
Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative

Filtering

Marco Capó1*, Aritz Pérez1 and José A. Lozano1,2

1*Basque Center for Applied Mathematics, Bilbao, 48009, Spain.
2Intelligent Systems Group, Department of Computer Science
and Artifitial Intelligence, University of the Basque Country

UPV/EHU, Donosti, 20018, Spain.

*Corresponding author(s). E-mail(s): marco@oxcitas.com;
Contributing authors: aperez@bcamath.org; ja.lozano@ehu.es;

Abstract

Streaming data is ubiquitous in modern machine learning, and so the
development of scalable algorithms to analyze this sort of information
is a topic of current interest. On the other hand, the problem of l1-
penalized least-square regression, commonly referred to as LASSO, is
a quite popular data mining technique, which is commonly used for
feature selection. In this work, we develop a homotopy-based solver
for LASSO, on a streaming data context, that massively speeds up
its convergence by extracting the most information out of the solu-
tion prior receiving the latest batch of data. Since these batches may
show a non-stationary behavior, our solver also includes an adaptive
filter that improves the predictability of our method in this scenario.
Besides different theoretical properties, we additionally compare empir-
ically our solver to the state-of-the-art: LARS, Coordinate Descent and
Garrigues and Ghaoui’s Data Streaming Homotopy. The obtained re-
sults show our approach to massively reduce the computational time
require to convergence for the previous approaches, reducing up to 3,
4 and 5 orders of magnitude of running time with respect to LARS,
Coordinate Descent and Garrigues and Ghaoui’s homotopy, respectively.

Keywords: LASSO, Adaptative Filtering, Streaming Data, Homotopy

1

Springer Nature 2021 LATEX template

2 LASSO for Streaming Data with Adaptative Filtering

1 Introduction

Problems with high dimensionality have become common over the recent
years. The high dimensionality poses significant challenges in building inter-
pretable models with high prediction accuracy [1]. Regularized methods have
established themselves as popular and effective tools through which to handle
high-dimensional data [2]. Such methods employ regularization penalties as a
mechanism through which to constraint the set of candidate solutions [3]. In
this sense, in [4], a method for shrinkage and variable selection, called “Least
Absolute Shrinkage and Selection Operator (LASSO)”, is presented. It consists
of a l1-norm regularization approach that commonly leads to sparse solutions,
which is a desirable property to achieve model selection, data compression and
for obtaining interpretable results. For this reason, LASSO has attracted a lot
of interest in the statistics, signal processing and machine learning communities
[4, 5].

1.1 LASSO Optimization Problem

Formally speaking, given a matrix of predictor variables, X ∈ Rn×d, and a
response vector, y ∈ Rn, LASSO consists of minimizing the following error
function:

fX,yµ (θ) =
1

2
· ‖Xθ − y‖22 + µ · ‖θ‖1, (1)

where µ > 0 is a regularization parameter and θ ∈ Rd. From now on, we refer
by θX,yµ = arg minθ∈Rd fX,yµ (θ) to the solution of LASSO. More importantly,
it should be highlighted that this optimization problem has multiple features
among which we can mention:

• Sparsity: The solution to LASSO is typically sparse, i.e., θX,yµ has rela-
tively few non-zero coefficients. For this reason, LASSO is commonly used
to perform feature selection [6].

• Uniqueness: If ξ = {i ∈ {1, . . . , d} : |XT
i (XθX,yµ − y)| = µ}, then LASSO

solution is unique when rank(Xξ) = |ξ|. Otherwise, there can be multiple
minimizers [7].

• Regularization Path: The family of solutions for LASSO, as µ varies over
(0,∞), has the piecewise-linear solution path property [8]: There are val-
ues µ1 > . . . > µk = 0, such that the regularization path is a piecewise
linear curve, i.e., if µi+1 ≤ µ ≤ µi, for i ∈ {1, . . . , k − 1}, then

θX,yµ =
µi − µ

µi − µi+1
· θX,yµi+1

+
µ− µi+1

µi − µi+1
· θX,yµi

(2)

• Optimality Conditions: In general, there is a global minimum at θ =
(θ1, . . . , θd) ∈ Rd for Eq.1 if and only if the sub-differential of fX,yµ

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 3

contains 0 ∈ Rd [6, 7]:

XT (Xθ − y) + µ · v = 0,v ∈ ∂‖θ‖1, (3)

where ∂‖θ‖1 is the sub-differential of the l1-norm at θ: ∂‖θ‖1 ={
vj = sign(θj), if θj 6= 0

vj ∈ [−1, 1], if θj = 0
.

1.2 Solving LASSO

Even though the LASSO problem can be easily stated, solving it numerically is
not trivial [9]. Initially, [4] observed that LASSO can be expressed as a convex
quadratic problem with linear equality constraints. This feature allows a wide
variety of approaches to be used to obtain a minimizer of Eq.1. In particular,
as summarized in [10], [4] used the quadratic program (QP) for least square
regressions and the iteratively reweighted least square procedure with QP for
generalized linear models. Afterwards, [11] proposed a faster QP algorithm for
LASSO, which was implemented by [12] as lasso2 package in R. Moreover, this
formulation of the problem is also commonly solved using standard interior-
point methods [13–16]. Unfortunately, as frequently reported in the literature,
this sort of techniques can only handle small to medium-sized problems [6, 17].
A complete review on this sort of algorithms can be found in [17].

In order to cope with the computational demands of the previous ap-
proaches, other optimization techniques such as coordinate descent has been
extensively used to solve LASSO [18–22]. This technique successively mini-
mizes along coordinate directions to find the minimum of a function. At each
iteration, the algorithm determines a coordinate or coordinate block via a
coordinate selection rule, then minimizes over the corresponding coordinate
hyperplane while fixing all other coordinates or coordinate blocks [19–21]. For
the LASSO problem, an iteration of coordinate descent can be implemented in
O(n · d) time via soft-thresholding [22, 23]. On the other hand, generic meth-
ods for non-differentiable convex problems, such as the ellipsoid method or
sub-gradient methods [24], can be used to solve the minimization problem, see
[10, 25, 26]. Even when some of these techniques can be implemented inO(n·d),
they commonly show slow convergence which hinders their applicability in
practice [25].

A last family of LASSO solvers that has gained popularity in the recent
years are the homotopy methods. This technique exploits the properties of
the optimization problem, in particular the regularization path property intro-
duced in Section 1.1, to determine the LASSO solution when the regularization
parameter, µ, varies [6, 8, 27–29]. It should be noted that such piecewise lin-
earity of regularization paths are fairly common within the parametric QP
formulations literature [23, 27, 30]. The most popular method in this family is
LARS [8]. The algorithm begins at µ = µmax = ‖XTy‖∞, where the solution
is trivial, θX,yµmax

= 0. As µ decreases, the homotopy computes a solution path
θµ that is piecewise linear and continuous as a function of µ. Each knot in this

Springer Nature 2021 LATEX template

4 LASSO for Streaming Data with Adaptative Filtering

path corresponds to an iteration of the algorithm, in which the path’s linear
trajectory is altered in order to satisfy the optimality conditions [7, 8]. Anal-
ogously to solving a system via Least Squares, the computational complexity
of LARS is O(d2 ·max{n, d}).

1.3 Data Streaming and Adaptative Filtering

Applications involving streaming datasets are abundant, ranging from finance
to cyber-security and neuroscience [3, 31, 32]. In this setting, it is assumed that
batches of data, X = {Xt}mt=0 and Y = {yt}mt=0, arrive sequentially over time,
where Xt ∈ Rnt×d, yt ∈ Rnt . For LASSO, different works can be found in the
literature for the data streaming setting. Most remarkably, [6] developed a ho-
motopy that allows the computation of LASSO solution after observing a new
data point, i.e., m = 1 and nm = 1, for predefined regularization terms. The
computational complexity of this approach for updating the LASSO solution,
after observing a new data point, is O(d2 ·max{n, d}), where n = n0 + 1. It
must be highlighted that in this work the data stream distribution is assumed
invariant.

In general, it should be remarked that one major challenge that arises when
dealing with these sort of applications is due to the usually common dynamic
or non-stationary nature of data streams, that takes place when the underlying
distribution of the data changes over time [3, 33, 34]. Fortunately, there are
different ways of dealing with such a difficulty, out of which adaptive filtering
is one of the most popular alternatives [35, 36]. As defined in [37], filtering is
the process through which information is assimilated using data measured up
to and a certain time. Adaptive filtering methods provide an elegant method
through which to handle a wide range of non-stationary behavior without
having to explicitly model the dynamic properties of the data stream. As shown
in [3], for the LASSO error function, the adaptive filtering can be introduced
by defining a set of positive weights w = {wt}mt=0 that indicates the importance
of past observations, where wt typically decays exponentially, in such a way
that more relevance is provided to the latest information received. Afterwards,
the weighted LASSO error function, lX ,Yµ,w (θ) = 1

2 ·
∑m

t=0 wt · ‖Xtθ − yt‖22 +
µ · ‖θ‖1, is minimized [3]. The popularity of this approach in recent years has
grown, partly due to the fact that, in many scenarios, it is infeasible to model
the dynamic of the data stream. The most common filtering methods discard
information at a constant rate, for example determined by a fixed forgetting
factor [38], which, for instance, can be achieved by setting wt = rm−t for a
constant value r ∈ [0, 1]. For LASSO, in the streaming data scenario with
adaptive filtering, we can mainly find the work of [3, 39], which focuses their
research into finding appropriate updates for the regularization parameter, µ.
In particular, their proposal is to make use of stochastic gradient descent to
relegate the choice of sparsity parameter to the data, in such a way that the
current model optimizes the model fit on the latest batch of data, (Xm,ym).

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 5

1.4 Contribution

In this work, we propose a homotopy-based solver for LASSO on a streaming
data scenario, where batches of data are received sequentially over time. This
new approach generalizes the algorithm presented in [6], for which the new
information can be set to be a batch of points rather than a single data point.
In addition, this new approach is also thought to also include an adaptive filter,
which ultimately improves the predictability of our model in non-stationary
settings and, hence does not require to modify the penalty term as in [3,
39]. The rest of the article is divided as follows: In Section 2, we deduce our
solver and comment on some of its theoretical properties and, in Section 3, we
compare our proposal empirically to the state-of-the-art.

2 LASSO for Streaming Data

In this section, we develop an efficient LASSO solver for a streaming data
framework. As we previously commented, besides allowing the arrival of
batches of data with multiple observations unlike the work of [6], our pro-
posal implicitly sets an adaptive-filter on the optimization problem. Such an
additional feature results advantageous especially in applications where the
distribution of the data stream changes over time.

Since the batches of data (Xt,yt) are received one at a time, it is convenient
to find a simple way to evaluate the desired error function with adaptive filter-
ing (Eq.2) sequentially as each batch of information arrives. In this sense, in
Observation 1, we find a relation between the classical LASSO error function,
Eq.1, and the weighted criterion, lX ,Yµ,w (θ):

Observation 1. Given a sequence of batches, X = {Xt}mt=0, Y = {yt}mt=0,
and a forgetting parameter r ∈ [0, 1], if we define the sets of batches (Xt,Yt)
as follows:

(Xt,Yt) =

((

Xt√
r · Xt−1

)
,

(
yt√

r · Yt−1

))
if t > 0

(Xt,yt) if t = 0

then, for w = {rm−t}mt=0, fXm,Ym
µ (θ) = lX ,Yµ,w (θ) for all θ ∈ Rd.

Observation 1 shows that we can compute the LASSO error function
with adaptive filtering (with a fixed forgetting factor r ∈ [0, 1]) as the clas-
sical LASSO error function just by recursively multiplying the previous set
of batches by

√
r. Taking this into consideration, our solver seeks to deter-

mine θXm,Ym
µ = arg minθ∈Rd fXm,Ym

µ (θ) efficiently via a homotopy that initially
considers the solution obtained prior receiving the latest batch, (Xm,ym),

θ
Xm−1,Ym−1
µ = arg minθ∈Rd f

Xm−1,Ym−1
µ (θ).

Springer Nature 2021 LATEX template

6 LASSO for Streaming Data with Adaptative Filtering

It should be highlighted that penalty term, µ > 0, remains invariant
throughout the entire process. This is a common practice in the homotopy
step for LASSO on streaming data. In any case, even when it is out of the
scope of this work to determine an appropriate value for this term, the pro-
posed solver can be further complemented with different regularization term
update techniques, such as [3], by introducing a correction step prior apply-
ing the homotopy, as shown in [6], e.g., if we want to detetermine θXm,Ym

µm
via

θ
Xm−1,Ym−1
µm−1 , for µm 6= µm−1, we can exploit the piecewise-linearity of LASSO

solution, for instance via LARS, to firstly compute θ
Xm−1,Ym−1
µm and then we

can apply our homotopy-based solver to determine θXm,Ym
µm

. Taking into ac-
count the optimality conditions for the LASSO problem commented in Section
1.1, Eq.3, in the next section we develop our solver for the LASSO problem
for a streaming data scenario with adaptive filtering.

2.1 Derivation of the LASSO Solver with Adaptative
Filtering

Assuming that we know the optimal solution θ
Xm−1,Ym−1
µ and that we are

provided with a new batch of information (Xm,ym) ∈ Rnm×d×Rnm , we want
to determine θXm,Ym

µ efficiently. In order to visualize the connection between
both solutions, consider the following optimization problem, for all s ∈ [0, 1]:

ϕ(s) = arg minθ∈Rd

1

2
· ‖
(

s · [Xmθ − ym]√
r · [Xm−1θ − Ym−1]

)
‖22 + (r +

+s · (1− r)) · µ · ‖θ‖1 (4)

Observe that the function ϕ(s) : [0, 1] → Rd progressively gives more im-
portance (weight) to the new batch of data, (Xm,ym), as s increases. Indeed,

observe that ϕ(0) = θ
Xm−1,Ym−1
µ and ϕ(1) = θXm,Ym

µ . We will take advantage

of this property to develop a homotopy that converts θ
Xm−1,Ym−1
µ into θXm,Ym

µ

by sequentially verifying the optimality conditions of ϕ(s), from s = 0 to s = 1.
In particular, in this section, we verify that the function ϕ(s) is in fact a piece-
wise smooth function of s. Afterwards, we exploit this result to derivate the
proposed homotopy.

Considering the definition presented in Eq.4 and the optimality conditions
of LASSO, Eq.3, we have that, for all s ∈ [0, 1], there exists v(s) ∈ ∂‖ϕ(s)‖1
for which:

s2 ·XT
m[Xmϕ(s)− ym] + r · X Tm−1[Xm−1ϕ(s)− Ym−1] +

+(r + s · (1− r)) · µ · v(s) = 0 (5)

For the sake of simplicity and without loss of generality, assume that the
active set of indices/variables of ϕ(s), i.e., A(s) = {j ∈ {1, . . . , d} : ϕ(s)j 6= 0},

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 7

appears in the first entries of ϕ(s) for all s ∈ [0, 1]. This is, ϕ(s) is of the form

ϕ(s) =

(
ϕ̃(s)
0

)
, where ϕ̃(s) has no null entry, and v(s) =

(
ṽ(s)˜̃
v(s)

)
, where

ṽ(s) = sign(ϕ̃(s)) and ‖˜̃v(s)‖∞ ≤ 1 since v(s) ∈ ∂‖ϕ(s)‖1. In addition, let

Xm−1 = [X̃ sm−1

˜̃X sm−1] and Xm = [X̃s
m
˜̃
Xs
m] be the partition of Xm−1 and

Xm according to A(s). Taking this into consideration, the following system of

equations is satisfied by ϕ̃(s) and
˜̃
v(s) for all s ∈ [0, 1]:

ϕ̃(s) = A−1b, where A = s2 · X̃s
m

T
X̃s
m + r · X̃ sm−1

T
X̃ sm−1

and b = s2 · X̃s
m

T
ym + +r · X̃ sm−1

T
Ym−1 − (r + s · (1− r)) · µ · ṽ(s) (6)

˜̃
v(s) = −((r + s · (1− r)) · µ)−1 · [s2 · ˜̃Xs

m

T

[X̃s
mϕ̃(s)− ym] +

+r ·˜̃X sm−1

T

[X̃ sm−1ϕ̃(s)− Ym−1]] (7)

In words, if we know the active set of indices, A(s), and signs of the co-

efficients, ṽ(s), we can compute the solution to LASSO, ϕ(s), in closed form.
Furthermore, it should be highlighted that ϕ(s) is also a piecewise smooth
function of s ∈ [0, 1], see Theorem 1 and Corollary 1.

Theorem 1. If ‖˜̃v(s∗)‖∞ < 1 is satisfied for a given s∗ ∈ [0, 1], then there is

ε > 0, such that ṽ(s) = ṽ(s∗) and ‖˜̃v(s)‖∞ < 1, for all s ∈ [s∗, s∗ + ε).

Theorem 1 shows that, given a solution ϕ(s∗), for a certain s∗ ∈ [0, 1), there
is an interval, s ∈ [s∗, s∗+ε), in which the set of active variables, A(s), and the

signs of the coefficients, ṽ(s), remain invariant, and so, ϕ(s) can be computed
in closed form using Eq.6, for s ∈ [s∗, s∗+ ε). In this sense, it is of our interest
to determine those points in [0, 1] for which the active set of indices changes,
which are commonly referred to in the literature as transition points [6, 8]: In
particular, a homotopy-based solver commonly intends to efficiently determine
such transition points and, more importantly, the corresponding modification
on the active set of indices, until the desired solution, in our case A(1) and
ϕ(1) = θXm,Ym

µ , can be computed. In the following section, we extend on the
computation of these points for our setting.

The rest of the section is divided in three parts. First, in Section 2.1.1, we
will comment on the challenges of effectively computing transition points for
the problem proposed in Eq. 4 and discuss some scenarios in which such a com-
putation is tractable. In Section 2.1.2, we will deduce a heuristic, Algorithm 1,
that we will use to compute the changes in the active set of indices regardless

Springer Nature 2021 LATEX template

8 LASSO for Streaming Data with Adaptative Filtering

if the transition point can be computed explicitly. Finally, in Section 2.1.3, we
will formaly define our homotopy-based approach LASSO solver with adaptive
filtering (Algorithm 2).

2.1.1 Challenges in Computing the Transition Points

As we commented in the previous section, the proposed homotopy-based solver
for the LASSO with adaptive filtering problem, Eq.4, sequentially determines
those intervals within [0, 1] for which active set of indices and corresponding
signs remain invariant. In particular, given a solution ϕ(s∗), for some s∗ ∈
[0, 1), we are primarily interested in determining the closest transition point
s > s∗. The goal of this section is to comment on the challenges of computing
such transition points explicitly. A first step in this direction is given in the
following result:

Corollary 1. Given a solution ϕ̃(s∗) = A−1b, for s∗ ∈ [0, 1), where A and b

are defined by Eq.6, and Λ = X̃s∗
m

T
X̃s∗
mA

−1, then

ϕ̃(s) = ϕ̃(s∗)− (s− s∗) ·A−1[I + (s2 − s∗2) · Λ]−1[(s+ s∗) · X̃s∗
m

T
ẽ+

+(1− r) · µ · ṽ(s∗)], (8)

where ẽ = X̃s∗
m ϕ̃(s∗)−ym, for all s ∈ [s∗, s∗+ ε), and ε defined in Theorem 1.

Making use of Corollary 1, given s∗ and A(s∗), we could implicitly deter-

mine the next transition point s, for which some entry of ϕ̃(s) is zero. Such an
entry would ultimately exit the current set of active indices. Ideally, we should
be able to determine such value s explicitly, however, in general, computing
explicitly the inverse matrix [I + (s2 − s∗2) · Λ]−1, as a function of s, is a dif-
ficult task. In spite of this, in the following results we comment on different
scenarios under which this task is attainable:

Observation 2. If the eigenvalues of the matrix (s2 − s∗2) · Λ satisfy
maxλ(s2−s∗2)·Λ < 1, then we can determine, for each variable j ∈ A(s∗), the

value s for which ϕ̃(s)j = 0, by solving

∞∑
i=0

(s∗2 − s2)i+1 · Γi1j − (s∗2 − s2)i · (s∗ − s) · Γi2j = −ϕ̃(s∗)j , (9)

where Γi1 = A−1ΛiX̃s∗
m

T
ẽ and Γi2 = (r − 1) · µ ·A−1ΛiX̃s∗

m

T
ṽ(s∗).

Observation 2 shows that, under some mild-conditions over the eigenvalues
of (s2− s2∗) ·Λ, we can determine the transition points by finding the zeros of
the infinite series presented in Eq.9. Moreover, observe that we can truncate
such a inifinite sum up to a low-degree polynomial and still get an accurate

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 9

guess of the transition point, s, since s, s∗ ∈ [0, 1] and so (s2 − s∗2)i descends
rapidly towards zero, for i > 1. Furthermore, in the scenario nm = 1, i.e., when
only one observation is received at the time as in [6], one can easily compute
the transition points explicitly from the data:

Theorem 2. Given a solution ϕ̃(s∗) = A−1b, for s∗ ∈ [0, 1), where A and b

are defined by Eq.6. If nm = 1, u = A−1X̃s∗
m

T
, α = X̃s∗

m u and z = (r − 1) · µ ·
A−1ṽ(s∗), then ϕ̃(s)j = 0, for

s =
zj ·mj

2
±
(
s∗2 − ϕ(s∗)j ·mj + zj ·mj · (

mj

4
+ s∗)

) 1
2

,

where mj = (α · ϕ(s∗)j − ẽ · uj)−1, for all j ∈ A(s∗).

Observe that the result presented in Theorem 2 is a generalization of the
result shown in [6], in terms of the computation of transition points: for the
latter, no adaptive filtering is considered, i.e., z = 0.

Unfortunately, as commented throughout this section, computing such
transition points explicitly from the data still remains an untractable problem
in most scenarios. In spite of this, we should recall that, given the optimal-
ity conditions presented in Eq.6-7, we only require to know the adequate set

of active indices, A(1), and their corresponding signs, ṽ(1), to compute the
desired solution, θXm,Ym

µ . Since A(s) changes throughout s ∈ [0, 1], we can
instead focus our analysis on determining such modifications rather than find-
ing out explicitly when they occur (transition point). In the next section, we
comment on an efficient approach to determine the appropriate modification
of the active set of indices for s ∈ [0, 1].

2.1.2 About the Active Set of Indices

Given a solution ϕ(s∗), for some s∗ ∈ [0, 1), in this section we develop a method
to determine the earliest modification of the current set of active indices, i.e.,
A(s) 6= A(s∗), for s > s∗, which is formaly presented in Algorithm 1. For the
sake of simplicity, we assume |A(s)| = |A(s∗)| ± 1, meaning that at most one
variable violates the optimality conditions at s > s∗, given the set of active

indices, A(s∗), and associated array of signs, ṽ(s∗), which is the event that
occurs almost surely. The extension to the other case is straightforward.

To start and in order to illustrate the evolution of the active set of indices,
in Fig.1, we plot the optimality conditions (optimal value of the regression
coefficient, ϕ(s) and sub-differential, v(s)), in s ∈ [0, 1], for a toy example
with m = 1, n0 = 5000, n1 = 2000, d = 3, r = 0.50 and µ = 0.25 · µmax. In
particular, the optimal value of the coefficients, ϕ(s)j , associated to the active
variables, j ∈ A(s), are plotted in blue, while, for the non-active, we show
the sub-differential values, v(s)j , in red. Furthermore, in dashed black lines,
we observe the critical values for both terms: i) ϕ(s)j = 0, which implies the

Springer Nature 2021 LATEX template

10 LASSO for Streaming Data with Adaptative Filtering

modification of j to the non-active variables, and ii) |v(s)j | > 1, in which case
j ∈ A(s).

0.00 0.20 0.44

−1.0

−0.5

0.0
1e−2 Var1

0.00 0.20 0.44
−1

0

1
Var2

0.00 0.20 0.44
−1

0

1
Var3

0.44 0.60 0.83

−0.5

0.0
1e−2

0.44 0.60 0.83
−1

0

1

0.44 0.60 0.83
0.0

0.5

1e−2

0.83 0.90 1.00
−6

−4

−2

0
1e−3

0.83 0.90 1.00
0

1

2
1e−3

0.83 0.90 1.00
0.0

0.5

1.0

1e−2

s

O
pt
im

al
ity

 C
on

di
tio

ns

s

O
pt
im

al
ity

 C
on

di
tio

ns

Figure 1: Evolution of ϕ̃(s) (blue curves) and
˜̃
v(s) (red curves), for s ∈ [0, 1],

for Var1, Var2 and Var3.

According to Fig.1, we observe that at the beginning, s = 0, just Var1 is
active. However, at s = 0.44, Var3 joins the active set of variables and, finally,
at s = 0.83, Var2 becomes active as well. Therefore, the active variables of
the corresponding LASSO with adaptative filtering problem are Var1, Var2
and Var3, which differs from the original set of active indices. The goal of this
section is then to develop a low computational-cost complexity algorithm to
determine such modifications over the set of variables.

To start our analysis, we first define the functions ζs∗(s) and Ψs∗(s), which
will allow us to verify if the optimality conditions, Eq.6-7, for a point, s ∈
(s∗, 1], are held for the optimal setting obtained at s∗. As we can see in line
5 of Algorithm 1, verifying such conditions is the initial step of our active set
update heuristic:

ζs∗(s) = [s2 · C +A]−1[b + s2 · d− s · (1− r) · µ · ṽ(s∗)] (10)

Ψs∗(s) = −((r + s · (1− r)) · µ)−1 · [s2 · [Dζs∗(s)− e] +Bζs∗(s)− c], (11)

whereA = r·X̃ s∗m−1

T

X̃ s∗m−1,B = r·
˜̃
X s∗m−1

T

X̃ s∗m−1, C = X̃s∗
m

T
X̃s∗
m ,D =

˜̃
Xs∗
m

T

X̃s∗
m

and b = r · X̃ s∗m−1

T

Ym−1 − r · µ · ṽ(s∗), c = r ·
˜̃
X s∗m−1

T

Ym−1, d = X̃s∗
m

T
ym,

e =
˜̃
Xs∗
m

T

ym. From now on, we refer to the collection of these arrays as
M = {A,B,C,D,b, c,d, e}.

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 11

It must be remarked that, if the optimality conditions are satisfied at

s > s∗, i.e., sign(ζs∗(s)) = ṽ(s∗) and ‖Ψs∗(s)‖∞ ≤ 1, then ϕ̃(s) = ζs∗(s)

and
˜̃
v(s) = Ψs∗(s). In order to formalize the verification of the optimality

conditions, we define the following sets of indices:

Ass∗ = {j ∈ A(s∗) : sign(ζs∗(s)j) 6= ṽ(s∗)j} (12)

Iss∗ = {j ∈ {1, . . . , d} \ A(s∗) : |Ψs∗(s)j | > 1} (13)

Observe that Ass∗ is composed by those indices in the active set for which
ζs∗(s) does not have the expected sign, while Iss∗ contains the inactive indices
that do not satisfy the sub-differential. Furthermore, we define Vss∗ = Ass∗∪Iss∗
as the set of indices violating either optimality condition. For this reason,
the optimality conditions are satisfied at s > s∗, for A(s∗), if and only if
|Vss∗ | = 0. Taking all this into account, given any ϕ(s∗), in Algorithm 1, we
initially compute ζs∗(1) and Ψs∗(1) to verify if |Vss∗ | = 0. If this is the case,

then θXm,Ym
µ =

(
ζs∗(1)
0

)
and the algorithm stops. Otherwise, we follow a

bisection-like search, in order to determine a point s ∈ (s∗, 1) for which |Vss∗ | ≤
1:
• Case 1: |Vss∗ | = 0 (line 6 in Algorithm 1). In this case A(s) = A(s∗) and

therefore, if s∗∗ is the previous value of s, i.e., the last explored value for
which A(s∗∗) 6= A(s∗), we can update s∗ = s and re-start the search with
s = 1

2 · (s
∗ + s∗∗) until Case 2 occurs.

• Case 2: |Vss∗ | = 1 (line 13 in Algorithm 1). In this scenario either: i) |Ass∗ | =
1 or ii) |Iss∗ | = 1. The variable not satisfying the optimality condition at i),
must exit the active set of indices, while it must included in the active set
in ii). Hence, we must verify if A(s) = A(s∗)∪Iss∗ \Ass∗ holds. If so, we take
s∗ = s and A(s∗) = A(s) and re-start the search with s = 1. If not, we take
s = 1

2 · (s+ s∗).
For the example presented in Fig.1, our method initially evaluates the

optimality of ζ0(1) and Ψ0(1). Since |V1
0 | = 2, it considers s = 0.50,

for which |V0.50
0 | = 1, i.e., Case 2. Since I0.50

0 = {Var3}, we verify that
A(0.50) = A(0) ∪ I0.50

0 = {Var1, Var3}. Analogously, we then verify that
|V1

0.50| = |I1
0.50| = 1, where I1

0.50 = {Var2}, and so, we conclude that
A(1) = A(0.50) ∪ I1

0.50 = {Var1, Var2, Var3}. In Algorithm 1, we present the
proposed method for updating the active set of indices based on the previously
described methodology.

The computational load of Algorithm 1 is largely dominated by the
computation of ζs∗(s) and Ψs∗(s). Since the arrays contained in M are al-
ready pre-computed to determine the input ϕ(s∗), evaluating ζs∗(s) can be
done in O(d3

s∗) time, where ds∗ = |A(s∗)|. Furthermore, Ψs∗(s) is com-
puted in O(ds∗ · (d − ds∗)) and so, the overall complexity of Algorithm 1 is
O(ds∗ ·max{d− ds∗ , d2

s∗}).

Springer Nature 2021 LATEX template

12 LASSO for Streaming Data with Adaptative Filtering

Algorithm 1 Active Set Updater

1: Input: Solution ϕ(s∗), for s∗ ∈ [0, 1), and associated collection of arrays,
M.

2: Output: Solution ϕ(s), for some s ∈ (s∗, 1].
3: Set s = 1.
4: while not Transition do
5: Compute ζs∗(s), Ψs∗(s) and Vss∗ (Eq.10-11).
6: if |Vss∗ | == 0 then
7: Set s∗ = s.
8: if s == 1 then
9: Transition

10: else
11: Set s = 1

2 · (s
∗ + s∗∗).

12: end if
13: else if |Vss∗ | == 1 then
14: if A(s) == A(s∗) ∪ Iss∗ \ Ass∗ then
15: Set s∗ = s and A(s∗) = A(s). Transition.
16: else
17: Set s∗∗ = s and s = 1

2 · (s
∗ + s).

18: end if
19: else
20: Set s∗∗ = s and s = 1

2 · (s
∗ + s).

21: end if
22: end while
23: Return s∗ ≤ 1, active set of indices, A(s∗), and solution, ϕ(s∗) =(

ζs∗(s∗)
0

)
.

It should be noted that once the set of active indices is updated via Algo-
rithm 1, one must also update the arrays in M. Fortunately, after applying
Algorithm 1, only one variable enters or exits the active set of indices. For this
reason, most of the arrays update can be achieved by removing/concatenating
rows and columns of the previous arrays. In particular, in this step we have
two cases:
• The new set of active indices is given by A(s∗)\Ass∗ , i.e., one active variable
j ∈ A(s∗) joins the inactive set. This is the simplest scenario, since both
A and C are updated by eliminating their jth row and column. Such a jth

row of A and C (except its jth entry) are then concatenated as the last row
of arrays B and D, respectively, to update them. Analogously, b and d are
updated by eliminating their jth entry, which is then concatenated as the
last entry of c and e. Therefore, the update ofM can be done in O(1) time
in this case.

• The new set of active indices is given by A(s∗) ∪ Iss∗ , i.e., one inactive
variable j /∈ A(s∗) joins the active set. This scenario is slightly more difficult

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 13

as we need to compute the dot product between the jth column of
˜̃
Xs∗
m (or

˜̃
X s∗m−1) and all the columns of X̃s∗

m (or X̃ s∗m−1) and itself and add them as the
last row and column of A and C, respectively, which has a O(n · ds∗) cost,

where n =
m∑
t=0

nt. Analogously, for B and D, we just need to compute the

dot product of between the jth column of
˜̃
Xs∗
m (or

˜̃
X s∗m−1) and all the other

columns of
˜̃
Xs∗
m (or

˜̃
X s∗m−1), which is O(n · (d − ds∗)). Following the same

reasoning, both b and d are updated in O(n) time, and c and e in O(1)
time. Therefore, the update of M can be done in O(n · d) time in this case.
Taking all these steps into account, in the following section we formalize

the proposed solver for LASSO with adaptive filtering for streaming data.

2.1.3 Adaptative Filtering LASSO Homotopy

In this section, we present the implementation of the Adaptative Filtering
LASSO Homotopy (AFLH) in Algorithm 2. As commented earlier, the goal of
this approach is to make the corresponding transformations over the active set
of variables of ϕ(0) = θ

Xm−1,Ym−1
µ to determine ϕ(1) = θXm,Ym

µ by exploting
the piecewise smoothness property of ϕ(s).

Using the bisection-based approach presented in Algorithm 1, and given a
solution ϕ(s∗), for s∗ ∈ [0, 1), we evaluate the optimality conditions, Eq.6-7,
for s ∈ (s∗, 1], with the set of active variables A(s∗), Eq.10-11, in such a way
that we can determine the appropriate modification of the active set of indices.
The process ends when we can determine A(1), in which case we can compute
ϕ(1) = θXm,Ym

µ .

Algorithm 2 AFLH Algorithm

1: Input: Solution ϕ(0) = θ
Xm−1,Ym−1
µ and associated collection of arrays

M = {A,B,b, c}.
2: Output: Solution ϕ(1) = θXm,Ym

µ .
3: Set s∗ = 0 and compute C,D,d, e and add them to M.
4: while s∗ < 1 do
5: Compute ζs∗(s), Ψs∗(s) and Vss∗ (Eq.10-11).
6: Update (s∗,A(s∗), ϕ(s∗)) by appying Algorithm 1 on ϕ(s∗) and M.
7: Update the collection of arrays M using A(s∗).
8: end while
9: Return θXm,Ym

µ = ϕ(1) and active set A(1).

As we previously commented, the homotopy proposed in Algorithm 2 al-
ternates between finding the transformation of the active set of indices via
Algorithm 1, which is O(d∗ ·max{d − d∗, d∗2}), where d∗ = maxs∈[0,1]|A(s)|,
and its corresponding effect on the collection of arrays,M, discussed at the end

Springer Nature 2021 LATEX template

14 LASSO for Streaming Data with Adaptative Filtering

of Section 2.1.2, which in the worst case scenario is O(n ·d). More importantly,
we must point out that the only arrays that are known at the beginning of Al-
gorithm 2 are those related to Xm−1 and Ym−1, for s∗ = 0, i.e., A, B, b and c.
For this reason, we need to additionally compute C, D, d and e to construct
M. This can be done in O(nm ·d∗ ·max{d∗, d−d∗}) time. Hence, Algorithm 2
is, in the worst case scenario, O(max{n·d, d∗ ·max{d∗2, nm ·max{d∗, d−d∗}}}).
This analysis can be further simplified if we assume a fairly common scenario:
d∗ < d−d∗ and d∗ < nm, in which case we have a O(max{n·d, nm ·d∗ ·(d−d∗)})
complexity. Observe that such a complexity is much lower than the one ob-
tained by most of the solvers presented in Sections 1.2-1.3, which tend to be
O(d2 ·max{n, d}).

3 Experiments

In a similar manner to the experimental setting proposed in [6], in this
section we empirically compare our proposal, the Adaptative Filtering LASSO
Homotopy algorithm (AFLH), to Coordinate Descent, taking the correspond-
ing LASSO solution prior receiving the last batch as warm-start (CD ws)
and with random initialization (CD), LARS method (LARS) and the One-
Observation-At-A-Time LASSO Homotopy algorithm proposed by Garrigues
& Ghaoui in [6] (OOLH)1.

In order to observe the behavior of the considered algorithms for the
different parameters of the problem, we first analyze the performance of
AFLH, CD, CD ws, LARS and OOLH for different regresion problems
generated via the make regression routine of the Scikit-Learn library, for
n ∈ {500, 5000, 50000} and d ∈ {100, 1000, 10000}2. In particular, for our ex-
perimental setting, we consider the case m = 1 and so, given a data set,
(X ,Y), we split it into two data sets: we first select 100 · (1− n0)% of the in-
stances uniformly at random as the set of previous batches, (Xm−1,Ym−1), and
the the rest of the instances define the new batch of information, (Xm,ym),
with with n0 ∈ {0.01, 0.05, 0.10}. Additionally, we set r ∈ {0.50, 0.75, 1}
and µ ∈ {0.001 · µmax, 0.005 · µmax, 0.01 · µmax, 0.05 · µmax, 0.10 · µmax}. Each
experiment is repeated five times.

In Figs 2-6, we show the relative computational times for all the methods
(proportion of running time of a given method with respect to the method
that converges the fastest) for all the considered parameters of the problem.

1In order to make a fair comparison in terms of running times, all considered algorithms are im-
plemented in Python: For OOLH, we are using the https://github.com/pierreg/reclasso published
in [6]. On the other hand, AFLH was also coded in https://github.com/MarcoVCapo/LASSO/
blob/main/AFLH.py and, finally, for CD and LARS, we used the Scikit-Learn implementations
of them.

2In the Supplementary Material, we additionally show results for real data sets obtained from
the UCI repository.

implementation
Python
Python

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 15

d: 100 d: 1000 d: 10000

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e+01

1e+03

1e+05

Method

T
i
m
e

Figure 2: Relative computational
time w.r.t. the dimensionality of
the problem, d.

n: 500 n: 5000 n: 50000

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e+01

1e+03

1e+05

Method

T
i
m
e

Figure 3: Relative computational
time w.r.t. the number of instances,
n.

n0: 0.01 n0: 0.05 n0: 0.1

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e+01

1e+03

1e+05

Method

T
i
m
e

Figure 4: Relative computational
time w.r.t. batch size, n0.

r: 0.5 r: 0.75 r: 1

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e+01

1e+03

1e+05

Method

T
i
m
e

Figure 5: Relative computational
time w.r.t. the forgetting term, r.

mu: 0.01 mu: 0.05 mu: 0.1

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e+01

1e+03

1e+05

Method

T
i
m
e

Figure 6: Relative computational time w.r.t. the penalty term, µ.

The results presented in the previous plots show that, regardless of scenario
presented, AFLH not only converged to the optimal LASSO solution in the
lowest running time, but it also massively reduces the computational running
times of CD, CD ws, LARS and OOLH. For instance, in the case of the
largest dimensionality, d = 10000, AFLH is, on average, a staggering 4.0×105,
7.9× 103, 8.6× 103 and 3.1× 105 times faster than CD, CD ws, LARS and
OOLH, respectively.

In general, we observe that the factor for which the relative running time
of most algorithms seems mostly affected is the dimensionality of the problem,
d, see Fig.2. In particular, we have that the ratio between the average rela-
tive running times of CD, CD ws, LARS and OOLH, for d = 10000 over
d = 100, is 91.2, 28.3, 19.6 and 2.15 for CD, CD ws, LARS and OOLH,
respectively. For all the other considered factors, the relative computational
times commonly seems to keep a similar behavior with respect to that obtained
by AFLH, see Figs.3-6.

Springer Nature 2021 LATEX template

16 LASSO for Streaming Data with Adaptative Filtering

In comparison to the other streaming homotopy, OOLH, we observe that
as the batch size is larger, n0, its relative running times with respect to AFLH
increases signifantly, see Table 1. This is expected since OOLH re-computes
the homotopy one instance at a time, which makes it especially uncompetitive
when the batch size increases.

Table 1: Average relative running times of OOLH w.r.t. AFLH.

Method n0 = 0.01 n0 = 0.05 n0 = 0.10

OOLH/AFLH 4.0× 104 1.8× 105 3.2× 105

One last factor that allows us to see the benefits of using the current solu-
tion as warm-start of a LASSO solver when a new batch of data arrives can
be seen in Table 2.

Table 2: Average relative number of iterations of CD w.r.t. CD ws.

Method d = 100 d = 1000 d = 10000

CD/CD ws 2.1× 100 1.6× 101 1.3× 102

In Table 2, we observe the speed-up achieved -in terms of the number
of iterations of CD- by taking the previous solution as initialization of the
algorithm. For d = 10000, CD converged over 100 times faster just by making
such a modification.

Conclusions

In this work, we present a fast LASSO solver for data streams that can also
consider adaptive filters, called AFLH. Our proposal is a homotopy-based al-
gorithm that makes use of the LASSO solution obtained prior receiving the
last batch of information to speed up the convergence of our method over the
entire data set. Not only is AFLH an extension of the well-known homotopy-
based solver proposed by Garrigues & Ghaoui in [6] to a more general scenario
in which the explicit computation of transition points is not straightforward,
but it massively reduces the running times of this and other fairly popular
methods such as Coordinate Descent and LARS -over 105 times faster on aver-
age for data sets with more than d = 10000 features-. Furthermore, throughout
the article, besides presenting different theoretical guarantees of AFLH, we
make a detailed analysis of the computational complexity of our proposal and
optimize the implementation of each of its steps.

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 17

Appendix

This appendix is divided in two sections. First, in Section A, we show the proofs
of the all the theoretical results presented in the main article and comment on
their importance. Afterwards, in Section B, we add complementary empirical
results on artificial and real data sets.

A Proofs

In this section, we sketch the proofs of the theorems presented throughout
the article. The first result, Observation 1, allows us to relate the weighted
(adaptive filter) LASSO-based error function, Eq.2, to the common LASSO
error function, Eq.1. We will use this result to compare our proposal to the
state-of-art LASSO solvers on an adaptive filter scenario.

Observation 1. Given a sequence of batches, X = {Xt}mt=0, Y = {yt}mt=0,
and a forgetting parameter r ∈ [0, 1], if we define the sets of batches (Xt,Yt)
as follows:

(Xt,Yt) =

((

Xt√
r · Xt−1

)
,

(
yt√

r · Yt−1

))
if t > 0

(Xt,yt) if t = 0

then, for w = {rm−t}mt=0, fXm,Ym
µ (θ) = lX ,Yµ,w (θ) for all θ ∈ Rd.

Proof Observe that the following chain of equality holds for all θ ∈ Rd:

fXm,Ym
µ (θ) =

1

2
· ‖Xmθ − Ym‖22 + µ · ‖θ‖1

=
1

2
· (‖Xmθ − ym‖

2
2 + r · (‖Xm−1θ − Ym−1‖22)) + µ · ‖θ‖1

=
1

2
· (‖Xmθ − ym‖

2
2 + r · (‖Xm−1θ − ym−1‖

2
2)) + r2 · (‖Xm−2θ − Ym−2‖22)) + µ · ‖θ‖1

=
1

2
· (‖Xmθ − ym‖

2
2 + r · (‖Xm−1θ − ym−1‖

2
2)) + . . .+ rm · (‖X0θ − y0‖

2
2)) + µ · ‖θ‖1

=
1

2
·
m∑
t=0

rm−t · ‖Xtθ − yt‖
2
2 + µ · ‖θ‖1

= lX ,Yµ,w (θ)

�

The second theoretical result presented, Theorem 1, is a key property used
in the construction of our homotopy-based solver. As we commented through-
out Section 2, if one knows the correct set of active variables and corresponding
signs, we can compute in closed form the solution Eq.4. Theorem 1 shows
that both elements needed remain invariant for a certain interval within [0, 1].
Hence, we can easily compute such solutions in it.

Springer Nature 2021 LATEX template

18 LASSO for Streaming Data with Adaptative Filtering

Theorem 1. If ‖˜̃v(s∗)‖∞ < 1 is satisfied for a given s∗ ∈ [0, 1], then there is

ε > 0, such that ṽ(s) = ṽ(s∗) and ‖˜̃v(s)‖∞ < 1, for all s ∈ [s∗, s∗ + ε).

Proof We will show that, for a sufficiently small ε > 0, there is a solution to Eq.4

for which A(s) = A(s∗) and ṽ(s) = ṽ(s∗), for all s ∈ [s∗, s∗ + ε).

First of all, since we are assuming A(s) = A(s∗), we have that X̃s
m = X̃s∗

m ,˜̃
Xs
m =

˜̃
Xs∗
m , X̃ sm−1 = X̃ s∗m−1,

˜̃X sm−1 =
˜̃
X s∗m−1, for all s ∈ [s∗, s∗ + ε). Moreover,

we define A = s∗2 · X̃s∗
m

T
X̃s∗
m + r · X̃ s∗m−1

T

X̃ s∗m−1 and b = s∗2 · X̃s∗
m

T
ym + r ·

X̃ s∗m−1

T

Ym−1 − (r+ s∗ · (1− r)) ·µ · ṽ(s∗)), which are known in advanced since they

satisfy ϕ̃(s∗) = A−1b. Taking this into consideration and re-writting the optimality

conditions, Eq.6, using the binomial inverse theorem, for Λ = X̃s∗
m

T
X̃s∗
mA−1, we have

ϕ̃(s) = [s2 · X̃s∗
m

T
X̃s∗
m + r · X̃ s∗m−1

T

X̃ s∗m−1]−1[s2 · X̃s∗
m

T
ym + r · X̃ s∗m−1

T

Ym−1 −

−(r + s · (1− r)) · µ · ṽ(s∗)]

= [(s2 − s∗2) · X̃s∗
m

T
X̃s∗
m +A]−1[(s2 − s∗2) · X̃s∗

m

T
ym + (s− s∗) · (1− r) · µ · ṽ(s∗) + b]

= ϕ̃(s∗)− (s− s∗) ·A−1[I + (s2 − s2∗) · Λ]−1[(s+ s∗) · X̃s∗
m

T
ẽ+ (1− r) · µ · ṽ(s∗)], (14)

where ẽ = X̃s∗
m ϕ̃(s∗)−ym. Observe that ϕ̃(s) is a continuous function of s. Hence,

since, ϕ̃(s∗) has no null entry by definition, then there exists ε1 > 0 such that all

entries of ϕ̃(s) remain not null for s ∈ [s∗, s∗ + ε1).

Analogously, since
˜̃
v(s) = −1

(r+s·(1−r))·µ · (s2 · ˜̃Xs
m

T

(X̃s
mϕ̃(s) − ym) + r ·

˜̃X sm−1

T

(X̃ sm−1ϕ̃(s) − Ym−1)), and s ∈ [s∗, s∗ + ε) ⊆ [0, 1], then
˜̃
v(s) is also a con-

tinuous function of s and, since ‖
˜̃
v(s∗)‖∞ < 1, then there exists ε2 > 0 such that

‖˜̃v(s)‖∞ < 1 for s ∈ [s∗, s∗ + ε2). Finally, take εs∗ = min{ε1, ε2}.
�On the same token, Corollary 1, is a first attempt to compute the transition

points -for the active variables that get annulled- using the continuity of Eq.4
within the interval presented in Theorem 1.

Corollary 1. Given a solution ϕ̃(s∗) = A−1b, for s∗ ∈ [0, 1), where A and b

are defined by Eq.6, and Λ = X̃s∗
m

T
X̃s∗
mA

−1, then

ϕ̃(s) = ϕ̃(s∗)− (s− s∗) ·A−1[I + (s2 − s∗2) · Λ]−1[(s+ s∗) · X̃s∗
m

T
ẽ+

+(1− r) · µ · ṽ(s∗)], (8)

where ẽ = X̃s∗
m ϕ̃(s∗)− ym, for all s ∈ [s∗, s∗+ ε), and ε defined in Theorem 1.

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 19

Proof Taking A = s∗2 · X̃s∗
m

T
X̃s∗
m + r · X̃ s∗m−1

T

X̃ s∗m−1 and b = s∗2 · X̃s∗
m

T
ym + r ·

X̃ s∗m−1

T

Ym−1 − (r + s∗ · (1 − r)) · µ · ṽ(s∗)), the result is deduced in the chain of
equalities of Eq.14. �

Due to the complexity of computing explicitly the transition points from
the result presented in Corollary 1, in Observation 2, we introduce a condition
that eases such a computation considering the eigenvalues of the Λ matrix.

Observation 2. If the eigenvalues of the matrix (s2 − s∗2) · Λ satisfy
maxλ(s2−s∗2)·Λ < 1, then we can determine, for each variable j ∈ A(s∗), the

value s for which ϕ̃(s)j = 0, by solving

∞∑
i=0

(s∗2 − s2)i+1 · Γi1j − (s∗2 − s2)i · (s∗ − s) · Γi2j = −ϕ̃(s∗)j , (9)

where Γi1 = A−1ΛiX̃s∗
m

T
ẽ and Γi2 = (r − 1) · µ ·A−1ΛiX̃s∗

m

T
ṽ(s∗).

Proof Since maxλ–(sˆ2− sˆ–2 ∗ ˝) · Λ˝ < 1, then we can apply the binomial series
expansion over [I + (s2 − s2∗) · Λ]−1:

[I + (s2 − s2∗) · Λ]−1 =

∞∑
i=0

(−1)i · (s2 − s2∗)i · Λi (15)

The result is then achieved by plugging Eq.15 into Eq.8.
�

Finally, in Theorem 2, we comment on the case proposed in [6], in which
one observation is received at a time. In this scenario, we can easily compute
the corresponding transition points explicitly from the data. The result present
in Theorem 2 is a generalization of that obtained by [6], in which no adaptive
filter is considered.

Theorem 2. Given a solution ϕ̃(s∗) = A−1b, for s∗ ∈ [0, 1), where A and b

are defined by Eq.6. If nm = 1, u = A−1X̃s∗
m

T
, α = X̃s∗

m u and z = (r − 1) · µ ·
A−1ṽ(s∗), then ϕ̃(s)j = 0, for

s =
zj ·mj

2
±
(
s∗2 − ϕ(s∗)j ·mj + zj ·mj · (

mj

4
+ s∗)

) 1
2

,

where mj = (α · ϕ(s∗)j − ẽ · uj)−1, for all j ∈ A(s∗).

Proof First of all, observe that using Sherman-Morrison formula, for all s ∈ [s∗, s∗+
ε), we have.

ϕ̃(s) = [s2 · X̃s∗
m

T
X̃s∗
m + r · X̃ s∗m−1

T

X̃ s∗m−1]−1[s2 · X̃s∗
m

T
ym + r · X̃ s∗m−1

T

Ym−1 −

Springer Nature 2021 LATEX template

20 LASSO for Streaming Data with Adaptative Filtering

−(r + s · (1− r)) · µ · ṽ(s∗)]

= [(s2 − s∗2) · X̃s∗
m

T
X̃s∗
m +A]−1](s2 − s∗2) · X̃s∗

m

T
ym + (s− s∗) · (1− r) · µ · ṽ(s∗) + b]

= ϕ̃(s∗)− 1

1 + (s2 − s∗2) · α
· [(s2 − s∗2) · ẽ · u− (s− s∗) · z],

where ẽ = X̃s∗
m ϕ̃(s∗)−ym, u = A−1X̃s∗

m

T
, α = X̃s∗

m u and z = (r− 1) ·µ ·A−1ṽ(s∗).
Hence, making use of Eq.16, we can compute explicitly the transition point for each

j ∈ A(s∗), ς, i.e., ϕ̃(s)j = 0:

s = −
zj

2 · (α · ϕ(s∗)j − ẽ · uj)
±
(
s∗2 − (α−

ẽ · uj
ϕ(s∗)j

)−1 +

+
zj

α · ϕ(s∗)j − ẽ · uj
· (1

4 · (α · ϕ(s∗)j − ẽ · uj)
+ s∗)

) 1
2

=
1

2
· zj ·mj ±

(
s∗2 − ϕ(s∗)j ·mj + zj ·mj · (

1

4
·mj + s∗)

) 1
2
,

where mj = (α · ϕ(s∗)j − ẽ · uj)−1. �

B Experimental Results

In this section, we further elaborate on the empirical results discussed in
Section 3.

First of all, we would like to comment that, as described throughout the
article, AFLH is a solver for LASSO with adaptive filter. AFLH3 is able to
process a large batch of new data while also implicitly applying a forgetting
factor to the previously analyzed information to improve its predictability on
non-stationary scenarios. In the case of the homotopy presented in OOLH this
task is not explicitly possible. In order to empirically to compare AFLH to
OOLH, in such cases, we first need to determine θ

Xm−1,Ym−1

µ/r via θ
Xm−1,Ym−1
µ ,

which can be done via LARS, for instance. Afterwards, we apply the homotopy
presented in [6] sequentially over each instance of (Xm,ym).

In Tables 3-7, we complement the results presented over the artificial
data sets, see Figs.2-6. In particular, we comment on the average relative
computational running times with respect to all the different parameter values.

3An implementation of AFLH can be found at https://..

https://..

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 21

Table 3: Average relative compu-
tational running time for the dif-
ferent dimensionalities of the data,
d.

Method d = 100 d = 1000 d = 10000

AFLH 1.0× 100 1.0× 100 1.0× 100

CD 4.4× 102 6.2× 103 4.0× 105

CD ws 2.9× 102 1.2× 103 7.9× 103

LARS 4.7× 102 1.4× 103 8.6× 103

OOLH 1.6× 105 5.8× 104 3.1× 105

Table 4: Average relative compu-
tational running time for the differ-
ent number of instances, n.

Method n = 500 n = 5000 n = 50000

AFLH 1.0× 100 1.0× 100 1.0× 100

CD 6.5× 103 3.6× 104 3.2× 103

CD ws 1.9× 102 6.6× 103 2.6× 103

LARS 1.1× 102 7.2× 103 3.1× 103

OOLH 2.6× 102 9.3× 103 4.4× 105

Table 5: Average relative compu-
tational running time for the differ-
ent batch sizes, n0.

Method n0 = 0.01 n0 = 0.05 n0 = 0.10

AFLH 1.0× 100 1.0× 100 1.0× 100

CD 1.5× 104 1.6× 104 1.4× 104

CD ws 3.2× 103 3.1× 103 2.9× 103

LARS 3.6× 103 3.5× 103 3.2× 103

OOLH 3.9× 104 1.7× 105 3.1× 105

Table 6: Average relative compu-
tational running time for the differ-
ent forgetting terms, r.

Method r = 0.50 r = 0.75 r = 1

AFLH 2.1× 100 1.0× 100 1.0× 100

CD 1.4× 104 1.6× 104 1.5× 104

CD ws 2.8× 103 3.4× 103 3.2× 103

LARS 2.9× 103 3.7× 103 3.6× 103

OOLH 1.8× 105 1.7× 105 1.8× 105

Table 7: Average relative computational running time for the different penalty
terms, µ.

Method µ = 0.01 µ = 0.05 µ = 0.10

AFLH 1.0× 100 1.0× 100 1.0× 100

CD 3.0× 104 9.4× 103 5.8× 103

CD ws 3.1× 103 3.4× 103 2.9× 103

LARS 3.5× 103 3.6× 103 3.2× 103

OOLH 1.8× 105 1.9× 105 1.6× 105

In Tables 2-7, we observe again that in general the dimensionality of the
problem seems to be the main factor affecting the overall performance of the
methods, except for OOLH, which is also deeply affected by the size of the
batches and the size of the data sets, n0 and n, respectively. The previously
discussed results are obtained for the case m = 1. Observe that, for m > 1, if
more batches arrive in the stream of data, then the difference of computational
time is expected to be even more favourable for AFLH in comparison to the
other methods.

Finally, in order to verify that all the considered algorithms indeed con-
verged to the expected solution of the problem, in Figs.7-11, we show the
relative error of the LASSO with adaptive filtering error function, Eq.2, of the

Springer Nature 2021 LATEX template

22 LASSO for Streaming Data with Adaptative Filtering

optimal solution with respect to the solution obtained for each method, for all
the parameters.

d: 100 d: 1000 d: 10000

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e−15

1e−13

1e−11

1e−09

Method

E
r
r
o
r

Figure 7: Relative error w.r.t. the
dimensionality of the problem, d.

n: 500 n: 5000 n: 50000

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e−15

1e−13

1e−11

1e−09

Method

E
r
r
o
r

Figure 8: Relative error w.r.t. the
number of instances, n.

n0: 0.01 n0: 0.05 n0: 0.1

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e−15

1e−13

1e−11

1e−09

Method

E
r
r
o
r

Figure 9: Relative error w.r.t.
batch size, n0.

r: 0.5 r: 0.75 r: 1

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e−15

1e−13

1e−11

1e−09

Method

E
r
r
o
r

Figure 10: Relative computational
error w.r.t. the forgetting term, r.

mu: 0.01 mu: 0.05 mu: 0.1

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e−15

1e−13

1e−11

1e−09

Method

E
r
r
o
r

Figure 11: Relative computational error w.r.t. the penalty term, µ.

B.1 Additional Results on Real Data Sets

In this section, we comment on additional results that were obtained on real
regression data sets obtained from the UCI repository, see Table 8. As in
Section 3, we consider the following parameter values: n0 ∈ {0.01, 0.05, 0.10},
r ∈ {0.50, 0.75, 1} and µ ∈ {0.001·µmax, 0.005·µmax, 0.01·µmax, 0.05·µmax, 0.10·
µmax}.

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 23

Table 8: Data Sets Information.

Data Set n d

Madelon NIPS (MN) 1800 499
Isolet (IS) 6238 617

Superconductivity (SC) 21263 81
Song (SG) 515345 90

In Figs 12-15, we observe the relative running times w.r.t. the algorithm
that converged the fastest for the different parameters of the problem and data
sets considered:

DS: MN DS: IS DS: SC DS: SG

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e+01

1e+03

1e+05

Method

T
i
m
e

Figure 12: Relative computational
time w.r.t. the different data sets.

n0: 0.01 n0: 0.05 n0: 0.1

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e+01

1e+03

1e+05

Method

T
i
m
e

Figure 13: Relative computational
time w.r.t. batch size, n0.

r: 0.5 r: 0.75 r: 1

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e+01

1e+03

1e+05

Method

T
i
m
e

Figure 14: Relative computational
time w.r.t. the forgetting term, r.

mu: 0.01 mu: 0.05 mu: 0.1

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

A
F
L
H

C
D

C
D
_
w
s

L
A
R
S

O
O
L
H

1e+01

1e+03

1e+05

Method

T
i
m
e

Figure 15: Relative computational
time w.r.t. the penalty term, µ.

As observed in Section 3, AFLH converges the fastest regardless of the
setting considered for the LASSO with adaptive filtering problem. The most
competitive method besides AFLH is LARS, which best performance is
achieved in the smallest data set, MN. However in this case, LARS is still 3.09
times slower than AFHL, on average. On the other hand, for the largest data
set, SG, we observe a remarkable running time difference between AFHL and
its competitors: CD, CD ws, LARS and OOLH take 6.9 × 104, 8.8 × 103,
8.9× 101 and 9.6× 105 more running time than AFHL. This is expected, due
to the large size of the batch being processed.

References

[1] Yuan L, Liu J, Ye J. Efficient methods for overlapping group lasso. In:
Advances in neural information processing systems; 2011. p. 352–360.

Springer Nature 2021 LATEX template

24 LASSO for Streaming Data with Adaptative Filtering

[2] Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity:
the lasso and generalizations. CRC press; 2015.

[3] Monti RP, Anagnostopoulos C, Montana G. A framework for adaptive
regularization in streaming Lasso models. stat. 2016;1050:28.

[4] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological). 1996;58(1):267–
288.

[5] Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis
pursuit. SIAM review. 2001;43(1):129–159.

[6] Garrigues P, Ghaoui LE. An homotopy algorithm for the Lasso with on-
line observations. In: Advances in neural information processing systems;
2009. p. 489–496.

[7] Tibshirani RJ, et al. The lasso problem and uniqueness. Electronic
Journal of statistics. 2013;7:1456–1490.

[8] Efron B, Hastie T, Johnstone I, Tibshirani R, et al. Least angle regression.
The Annals of statistics. 2004;32(2):407–499.

[9] Fu WJ. Penalized regressions: the bridge versus the lasso. Journal of
computational and graphical statistics. 1998;7(3):397–416.

[10] Kim Y, Kim J. Gradient LASSO for feature selection. In: Proceedings of
the twenty-first international conference on Machine learning; 2004. p. 60.

[11] Osborne MR, Presnell B, Turlach BA. A new approach to variable se-
lection in least squares problems. IMA journal of numerical analysis.
2000;20(3):389–403.

[12] Lokhorst J, Venables B, Turlach B, Maechler M. lasso2: L1 constrained
estimation aka ‘lasso’. R package version. 2007;p. 1–2.

[13] Boyd S, Boyd SP, Vandenberghe L. Convex optimization. Cambridge
university press; 2004.

[14] Nesterov YE, Nemirovski A. Interior-point polynomial methods in convex
programming, vol. 14 of Stud. Appl Math, SIAM, Philadelphia. 1994;.

[15] Wright SJ. Primal-dual interior-point methods. SIAM; 1997.

[16] Ye Y. Interior point algorithms: theory and analysis. vol. 44. John Wiley
& Sons; 2011.

Springer Nature 2021 LATEX template

LASSO for Streaming Data with Adaptative Filtering 25

[17] Kim SJ, Koh K, Lustig M, Boyd S, Gorinevsky D. An interior-point
method for large-scale l 1-regularized least squares. IEEE journal of
selected topics in signal processing. 2007;1(4):606–617.

[18] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications
on Pure and Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences. 2004;57(11):1413–1457.

[19] Ida Y, Fujiwara Y, Kashima H. Fast Sparse Group Lasso. In: Advances
in Neural Information Processing Systems; 2019. p. 1702–1710.

[20] Liu H, Palatucci M, Zhang J. Blockwise coordinate descent procedures for
the multi-task lasso, with applications to neural semantic basis discovery.
In: Proceedings of the 26th Annual International Conference on Machine
Learning; 2009. p. 649–656.

[21] Qin Z, Scheinberg K, Goldfarb D. Efficient block-coordinate descent al-
gorithms for the group lasso. Mathematical Programming Computation.
2013;5(2):143–169.

[22] Wu TT, Lange K, et al. Coordinate descent algorithms for lasso penalized
regression. The Annals of Applied Statistics. 2008;2(1):224–244.

[23] Hastie T, Rosset S, Tibshirani R, Zhu J. The entire regularization path
for the support vector machine. Journal of Machine Learning Research.
2004;5(Oct):1391–1415.

[24] Shor NZ. Minimization methods for non-differentiable functions. vol. 3.
Springer Science & Business Media; 2012.

[25] Kim J, Kim Y, Kim Y. A gradient-based optimization algorithm for lasso.
Journal of Computational and Graphical Statistics. 2008;17(4):994–1009.

[26] Langford J, Li L, Zhang T. Sparse online learning via truncated gradient.
In: Advances in neural information processing systems; 2009. p. 905–912.

[27] Mairal J, Yu B. Complexity analysis of the lasso regularization path.
arXiv preprint arXiv:12050079. 2012;.

[28] Malioutov DM, Cetin M, Willsky AS. Homotopy continuation for sparse
signal representation. In: Proceedings.(ICASSP’05). IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2005.. vol. 5.
IEEE; 2005. p. v–733.

[29] Rosset S, Zhu J. Piecewise linear regularized solution paths. The Annals
of Statistics. 2007;p. 1012–1030.

Springer Nature 2021 LATEX template

26 LASSO for Streaming Data with Adaptative Filtering

[30] Gärtner B, Jaggi M, Maria C. An exponential lower bound on the
complexity of regularization paths. arXiv preprint arXiv:09034817. 2009;.

[31] Heard NA, Weston DJ, Platanioti K, Hand DJ, et al. Bayesian anomaly
detection methods for social networks. The Annals of Applied Statistics.
2010;4(2):645–662.

[32] Weiskopf N. Real-time fMRI and its application to neurofeedback.
Neuroimage. 2012;62(2):682–692.

[33] Gaber MM, Zaslavsky A, Krishnaswamy S. Mining data streams: a review.
ACM Sigmod Record. 2005;34(2):18–26.

[34] Krempl G, Žliobaite I, Brzeziński D, Hüllermeier E, Last M, Lemaire V,
et al. Open challenges for data stream mining research. ACM SIGKDD
explorations newsletter. 2014;16(1):1–10.

[35] Aggarwal CC. Data streams: models and algorithms. vol. 31. Springer
Science & Business Media; 2007.

[36] Hayes MH. Statistical digital signal processing and modeling. John Wiley
& Sons; 2009.

[37] Haykin SS. Adaptive filter theory. Pearson Education India; 2008.

[38] Gustafsson F, Gustafsson F. Adaptive filtering and change detection.
vol. 1. Citeseer; 2000.

[39] Monti RP, Anagnostopoulos C, Montana G. Adaptive regularization
for lasso models in the context of nonstationary data streams. Sta-
tistical Analysis and Data Mining: The ASA Data Science Journal.
2018;11(5):237–247.

	Introduction
	LASSO Optimization Problem
	Solving LASSO
	Data Streaming and Adaptative Filtering
	Contribution

	LASSO for Streaming Data
	Derivation of the LASSO Solver with Adaptative Filtering
	red Challenges in Computing the Transition Points
	About the Active Set of Indices
	Adaptative Filtering LASSO Homotopy

	Experiments
	Proofs
	Experimental Results
	Additional Results on Real Data Sets

