov chain copies every time they enter some fixed small set K.

In this paper, we introduce the One-Shot Coupling Theorem in Section 3, which aims to summarize the

method defined in [37] and [27] for straightforward applications. The One-Shot Coupling Theorem is used as the

foundation for bounding the convergence rate for all of the examples in this paper, which can be partitioned into

two families: the random functional autoregressive process and the ARCH process. In Section 4 we introduce

the Sideways Theorem 4.1, which is new and is an application of the One-Shot Coupling Theorem. We apply

it to various examples of random functional autoregressive processes (definition 4.1). In Section 5 we provide

convergence rate bounds using the One-Shot Coupling Theorem to various ARCH processes (definition 5.1).

Proofs for the theorems presented in this paper are found in the appendix, Section 7. The code used to

generate all of the tables and calculations can be found on github.com/sixter/OneShotCoupling.

2 Background and notation

Let {Xn}n≥1 and {X ′n}n≥1 be two copies of the Markov chain over the state space X and define L(Xn) to be

the distribution of the random variable Xn. We define π to be the stationary distribution of the Markov chain.

2.1 Total variation distance

We are interested in measuring the distance between the distribution of two Markov chains. To measure this we

use the total variation metric.

Definition 2.1 (Total variation distance). The total variation distance between the laws of two random variables,

X and X ′, defined on the state space X is

‖L(X)− L(X ′)‖ = sup
A⊆X
|P (X ∈ A)− P (X ′ ∈ A)|

where L(X) represents the distribution of the random variable X and A is a measurable set.
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For random variables, X,X ′ ∈ R with defined density functions fX , fX′ and reference measure λ,

‖L(X)− L(X ′)‖ =
1

2

∫
R
|fX(x)− fX′(x)|λ(dx) (1)

Total variation distance has natural probability interpretations. It is the maximum difference in probabilities

of an event. It is the error in an expected bounded loss function when a given measure is used as a proxy for

another [13]. Finally, it can be seen as the percentage of samples of L(X) which cannot be regarded as samples

from L(X ′) (Proposition 3(g) [35]).

Historically, total variation distance was the common metric for measuring Markov chain convergence rates

[35, 28, 22, 16] and hence, there is a rich literature of attributes that can be deduced from finding convergence

rates in total variation. For example, mixing times in total variation distance can be used to determine whether

the Markov chain is asymptotically uncorrelated (Theorem 2 of [22]), uniformly integrable (Theorem 3 of [22]),

whether the central limit theorem (CLT) applies (Theorem 9 of [22] or Section 5.2 of [35]), or whether it is

convergent based on the total variation mixing times of another Markov chain (Theorem 8 of [9]).

The following are properties of total variation, which will be used in conjunction with the One-Shot Coupling

Theorem 3.1 to establish upper bounds on the convergence rate for the examples in this paper.

Proposition 2.1 states that the total variation between two random variables is equal to the total variation

of any invertible transform of the same random variables. This proposition resembles Lemma 4.13 of [25] and

Lemma 3 of [27].

Proposition 2.1. Let X,X ′ ∈ X be two random variables and let g : X → Y be an invertible and measurable

function. Then,

‖L(g(X))− L(g(X ′))‖ = ‖L(X)− L(X ′)‖ (2)

The proof is in Section 7.1.

In general, for a measurable (not necessarily invertible) function g, g−1(f(B)) ⊂ B, so the third equality in

the proof becomes ≤ and

‖L(g(X))− L(g(X ′))‖ ≤ ‖L(X)− L(X ′)‖
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Proposition 2.2 states that the total variation distance between two random variables is bounded above by

the expected value of the conditional random variable.

Proposition 2.2. Let X,X ′ be two random variables with corresponding σ-field B and Y ∈ Y be some related

random variable. Then

‖L(X)− L(X ′)‖ ≤ E [‖L(X | Y )− L(X ′ | Y )‖]

The proof is in Section 7.1.

Proposition 2.3 states that the convergence rate of a Markov chain in Rd with independent coordinates is d

times the maximum coordinate-wise convergence rate. This proposition is an application of inequality 1.2 of [34].

Proposition 2.3. Let { ~Xn}n≥1 ∈ Rd be a Markov chain such that each coordinate is independent of the other

coordinates, Xi,n ⊥⊥ Xj,n, i 6= j. Further suppose that for two copies of the Markov chain { ~Xn}n≥1 and { ~X ′n}n≥1,

max1≤i≤d‖L(Xi,n)− L(X ′i,n)‖ ≤ Arn for some A ∈ R+ and r ∈ (0, 1). Then,

‖L( ~Xn)− L( ~X ′n)‖ ≤ dArn (3)

The proof is in Section 7.1.

In this paper, we establish convergence bounds for Markov chains that are geometrically ergodic in total

variation distance.

Definition 2.2 (Geometric ergodicity). Let {Xn}n≥1 be a Markov chain with a stationary distribution π. The

Markov chain is geometrically ergodic if there exists a ρ < 1 and a function M(x) < ∞, π-a.e. such that for

X0 = x,

‖L(Xn)− π‖ ≤M(x)ρn (4)

The geometric rate of convergence for Xn is defined as ρ∗ = inf{ρ : equation 4 holds}.

Proposition 4 of [32] states that for any sequence of drift and minorization conditions, the geometric conver-

gence rate ρ established by the Rosenthal bound (Theorem 12 of [42]) will increase at an exponential rate for the

autoregressive normal process in Rd as the dimension d → ∞. This finding suggests that convergence bounds
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that use the drift and minorization condition do not scale well in dimension (see Lemma 3 and discussion in

[32]). However, Proposition 2.3 shows that since each coordinate in this example is independent, the geometric

convergence ρ rate is indeed invariant to dimension, regardless of the bounding approach. Thus a drift and

minorization bound, including the Rosenthal bound, can easily be applied to the autoregressive normal process

in R and then extended to Rd using Proposition 2.3. To see Proposition 2.3 applied to the autoregressive normal

process in Rd, see Example 4.5.

2.2 Wasserstein distance

Let X,X ′ ∈ R be two random variables equipped with the Euclidean distance. The Wasserstein distance is

defined as follows,

W (L(X),L(X ′)) = inf{E[|Y − Y ′|] : L(X) = L(Y ) and L(X ′) = L(Y ′)}

In comparison to total variation distance, there is not as much literature dedicated to Markov properties that

can be derived from the convergence in Wasserstein distance. However, this literature is growing. For example

Jin and Tan provide sufficient conditions in [20] for the CLT based on convergence in Wasserstein distance (see

Theorems 9 and 10).

2.3 Coupling

Total variation can also be defined in terms of the coupling characterization [13],

‖L(X)− L(X ′)‖ = inf{P (Y 6= Y ′) | L(X) = L(Y ) and L(X ′) 6= L(Y ′)}

The total variation metric measures the distance between two distributions, but is invariant to how these

measures are jointly distributed. For example, let X ∼ N(0, 1) and X ′ ∼ N(1, 1) be two random variables.

Regardless of whether X and X ′ are highly dependent, for example if X = X ′+1 or if X,X ′ are independent, their

total variation distance would be the same. The Nummelin splitting technique makes use of this by constructing

alternative random variables, Y and Y ′, such that the marginal distributions are the same L(X) = L(Y ),
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L(X ′) = L(Y ′), and the probability that they are unequal is minimised. This technique was first shown in [29].

See [40] or [28] for an explanation. Finally, note that the theory on maximal coupling guarantees that there exists

alternative random variables Y, Y ′ as defined above, such that ‖L(X)− L(X ′)‖ = P (Y 6= Y ′) [4].

Coupling techniques are widely used to calculate total variation upper bounds on Markov chains [38, 42,

40, 35, 39, 48]. Let {Xn}n≥1 and {X ′n}n≥1 be two copies of a Markov chain. If we want to use the coupling

characterization for finding an upper bound on the total variation distance, we must also make sure that the

faithful coupling condition holds (see Section 2 of [41]). That is, for any measurable set A ∈ X ,

P (Xn+1 ∈ A : Xn = x and X ′n = x′) = P (Xn+1 ∈ A : Xn = x)

P (X ′n+1 ∈ A : Xn = x and X ′n = x′) = P (X ′n+1 ∈ A : X ′n = x′)

If the faithful coupling condition holds, then calculating the probability that two chains are unequal at iteration

n can be interpreted as the probability that the two chains have not yet coupled by iteration n. This is because

once the two Markov chains couple, they can be structured so that they are equal forever and so P (Xn 6= X ′n) =

P (T ≥ n) where T = min{k : Xk = X ′k} (Theorem 1 of [41]). If a minorization condition holds on the Markov

chain, then the faithful coupling condition also holds. For one-shot coupling, we do not need faithful coupling,

because we only try to couple the chains at the last iteration.

3 One-Shot Coupling

One-shot coupling is an alternative way of applying coupling methods to bound the total variation of two copies

of a Markov chain. To apply one-shot coupling, we define a Markov chain in terms of iterated random functions

[6]. That is, define a family of random functions {g~θ : ~θ ∈ ΘΘΘ} such that ~θn = {θ1,n, . . . , θd,n} is a random vector

and

Xn = g~θn(Xn−1)

The nth iteration of the Markov chain can be written in terms of X0 = x as follows,

Xn = (g~θn ◦ g~θn−1
. . . ◦ g~θ1)(x) = g~θn(g~θn−1

(. . . g~θ1(x) . . .))
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Summarizing Section 3 of [37], to find an upper bound on the total variation distance between XN and

X ′N = g~θ′N
(X ′N−1) we do the following.

1. Contraction phase: For n < N , set ~θn = ~θ′n so that the two chains get ‘closer’ together.

2. Coalescing phase: For n = N , we set all but one coordinate of ~θn and ~θ′n to equality and attempt to

couple Xn and X ′n. That is, specify coordinate j ∈ {1, . . . , d} and set θi,n = θ′i,n for all i 6= j. Then we

attempt to jointly choose θj,n and θ′j,n, such that

g(θ1,n,...,θj,n,...,θd,n)(Xn−1) = g(θ1,n,...,θ′j,n,...,θd,n)(X
′
n−1)

The method used in the contraction phase is also known as the common random number method and is

discussed in detail in Section 2.3.1 of [18]. The contraction phase can also be used to directly generate upper

bounds in Wasserstein distance [18, 31, 12] (it is also used to generate bounds on other types of distances like

Monge–Kantorovich or Prokhorov [18]).

The one-shot coupling method has been applied over a variety of specific examples, namely, a nested gamma

model in [24], an image restoration model in [23], and a random walk on the unit sphere in [30].

The contraction and coalescing phase described above is how the one-shot coupling method was first defined

in [37]. The following theorem summarizes the above method and serves as a general outline for bounding the

total variation distance between two Markov chains. The coalescing condition below does not specify how the

two chains will couple, unlike the method described above.

Theorem 3.1 (One-Shot Coupling Theorem). Let {Xn}n≥1, {X ′n}n≥1 be two copies of a Markov chain such that

Xn = gθn(Xn−1) and X ′n = gθ′n(X ′n−1), where (θn, θ
′
n)n≥1 are independent random variables with respect to n

and the marginal distribution of θn, θ
′
n ∼ D, for some distribution D. Suppose that the following two conditions

hold for some non-negative integer n0.

1. Contraction condition: There exists a D ∈ (0, 1) such that for any n ≥ n0 when θn+1 = θ′n+1 ∼ D

E[|gθn+1
(Xn)− gθn+1

(X ′n)|] ≤ DE[|Xn −X ′n|]
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2. Coalescing condition: There exists a C > 0 such that for any n ≥ n0

‖L(Xn)− L(X ′n))‖ ≤ CE[|Xn−1 −X ′n−1|]

Then the total variation distance between the two Markov chains at iteration n ≥ n0 is

‖L(Xn)− L(X ′n)‖ ≤ CDn−n0−1E[|Xn0
−X ′n0

|]

Proof of the One-Shot Coupling Theorem 3.1. Fix n ≥ n0. We are interested in finding an upper bound on

‖L(Xn)− L(X ′n)‖. To do so, we first generate alternative random variables, Yn, Y
′
n such that

1. for 0 ≤ m ≤ n0: Ym = Xm, Y
′
m = X ′m

2. for n0 < m < n: θm = θ′m ∼ D and Ym = gθm(Ym−1), Y ′m = gθm(Y ′m−1).

3. for m = n: θm, θ
′
m ∼ D with an arbitrary joint distribution and Ym = gθm(Ym−1), Y ′m = gθ′m(Y ′m−1)

By construction, Ym
d
= Xm and Y ′m

d
= X ′m for 0 ≤ m ≤ n.

Next we find an upper bound on the total variation distance between Yn and Y ′n. By the contraction condition

for n0 ≤ m < n, E[|gθm+1
(Ym)− gθm+1

(Y ′m)|] ≤ DE[|Ym − Y ′m|] and so,

E[|Yn−1 − Y ′n−1|] = E[|gθn−1
(Yn−2)− gθn−1

(Y ′n−2)|] ≤ DE[|Yn−2 − Y ′n−2|] ≤ Dn−n0−1E[|Yn0
− Y ′n0

|]

By the coalescing condition,

‖L(Yn)− L(Y ′n))‖ ≤ CE[|Yn−1 − Y ′n−1|] ≤ CDn−n0−1E[|Yn0 − Y ′n0
|] = CDn−n0−1E[|Xn0 −X ′n0

|]

Finally since Yn
d
= Xn and Y ′n

d
= X ′n,

‖L(Xn)− L(X ′n)‖ = ‖L(Yn)− L(Y ′n)‖ ≤ CDn−n0−1E[|Xn0
−X ′n0

|]
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If L(Xn) has a density function with respect to Xn−1 = x, f(x, z), then Theorem 3.1 can be proven with

Wasserstein distance as an intermediary using the following lemma.

Lemma 3.2 (Theorem 12 of [27]). If 1
2

∫
X |f(x, z)− f(x′, z)|λ(dx) ≤ C|x− x′| holds, then for n ≥ 0

‖L(Xn)− L(X ′n)‖ ≤ CW (L(Xn−1),L(X ′n−1))

If the contraction condition holds, then for n ≥ n0, W (L(Xn−1),L(X ′n−1)) ≤ E[|Xn−1−X ′n−1|] ≤ Dn−n0−1E[Xn0
−X ′n0

]

and the proof of Theorem 3.1 directly follows.

In most cases n0 = 0. See the GARCH Example 5.3 for an alternative case, n0 = 1.

In general, the contraction condition can be weakened. Theorem 1.1 of [6] provides sufficient conditions to

guarantee the existence of D as defined in the above theorem. The conditions in Theorem 1 of [46], which are

called local contractivity and are weaker, could also replace the contraction condition in the above theorem.

To bound the total variation between a Markov chain, {Xn}n≥1, and the corresponding stationary distribution,

π, we set X ′0 ∼ π. This implies that X ′n ∼ π and ‖L(Xn) − π‖ ≤ CDn−n0−1EX∞∼π[|Xn0 −X∞|] where C,D,

and n0 are satisfied according to the conditions above.

To find an upper bound on EX∞∼π[|Xn0
−X∞|] we use the following Lemma 3.3, which uses a drift condition

to bound the expected distance between the stationary distribution of a Markov chain and an initial value.

Definition 3.1 (Drift condition). Let {Xn}n≥1 be a Markov chain on X . A drift condition is satisfied if there

exists a function V : X → R and constants λ ∈ (0, 1) and b <∞ such that E[V (Xn) | Xn−1] ≤ λV (Xn−1) + b.

Lemma 3.3. Let {Xn}n≥1 be a Markov chain such that a drift condition 3.1 holds with V (x) = (x+ h)2, h ∈ R.

The expected distance between X0 and X∞ ∼ π is bounded above as follows, E[|X∞−X0|] ≤
√

b
1−λ +E[|X0 +h|].

Proof. E[|X∞ −X0|] ≤ E[|X∞ + h|] + E[|X0 + h|] ≤
√

b
1−λ + E[|X0 + h|]. The last inequality holds by lemma

3.4.

Lemma 3.4. [Proposition 4.3 (i) of [28]] If the drift condition holds, then Eπ[V (X)] ≤ b
1−λ . See Section 7.3.3

for a proof.

See Numerical Example 4.2 for an application of Lemma 3.3.
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4 Random-functional autoregressive processes

The following section proposes the Sideways Theorem to generate upper bounds on the total variation distance

for random-functional autoregressive processes.

Definition 4.1 (Random functional autoregressive processes). The sequence {Xn}n≥1 is a random functional

autoregressive process if for g : R2 → R

Xn = g(θ1,n, Xn−1) + θ2,n

where (θ1,n, θ2,n) ∈ R2 are random variables and (θ1,n, θ2,n) ⊥⊥ (θ1,m, θ2,m) when n 6= m.

Theorem 4.1 (Sideways Theorem). Let {Xn}n≥1 ∈ R be a random-functional autoregressive. Suppose that,

1. Contraction condition: There exists a D ∈ (0, 1) such that for n ≥ 0,

E[|g(θ1,n+1, Xn)− g(θ1,n+1, X
′
n)|] ≤ DE[|Xn −X ′n|]

2. Attributes of the conditional density θ2,n | θ1,n: The conditional density of θ2,n | θ1,n

(a) is bounded above: There exists a K > 0 such that for all (θ1,n, θ2,n) ∈ R2, the conditional density

function of θ2,n is bounded above by K, fθ2,n(θ2,n | θ1,n) ≤ K.

(b) has at most M local extrema points that are at most L > 0 distance apart: For any θ1,n, there are M

local maximas and minimas (local extrema points) within the conditional density. The local extrema

points are at most L distance apart.

(c) is continuous for any θ1,n

Then an upper bound on the geometric rate of convergence of the Markov chain is D and the total variation

distance between the two copies of the Markov chain, Xn, X
′
n, is bounded above as follows,

‖L(Xn)− L(X ′n)‖ ≤
(
K(M + 1)

2
+
IM>1

L

)
Dn−1E[|X0 −X ′0|] (5)
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The attributes of the conditional density of θ2,n | θ1,n serve to prove, by integrating along the y-axis or flipping

the density sideways, that the coalescing condition is satisfied. To prove the Sideways Theorem, we show that

the contraction and coalescing conditions are satisfied and then apply the One-Shot Coupling Theorem 3.1.

Lemma 4.2 (Coalescing condition). If the density of θ2,n|θ1,n for any θ1,n is (1) bounded above, (2) has at most

M local extrema points that are at most L distance apart, and (3) is continuous then for n ≥ 0,

‖L(Xn)− L(X ′n)‖ ≤ CE[|Xn−1 −X ′n−1|]

Where C = K(M+1)
2 + IM>1

L . See Section 7.2.2 for a proof.

Proof of Theorem 4.1. The following shows that the contraction condition holds for D ∈ (0, 1) and n ≥ 0,

E[|fθn(Xn−1)− fθn(X ′n−1)|] = E[|(g(θ1,n, Xn−1) + θ2,n)− (g(θ1,n, X
′
n−1) + θ2,n)|]

= E[|g(θ1,n, Xn−1)− g(θ1,n, X
′
n−1)|]

≤ DE[|Xn−1 −X ′n−1|] by contraction condition

Lemma 4.2, which can be applied when condition 2 is satisfied (attributes of the conditional density of θ2,n | θ1,n),

shows that the coalescing condition holds. By the One-Shot Coupling Theorem 3.1, the total variation distance

between two copies of the process can be bounded above using equation 5.

In [14], it is shown that when the function g is deterministic (g is a function of Xn−1 only and not θ1,n) and

given the same assumptions on θ2,n, the upper bound on the geometric rate of convergence is D (see Corollary

8 and Example 9 of [14]). This matches the results from our theorem.

Note that the Sideways Theorem 4.1 provides an upper bound on total variation distance, but does not imply

the existence of a stationary distribution for the Markov chain. To develop the intuition for this, first note that

convergence in total variation distance implies convergence in distribution [13]. Suppose that L(Xn),L(X ′n) have

distribution functions, Fn, F
′
n, then by Helly’s Selection Theorem (see Lemma 11.1.8 of [38]), a right continuous

function F exists such that Fn → F and F ′n → F pointwise. However, the function F may not necessarily be a

distribution function. This is an illustration of why a stationary distribution may not exist.
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A simple counter example would be the process Xn = 1
2Xn−1 + n + Zn, Zn ∼ N(0, 1) where g(θ1,n, Xn) =

1
2Xn−1 + n and θ2,n = Zn. It is clear how the Sideways Theorem 4.1 could generate a geometric convergence

bound over two iterations of the process if E[X0 −X ′0] <∞, but Xn, X
′
n →∞ almost surely and so there is no

stationary distribution. See [46] for more information on sufficient conditions for stationarity.

4.1 An example of a non-linear autoregressive process

Example 4.1 (Non-linear autoregressive process). This example is discussed in Section 4 of [31]. Let {Xn}n≥1

be a Markov chain such that

Xn+1 =
1

2
(Xn − sinXn) + Zn+1

where {Zn}n≥1 ∼ N(0, 1) are independent and identically distributed (i.i.d.) random variables. In [31], it is

assumed that {Zn}n≥1 are i.i.d. random variables with a mean of 0 and a variance of 1.

For g(x) = 1
2 (x − sin(x)), the derivative is g′(x) = 1

2 (1 − cos(x)) and so supx∈R g
′(x) = 1. This cannot be

used. Instead, we can find a value for D in terms of the second iteration. That is,

D2 = sup
x,y

E[|Xn+2 −X ′n+2| | Xn = x,X ′n = y]

|x− y|

Lemma 4.3. The value of D as defined above can be written as

D2 = sup
x,y

√
4h(x, y)2 − 8e−1/2h(x, y) sinh(x, y) cos k(x, y) + 2 sin2 h(x, y)(1 + e−2(cos2 k(x, y)− sin2 k(x, y)))

2|x− y|

where

h(x, y) =
1

4
(y − x+ sinx− sin y) k(x, y) =

1

4
(x+ y − sin y − sinx)

The proof can be found in Section 7.3.1.

Using simulation, we can deduce that D2 ≈ 0.8132 = 0.661, which closely matches the geometric convergence

rate found in [31] for the Wasserstein distance of D = 0.814.

Using the Sideways Theorem 4.1 notation, K = 1√
2π

and M = 1. An upper bound on the total variation
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distance is

‖L(Xn+1)− L(X ′n+1)‖ ≤ 1√
2π
E[|X0 −X ′0|]0.661bN/2c

Thus if X0 = 1 and X ′0 = 2, then after 20 iterations, the total variation distance between the two processes

will be less than 0.01.

4.2 Random-coefficient autoregressive models

Corollary 1. Let {Xn}n≥1 ∈ R be a random-coefficient autoregressive model. That is, Xn is of the following

form

Xn = θ1,nXn−1 + θ2,n

where (θ1,n, θ2,n) ⊥⊥ (θ1,m, θ2,m) when n 6= m. If we replace the contraction condition of the Sideways Theorem

4.1 with

1. E[|θ1,n|] < 1

Then equation 5 holds for D = E[|θ1,n|].

Proof. If E[|θ1,n|] < 1 then set D = E[|θ1,n|] and so the contraction condition in Theorem 4.1 holds,

E[|g(θ1,n+1, Xn)− g(θ1,n+1, X
′
n)|] = E[|θ1,n+1Xn − θ1,n+1X

′
n|] ≤ DE[|Xn −X ′n|]

Since all of the conditions in Theorem 4.1 are satisfied, equation 5 holds.

4.3 Bayesian regression Gibbs sampler

Example 4.2 (Bayesian regression Gibbs sampler). Suppose we have the following observed data Y ∈ Rk and

X ∈ Rk×p where

Y | β, σ2 ∼ Nk(Xβ, σ2Ik)

for unknown parameters β ∈ Rp, σ2 ∈ R. Suppose we apply the prior distributions on the unknown parameters,

• β | σ2 ∼ Np(0p, σ
2

λ Ip), where λ > 0 is known
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• π(σ2) ∝ 1/σ2

The Bayesian regression Gibbs sampler is based on the conditional posterior distributions of βn, σ
2
n and is defined

as follows.

• βn | σ2
n−1, Y ∼ Np(β̃, σ2

n−1A
−1)

• σ2
n | βn, Y ∼ Γ−1

(
k+p

2 , 1
2

[
(βn − β̃)TA(βn − β̃) + C

])
. Γ−1(α, β) represents the inverse gamma distribu-

tion.

Where A = XTX + λIp is positive semi-definite, β̃ = A−1XTY , and C = Y T (Ik −XA−1XT )Y .

The following theorem gives an upper bound on the convergence rate of the Bayesian regression Gibbs sampler.

Theorem 4.4. For two copies of the Bayesian regression Gibbs sampler, (βn, σn) and (β′n, σ
′2
n ), defined in

Example 4.2,

‖L(βn, σn)− L(β′n, σ
′2
n )‖ ≤ KE[|σ2

0 − σ
′2
0 |]
(

p

k + p− 2

)n−1

(6)

where K = (C/2)
k+2p

2

Γ( k+2p
2 )

(
k+2p+2

C

) k+2p
2 +1

e−
k+2p+2

2 .

In Theorem 3.1 of [33], it was shown than for the equivalent example and some 0 < M1 ≤M2, which are not

specified,

M1

(
p

k + p− 2

)n
≤ ‖L(βn, σn)− π‖ ≤M2

(
p

k + p− 2

)n
This means that the bound derived from the Corollary 1 is sharp up to a constant. The primary difference

between Theorem 3.1 in [33] and the bound in Theorem 4.4 is that the latter provides explicit values for the

constant, M2 and as a result, numerical upper bounds can be calculated.

Before proving the Theorem 4.4, we present some lemmas.

Lemma 4.5. The variable σ2
n can be written as a random-coefficient autoregressive process, σ2

n = XnYnσ
2
n−1 +Yn

where Xn ∼ Γ
(
p
2 ,

C
2

)
and Yn ∼ Γ−1

(
k+p

2 , C2

)
. And so, ‖L(βn, σ

2
n)− L(β′n, σ

′2
n )‖ ≤ ‖L(σ2

n)− L(σ
′2
n )‖.

The proof can be found in 7.3.2. Note that Γ(α, β) represents the gamma distribution and Γ−1(α, β) represents

the inverse gamma distribution.
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Lemma 4.6 (Contraction condition). The Bayesian regression Gibbs sampler satisfies the contraction condition

with D =
(

p
k+p−2

)
. The proof can be found in 7.3.2.

Lemma 4.7 (Attributes of the conditional density θ2,n | θ1,n). For the Bayesian regression Gibbs sampler,

θ2,n | θ1,n has a continuous density, M = 1 and K = (C/2)
k+2p

2

Γ( k+2p
2 )

(
k+2p+2

C

) k+2p
2 +1

e−
k+2p+2

2 . The proof can be

found in 7.3.2.

Given the above lemmas, the proof of Theorem 4.4 is straightforward when the Sideways Theorem is applied.

Proof of Theorem 4.4. Let n ≥ 0.

‖L(βn, σ
2
n)− L(β′n, σ

′2
n )‖ ≤ ‖L(σ2

n)− L(σ
′2
n )‖ ≤ KE[|σ2

0 − σ
′2
0 |]
(

p

k + p− 2

)n−1

where K is defined in Lemma 4.7. Lemma 4.5 implies the first inequality. The second inequality is a result

of Corollary 1, which is satisfied because of the contraction condition (Lemma 4.6) and the properties of the

conditional density θ2,n | θ1,n (Lemma 4.7).

Numerical Example 4.1 (Application of the Bayesian regression Gibbs sampler). Suppose that we are inter-

ested in evaluating the delay in getting a PhD (Y ), based on age, age squared, sex and whether the student has a

child at home (X). For more information on this problem see [44, 45]. We want to find the upper bound on the

total variation distance for a Bayesian regression Gibbs sampler fitted to this model. In this case, there are 333

observed values (k = 333) and 4 covariates (p = 4). Using the notation from Theorem 4.4, K = 0.0682. Further

suppose we are interested in evaluating the upper bound between two copies of the Markov chain Xn, X
′
n such

that σ2
0 = 1 and σ

′2
0 = 1001. Then,

‖L(βn, σn)− L(β′n, σ
′
n)‖ ≤ 68.16454 (0.0119403)

n−1
(7)

After 3 iterations, the total variation distance between the two chains will be less than 0.01.
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4.4 Bayesian location model Gibbs sampler

Example 4.3 (Bayesian location model Gibbs sampler). Suppose that we are given data points Y1, . . . , YJ ∼

N(µ, τ−1) where µ, τ−1 are unknown and J ≥ 3. Let µ, τ−1 have flat priors on R and R+. The Gibbs algorithm

is based on the conditional posterior distributions of µ, τ−1, which are defined as follows.

• µn+1 = ȳ + Zn+1/
√
Jτn

• τ−1
n+1 =

S
2 + J

2 (ȳ−µn+1)2

Gn+1

Where Zn ∼ N(0, 1) and Gn ∼ Γ(J+2
2 , 1) are independent and S =

∑n
i=1(yi − ȳ)2.

The following theorem gives an upper bound on the convergence rate of the Bayesian location model Gibbs

sampler.

Theorem 4.8. For two copies of the Bayesian location model Gibbs sampler Example 4.3,

‖L(µn, τ
−1
n )− L(µ′n, τ

′−1
n )‖ ≤ KE[|τ−1

0 − τ
′−1
0 |]

(
1

J

)n−1

(8)

where K = (S/2)
J−1
2

Γ( J−1
2 )

(
S
J+1

)− J−3
2

e−
J+1
2 .

This bound compares to the one derived in Section 6 of [37] which states that,

‖L(µn, τ
−1
n )− L(µ′n, τ

′−1
n )‖ ≤

(
J

2
+ 1

)
E[|τ−1

0 − τ
′−1
0 |]

(
1

J

)n

Both bounds return the same geometric rate of convergence. However, the magnitude of constant K is difficult

to compare against
(
J
2 + 1

)
without knowing S. Note that the bound derived from Corollary 1 is calculated in

a systematic way.

Before proving Theorem 4.8, we present some lemmas.

Lemma 4.9. The variable τ−1
n can be written as a random-coefficient autoregressive process, τ−1

n = XnYnτ
−1
n−1 +

Yn, where Xn ∼ Γ
(

1
2 ,

S
2

)
and Yn ∼ Γ−1

(
J+2

2 , S2
)
. And so, ‖L(µn, τ

−1
n ) − L(µ′n, τ

′−1
n )‖ ≤ ‖L(τ−1

n ) − L(τ
′−1
n )‖.

The proof can be found in 7.3.3.
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Lemma 4.10 (Contraction condition). The Bayesian location model Gibbs sampler satisfies the contraction

condition with D = 1
J . The proof can be found in 7.3.3.

Lemma 4.11 (Attributes of the conditional density θ2,n | θ1,n). For the Bayesian location model Gibbs sampler,

θ2,n | θ1,n has a continuous density, M = 1 and

K =
(S/2)

J−1
2

Γ(J−1
2 )

(
S

J + 1

)− J−3
2

e−
J+1
2 (9)

The proof can be found in 7.3.3.

Given the above lemmas, the proof of Theorem 4.8 is straightforward when the Sideways Theorem is applied.

Proof of Theorem 4.8. Note that

‖L(µn, τ
−1
n )− L(µ′n, τ

−1′

n )‖ ≤ ‖L(τ−1
n )− L(τ−1′

n )‖ ≤ KE[|τ−1
0 − τ−1′

0 |]
(

1

J

)n−1

where K is defined in Lemma 4.11. The first and second inequality are a result of Lemma 4.9 and Corollary 1,

respectively. Corollary 1 is satisfied because of the contraction condition (Lemma 4.10) and the properties of the

conditional density θ2,n | θ1,n (Lemma 4.11).

Numerical Example 4.2 (Application of Bayesian location model Gibbs sampler). Suppose that we are given

the girth in inches of a sample of trees (see the trees dataset in R), Y1, . . . , Y31 ∼ N(µ, τ−1), where µ, τ−1 are

unknown. We want to find the upper bound on the total variation distance for the Gibbs sampler model applied

to this problem. In this case the number of datapoints is 31 (J = 31) and using the notation from Theorem

4.8, K = 13.74027. Further, suppose that we are interested in evaluating the upper bound between a Markov

chain (µn, τ
−1
n ) with initial value τ−1

0 = 1 and the corresponding stationary Markov chain, which is denoted as

(µ∞, τ
−1
∞ ).

By Lemma 4.12 a drift function exists.

Lemma 4.12. For Numerical Example 4.2, the following drift condition holds,

E[(τ−1
n + 0.5248723)2 | τ−1

n−1] ≤ 0.6583702(τ−1
n−1 + 0.5248723)2 + 106.3874
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The proof can be found in 7.3.3.

So by lemma 3.3,

E[|τ−1
∞ − τ−1

0 |] ≤ 18.12198 (10)

Combining this with Theorem 4.8,

‖L(µn, τ
−1
n )− L(µ∞, τ

−1
∞ )‖ ≤ 13.74027× 18.12198

(
1

31

)n−1

= 249

(
1

31

)n−1

After 4 iterations, the total variation distance between the two chains will be less than 0.01. This bound

compares to the bound derived in [37], which, combined with equation 10, states that ‖L(µn, τ
−1
n )−L(µ′n, τ

′−1
n )‖ ≤

299
(

1
31

)n
.

4.5 Autoregressive normal process

Example 4.4 (Autoregressive normal process in R). Let {Xn}n≥1 ∈ R be an autoregressive normal process.

Then for i.i.d. Zn ∼ N(0, 1),

Xn =
1

2
Xn−1 +

√
3

4
Zn

In this case θ1,n = 1
2 and θ2,n =

√
3
4Zn. The density of θ2,n is continuous and uni-modal and K =

√
2

3π . By

Corollary 1,

‖L(Xn)− L(X ′n)‖ ≤
√

2

3π
E[|X0 −X ′0|]

(
1

2

)n−1

(11)

It is known that the geometric rate of convergence for the autoregressive normal process is 1/2 [32], so once again

the Sideways Theorem 4.1 generates tight geometric convergence rates up to a constant.

When comparing the upper bound with the actual total variation distance, note that if X0 = x0 is known,

Xn ∼ N( x0

2n , 1−
1

4n ). Thus, the total variation distance between two copies of an autoregressive normal process

Xn, X
′
n where the initial values are known, X0 = x0 and X ′0 = x′0, is as follows (see Section 2 of [37]),

‖L(Xn)− L(X ′n)‖ = 1− 2Φ

− |x0 − x′0|

2n+1
√

1− 1
4n
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Figure 1: This figure compares the actual value of ‖L(Xn)− L(X ′n)‖ against the upper bound derived from the
Sideways Theorem 4.1, (Equation 11) when Xn, X

′
n are two copies of the autoregressive normal process (i.e.,

Xn = 1
2Xn−1 +

√
3
4Zn, Zn ∼ N(0, 1)) and x0 = 0, x′0 = 1.

Figure 1 shows how the upper bound for the autoregressive normal process using equation 11 compares to

the actual total variation distance when x0 = 0 and x′0 = 1. The total variation is less than 0.01 after 6 iteration

and the upper bound on the total variation is less than 0.01 after 7 iterations.

In the following section we extend the above example to higher dimensions.

4.6 Processes in Rd

Next we extend the autoregressive normal process as defined above to Rd. To do so, we apply Proposition 2.3

to an autoregressive normal process in Rd with independent coordinates, Example 4.5, and non-independent

coordinates, Example 4.6.

Example 4.5 (Autoregressive normal process in Rd with independent coordinates). Let { ~Xn}n≥1 ∈ Rd be an

autoregressive normal process with independent coordinates. Then for i.i.d. ~Zn ∼ N(~0, Id),

~Xn =
1

2
~Xn−1 +

√
3

4
~Zn
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And if i 6= j, then Zi,n ⊥⊥ Zj,n. Further, Xi,n = 1
2Xi,n−1 +

√
3
4Zi,n for i ∈ {1, . . . , d} and so by Example 4.4,

‖L(Xi,n)− L(X ′i,n)‖ ≤
√

2

3π
E[|Xi,0 −X ′i,0|]

(
1

2

)n−1

Since each coordinate is independent and bounded above by the same value, Proposition 2.3 implies that

‖L( ~Xn)− L( ~X ′n)‖ ≤ d
√

2

3π
sup

0≤i≤d
E[|Xi,0 −X ′i,0|]

(
1

2

)n−1

Again, it is known that the geometric rate of convergence for the autoregressive normal process in Rd is 1/2

[32].

Finally, to apply numbers to this example, suppose that ~Xn, ~X
′
n ∈ R100 and the initial values of this process

are ~X0 = (1, . . . , 1) and ~X ′0 = (0, . . . , 0). The total variation distance would be bounded above with ‖L( ~Xn+1)−

L( ~X ′n+1)‖ ≤ 100
√

2
3π

(
1
2

)n
. This means that at 14 iterations the total variation distance would be less than 0.01.

The following example is a more general version of the above, where Xn is a general auto regressive normal

process in Rd.

Example 4.6 (Autoregressive normal process in Rd). The random vector { ~Xn}n≥1 ∈ Rd is an autoregressive

normal process if for matrix A and random vector ~Wn ∼ N(~0,Σ2
d) (Σ2

d is a positive semi-definite matrix)

~Xn = A ~Xn−1 + ~Wn

Theorem 4.13. Suppose that A is a diagonalizable matrix. Then for two copies, ~Xn, ~X
′
n ∈ Rd, of the autore-

gressive normal process defined in Example 4.6,

‖L( ~Xn)− L( ~X ′n)‖ ≤
√

d

2π
‖Σ−1

d ‖2 · ‖P‖2‖P
−1‖2E[‖ ~X0 − ~X ′0‖2] max

1≤i≤d
|λi|n (12)

where A = PDP−1 with D as the corresponding diagonal matrix, λi is the ith eigenvalue of A and ‖·‖2 denotes

the Frobenius norm. The proof can be found in 7.3.4, which uses a modified version of the Sideways Theorem.

Numerical Example 4.3 (Application of the autoregressive normal process in Rd). To apply numbers to this
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example, suppose that ~Xn, ~X
′
n ∈ R100 are two copies of the following process ~Xn = A ~Xn + ~Zn, ~Zn ∼ N(0, A)

where

A =



1
2

1
8 0 · · · 0 0

1
8

1
2

1
8 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1
8

1
2


and the initial values of this process are ~X0 = (1, . . . , 1) and ~X ′0 = (0, . . . , 0). The total variation distance would

be bounded above with ‖L( ~Xn)−L( ~X ′n)‖ ≤ 98782.31 (0.7498791)
n
. This means that after 56 iterations the total

variation distance would be less than 0.01.

5 Autoregressive conditional heteroscedastic processes

In this section we look at bounding the total variation distance between two copies of an ARCH process.

Definition 5.1 (Autoregressive conditional heteroscedastic (ARCH) process). The sequence {Xn}n≥1 is an

ARCH process if for g : R2 → R

Xn = g(θ1,n, Xn−1)θ2,n (13)

where (θ1,n, θ2,n) ∈ R2 are random variables and (θ1,n, θ2,n) ⊥⊥ (θ1,m, θ2,m) when n 6= m.

5.1 Application to the LARCH model

Example 5.1 (Linear ARCH process). Let {Xn}n≥1 ∈ R be a linear ARCH process. Then for i.i.d. Zn and

β0, β1 ∈ R

Xn = (β0 + β1Xn−1)Zn

See Section 7.3.3 of [7] for more details on this model.

The following theorem provides an upper bound on the convergence rate of two copies of a LARCH process.

Theorem 5.1. Let {Xn}n≥1 ∈ R and {X ′n}n≥1 ∈ R be two copies of the linear ARCH process. Suppose that,
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• β0, β1 > 0 and Zn > 0 a.s.

• the density of log(Z0) is bounded above, has at most M local maxima and minima, and is continuous.

Then, the process is geometrically ergodic if β1E[|Z0|] < 1 and an upper bound on the total variation distance

between the two processes is,

‖L(Xn)− L(X ′n)‖ ≤ β1(M + 1)

2β0
sup
x
exfZn(ex)Dn−1E[|X0 −X ′0|] (14)

Where D = β1E[Z0]

Lemma 7.3.2 of [7] says that if β1E[|Z0|] < 1, then a stationary distribution exists. This theorem makes an

even stronger assertion that under some additional assumptions, the process will also be geometrically ergodic

with geometric convergence rate D = β1E[|Z0|] < 1.

Before proving Theorem 5.1, we present some lemmas.

Lemma 5.2 (Contraction condition). The LARCH process satisfies the contraction condition if D = β1E[Z0] <

1. See Section 7.4.1 for a proof.

Lemma 5.3 (Coalescing condition). Suppose that the density of log(Z0) is bounded above, has at most M local

maxima and minima and is continuous. Then the LARCH process satisfies the coalescing condition

‖L(Xn)− L(X ′n)‖ ≤ CE[|Xn−1 −X ′n−1|]

Where n ≥ 1 and C = β1(M+1)
2β0

supx e
xfZn(ex), See Section 7.4.1 for a proof.

Note that the density of log(Z0) is flog(Z0)(x) = exfZ0
(ex).

Proof of Theorem 5.1. Suppose that the assumptions in Theorem 5.1 are satisfied. Then the LARCH model

satisfies the contraction condition (Lemma 5.2) and the coalescing condition (Lemma 5.3). By the One-Shot

Coupling Theorem 3.1, equation 14 holds.
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Figure 2: This figure compares a simulated approximation of ‖L(X2
n)−L(X

′2
n )‖ against the upper bound (Equa-

tion 14). X2
n, X

′2
n are two copies of the LARCH process (i.e., X2

n = (1 + 0.5X2
n−1)Z2

n and Z2
n ∼ χ2(1)) and

X2
0 = 0.1, X

′2
0 = 1.1. To simulate total variation, 10 million simulations were run with bin length=0.01 for the

estimated density function.

Numerical Example 5.1. We find the convergence rate of Example 10.3.1 of [5], which is of the form,

X2
n = (1 + 0.5X2

n−1)Z2
n

Where Z2
n ∼ χ2(1). Further let X0 = 0.1 and X ′0 = 1.1. The density of log(Z2

n) is flog(Z2
n)(x) = (2π)−1/2e(x−ex)/2

and so, sup flog(Z2
n)(x) = (2π)−1/2e(0−e0)/2 = 1√

2πe
. The density of log(Z2

n) is also unimodal, so M = 1. By

Theorem 5.1 an upper bound on the total variation distance is

‖L(Xn)− L(X ′n)‖ ≤ 1√
8πe

0.5n−1 (15)

After 3 iterations the total variation distance is less than 0.01. In comparison, Figure 2 shows how the bound

compares to a simulated estimate of the total variation distance for this process.
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5.2 Application to the asymmetric ARCH model

Example 5.2 (Asymmetric ARCH process). Let {Xn}nn ≥ 1 ∈ R be an asymmetric ARCH process. Then for

i.i.d. Zn

Xn =
√

(aXn−1 + b)2 + c2Zn

Where a, b, c ∈ R. See Exercise 4.1 of [7] for more details on this process.

The following theorem provides an upper bound on the convergence rate of two copies of an asymmetric

ARCH process.

Theorem 5.4. Let {Xn}n≥1 ∈ R and {X ′n}n≥1 ∈ R be two copies of the asymmetric ARCH process defined in

Example 5.2. Suppose further that the density of Zn is centred at 0 and is monotonically decreasing around zero

(i.e., π(x) ≥ π(y) if |x| < |y|.). Then, the process is geometrically ergodic if |a|E[|Z0|] < 1 and an upper bound

on the total variation distance between the two processes is

‖L(Xn)− L(X ′n)‖ ≤ |a|
c
Dn−1E[|X0 −X ′0|] (16)

Where D = |a|E[|Z0|]

Exercise 4.1 part 1 of [7] states that the process has a stationary solution if D = |a|E[|Z0|] < 1. Theorem

5.4 shows that under certain additional assumptions on Zn the process will also be geometrically ergodic with a

specified quantitative bound.

Before proving Theorem 5.4, we present some lemmas.

Lemma 5.5 (Contraction condition). The asymmetric ARCH process satisfies the contraction condition if D =

|a|E[|Z0|] < 1. See Section 7.4.2 for a proof.

Lemma 5.6 (Coalescing condition). Suppose that the density of Zn is centred at 0 and is monotonically decreasing

around zero. Then, the asymmetric ARCH process satisfies the coalescing condition

‖L(Xn)− L(X ′n)‖ ≤ CE[|Xn−1 −X ′n−1|]
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Figure 3: This figure compares a simulated approximation of ‖L(Xn)−L(X ′n)‖ against the upper bound (Equation
17). Xn, X

′
n are two copies of the asymmetric process (i.e., Xn =

√
(0.5Xn−1 + 3)2 + 52Zn, Zn ∼ N(0, 1)) and

x0 = 0, x′0 = 5. To simulate total variation, 10 million simulations were run with bin length=0.01 for the
estimated density function.

where n ≥ 1 and C = |a|
c . See Section 7.4.2 for a proof.

Proof of Theorem 5.4. Suppose that the assumptions in Theorem 5.4 are satisfied. Then the asymmetric ARCH

model satisfies the contraction condition (Lemma 5.5) and the coalescing condition (Lemma 5.6). By the One-

Shot Coupling Theorem 3.1, equation 16 holds.

Numerical Example 5.2. Suppose a = 0.5, b = 3, c = 5, Zn ∼ N(0, 1) and X0 = 0, X ′0 = 5. Then by Jensen’s

inequality, D = 0.5E[|Z0|] ≤ 0.5E[Z2
0 ]1/2 = 0.5 and so by Theorem 5.4

‖L(Xn)− L(X ′n)‖ ≤ 0.5

5
× 5× 0.5n−1 = 0.5n (17)

So, by iteration n = 7, the total variation will be less than 0.01.

In comparison, Figure 4 shows how the bound compares to a simulated estimate of the total variation distance

for this process.
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5.3 Application to the GARCH(1,1) model

Example 5.3 (GARCH(1,1) process). Let {Xn}n≥1 ∈ R be a GARCH(1,1) process. Then for i.i.d. Zn

Xn = σnZn

where for α, β, γ ∈ R,

σ2
n = α2 + β2X2

n−1 + γ2σ2
n−1

See Section 7.3.6 of [7] for more details on this model.

The following theorem provides an upper bound in total variation distance between two copies of the

GARCH(1,1) process.

Theorem 5.7. Let {Xn}n≥1 ∈ R and {X ′n}n≥1 ∈ R be two copies of the GARCH process defined in Example

5.3. Suppose that the density of Zn is centered at 0 and is monotonically decreasing around zero. Then, the

process is geometrically ergodic if β2E[|Z2
0 |] + γ2 < 1. Further suppose that x0, x

′
0, σ

2
0, and σ

′2
0 are known. Then

an upper bound on the total variation distance between the two processes is

‖L(Xn)− L(X ′n)‖ ≤ Dn−1

α

√
β2|x2

0 − x
′2
0 |+ γ2|σ2

0 − σ
′2
0 | (18)

Where D =
√
β2E[Z2

0 ] + γ2

Before proving Theorem 5.7, we present some lemmas.

Lemma 5.8 (Contraction condition). The GARCH(1,1) process satisfies the contraction condition if D =√
β2E[Z2

0 ] + γ2 < 1 See Section 7.4.3 for a proof.

Lemma 5.9 (Coalescing condition). Suppose that the density of Zn is centred at 0 and is monotonically decreasing

around zero. Then the GARCH(1,1) process satisfies the coalescing condition,

‖L(Xn)− L(X ′n)‖ ≤ D

αE[|Z0|]
E[|Xn−1 −X ′n−1|]

For n ≥ 2, D =
√
β2E[Z2

0 ] + γ2. See Section 7.4.3 for a proof.
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Lemma 5.10 (Initial condition). Suppose that we know σ2
0 , σ

′2
0 and X0, X

′
0, then

E[|X1 −X ′1|] ≤
√
β2|X2

0 −X
′2
0 |+ γ2|σ2

0 − σ
′2
0 |E[|Z0|]

See Section 7.4.3 for a proof.

Proof of Theorem 5.7. Suppose that the assumptions in Theorem 5.7 are satisfied and let n ≥ 2. Then the

GARCH(1,1) model satisfies the contraction condition (Lemma 5.8) and the coalescing condition (Lemma 5.9).

Thus by the One-Shot Coupling Theorem 3.1,

‖L(Xn)− L(X ′n)‖ ≤ D

αE[|Z0|]
Dn−2E[|X1 −X ′1|]

Further, by Lemma 5.10 when the initial values σ2
0 , σ

′2
0 , x0, x

′
0 are known,

‖L(Xn)− L(X ′n)‖ ≤ Dn−1

α

√
β2|X2

0 −X
′2
0 |+ γ2|σ2

0 − σ
′2
0 |

where D =
√
β2E[Z2

0 ] + γ2

Numerical Example 5.3. In Example 10.3.2 of [5] a GARCH(1,1) model is applied for the daily returns of the

Dow Jones Industrial Index between between July 1997 and April 1999. Let

Xn = σnZn = excess daily return of the Dow Jones Industrial Index at time n

The following is the fitted GARCH volatility estimates when Zn ∼ N(0, 1),

σ2
n = 0.13000 + 0.1266X2

n−1 + 0.7922σ2
n−1

Suppose that we want to find the total variation of the fitted process with varying initial values representing two

market states, X0 = 0.1, σ0 = 0.01 and X ′0 = −0.1, σ′0 = 0.1 Then by Theorem 5.7,

‖L(Xn)− L(X ′n)‖ ≤
√

0.7922|0.012 − 0.12|
0.13

Dn−1 ≈ 0.2456Dn−1 (19)
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Figure 4: This figure compares a simulated approximation of ‖L(Xn)−L(X ′n)‖ against the upper bound (Equation
19). Xn, X

′
n are two copies of the asymmetric process (i.e., Xn = σnZn and σ2

n = 0.13000 + 0.1266X2
n−1 +

0.7922σ2
n−1 and Zn ∼ N(0, 1)) and X0 = 0.1, σ0 = 0.01 and X ′0 = −0.1, σ′0 = 0.1. To simulate total variation, 1

million simulations were run with bin length=0.01 for the estimated density function.

Where D =
√

0.1266 + 0.7922 =
√

0.9188

By iteration 77 the total variation distance between the two processes is less than 0.01. In comparison, Figure

4 shows how the bound compares to a simulated estimate of the total variation distance for this process. The

actual total variation distance appears to be much smaller than the upper bound.
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7 Web Appendix

7.1 Propositions related to the properties of total variation distance

Proof of Proposition 2.1. Let A be the sigma field of X and B be the sigma field of Y.

First note that f−1(B) = {f−1(B) : B ∈ B} = A:

• f−1(B) ⊂ A: For B ∈ B, f−1(B) ⊂ A by measurability.

• A ⊂ f−1(B): Let A ∈ A. Then f(A) ∈ B and f−1(f(A)) ∈ f−1(B) by definition. By invertibility,

f−1(f(A)) = A and so A ∈ f−1(B).

The equality in equation 2 can then be proven as follows,

‖L(f(X))− L(f(X ′))‖ = sup
B∈f(B)

|P (f(X) ∈ B)− P (f(X ′) ∈ B)|

= sup
B∈f(B)

|P (X ∈ f−1(B))− P (X ′ ∈ f−1(B))|

= sup
A∈A
|P (X ∈ A)− P (X ′ ∈ A)| Since f−1(B) = A

= ‖L(X)− L(X ′)‖

Proof of Proposition 2.2.

‖L(X)− L(X ′)‖ = sup
A∈B
|P (X ∈ A)− P (X ′ ∈ A)|

= sup
A∈B
|
∫
Y
P (X ∈ A | y)− P (X ′ ∈ A | y)µ(dy)|

≤ sup
A∈B

∫
Y
|P (X ∈ A | y)− P (X ′ ∈ A | y)|µ(dy) by Jensen’s inequality

≤
∫
Y

sup
A∈B
|P (X ∈ A | y)− P (X ′ ∈ A | y)|µ(dy)

≤ E [‖L(X | Y )− L(X ′ | Y )‖]
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Proof of Proposition 2.3. To prove this we use the concept of maximal coupling over the coordinates. By maximal

coupling, for i ∈ {1, . . . , d} there exists random variables XM
i,n, X

′M
i,n such that Xi,n

d
= XM

i,n and X ′i,n
d
= X

′M
i,n and

‖L(Xi,n)− L(X ′i,n)‖ = P (XM
i,n 6= X

′M
i,n )

(see Proposition 3g of [35] or Section 2 of [4]).

Further, there exists a unique product measure such that for any A1, . . . Ad ∈ B, P (∩di=1[XM
i,n ∈ Ai]) =∏d

i=1 P (XM
i,n ∈ Ai) (Theorem 18.2 of [3]). For the unique product measure, the following equality holds,

P (∩di=1X
M
i,n ∈ Ai) =

d∏
i=1

P (XM
i,n ∈ Ai) =

d∏
i=1

P (Xi,n ∈ Ai) = P (∩di=1Xi,n ∈ Ai)

And so by uniqueness, for A ∈ Bd, P (XM
n ∈ A) = P (Xn ∈ A). By definition this means that ~Xn

d
= ~XM

n , which

implies that ( ~XM
n , ~X

′M
n ) ∈ C( ~Xn, ~X

′
n), the set of all couplings of ~Xn, ~X

′
n.

We now use ~XM
n , ~X

′M
n to prove equation 3.

‖L( ~Xn)− L( ~X ′n)‖ = inf
~Y ,~Y ′∈C( ~Xn, ~X′n)

P (~Y 6= ~Y ′) by equation 2.4 of [4]

≤ P ( ~XM
n 6= ~X

′M
n )

= P (∪di=1[XM
i,n 6= X

′M
i,n ])

≤
d∑
i=1

P (XM
i,n 6= X

′M
i,n ) by subadditivity

≤ dArn

7.2 Lemmas related to the Sideways Theorem

The following are lemmas and corresponding proofs and corollaries related to the Sideways Theorem (4.1).
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7.2.1 Lemmas providing an upper bound on the integral difference between a function and a

corresponding shift

The following lemmas are used in the proof of Lemma 4.2.

Lemma 7.1. For any invertible, continuous function f : R→ R where the codomain is f(R) = (a, b) and ∆ > 0,

∫
R
|f(x+ ∆)− f(x)|dx = (b− a)∆

Proof. Since f is invertible and continuous, it is strictly monotone (Lemma 3.8 if [15]). Assume that f is strictly

increasing. The integral can be written as follows,

∫
R
|f(x+ ∆)− f(x)|dx =

∫
R
f(x+ ∆)− f(x)dx

=

∫
R

∫ b

a

If(x+∆)<y<f(x)dydx

=

∫
R

∫ b

a

If−1(y)−∆<x<f−1(y)dydx

=

∫ b

a

∫
R
If−1(y)−∆<x<f−1(y)dxdy by Fubini’s Theorem

=

∫ b

a

∆dy

= (b− a)∆

If f is strictly decreasing apply the transform h(x) = a + b − f(x). The function h is a strictly increasing

invertible function with codomain (a, b) and so using the previous result for increasing functions,

∫
R
|f(x+ ∆)− f(x)|dx =

∫
R
|h(x+ ∆)− h(x)|dx = (b− a)∆

Lemma 7.2. Let f : R → R be a continuous function that is invertible over the set (c, d) and is a constant
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function over (c, d)C . Further suppose that the codomain is f(R) = (a, b). Then for ∆ > 0 we get that

∫
R
|f(x+ ∆)− f(x)|dx = (b− a)∆

Proof. Assume that f is an increasing function and so f(c) = a, f(d) = b and |f(x+∆)−f(x)| = f(x+∆)−f(x).

Let 0 < ε < (c− d)/2 and define

gε(x) =


(f(c+ ε)− a)(1− ex−c−ε) + a when x ∈ (−∞, c+ ε]

f(x) when x ∈ (c+ ε, d− ε]

(f(d− ε)− b)(1− ed−ε−x) + b when x ∈ (d− ε,∞)

Note that gε(x) is continuous, invertible, an increasing function and the codomain is (a, b). By Lemma 7.1 for

each ε > 0 ∫
R
gε(x+ ∆)− gε(x)dx = (b− a)∆

Further, for all x ∈ R, limε→0 gε(x+ ∆)− gε(x) = f(x+ ∆)− f(x) and so gε(x+ ∆)− gε(x) converges pointwise

to f(x+ ∆)− f(x). Next, for 0 < ε < (c− d)/2, |gε(x+ ∆)− gε(x)| < 2|b| and so the function gε(x+ ∆)− gε(x)

is uniformly bounded. The above statements allow us to apply the dominated convergence Theorem (Theorem

16.5 of [3]) and so ∫
R
f(x+ ∆)− f(x)dx = lim

ε→0

∫
R
gε(x+ ∆)− gε(x)dx = (b− a)∆

If f is strictly decreasing apply the transform h(x) = a + b − f(x). The function h is a strictly increasing

invertible function with codomain (a, b) and so using the previous result for increasing functions,

∫
R
|f(x+ ∆)− f(x)|dx =

∫
R
|h(x+ ∆)− h(x)|dx = (b− a)∆

Lemma 7.3. Let f : R→ R be a continuous function with the following properties:

• the codomain is (0,K)
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• (m1,m2, . . . ,mM ) are the local maxima and minima points

• limx→∞ f(x) = 0 and limx→−∞ f(x) = 0

Further suppose that ∆ < maxi=2,...,M{mi −mi−1}. Then

∫
R
|f(x−∆)− f(x)|dx ≤ K(M + 1)∆

Proof. Since ∆ < maxi=2,...,M{mi −mi−1}, we have that m1 −∆ < m1 < m2 −∆ < . . . < mM . Let I1, . . . , IM

be the intersection points or the points where f(Ii) = f(Ii −∆).

Show that mi − ∆ < Ii < mi: Suppose that mi is a local maximum point. Let g(x) = f(x + ∆). Within

the interval (mi − ∆,mi), f
′(x) > 0 and g′(x) < 0 by assumption. This implies that f(mi − ∆) < f(mi) and

g(mi −∆) > g(mi) by the Mean Value Theorem. Further since g(mi −∆) = f(mi) we have that g(mi −∆) >

f(mi −∆) and g(mi) < f(mi).

Let h(x) = g(x) − f(x). Then h(mi −∆) > 0 and h(mi) < 0 further h is a strictly decreasing function over

(mi −∆,mi) since g,−f are strictly decreasing functions over the same interval. So by the intermediate value

theorem, there exists an ξ ∈ (mi −∆,mi) such that h(ξ) = 0 or f(ξ) = g(ξ) = f(ξ + ∆). Further by injectivity,

ξ is unique. Let Ii = ξ. A similar proof can be given for when mi is a local minimum.

Show that
∫ Ii+1

Ii
|f(x + ∆) − f(x)|dx ≤ K∆: Note first that mi −∆ < Ii < mi < mi+1 −∆ < Ii+1 < mi+1

further define

fi(x) =


f(mi) when x ∈ (−∞,mi]

f(x) when x ∈ (mi,mi+1]

f(mi+1) when x ∈ (mi+1,∞)
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Note that over the interval (mi,mi+1], the function f is either a strictly increasing or a strictly decreasing

function.

∫ Ii+1

Ii

|f(x+ ∆)− f(x)|dx

=

∫ mi

Ii

|f(x+ ∆)− f(x)|dx+

∫ mi+1−∆

mi

|f(x+ ∆)− f(x)|dx+

∫ Ii+1

mi+1−∆

|f(x+ ∆)− f(x)|dx

≤
∫ mi

Ii

|f(x+ ∆)− f(mi)|dx+

∫ mi+1−∆

mi

|f(x+ ∆)− f(x)|dx+

∫ Ii+1

mi+1−∆

|f(mi+1)− f(x)|dx

=

∫ mi

Ii

|fi(x+ ∆)− fi(x)|dx+

∫ mi+1−∆

mi

|fi(x+ ∆)− fi(x)|dx+

∫ Ii+1

mi+1−∆

|fi(x+ ∆)− fi(x)|dx

=

∫ Ii+1

Ii

|fi(x+ ∆)− fi(x)|dx

≤
∫ mi+1

mi−∆

|fi(x+ ∆)− fi(x)|dx

=

∫
R
|fi(x+ ∆)− fi(x)|dx

= |f(mi)− f(mi+1)|∆ ≤ K∆

The last equality is a result of Lemma 7.2.

By similar reasoning it can be shown that

∫ I1

−∞
|f(x+ ∆)− f(x)|dx ≤ K∆

∫ ∞
IM

|f(x+ ∆)− f(x)|dx ≤ K∆

Finally note that the intersection points partition R into M + 1 subsets and so

∫
R
|f(x−∆)− f(x)|dx ≤ K(M + 1)∆

7.2.2 Proof of Lemma 4.2

Lemma 4.2 represents the coalescing condition for the Sideways Theorem 4.1.
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Proof of Lemma 4.2. Set θ1,n = θ′1,n. Define

∆ = g(θ1,n, Xn−1)− g(θ1,n, X
′
n−1)

Let fXn , fX′n be the density functions for Xn, X
′
n, respectively and fθ2,n , fθ2,n+∆ be the density functions for

θ2,n, θ2,n + ∆.

Suppose that ∆, Xn−1, X
′
n−1 ∈ R are known and so,

Xn = g(θ1,n, Xn−1) + θ2,n =⇒ θ2,n = Xn − g(θ1,n, Xn−1)

X ′n = g(θ1,n, X
′
n−1) + θ′2,n =⇒ θ′2,n −∆ = X ′n − g(θ1,n, Xn−1)

We know that θ2,n
d
= θ′2,n and in general ∆, θ1,n are random variables, so

‖L(Xn)− L(X ′n)‖ ≤ Eθ1,n,∆ [‖L(Xn | θ1,n,∆)− L(X ′n | θ1,n,∆)‖] by Proposition 2.2 (20)

= Eθ1,n,∆ [‖L(θ2,n | θ1,n)− L(θ2,n −∆ | θ1,n)‖] by Proposition 2.1 (21)

By the assumptions in the theorem, the density of θ2,n is continuous with M extrema points and has a

codomain that is in (0,K). Let (m1,m2, . . . ,mM ) be the local extrema points where mi < mj if i < j and

L ≤ max2≤i≤M{mi −mi−1} be the maximum distance between two local extrema points. So, continuing from
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the inequality 20 and by the definition of total variation, equation 1,

‖L(Xn)− L(X ′n)‖ ≤ Eθ1,n
[
E∆

[
1

2

∫
R
|fθ2,n(x | θ1,n)− fθ2,n−∆(x | θ1,n)|dx

]]
= Eθ1,n

[
E∆

[
1

2

∫
R
|fθ2,n(x | θ1,n)− fθ2,n(x+ ∆ | θ1,n)|dx

]]
= Eθ1,n

[
E∆

[
1

2

∫
R
|fθ2,n(x | θ1,n)− fθ2,n(x+ ∆ | θ1,n)|dxI∆<L

]]
+

Eθ1,n

[
E∆

[
1

2

∫
R
|fθ2,n(x | θ1,n)− fθ2,n(x+ ∆ | θ1,n)|dxI∆>L

]]
≤ Eθ1,n

[
E∆

[
1

2

∫
R
|fθ2,n(x | θ1,n)− fθ2,n(x+ ∆ | θ1,n)|dx

∣∣∣∣|∆| < L

]]
+ P∆(|∆| > L)

≤ 1

2
Eθ1,n [E∆ [K(M + 1)|∆|]] + P∆(|∆| > L) by Lemma 7.3

≤ K(M + 1)

2
E∆ [|∆|] +

E∆[|∆|]
L

The coalescing condition is thus satisfied as follows with C = K(M+1)
2 + IM>1

L ,

‖L(Xn+1)− L(X ′n+1)‖ ≤ CE[|g(θ1,n, Xn−1)− g(θ1,n, X
′
n−1)|]

= CE[|g(θ1,n, Xn−1) + θ2,n − (g(θ1,n, X
′
n−1) + θ2,n)|]

= CE[|Xn −X ′n|]
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7.3 Lemmas for random-functional autoregressive process examples

7.3.1 Proof of Lemma 4.3

Proof of Lemma 4.3. First note that

E[|Xn+2 −X ′n+2| | Xn = x,X ′n = y]

= E

[∣∣∣∣ (1

2
(x− sinx) + Zn

)
− g

(
1

2
(y − sin y) + Zn

) ∣∣∣∣]
= E

[∣∣∣∣12
(

1

2
(x− sinx) + Zn − sin

(
1

2
(x− sinx) + Zn

))
− 1

2

(
1

2
(y − sin y) + Zn − sin

(
1

2
(y − sin y) + Zn

))
|
]

=
1

2
E

[∣∣∣∣12(x− y + sin y − sinx) + sin

(
1

2
(y − sin y) + Zn

)
− sin

(
1

2
(x− sinx) + Zn

)
|
]

=
1

2
E [|g(x, y) +G(x, y)|]

Where g(x, y) = 1
2 (x − y + sin y − sinx) and G(x, y) = sin

(
1
2 (y − sin y) + Zn

)
− sin

(
1
2 (x− sinx) + Zn

)
. By

trigonometric identities 1, for k(x, y) = x+y−sin y−sin x
4 and h(x, y) = y−x+sin x−sin y

4 .

G(x, y) = 2 cos

(
x+ y − sin y − sinx

4
+ Zn

)
sin

(
y − x+ sinx− sin y

4

)
= 2 cos (k(x, y) + Zn) sinh(x, y)

= 2 sinh(x, y) (cosZn cos k(x, y) + sinZn sin k(x, y))

1The trigonometric identities used are 2 cosµ sin υ = sin(µ+υ)−sin(µ−υ) and cos(µ+υ) = cosµ cos υ+sinµ sin υ where µ, υ ∈ R
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And so,

E[|Xn+2 −X ′n+2| | Xn = x,X ′n = y]

=
1

2
E

[∣∣∣∣g(x, y) + 2 sinh(x, y) (cosZn cos k(x, y) + sinZn sin k(x, y))|
]

≤ 1

2

√
E
[
(g(x, y) + 2 sinh(x, y) (cosZn cos k(x, y) + sinZn sin k(x, y)))

2
]

=
1

2

√
g(x, y)2 + 4e−1/2g(x, y) sinh(x, y) cos k(x, y) + 4 sin2 h(x, y)E[(cosZn cos k(x, y) + sinZn sin k(x, y))

2
]

=
1

2

√
g(x, y)2 + 4e−1/2g(x, y) sinh(x, y) cos k(x, y) + 2 sin2 h(x, y)(1 + e−2(cos2 k(x, y)− sin2 k(x, y)))

=
1

2

√
4h(x, y)2 − 8e−1/2h(x, y) sinh(x, y) cos k(x, y) + 2 sin2 h(x, y)(1 + e−2(cos2 k(x, y)− sin2 k(x, y)))

7.3.2 Proof of lemmas used in Theorem 4.4

To prove the first part of this theorem, we apply the de-initialization technique which shows how the convergence

rate of a Markov chain can be bounded above by the convergence rate of a more simpler Markov chain that

includes sufficient information on the Markov chain of interest. The concept of de-initialization and a proposition

that bounds total variation is provided below.

Definition 7.1 (De-initialisation). Let {Xn}n≥1 be a Markov chain. A Markov chain {Yn}n≥1 is a de-initialization

of {Xn}n≥1 if for each n ≥ 1

L(Xn | X0, Yn) = L(Xn | Yn)

Proposition 7.4 (Theorem 1 of [36]). Let {Yn}n≥1 be a de-initialization of {Xn}n≥1 then for any two initial

distributions X0 ∼ µ and X ′0 ∼ µ′,

‖L(Xn)− L(X ′n)‖ ≤ ‖L(Yn)− L(Y ′n)‖

Proof of Lemma 4.5. Note that βn = β̃ + σn−1Zn, Zn ∼ Np(0, A
−1) can be written as a random function of σ2

n.

Substituting βn, σ2
n can then be written as a random function of its previous value for independent Z2

n ∼ χ2(p)

44



and Gn ∼ Γ(k+p
2 , 1),

σ2
n =

Z2
n

C

C

2Gn
σ2
n−1 +

C

2Gn

Let Xn =
Z2
n

C , Yn = C
2Gn

. We can rewrite σ2
n = XnYnσ

2
n−1 +Yn where Xn ∼ Γ

(
p
2 ,

C
2

)
and Yn ∼ Γ−1

(
k+p

2 , C2

)
.

Using the notation from the Sideways Theorem 4.1 θ1,n = XnYn and θ2,n = Yn.

Since βn can be written as a random function of σ2
n,

L(βn, σ
2
n | β0, σ

2
0 , σ

2
n) = L(βn, σ

2
n | σ2

n)

and so σ2
n is a de-initialization of (βn, σ

2
n). By Proposition 7.4,

‖L(βn, σ
2
n)− L(β′n, σ

′2
n )‖ ≤ ‖L(σ2

n)− L(σ
′2
n )‖

We are thus interested in evaluating the convergence rate of σ2
n to bound the convergence rate of (βn, σ

2
n).

To interpret this in another way, if σ2
n couples then the distribution of βn is the same for both iterations, so

it is automatically coupled. An alternative proof can be made using the results from [26].

Proof of Lemma 4.6. By Lemma 4.5, θ1,n = XnYn and so,

K = E[|θ1,n|] = E[XnYn] = E[Xn]E[Yn] =
p

C

C

k + p− 2
=

p

k + p− 2

Proof of Lemma 4.7. Calculate the conditional density θ2,n | θ1,n We remove the subscript n on the random

variables. Let X,Y be as described in Lemma 4.5. Since the random variables are independent, the joint density

is the product of the densities.

fX,Y (x, y) =
C/2

Γ(p/2)
xp/2−1exC/2

C/2

Γ((k + p)/2)
y−(k+p)/2−1e−

C/2
y (22)
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Then (θ1, θ2) = (XY, Y ) is a transformation with the Jacobian |J | = θ−1
2 and the density written as follows,

fθ1,θ2(θ1, θ2) = fX,Y

(
θ1

θ2
, θ2

)
θ−1

2

=
C/2

Γ(p/2)

(
θ1

θ2

)p/2−1

e−
θ1
θ2
C/2 C/2

Γ((k + p)/2)
θ
−(k+p)/2−1
2 e−

C/2
θ2 θ−1

2

Next fθ2|θ1(θ2 | θ1) is proportional to fθ1,θ2(θ1, θ2) and so we can derive the conditional density of θ2 as follows,

fθ2|θ1(θ2 | θ1) ∝ fθ1,θ2(θ1, θ2) (23)

∝ θ1−p/2
2 e−

1
θ2
θ1C/2θ

−(k+p)/2−1
2 e−

1
θ2
C/2θ−1

2 (24)

= θ
−(p/2+(k+p)/2)−1
2 e−

1
θ2

(θ1+1)C/2 (25)

This is proportional to an inverse gamma distribution and so, θ2 | θ1 ∼ Γ−1
(
k+2p

2 , (θ1 + 1)C/2
)

. Since the

conditional density is an inverse gamma distribution, the number of modes is M = 1 and the density function is

continuous.

Calculate the maximum value of fθ2|θ1(θ2 | θ1) : Figure 5 shows how the maximum value of the density

increases as the shape, (θ1 + 1)C/2 decreases when the rate, k+2p
2 is fixed. It can also be shown from equation

23 that the density function of fθ2|θ1(θ2 | θ1) is maximized when θ1 = 0 since the normalizing constant will be

the largest. This means that fθ2|θ1(θ2 | θ1) reaches its maximum height when θ1 = 0 and so we find the value of

fθ2|θ1(θ2 | θ1) evaluated at θ2 = C
k+2p+2 , the mode (Section 5.3 of [17]).

K = fθ2|θ1

(
C

k + 2p+ 2
| θ1 = 0

)
=

(C/2)
k+2p

2

Γ(k+2p
2 )

y−
k+2p

2 −1e−
C/2
y |y= C

k+2p+2

=
(C/2)

k+2p
2

Γ(k+2p
2 )

(
C

k + 2p+ 2

)− k+2p
2 −1

e−
k+2p+2

2

=
(C/2)

k+2p
2

Γ(k+2p
2 )

(
k + 2p+ 2

C

) k+2p
2 +1

e−
k+2p+2

2
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Figure 5: Inverse gamma density when α = 100 and β = 1, 10, 100

And so,

K =
(C/2)

k+2p
2

Γ(k+2p
2 )

(
k + 2p+ 2

C

) k+2p
2 +1

e−
k+2p+2

2 (26)

7.3.3 Proof of lemmas used in Theorem 4.8

Proof of Lemma 4.9. The iteration τ−1
n+1 can be written as a function of its previous value, τ−1

n since µn+1 =

ȳ + Zn+1/
√
Jτn.

τ−1
n+1 =

Z2
n+1

S

S

2Gn+1
τ−1
n +

S

2Gn+1
(27)

Next we can rewrite, τ−1
n = XnYnτ

−1
n−1 + Yn where Xn =

Z2
t+1

S ∼ Γ
(

1
2 ,

S
2

)
and Yn = S

2Gt+1
∼ Γ−1

(
J+2

2 , S2
)
.

Since (µn, τ
−1
n ) can be written as a random function of τ−1

n ,

L(µn, τ
−1
n | µ0, τ

−1
0 , τ−1

n ) = L(µn, τ
−1
n | τ−1

n )
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and τ−1
n is a de-initialization of (µn, τ

−1
n ). Further, by Proposition 7.4,

‖L(µn, τ
−1
n )− L(µ′n, τ

′−1
n )‖ ≤ ‖L(τ−1

n )− L(τ
′−1
n )‖

To interpret this in another way, if τn couples then the distribution of µn is the same for both iterations, so

it is automatically coupled. An alternative proof can be made using the results from [26].

Proof of Lemma 4.10. By Lemma 4.9, θ1,n = XnYn and so by Corollary 1

D = E[|θ1,n|] = E[XnYn] = E[Xn]E[Yn] =
1

S

S

J
=

1

J

Proof of Lemma 4.11. To find M,K and show that the conditional density is continuous, we (a) show that

θ2 | θ1 ∼ Γ−1
(
J−1

2 , (θ1 + 1)S/2
)
, which directly implies that the conditional distribution is continuous and

M = 1 and we (b) we find the value of K.

(a) Calculate the conditional density θ2,n | θ1,n For simplicity, we remove the subscript n on the random

variables. Let X,Y be as described in Lemma 4.9. Since the random variables are independent, the joint density

is the product of the densities.

fX,Y (x, y) =
S/2

Γ(1/2)
x1/2−1exS/2

S/2

Γ((J + 2)/2)
y−(J+2)/2−1e−

S/2
y (28)

Then (θ1, θ2) = (XY, Y ) is a transformation with the Jacobian |J | = θ−1
2 and the density written as follows,

fθ1,θ2(θ1, θ2) = fX,Y

(
θ1

θ2
, θ2

)
θ−1

2

=
S/2

Γ(1/2)

(
θ1

θ2

)1/2−1

e−
θ1
θ2
S/2 S/2

Γ((J + 2)/2)
θ
−(J+2)/2−1
2 e−

S/2
θ2 θ−1

2
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Next fθ2|θ1(θ2 | θ1) is proportional to fθ1,θ2(θ1, θ2) and so we can derive the conditional density of θ2 as follows,

fθ2|θ1(θ2 | θ1) ∝ fθ1,θ2(θ1, θ2) (29)

∝ θ1−1/2
2 e−

1
θ2
θ1S/2θ

−(J+2)/2−1
2 e−

1
θ2
S/2θ−1

2 (30)

= θ
−(1/2+(J+2)/2)−1
2 e−

1
θ2

(θ1+1)S/2 (31)

= θ
−(J−1)/2−1
2 e−

1
θ2

(θ1+1)S/2 (32)

This is proportional to an inverse gamma distribution and so, θ2 | θ1 ∼ Γ−1
(
J−1

2 , (θ1 + 1)S/2
)
. We know that

the inverse gamma distribution is continuous and unimodal, so M = 1.

(b) Calculate the maximum value of fθ2|θ1(θ2 | θ1) : Similar to figure 5 of Example 4.2, fθ2|θ1(θ2 | θ1) is

maximized when θ1 = 0 since the normalizing constant will be the largest. So the largest value of fθ2|θ1(θ2 | θ1)

will occur when θ1 = 0. To find the maximum conditional distribution, we find the value of fθ2|θ1(θ2 | θ1 = 0)

evaluated at θ2 = S
J+1 , the mode (see Section 5.3 of [17]).

K = fθ2|θ1

(
S

J + 1
| θ1 = 0

)
=

(S/2)
J−1
2

Γ(J−1
2 )

y−
J−1
2 −1e−

S/2
y |y= S

J+1

=
(S/2)

J−1
2

Γ(J−1
2 )

(
S

J + 1

)− J−3
2

e−
J+1
2

And so,

K =
(S/2)

J−1
2

Γ(J−1
2 )

(
S

J + 1

)− J−3
2

e−
J+1
2 (33)

Proof of lemma 3.4. By the property of stationary distribution, if σ2
n−1 ∼ π then σ2

n ∼ π and so the lemma

follows from the following.

Eσ2
n∼π[V (σ2

n)] = Eσ2
n−1∼π[E[V (σ2

n) | σ2
n−1]] ≤ Eσ2

n−1∼π[λV (σ2
n−1) + b] = λEσ2

n∼π[V (σ2
n)] + b
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Proof of 4.12.

E[V (σ2
n) | σ2

n−1] = E[(σ2
n − h)2 | σ2

n−1]

= E[(σ2
n)2 − 2hσ2

n + h2 | σ2
n−1]

= E[(XnYnσ
2
n−1 + Yn)2 − 2h(XnYnσ

2
n−1 + Yn) + h2 | σ2

n−1]

= E[Y 2
n ](E[X2

n](σ2
n−1)2 + 2E[Xn]σ2

n−1 + 1)− 2h(E[Xn]E[Yn]σ2
n−1 + E[Yn]) + h2

= E[Y 2
n ]E[X2

n](σ2
n−1)2 + 2E[Xn]E[Y 2

n ]σ2
n−1 + E[Y 2

n ]− 2hE[Xn]E[Yn]σ2
n−1 − 2hE[Yn] + h2

= E[Y 2
n ]E[X2

n](σ2
n−1)2 + 2E[Xn](E[Y 2

n ]− hE[Yn])σ2
n−1 + E[Y 2

n ]− 2hE[Yn] + h2

= 0.6583702(σ2
n−1)2 + 0.6911206σ2

n−1 + 107.3691

= λ(σ2
n−1)2 + 2λhσ2

n−1 + λh2 + b

= λ(σ2
n−1 + h)2 + b

7.3.4 Proof of Theorem 4.13

Proof of Theorem 4.13. This example uses a modified version of the Sideways Theorem 4.1 to find an upper

bound on the convergence rate. We will also use Proposition 2.1, which states that the total variation between

two random variables is equal to the total variation of any invertible transformation of the same two random

variables.

Let ~Xn, ~X
′
n ∈ R2 be two copies of the autoregressive normal process as defined in Example 4.6. Then for

~Zn ∼ N(~0, Id),

~Xn = A ~Xn−1 + Σd ~Zn ~X ′n = A ~X ′n−1 + Σd ~Z
′
n

We apply the one-shot coupling method to bound the total variation distance. For n < N set ~Zn = ~Z ′n.
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Suppose X0, X
′
0 are known and define

∆ = ‖Σ−1
d An( ~X0 − ~X ′0)‖2

Decompose A = PDP−1 with D as the corresponding diagonal matrix, λi is the ith eigenvalue of A and ‖·‖2

denotes the Frobenius norm. Then ∆ is bounded above as follows,

∆ = ‖Σ−1
d An( ~X0 − ~X ′0)‖2

= ‖Σ−1
d PDnP−1( ~X0 − ~X ′0)‖2

≤ ‖Σ−1
d ‖2 · ‖P‖2‖D

n‖2‖P−1‖2‖ ~X0 − ~X ′0‖2 by Lemma 1.2.7 of [1]

≤ ‖Σ−1
d ‖2 · ‖P‖2‖P

−1‖2‖ ~X0 − ~X ′0‖2

√√√√ d∑
i=1

|λi|2n

≤ ‖Σ−1
d ‖2 · ‖P‖2‖P

−1‖2‖ ~X0 − ~X ′0‖2
√
d max

1≤i≤d
|λi|n

For now assume that X0, X
′
0 are known and note that Σ−1

d is an invertible transform. We bound the total

variation distance as follows by applying two invertible transforms on the Markov chain and using the fact that

~Zm = ~Z ′m,m < N .

‖L( ~XN )− L( ~X ′N )‖

≤ E{~Zm}m<N
[
‖L( ~XN )− L( ~X ′N )‖

]
by prop. 2.2

= E{~Zm}m<N

[
‖L(Σ−1

d
~XN )− L(Σ−1

d
~X ′N )‖

]
by prop. 2.1

= E{~Zm}m<N

[
‖L(Σ−1

d A ~XN−1 + ~ZN )− L(Σ−1
d A ~X ′N−1 + ~Z ′N )‖

]
= E{~Zm}m<N

[
‖L(Σ−1

d (AN ~X0 +

N−1∑
m=1

AN−m ~Zm) + ~ZN )− L(Σ−1
d (AN ~X ′0 +

N−1∑
m=1

AN−m ~Zm) + ~Z ′N )‖

]

= E{~Zm}m<N

[
‖L(Σ−1

d AN ~X0 + ~ZN )− L(Σ−1
d AN ~X ′0 + ~Z ′N )‖

]
by prop. 2.1

= E{~Zm}m<N

[
‖L(~ZN + Σ−1

d AN ( ~X0 − ~X ′0))− L(~Z ′N )‖
]

= ‖L(~ZN + Σ−1
d AN ( ~X0 − ~X ′0))− L(~Z ′N )‖
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There exists a rotation matrix R ∈ Rd×d such that

R[Σ−1
d A( ~Xn − ~X ′n)] = (‖Σ−1

d A( ~Xn − ~X ′n)‖2, 0, . . . 0) = (∆, 0, . . . 0)

[1]. By properties of rotation, R is orthogonal, so RT = R−1 and RZn ∼ N(0, RIdR
T ) = N(0, Id) ∼ Zn. In

other words, RZn
d
= Zn

d
= Z ′n. Thus, continuing the above equality,

‖L( ~Xn)− L( ~X ′n)‖ ≤ ‖L(~Zn + Σ−1
d An( ~X0 − ~X ′0))− L(~Z ′n)‖

= ‖L(R[~Zn + Σ−1
d A( ~Xn − ~X ′n)])− L(R~Z ′n)‖ by prop. 2.1

= ‖L(~Zn + (∆, 0, . . . 0))− L(~Zn)‖

Next, suppose that X0, X
′
0 are unknown. Then, the inequality stated in equation 12 is shown as follows,

‖L( ~Xn)− L( ~X ′n)‖ ≤ E∆[‖L(~Zn + (∆, 0, . . . 0))− L(~Zn)‖] by prop 2.2

= E∆[
1

2

∫
Rd

∣∣∣∣ 1

(2π)d/2
e−y

2
1/2−

∑d
i=2 y

2
i /2 − 1

(2π)d/2
e−(y1−∆)2/2−

∑d
i=2 y

2
i /2|d~y]

= E∆[
1

2

∫
R
| 1√

2π
e−y

2
1/2 − 1√

2π
e−(y1−∆)2/2d|~y]

= E∆[‖L(Z1,n + ∆)− L(Z1,n)‖]

≤ 1√
2π
E[∆] by Lemma 7.3

≤
√

d

2π
‖Σ−1

d ‖2 · ‖P‖2‖P
−1‖2E[‖ ~X0 − ~X ′0‖2] max

1≤i≤d
|λi|n
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7.4 Lemmas for ARCH process examples

7.4.1 Proof of lemmas used in Theorem 5.1

Proof of Lemma 5.2. Let {Xn}n≥1 ∈ R and {X ′n}n≥1 ∈ R be two copies of the LARCH process. For fixed n ≥ 1,

let Zn = Z ′n and so,

E[|Xn −X ′n|] = E[|(β0 + β1Xn−1)Zn − (β0 + β1X
′
n−1)Zn|]

≤ β1E[|Zn|]E[|Xn−1 −X ′n−1|]

Since Zn
d
= Z0 > 0 a.s., the geometric convergence rate is D = β1E[Z0].

Proof of Lemma 5.3. For a fixed n ≥ 0, suppose that Zn+1, Z
′
n+1 are independent. By Proposition 2.2, the total

variation distance between the two processes is bounded above by the expectation of the total variation.

‖L(Xn+1)− L(X ′n+1)‖ ≤ E[‖L((β0 + β1Xn)Zn+1)− L((β0 + β1X
′
n)Zn+1)‖]

Note that Zn+1 and Z ′n+1 are used interchangeably in the total variation distance since Zn+1
d
= Z ′n+1. Let

Yn = β0 + β1Xn, Y ′n = β0 + β1X
′
n, ∆ = Y ′n − Yn, and ∆′ = ∆

Yn
. WLOG Y ′n > Yn so that ∆,∆′ > 0. Then,

‖L(Xn+1)− L(X ′n+1)‖ ≤ E[‖L(YnZn+1)− L(Y ′nZn+1)‖] by Proposition 2.2

= E[‖L(YnZn+1)− L((Yn + ∆)Zn+1)‖]

= E[‖L(Zn+1)− L((1 + ∆′)Zn+1)‖] by Proposition 2.1

= E[‖L(log(Zn+1))− L(log(1 + ∆′) + log(Zn+1))‖] by Proposition 2.1

≤ M + 1

2
sup
x
exfZn(ex)E[log(1 + ∆′)] by lem 7.3. See prf of lem 4.2 for more details

≤ M + 1

2
sup
x
exfZn(ex)

E[|∆|]
β0

by the Mean Value Theorem

=
M + 1

2
sup
x
exfZn(ex)

β1E[|Xn −X ′n|]
β0

53



7.4.2 Proof of lemmas used in Theorem 5.4

Proof of Lemma 5.5. Let {Xn}n≥1 ∈ R and {X ′n}n≥1 ∈ R be two copies of the asymmetric ARCH process.

For a fixed n ≥ 1, let Zn = Z ′n and so,

E[|Xn −X ′n|] = E[|
√

(aXn−1 + b)2 + c2Zn −
√

(aX ′n−1 + b)2 + c2Zn|]

= |
√

(aXn−1 + b)2 + c2 −
√

(aX ′n−1 + b)2 + c2|E[|Zn|]

Note that the derivative of f(x) =
√

(ax+ b)2 + c2 is

|f ′(x)| = | a(ax+ b)√
(ax+ b)2 + c2

| ≤ |a(ax+ b)|√
(ax+ b)2

= |a| (34)

and so,

E[|Xn −X ′n|] ≤ |a|E[|Zn|]E[|Xn−1 −X ′n−1|]

Thus, the geometric convergence rate is D = |a|E[|Z0|].

Proof of Lemma 5.6. Let {Xn}n≥1 ∈ R and {X ′n}n≥1 ∈ R be two copies of the asymmetric ARCH process.

For n ≥ 1, Zn, Z
′
n are independent. By Proposition 2.2, the total variation distance between the two processes

is bounded above by the expectation of the total variation with respect to Xn−1, X
′
n−1, Zn, Z

′
n.

‖L(Xn)− L(X ′n)‖ ≤ E[‖L(
√

(aXn−1 + b)2 + c2Zn)− L(
√

(aX ′n−1 + b)2 + c2Z ′n)‖]

Let Yn−1 =
√

(aXn−1 + b)2 + c2 and Y ′n−1 =
√

(aXn−1 + b)2 + c2, ∆ = Y ′n−1 − Yn−1 and ∆′ = ∆
Yn−1

. WLOG,
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Y ′n−1 < Yn−1, so −1 < ∆′ < 0, because Yn−1, Y
′
n−1 > 0 and

‖L(Xn)− L(X ′n)‖ ≤ E[‖L(Yn−1Zn)− L(Y ′n−1Zn)‖]

= E[‖L(Yn−1Zn)− L((Yn−1 + ∆)Zn)‖] by Proposition 2.1

= E[‖L(Zn)− L((1 + ∆′)Zn)‖] by Proposition 2.1

≤ E
[
sup
x

1− πZn(x)

π(1+∆′)Zn(x)

]
by Lemma 6.16 of [25]

Let the density of Zn be πZn(x), then π(1+∆′)Zn(x) = 1
1+∆′πZn

(
x

1+∆′

)
.

‖L(Xn)− L(X ′n)‖ ≤ E

sup
x

1− (1 + ∆′)
πZn(x)

πZn

(
x

1+∆′

)


≤ E[sup
x

1− (1 + ∆′)] by assumption πZn(x) ≥ πZn
(

x

1 + ∆′

)
= E[∆′]

≤
E[|Yn−1 − Y ′n−1|]

c
since Yn−1 ≥ c

≤ |a|
c
E[|Xn−1 −X ′n−1|] by equation 34

7.4.3 Proof of lemmas used in Theorem 5.7

Proof of Lemma 5.8. Let {Xn}n≥1 ∈ R and {X ′n}n≥1 ∈ R be two copies of the GARCH process. For n ≥ 2, let

Zn = Z ′n. First note that,

E[|Xn −X ′n|] = E[|σnZn − σ′nZn|] = E[|σn − σ′n||Zn|] = E[|σn − σ′n|]E[|Zn|] (35)
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Next, we find an upper bound on E[|σn−σ′n|] by first noting that σ2
n = α2+(β2Z2

n−1+γ2)σ2
n−1 by substitution.

E[|σn − σ′n|] = E[|
√
α2 + (β2Z2

n−1 + γ2)σ2
n−1 −

√
α2 + (β2Z2

n−1 + γ2)σ
′2
n−1|]

≤ E[
√
β2Z2

n−1 + γ2]E[|σn−1 − σ
′

n−1|] taking max of the derivative

= E[
√
β2Z2

n−1 + γ2]
E[|Xn−1 −X ′n−1|]

E[|Zn−1|]
by equation 35

Finally, substituting E[|σn − σ′n|] into equation 35,

E[|Xn −X ′n|] ≤ E[
√
β2Z2

n−1 + γ2]
E[|Xn−1 −X ′n−1|]

E[|Zn−1|]
E[|Zn|]

= E[
√
β2Z2

n−1 + γ2]E[|Xn−1 −X ′n−1|]

≤
√
β2E[Z2

0 ] + γ2E[|Xn−1 −X ′n−1|] by Jensen’s inequality

Thus, the geometric convergence rate is D =
√
β2E[Z2

0 ] + γ2.

Proof of Lemma 5.9. Let {Xn}n≥1 ∈ R and {X ′n}n≥1 ∈ R be two copies of the GARCH process.

For n ≥ 2, suppose that Zn, Z
′
n are independent. By Proposition 2.2, the total variation distance between

the two processes is bounded above by the expectation of the total variation.

‖L(Xn)− L(X ′n)‖ ≤ E[‖L(σnZn)− L(σ′nZn)‖]

Let ∆ = σ′n − σn and ∆′ = ∆
σn

. WLOG, σ′n < σn, so ∆,∆′ < 0 because σn, σ
′
n > 0 and

‖L(Xn)− L(X ′n)‖ = E[‖L(σnZn)− L((σn + ∆)Zn)‖] by Proposition 2.1

= E[‖L(Zn)− L((1 + ∆′)Zn)‖] by Proposition 2.1

≤ E
[
sup
x

1− πZn(x)

π(1+∆′)Zn(x)

]
by Lemma 6.16 of [25]
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Let the density of Zn be πZn(x), then π(1+∆′)Zn(x) = 1
1+∆′πZn

(
x

1+∆′

)
.

‖L(Xn)− L(X ′n)‖ ≤ E

sup
x

1− (1 + ∆′)
πZn(x)

πZn

(
x

1+∆′

)


≤ E[sup
x

1− (1 + ∆′)] by assumption πZn(x) ≥ πZn
(

x

1 + ∆′

)
= E[∆′]

≤ E[|σ′n − σn|]
α

since σn ≥ α

≤ D

αE[|Zn−1|]
E[|Xn−1 −X ′n−1|] by equation in proof 7.4.3

Proof of Lemma 5.10.

E[|X1 −X ′1|] = |σ2
1 − σ

′2
1 |E[|Z1|] by equation in proof 7.4.3

= |
√
α2 + β2X2

0 + γ2σ2
0 −

√
α2 + β2X

′2
0 + γ2σ

′2
0 |E[|Z1|]

≤
√
|(α2 + β2X2

0 + γ2σ2
0)− (α2 + β2X

′2
0 + γ2σ

′2
0 )|E[|Z1|]

since |
√
x−√y| =

√
(
√
x−√y)2 =

√
x+ y − 2

√
x
√
y ≤

√
|x− y|

≤
√
β2|X2

0 −X
′2
0 |+ γ2|σ2

0 − σ
′2
0 |E[|Z0|]
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