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Direct Sampling with a Step Function
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Abstract

The direct sampling method proposed by Walker et al. (JCGS 2011) can generate draws from weighted
distributions possibly having intractable normalizing constants. The method may be of interest as a
useful tool in situations which require drawing from an unfamiliar distribution. However, the original
algorithm can have difficulty producing draws in some situations. The present work restricts attention
to a univariate setting where the weight function and base distribution of the weighted target density
meet certain criteria. Here, a variant of the direct sampler is proposed which uses a step function to
approximate the density of a particular augmented random variable on which the method is based. Knots
for the step function can be placed strategically to ensure the approximation is close to the underlying
density. Variates may then be generated reliably while largely avoiding the need for manual tuning or
rejections. A rejection sampler based on the step function allows exact draws to be generated from
the target with lower rejection probability in exchange for increased computation. Several applications
of the proposed sampler illustrate the method: generating draws from the Conway-Maxwell Poisson
distribution, a Gibbs sampler which draws the dependence parameter in a random effects model with
conditional autoregression structure, and a Gibbs sampler which draws the degrees-of-freedom parameter
in a regression with t-distributed errors.

Keywords: Weighted distribution; Intractable normalizing constant; Inverse CDF sampling; Rejection
sampling; Gibbs sampling

1 Introduction

This paper revisits the direct sampling method proposed by Walker et al. (2011). Consider drawing a random
variable X with support @ C R whose density takes the form

(@) = w@)g(@) ., zef ¢= /Q w(z)g(z)dv(z), (1)

where v(-) is a dominating measure. The distribution of z may be discrete, continuous, or continuous with
point masses. Density f can be recognized as a weighted distribution (e.g. Patil and Rao, 1978) with a weight
function w : R — [0, 00) which adjusts the base density g in some prescribed way. Direct sampling augments
a random variable U so that the joint distribution of [X, U] is easier to draw than X itself. Let I(-) be the
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indicator function and suppose ¢ = sup,cq w(z) is finite. Assume that [U | X = z] ~ Uniform(0, w(z)/c),
so that

flulz) =

(@) I(0 < u < w(zx)/c).

Define the event A, = {z € Q : w(x) > uc}. The joint density of [X, U] is then
¢
fz,u) = @9(90) I(z € Ay). (2)
From (2), the marginal density of U may be obtained as

p(u) = SP(A,), welo1],

G
with P(A4,) = [I(z € Ay)g(x)dv(z). The distribution of [X | U = u] is then
folw = 21 e A, ®)
P(Ay)
Now U is bounded in [0,1], with A; D A, if s < u so that P(A4,) is monotonically nonincreasing in w.
Evaluated at the endpoints {0, 1}, Ao is equivalent to the support of w with P(4g) = [, l(w(z) > 0)g(z)dv(x)

and A; is an empty set with P(A;) = 0.
A draw from f(x) may be approximately obtained by drawing U from p(u) then X from f(z | u) in the
following way. For a predefined positive integer N, compute

P(Ax/n)
im0 P(Agn)

Sample discrete random variable K from the values 0, 1, ..., N with respective probabilities ¢(0/N),...,q(N/N),
then draw from [U | K = k] ~ Beta(k + 1, N — k 4 1). The marginal density of U is then proportional to

q(k/N) = k=0,1,...,N. (4)

XN: uF(1 —u)N=F
2B+ LN —k+ 1)

x Z (JD uF(1—w)N"Fg(k/N), wuwe(0,1) (5)
k=0

where B(a,b) = T'(a)T'(b)/T'(a + b) is the beta function. Expression (5) is an approximation to p(u) by
Bernstein polynomials (e.g. Rivlin, 1981). A variate x from the truncated distribution (3) may be obtained
by repeating draws of candidate z* from g(z), which is straightforward in many applications, until * € A,
where x is taken to be x*. This algorithm was described by Walker et al. (2011) as a basic implementation
of their direct sampling idea.

Direct sampling is interesting as an alternative to standard strategies such as Metropolis-Hastings, slice
sampling, rejection sampling, and adaptive rejection sampling (e.g. Robert and Casella, 2004); however, it
does not yet appear to be widely adopted the in literature. An exception is Braun and Damien (2016), who
explore it as a scalable replacement for the inherently serial Markov chain Monte Carlo (MCMC) approach to
Bayesian computing. The sampler described thus far may encounter challenges in practice which prevent it
from successfully drawing from the target distribution. First, the basic rejection sampling method described
to draw from (3) may require a very large number of candidates when the set A, has small probability
under g(x). Second, the function P(A,,) may take large sudden steps not efficiently captured by polynomial
approximation. Third, the support of P(A4,) may be concentrated on an interval [ur,ugy] with ugy a very
small positive number. For example, the second and third issues are seen in the bottom row of Figure 2.

q(k/N)



It is possible to focus the Bernstein approximation (5) to the interval [uy,, ug] or consider other functional
bases from the literature. However, we take an approach based on step functions which are relatively simple
with low computational burden. Martino et al. (2018, Section 3.6) provide background on step functions in
the context of rejection sampling; this motivates our use in approximating and drawing from the distribution
p(u). Expressions for the density, cumulative distribution function (CDF), and quantile function are available,
and exact draws may be taken directly via the quantile function. Through appropriate placement of knot
points, a step function can directly capture any jumps encountered in p(u). Simple bounds on the accuracy
of the approximation can be obtained in our setting, and such bounds can be improved by placing additional
knot points until a desired tolerance is achieved. A step function can serve as an envelope in rejection
sampling if exact draws from f(x) are required. In addition to assuming univariate X, we restrict ourselves
to weight functions w where A,, is an interval for each u € [0,1]. Ideally, endpoints of A, and the CDF and
quantile function of base distribution g are readily computed.

The remainder of the paper proceeds as follows. Section 2 discusses generating draws from (3) in this
setting without rejections. Section 3 presents use of the step function in direct sampling. Section 4 considers
three illustrative applications using this formulation of the direct sampler: drawing from the Conway-Maxwell
Poisson distribution, a Gibbs sampler for a conditional autoregression random effects model including in-
ference on the dependence parameter, and a Gibbs sampler for a regression model with errors following
a Student’s t-distribution including inference on the degrees of freedom. Finally, Section 5 concludes the
paper. Supporting code is provided as an electronic supplement, including materials to replicate the exam-
ples, implemented in both pure R (R Core Team, 2022) and with integrated C++ via the Repp framework
(Eddelbuettel, 2013).

2 Drawing from the Truncated Base Distribution

We first consider efficiently drawing from (3). Suppose density ¢ is associated with CDF and quantile
functions

G - [ " g(s)du(s). G (o) = inf{x € Q: G(a) > o),

—00

respectively. With A, assumed to be an interval (z1(u),z2(u)), whose endpoints are identified by the roots
of the equation w(z) = cu, (3) represents the base distribution g truncated to the interval (x1(u),z2(u))
with

flx]u)= % Tz (u) < z < 22(u)),

where G(z—) = limyy, G(t), s = G(z1(u)) and t = G(x2(u)—) are CDF values evaluated at the endpoints, and
[2] and |z| represent the ceiling and floor functions of z, respectively. The associated CDF of [X | U = u]
is

G(x)—s

Fla|u) = Z2=2,

z1(u) < x < 2o(u), (6)

with F(x | u) = 0 for z < z1(u) and F(z | u) = 1 for x > x2(u). We may invert F(z | u) to obtain the
¢ € (0,1) quantile of [X | U = u] as
F (p|lu)=inf{z € A, : F(z | u) > ¢}
=inf{x € Q: F(z|u) > ¢} (7)
inf{x € Q: [G(x) —s]/(t —s) > ¢}
inf{z € Q: G(z) > (t — s)p + s}
=G ((t=s)p+ ). (8)



To justify step (7), z € Q\ 4, implies < x1(u) or x > x2(u) so that either F(x | u) = 0 and does not satisfy
the criteria F(z | u) > ¢, or F(z | u) = 1 and there is a smaller o’ € (z1(u),z2(u)) with F(a' | u) > ¢.
Therefore, including © \ A, does not change the infimum. Now, an exact draw can be obtained via the
inverse CDF method (e.g. Lange, 2010, Section 22.3) using x = F~(V | u) with V' ~ Uniform(0, 1).

3 Step Function

To approximate the density p(u), we first identify an interval [ur,ug] C [0, 1] which contains the “descent”
from its maximum value to a value of zero; any further effort should be focused within this interval. Define
uy, as the smallest number such that P(A,,, ) < P(Ap) for the unnormalized density and ug as the smallest
number such that P(A4,,) > 0. A bisection method described in may be used to locate ur and w; see
Remark 3.4 at the end of this section.

To approximate the unnormalized P(A,,), let ugp < --- < uy be knot points with ug = uy, and uy = ug
and consider the function

N—-1
h*(u) = P(Ay,) 10 < u <) + > P(Ay,) - I(u; < < ujpq).

i=
A density is obtained using h(u) = h*(u)/a with

N-1

a :/O B (u)du = P(Au) o+ 37 P(Au) - (g1 — u)

0

<

The corresponding CDF is the piecewise linear function
H(u) =a ' P(Ay)u, if0<u<up,

and

-1
H(u) =a ' P(Ay)ug +a* ZP(Auj) (uji1 — uy)

7=0
+a ' P(Ay,) - (u —up),

ifup <u<wpyq for € €{0,....N—1}, H(u) =0 if u <0 and H(u) =1 if u > un. The quantile function
is also a piecewise linear function,

o — H(uy)
H(ugy1) — H(up)

H™ () = ue + (w1 — ue)

for H(ug) < < H(ugy1), £ € {0,...,N —1}. A draw from h can now be generated by u = H (V) where
V' ~ Uniform(0, 1).

The following proposition shows that the closeness of h(u) to p(u) can be characterized by total variation
distance. Let R; represent the rectangle in R? whose upper-left point is (u;_1,P(A,,_,)) and lower-right
point is (u;,P(Ay,)), for j =1,...,N. The area of R; is |R;| = [P(Au,_,) — P(Ay,)] (uj — uj_1).

Proposition 3.1. Let B denote the collection of measurable subsets of [0,1]; then

/Bh(u)du—/Bp(u)du

sup
BeB

N
< ENIRy. 9)
v =



Proof. First considering the unnormalized densities,

f;é% /Bh*(u)du_/Bp(Au)du (10)
= 0 = P
_/0 [h* (u) — P(Ay)]|du
N o
:Z/ [P () = P(A)]du
J;} y
<3 [ Pt - P

N N
=D IP(Ay, ) = P(Ay)(u; —uj-1) = )R], (11)
j=1
We have used the fact that h*(u) = P(A4,) for u € [0,ug] and h*(u) > P(A,,) otherwise. Integrating each
term of the inequality P(A,) < h*(u) <1 over u € [0,1] gives
P/e<a<l <<= 1<1/a<c/1p. (12)

Combining this with (11) yields inequalities for the normalized densities

/Bh(u)du—/Bp(u)dug i {/Bh*(u)du—/BP(Au)du}

< fém] (13)

and
/Bp(u)du — /B h(u)du < 5/Bh*(u)du - /B h*(u)du

Al A

[Tl

:5 [/0 h*(u)du—/o P(Au)du]

< ;im (14)
The result follows from (13) and (14). O

The upper bound in (9) is seen as a product of two factors: a constant ¢/v which is determined by the
density (1) of interest and Z;V:;L |R ;| which can be influenced by the selection of knots.

There are a number of possible choices for the knots ui,...,un—1. Equally-spaced knots u; = ur +
(j/N)(up — uyp) provide simplicity but can fail to capture regions of [ur,, uy| with sudden changes in P(A,,).
Proposition 3.1 motivates placement of knots to ensure that no R; is too large. Namely, given ug, u1, ..., ux
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Figure 1: (a) Step function h*(u) (dashed black lines) to approximate a concocted P(A,) (solid blue curve)
based on knots ug, ..., un. Blue shaded areas represent rectangles R;. (b) Updated step function with w,

inserted at midpoint of ug and wy; R is replaced by Rgl) and R(lz).

with associated rectangles Ri,...,Rj we consider placing a new knot u, at the midpoint of [uj_1,u;]
which has the largest |R;|. This replaces R; with new rectangles R;l) and R§2), yielding an improvement
|R§-1)| + |R§-2)\ < |R;| in regions where P(A,) is decreasing; otherwise, \R§1)| + |R§-2)| = |R;| so that the
bound in (9) is no worse. Stated as Algorithm 2, this method often provides a better selection of knots under
a fixed N than equally-spaced points, at the cost of increased computation. Use of a data structure such as

a priority queue (Cormen et al., 2009, Section 6.5) can help to avoid repeated sorting of |R4],...,|R|- An
illustration of one step of Algorithm 2 is shown in Figure 1.

Remark 3.2 (Midpoint). The midpoint in Algorithm 2 is specified by a function mid(z,y), with typical
choices being the arithmetic mean mid(z,y) = (z + y)/2 or the geometric mean mid(z,y) = (zy)*/2. The
arithmetic mean may yield a better approximation when P(A4,) > 0 on a large potion of [0,1]. However,
the geometric mean may be preferred when some knots are extremely small. For example, if u; = 107190
and uy = 1071% and a large descent occurs near uy,, the geometric mean 10~°° is much closer to the descent
than the arithmetic mean %10’100 + %10*10 R %10*10. An example where knots are needed very close to
zero is given in Section 4.1. The geometric mean is assumed for the remainder of the paper unless otherwise
noted.

The step function h*(u) can be used to formulate a rejection sampler to take exact draws from p(u)
(Martino et al., 2018). By construction, h*(u) > P(4,) for all u € [0,1], so that rejection sampling can be
carried out by Algorithm 1. The bound in (9) also bounds the probability of a rejection, which occurs when
[Accept = 0] in Line 6 of Algorithm 1.

Proposition 3.3. The probability of rejection in Algorithm 1 is no greater than Z;V:1 IR;.

Proof. Suppose V' ~ Uniform(0,1) and U ~ h(u) are independent random variables and let M = a/(¢/c).



The probability of rejecting a candidate is

P(v- 548) e (> i)
=1-Ey [P <V< ]\557,[{[)]) ‘Uﬂ
—1-Ey [1\52((]()])} =1 ]\14 _ aiaq/’/C.

Applying the inequality a—v/c = fol [h*(u) —P(Ay)]du < Zj\;l |R;| from (11) to the numerator and a > ¢/c
from (12) to the denominator gives the result. O

As anticipated, rejection is assured to be less likely when A* and P(A,,) are closer. A rejected u may be
added to the set of knot points to decrease the probability of a rejection in subsequent proposals, as shown
in Line 5 of Algorithm 1.

Algorithm 1 Rejection sampler based on direct sampling with step function h.

do
Draw candidate u from step density h.
Draw v from Uniform(0, 1).
Accept + H{v < P(A4,)/h*(u)}.
Update h* with u as additional knot if adaptive rejection is desired.
while Accept =0
: Draw z from f(x | u).
return z.

Algorithm 2 Select knots uq,...,uxy_1 to reduce Zjvzl IR,

Let u(® = ur, and u® =y,
fori=1,...,N—1do
Let ug < ... < u; be sorted u(© ... u®.
Let |R;j| = {P(Ay,_,) — P(Ay,) H(uj —uj_y1) for j =1,... 4.
Let j* = argmax |R;|.
G=1,...
Let w1 = mid(uj-_y,u;x).
end for
Let ug < ... < uy be sorted v(@ ... u™).
return (ug,...,un).

Remark 3.4 (Bisection method). A bisection search method (e.g. Lange, 2010, Section 5) is useful in several
computations in this section. Suppose S C R and ((z) : § — {0,1} is a step function which increases from
0 to 1 at a point z*. The objective of Algorithm 3 is to identify x* by supplying lower and upper bounds
xr, < xy such that (z7) =0 and ((zy) = 1, a function mid(x,y) : S — S which returns a point in [z, y],
and a distance function dist(x,y). We may therefore write * = min{x € [z, xg] : {(x) = 1}. Algorithm 3
is useful in the following computations.

1. To find uy, the smallest u € [0, 1] such that P(A,) < P(A4y), we first locate a sufficiently small j* €
{0,1,2,4,8,...} until P(Aexp(—j)) = P(Ao). Algorithm 3 may be used with ((u) = I{P(A.) < P(Ao)}
with 2, =e 7", and 2y = 1.



2. To find uy, the smallest v € [0,1] such that P(A4,) = 0, Algorithm 3 may be used with ((u) =
I{P(A,) >0}, 1, = ur, and zg = 1.

3. The quantile function H~'(¢) may be evaluated by Algorithm 3. Given precomputed values H (ug),

.., H(un) of the associated CDF, the index ¢ of the interval containing ¢ can be identified using

S§={0,1,....N}, 2z, =0, xg = N, mid(¢1, ) = [ ({1 +¥¢2)/2], and ((¢) = I{H (ug) > ¢}. From here,
linearity between H (u) and H (ug41) yields

H™Y(p) = ug + (uer — ue){ — H(ue)}/{H (uer1) — H(ue)}-

Algorithm 3 Bisection search for z* = min{z € [zr,zg| : ((z) = 1}. Inputs are bounds zj < xp, a step
function ¢(z) with {(zr) = 0 and {(xy) = 1, a midpoint function mid(z,y), a distance function dist(z, y),
and a tolerance § > 0.

x=mid(zr,zH)

while dist(zr,zm) > ¢ do
xp=C(x) zr+[1-C((z)] -«
2 = C(z)- o+ [1- (@) 2n
x=mid(zr,zH)

end while

return r

4 Illustrative Examples

We now demonstrate the direct sampler with step function through three examples. Algorithm 1 is used
throughout with a prespecified number N of initial knots selected by Algorithm 2, and subsequent knots
added through adaptive rejection. The direct sampler requires more computation than alternative methods
which are mentioned in the three examples, but also generates an exact sample with relatively very few
rejections. All reported run times were measured on an Intel Core 17-2600 3.40 GHz workstation with four
CPU cores.

4.1 Sampling from Conway-Maxwell Poisson

The Conway-Maxwell Poisson distribution has become popular in recent years as a count model which can
express either over- or underdispersion (Shmueli et al., 2005). The Conway-Maxwell Poisson distribution
CMP(A, v) has probability mass function (pmf)

)\JE

f(ac\@):m, ZC:O,l,..., )\>0, V>07 (15)

a weighted density in the form of (1), with normalizing constant Z(\,v) = Y .- A*/(x!)”. The over- or
underdispersion of CMP(\, v) is most readily compared to Poisson(\): CMP is overdispersed when v < 1,
underdispersed when v > 1, and is equivalent when v = 1. CMP also has several other well-known special
cases. When A € (0,1) and v = 0, CMP(\, v) becomes a Geometric distribution with density f(z | A) =
(I =X)A* for z =0,1,.... When v — oo, the CMP(\, v) density converges to that of Bernoulli(A/(1+ X)).

The normalizing constant Z (A, v) is a series which does not appear to have a closed form. Approximating
the normalizing constant has been a topic of interest (e.g. Gaunt et al., 2019). The expansion

_ exp(vA/Y) Yy
Z(\v) = )\(V_1)/2V(27T)(V—1)/2,/1/2 {1 +O0(A )}




given by Shmueli et al. (2005) illustrates in particular that the magnitude of Z(\,v) can vary wildly with A
and v. For example, Z(\,1) = e* for any A > 0 but Z(2,0.075) ~ €™%°15_ Given this volatility, an exact
method of generating variates which avoids computation of the normalizing constant is desirable.

Several recent papers have considered Bayesian analysis with CMP using the exchange algorithm (Mgller
et al., 2006; Murray et al., 2006). The exchange algorithm utilizes a data augmentation step in Metropolis-
Hastings sampling; an exact draw from the data-generating model is used to avoid computing the normalizing
constant Z (A, v) in the acceptance ratio and therefore obtain an MCMC sampler for the unknown parameters.
Chanialidis et al. (2018) and Benson and Friel (2021) take rejection sampling approaches to generate exact
CMP draws and implement the exchange algorithm: Chanialidis et al. (2018) creates an envelope based on
a piecewise Geometric distribution, while Benson and Friel (2021) use an envelope based on the Geometric
distribution when v < 1 and Poisson otherwise.

The direct sampler described in Algorithm 1 can be used to obtain exact draws from CMP with low
probability of rejection and avoid explicit computation of the normalizing constant. To do this, the cases
v > 1 and v < 1, corresponding to under- and overdispersion, are now addressed individually.

Case v > 1. Rewrite the unnormalized density (15) as

fw]0) e (2!3;”:(119 1iA(1H)w+1% "

and let base density g(x | \) = [A\(1 + A\)71*(1+ A\)~L, 2 = 0,1,..., be the pmf of a Geometric(1/{1 + \})
distribution. The weight function, on the log-scale, and its first and second derivative are respectively

logw(z | \,v) = (z+1)log(1+ A) —vlogT(z + 1),

8%6 logw(z | A,v) =log(1+ A) —vip(x + 1), (17)
0? ,
92 logw(z | \,v) = —vi'(z+1). (18)

Note that ¢ (z + 1) is increasing for > 0, where (1) = —0.57721566 . .. is the Euler-Mascheroni constant.
For any A > 0, log(1 + A) > 0 so that we may locate an z; and xpy that yield negative and positive
values of (17), respectively. A root z* of (17) exists in [xp,zpy], and may be identified using a root-
finding method such as Algorithm 3. The function (18) is negative for all z, so that logw(z | A,v) is
concave and z* is a maximizer with ¢ = logw(z* | A,v). To find the endpoints z1(u) < z2(u) of the
interval 4, = {z > 0 : logw(z | A\,v) > log(uc)}, root-finding may be applied twice to the function
logw(z | A\,v) — log(uc): once to obtain x(u) from the interval [0, c], and again to obtain xo(u) from the
interval [c, z%;], where z7; is a number large enough that logw(z¥; | A, v) — log(uc) is negative.

Case v < 1. Variates from CMP(A, v) can become very large as v is taken closer to zero, especially when
A > 1. Here, the support of a Geometric(1/{1 + A}) base distribution may be practically disjoint from the
target CMP, leading to extremely small probabilities in computations such as (6) and (8). To illustrate,
suppose X ~ CMP(\,v) with A = 2 and v = 0.075; here, P(X < 7,306) ~ e~ 4 but P(S > 7,086) ~
e~ 2873331 for § ~ Geometric(1/{1 + A}) so that [X < 9] effectively never occurs. A more convenient
base distribution is given by the reparameterization of CMP based on v and p = A\'/¥ used by Guikema
and Goffelt (2008) to formulate regression models. The unnormalized portion of density (15) may now be
decomposed as

z(v—1)

f(z]0) e =< a ) 1_1“(14-#)”1#7

() 1+p (zh) (19)

so that the base density g(z | ) = [(14+p) 12 (1+u) "L, 2 = 0,1,..., is the pmf of T" ~ Geometric(1/{1+u}).
The quantiles of T' corresponding to probabilities 0.025 and 0.975 are 261 and 38,075, compared to 9,607 and



11,061 for X, suggesting that the distribution of 7" is more suitable than that of S as a base distribution.
The log of the weight function and its first and second derivative are now, respectively,

logw(z | p,v) =(z+1)log(l+ u) —vloeg(x + 1)
+z(v — 1) log u,
grloguw(a | p,v) = {log(l+ p)+ (v —1)log u} (20)
—V’(/J(Q? + 1)7
Zotogu(e | ) = v+ 1). (21)

A root of (20) exists if the term log(1l + u) + (v — 1)log p is positive. To verify positivity, if g < 1, then
log(1+ p) + (v — 1)log . > log(1 + p) > 0; On the other hand, if ;> 1 then log(1 + ) + (v — 1) log pu >
log(1 4 p) —log u =log(1/p+ 1) > 0. Maximization and root-finding may then proceed similarly to the case
where v > 1.

Figure 2 compares the unnormalized density P(A,) with unnormalized step function h*(u) in two CMP
settings with A = 2: one with v = 0.5 using N = 13 knots and one with v = 0.2 using N = 20 knots, corre-
sponding to progressively higher levels of overdispersion. Three different knot selection methods are shown
for comparison: equal spacing, Algorithm 2 using geometric midpoints, and Algorithm 2 using arithmetic
midpoints. Although v < 1 in this example, the step function has been constructed from decomposition
(16) to illustrate the effect of using a base distribution which differs either moderately and greatly from the
target. The case v = 0.5 is handled relatively well by all three methods, with arithmetic midpoint providing
the best approximation followed by equal spacing, then geometric midpoint. A decrease in v to 0.2 is seen to
create a much more difficult situation, with much of the density occurring in a small subinterval of [ur,, ug].
Here, equal spacing will require a large N to obtain a useful approximation. Algorithm 2 with arithmetic
midpoint produces a better approximation than equal spacing, but has not yet located the steep descent
shown on the left of the display. On the other hand, the geometric midpoint is able to capture this feature;
this is due to its suitability with very small magnitude numbers as discussed in Remark 3.2.

Remark 4.1 (Weighted rectangles). The approximation in Figures 2e and 2f can be further improved,
without increasing N, by using a weighted priority wlog{P(A.,_,) — P(Ay,)} + (1 — w)log(u; — u;-_1),
w € (0,1), in place of log |R;| to order the rectangles. In particular, w > 1/2 prioritizes taller rectangles over
wider ones having equal area which encourages knot placement at sudden descents occurring on very short
intervals.

Figure 3 displays draws of CMP(\,v) from Algorithm 1 with A = 2 and v € {0.05,0.5,2,5}. Here,
decomposition (16) is used with v € {2,5} and (19) is used with v € {0.05,0.5}. As anticipated, the
empirical pmf of 20,000 draws matches closely to the exact pmf (15). With N = 10 knots initially selected
in each case, the number of rejections was 279, 86, 40, and 27 in Figures 3a, 3b, 3c, and 3d, respectively.
This demonstrates the ability of the samplers obtained in this section to generate CMP variates with small
probability of rejection. This may be contrasted to acceptance rates as low as about 20% reported by Benson
and Friel (2021); however, their rejection sampler requires less computation and therefore may be faster in
practice.

4.2 Sampling the Dependence Parameter in Conditional Autoregression

In a conditional autoregression (CAR) setting (e.g. Cressie, 1991, Section 6.6), the joint distribution of
a random vector n = (n1,...,7n) implies a certain regression for each conditional distribution [1; | 17—,
t=1,...,k, where n_; = (1, ..., Mi—1,Mi+1,---Mk). Let us consider a particular mixed effects CAR model
which is useful for data observed on areal units in a spatial domain. Suppose there are k distinct areas
and let A = (a;;) be a k x k adjacency matrix; a;; = 1 if areas ¢ and j are adjacent and i # j, otherwise

a;; = 0. Let D = Diag(ai+,...,ar+) with a4 = 25:1 a;; be a diagonal matrix containing the row sums of
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Figure 2: Realizations of P(4,) (solid red line) and h*(u) (dashed line) for Conway-Maxwell Poisson with
A = 2. Shaded rectangles represent the rectangles R;. The top row (a), (b), and (c) correspond to v = 0.5
with N = 13 while the bottom row (d), (e), and (f) correspond to v = 0.2 with N = 20. Knots for (a)
and (d) were selected by equal spacing, (b) and (e) were selected using Algorithm 2 with geometric mean
to compute midpoints, and (c) and (f) were selected using Algorithm 2 with arithmetic mean to compute
midpoints. Knots are excluded from the displays in (d), (e), and (f). Subcaptions display total rectangle
N . L
area ., |R;| achieved by the approximation.
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Figure 3: Empirical density of 20,000 draws versus pmf of CMP from with A\ = 2 and v as specified in
the subcaption. In (a), solid blue line and dashed black line represent empirical density and CMP pmf,

respectively. In (b), (¢), and (d), gray bars and black dots represent empirical density and CMP pmf,
respectively.
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A. Suppose y = (y1,-..,¥yn) is a vector of observed outcomes, X € R"*? and § € R"** are fixed design
matrices, and

y=XB+ 8Sn+e¢, €NN(0,U2I), (22)
n ~N(0,7*(D — pA)~").

Here it can be shown that the conditionals have distribution [n; | n—;] ~ N((p/a:+) Z?:l n;jaij, 72 /a;s). The
parameter p must be in the interval [0, 1]; the matrix D — pA is nonsingular provided that p < 1, while the
inverse does not exist when p = 1 and a pseudo-inverse may be instead considered. To complete a Bayesian
specification of the model, consider the prior

B ~N(0,03I) o ~ Uniform(0, M,) (23)
7% ~ Uniform(0, M,) p ~ Uniform(0, 1),

following Lee (2013). From (22) and (23), and regarding m as augmented data to be drawn with the
parameters 8 = (3,02, 72) and p, the following conditionals with familiar distributions are obtained for a
Gibbs sampler:

L [B|]~N(@®s92;") where Q3 =0 ?X "X + 05T and 95 = 0 2Q;' X T (y — Snp),

2. Inp|—]~ N(ﬁn,ﬂgl) where Q,, = 072878 +772(D — pA) and 9, = 0_297;15T(y - Xp),

3. [0% | —] ~ 1Go,a,1(ac,bs), an Inverse Gamma distribution with shape a, = n/2 and rate b, =
slly = XB - Sn|”

4. [r* | —] ~1Gp ) (ar, br) with a; = k/2 and b, = 30" (D — pA)n.

Here, [X | —] denotes the distribution of X based on all other random variables and a distribution with
subscript [a,b] denotes that it is truncated to that interval. The conditional for p takes the more unfamiliar
form

flo ) < |D = pA[ 2 exp { Lo An} 1{p € [0,1]}. (24)

Lee (2013) uses a Metropolis-Hastings approach to sample from (24). At the rth iteration, a candidate p* is
drawn from truncated Normal proposal distribution Njg 1 (p(rfl), Ugrop) so that p(™) is assigned to p* with
probability min{1, f(p* | —)/f(p"=Y | —)} and to p"~1) otherwise. This requires selecting—or adaptively
tuning—the proposal variance Ugmp to be large enough that the chain is not restricted to very small moves,
but not too large that many proposals are rejected. Let us now consider a direct sampler to generate exact
draws from (24). First, suppose U®U | is the spectral decomposition of A and let Q = ®'/2U T D-'U®'/2.

Using a well-known property of determinants (e.g. Banerjee and Roy, 2014, Theorem 10.11),
|D - pA|=|D - pUSU |
=|D[- [T - pQ|. (25)
Let Ay > -+ > A\ be the eigenvalues of Q with corresponding eigenvectors v1,...,v;. Then v; is also an

eigenvector of I — pQ with corresponding eigenvalue 1—p)\;. Therefore, |D—pA| = Hle iy Hle (1—pX\y).
Note that the elements of ®'/2 may be complex numbers but Aj,. .., A are real. From (24), we may write

k

1/2
flp|—) [H(l - P)\i)] exp {ﬁnTAn} {pe0,1]}.

=1
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Let us take g(p) = I{p € [0,1]} so that the base distribution is Uniform(0,1) and the weight function w is
specified on the log-scale by

k
log w(p Zlog (1—pXi) + ﬁnTAn +logI{p € [0,1]}. (26)
=1
For p € (0,1),
d 1da N 1
o __= 7 = T
o5 logw(p) = —3 ; e +53n An, (27)
2 1 A2
1 _ - 7 2
dp 9.9 ogw(p) = D) Z (1= phi)2 (28)

Now, for p € [0,1) and assuming all areas have at least one adjacent neighbor so that D — pA is positive
definite, both |D| = Hl 1ag+ > 0and |[D—pA| > 0. Therefore, (25) implies 0 < [I—pQ| = Hle(lfp)\i) SO
that pA; < 1foreachi=1,...,k. Now it can be seen that (28) is negative and a root of (27) is a maximum of
(26). Furthermore, 3 Zz 1T p)\
the maximizer p* of (26) occurs at the root if it exists; otherwise, it occurs at one of the endpoints {0,1}
of the domain. To find the roots {pi(u), p2(u)} of the interval A(u) = {p € [0,1] : w(p) > uc}, note that
p1(u) = 0 if logw(0) > log(uc); otherwise, a solution p;(u) to logw(p) = log(uc) may be found in [0, p*]
numerically. Similarly, p2(u) = 1 if logw(1) > log(uc); otherwise, a solution p2(u) to logw(p) = log(uc)
may be found in [p*, 1] numerically. Operations involving the Uniform(0,1) base distribution outlined in
Section 2 are simple, using expressions for the CDF G(p) = p for p € [0, 1] and quantile function G~ (¢) = ¢
for ¢ € [0,1].

Now we have a complete Gibbs sampler based on conjugate steps to draw 3, n, 02, and 72, and a direct
sampling step to draw p. To illustrate the sampler, we revisit the analysis from Lee (2013) on property
prices in Glasgow, Scotland. The data are available in the CARBayesdata package (Lee, 2020). There are
k = 271 areal units with one observation per area so that n = k. The response y is taken to be log of median
housing price (in thousands) of properties sold in 2008. Columns of design matrix X include an intercept
(corresponding to By), log of number of recorded crimes per 10,000 residents (1), median number of rooms
in a property (B2), percentage of properties which sold in a year (83), and log of average driving time to
the nearest shopping center (87). The remaining columns are based on a categorical variable indicating the
most prevalent property type in the area with levels: “flat” (84), “semi-detached” (fs), “terraced” (8s), and
“detached” (baseline). Because there is one observation per area, S is taken to be a k x k identity matrix.

Following Lee (2013), hyperparameter values are taken to be 0‘% = 1000, M, = 1000, and M, = 1000. A
direct sampler is used to draw p following Algorithm 1. Initially, N = 30 knots are selected in each iteration
of the Gibbs sampler via Algorithm 2. Table 1 compares summaries of the draws from this Gibbs sampler to
those from CARBayes version 1.6 (Lee, 2013), utilizing a Gibbs sampler with Metropolis-Hastings step for p.
Figure 4 displays draws of p from the two samplers. Following Lee (2013), results for both samplers are based
on a chain of 100,000 draws with 20,000 discarded as burn-in and keeping one of every remaining 10 to yield
8,000 draws from each. The two results are quite similar, the most notable difference being that the posterior
of p is somewhat more right-skewed under the direct sampler. To obtain 100,000 draws of p, Metropolis-
Hastings step rejected 40,232 proposals while the direct sampler rejected a total of only 458 proposals. Recall
that each draw of Metropolis-Hastings samples approximately from conditional (24) while direct sampling
with rejection is exact. However, the direct sampler required substantially more computation ub this setting,
taking on the order of 1.7 hours compared to 10 minutes for CARBayes. Performance improvements for the
former may be possible; in particular, the weight function (26) changes only by an additive constant 525 n' An
within each step of the Gibbs sampler so that repetition of some computations may be avoided.

is an increasing function of p so that (27) has at most one root. Therefore,
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Table 1: Summary of draws for each parameter based on 8,000 saved draws: 100,000 total draws with 20,000
discarded as burn-in and 9 of every remaining 10 discarded for thinning.

(a) Gibbs with direct sampling step. (b) Gibbs with Metropolis-Hastings step.

Mean SD 25%  97.5% Mean SD 25%  97.5%
Bo  4.7745 0.2537  4.2767  5.2608 Bo  4.7576 0.2459  4.2734  5.2394
/1 -0.1129 0.0305 -0.1721 -0.0531 /1 -0.1116 0.0307 -0.1731 -0.0525
B2 0.2218 0.0253  0.1727  0.2720 B2 0.2222 0.0261 0.1710 0.2733
B3 0.0023 0.0003 0.0017  0.0029 B3 0.0023 0.0003 0.0016  0.0029
Bs -0.2533 0.0578 -0.3677 -0.1417 Bs -0.2558 0.0581 -0.3687 -0.1419
Bs -0.1624 0.0500 -0.2602 -0.0647 Bs -0.1637 0.0512 -0.2638 -0.0635
Bs -0.2901 0.0627 -0.4153 -0.1671 Bs -0.2927 0.0628 -0.4157 -0.1727
B7 -0.0017 0.0289 -0.0581  0.0552 Bz -0.0017 0.0294 -0.0594  0.0556
o2 0.0244 0.0047  0.0151  0.0334 o? 0.0237 0.0048 0.0144  0.0333
72 0.0479 0.0180  0.0208  0.0903 72 0.0540 0.0192  0.0241  0.0995
p 09885 0.0109 0.9591  0.9992 p 09815 0.0146 0.9429  0.9979
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(a) Trace plots from direct sampler (top) and Metropolis- (b) Empirical density from direct sampler (solid line)
Hastings (bottom). and Metropolis-Hastings (dashed line).

Figure 4: Draws of p from Gibbs sampler with direct sampling step versus Metropolis-Hastings step.
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4.3 Sampling the Degrees-of-Freedom in Robust Regression

The Student t-distribution may be considered as an alternative to the Normal distribution when additional
variability is needed in a linear model. Let ¢, denote a t-distribution with degrees of freedom v and density
function

fo | = LD/ (a2 ~(AD/2
x|v)=—=———""— — .
T(v/2)\/vm v
Suppose outcomes y; = w;'—,ﬁ + o¢€; are observed for ¢ = 1,...,n, where €1,...,¢, i t, and x; € R? are given

covariates. Using a particular data augmentation and taking v to be fixed, it is possible to formulate a Gibbs
sampler whose steps consist of drawing from standard distributions (Gelman et al., 2013). With v not fixed
and inference desired on 6 = (3, 0,v), Geweke (1994) proposes a rejection sampler for the conditional of v.
Let us illustrate how a direct sampler can also be used to effectively generate draws from this nonstandard
conditional distribution.

An augmented version of the model assumes variables s1,..., s, with Dy = Diag(s1,..., $,) such that

y=XB+v, ~v~N(O0,D,), s <IG(v/2,v0%/2), (29)

for i = 1,...n with prior distributions 3 ~ N(0, O’%I) and 02 ~ Gamma(a,, b, ). Furthermore, let v have a
Uniform(a,, b,) prior. The joint distribution of all random variables is

f(y7 S?u? 027”) =

Case T -1/ 1~ (yi — = B)?
(2m) / [ESZ 2] exp{—2v T }
(Va2/2)”l’/2 L . vo? <1
i o1 GRS S o

This distribution yields conditionals
B1s.0% v,y ~ N (95,95"),

1
[02 | 5,8, v,y] ~ Gamma (ag—|— %7[)0 + VZ) ’

[S | 027ﬂ7V7y] = f[IG <5i

v+1 ve? (i —«’BZTB)Q)
i=1

2 72 2

having familiar forms so that draws are straightforward, where
Qs =X"D'X +0,%I, 95=0;'X"D;y,

and X € R"*? is the matrix with rows @xy,...,,. More interesting is the distribution of [v | 5,3, 02, y],
which has the form

f(v]s,B.0%y) xwv)g(v) (30)
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with Uniform(a,,b,) base distribution g(v) = (b, — a,)~! -1(a, < v < b,) and weight function w such that

log w(v)

= %log(u/Q) —nlogT'(v/2) — gi_zllog;
VST logl(a, < v < b
—EZ?Z"‘Og (ay <v <by)

=n {f logz —logDl (g)} — Av +logl(a, <v <b,)

where A = 3" log(s;/0?) + 237" | 02 /s;. Temporarily disregarding the indicator I(a, < v < b,) and
considering v € (0, 00),

d n v v
- logw(v) = B [log (§> - (5)} +n/2— A. (31)
It can be shown (e.g. Alzer, 1997) that

1
1 _ -
2x< ogx w(x)<x, x>0,
lim 982~ Y@ g, ler—v(@) L
z—0 1/x z—00 1/x 2

Therefore log (%) — (%) is positive, decreases to 0 as v increases, and increases as v decreases to 0. Fur-
thermore, the function g(z) = 1 log(z/0?)+ 3(c%/z) is minimized by z = 2 so that A = Y"1 | g(s;) > n/2.
Notice that (31) has a root in (0,00) when A > n/2, and has no root if A = n/2. We can gather some

information about the behavior of logw(v) from (31).

1. When % logw(v) has no root, it is always positive so that logw(v) is an increasing function. Here,
log e = logw(b,).

2. When d% logw(v) has a root, log w(v) has a single maximizer v*. Therefore, log w(v) is unimodal on
[ay,by] with logc = logw(v*) if v* € [a,,b,]. If v* > by, logw(v) is an increasing function on [a,, b, ]
with loge = logw(b,). Otherwise, v* < a,, and logw(v) is a decreasing function on [a,,b,] with
log ¢ = logw(a,).

Numerical root finding such as Algorithm 3 may be used to compute the endpoints {v;(u),va(u)} of the
interval A,(v) = {v > 0 : logw(z) > log(uc)}. If there is a maximizer v* in the interval [a,,b,], v1 will be
found in [a,,v*] and v will be found in [v*,b,]. If logw(v) is strictly increasing, vs = b, and v; is found in
[a,,b,]. Otherwise, if log w(v) is strictly decreasing, v; = a, and v is found in [a,, b, ].

Notice that a bounded prior for v is needed to obtain a finite maximum value ¢ of the weight function;
therefore, our choice of Uniform prior is a departure from the Exponential prior assumed by Geweke (1994). A
rejection sampler similar to Geweke’s can be obtained by following the original derivation with several minor
differences. First, Geweke’s constant A features an additional term with the Exponential hyperparameter
which is now absent. Second, we take the proposal distribution to be a truncated Exponential distribution
with density ¢(z | «,ay,b,) x ae”**I(a, < x < b,) rather than an untruncated Exponential distribution
q(z | a) x ae™®. Constraining @ = 1/v, let v* be the value of v which maximizes the ratio f(v |
s,8,0%,9)/q(v | a,a,,b,); this v satisfies

2l (3) 19 5] 0§ -0 g

Algorithm 4 gives a rejection sampler based on ¢ to generate candidates and the maximized ratio to determine
when to accept.
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Figure 5: Empirical density of 100,000 draws from (30) with sample size n = 200 and A specified in the
subcaption. Dashed black curve represents Algorithm 4 and solid blue curve represents direct sampler with
N =5 initial knots.

Figure 5 compares the empirical density of 100,000 draws from the direct sampler with N knots initially
selected using Algorithm 4. The values n = 200, a, = 0.01, and b, = 200 are fixed and A is varied to
take on values 101, 120, 200, and 400. As expected, both samplers generate draws from the same target
distribution. Table 2 shows the number of rejections to obtain 100,000 draws for both samplers, now
including N € {5,20, 50,100} initially selected knots. Here it is apparent that Algorithm 4 rejects on the
order of ten candidates for each saved variate while the direct sampler rejects for less than 1% of draws on
average. However, within a practical Gibbs sampling setting, Algorithm 4 may still be faster because each
step requires very little computation.

Algorithm 4 Rejection sampling based on Geweke (1994).

1. Let v* be the value of v which satisfies (32).
2. Draw candidate v from the truncated Exponential distribution ¢(z | 1/v*,a,,b,).

3. Draw w ~ Uniform(0, 1) and accept v as a draw from (30) if

otherwise, reject v and go to step 2.

Lange et al. (1989) provide a number of interesting examples of regression analyses using t-distributed
errors. In particular, their Example 3 studies the relationship between two measurements of blood flow in the
canine myocardium. The variable r; measures regional myocardial blood flow from an invasive procedure,
while y; is a measurement obtained using positron emission tomography within n cases indexed ¢ = 1,...,n.
It is assumed that

Yi = ﬂ(ri) +oe, €~ t,,(o, 1)7
pu(r) =r{l — ¢rexp(—g2/r)},

for parameters ¢ = (¢1,d2). We consider a simulated dataset based on this setting, with n = 200 and

T i Uniform(0, 10). Data generating values of parameters ¢ are to taken to be ¢1 = 0.746 and ¢o = 274.7,
based on estimates reported in Lange et al. (1989), while v = 2 and ¢ = 1.25 are taken to be the degrees
of freedom and scale for the random errors. To fit linear model (29), the ith row x(r;) of design matrix X
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Table 2: Rejected candidates to obtain 100,000 draws using Algorithm 4 and the direct sampler with N
initial knots.

Direct Sampler
A N=5 N=20 N=50 N =100 Algorithm 4

101 608 647 589 495 841,390
120 643 605 581 496 1,049,358
200 622 575 549 523 1,173,088
400 614 564 581 533 1,273,444

Table 3: Summary of posterior distribution.

Mean SD 2.5% 97.5%

81 -0.7677 0.5734 -1.8974  0.3453
B2 39061 1.4799 1.0359  6.7897
B3 84826 0.7902  6.8905 10.0353
B4 10.4723 0.8227  8.8485 12.0764
o? 14777 0.3002  0.9868  2.1660
v 2.3409 0.5045 1.5891  3.5602

is obtained from a cubic polynomial basis using the bs function in the R splines package (R Core Team,
2022). We apply the Gibbs sampler with direct sampling to draw v using N = 30 initial knots. A chain of
10,000 iterations is computed with first 5,000 discarded as as burn-in sample. Hyperparameters are taken
to be a, = 0.01, b, = 200, a, = 1, b, = 1, and Ug = 100. Table 3 summarizes the saved draws of 0, while
Figure 6 compares the fitted function to the true function p(r). The model appears to be capturing the
data-generating values of o, v, and u(r) appropriately. We note that total sampling time was 12.2 seconds,
of which 10.3 seconds was spent drawing v with the direct sampler. There were 260 rejections in the 10,000
draws of v.

Hosszejni (2021) presents a recent survey for Bayesian inference of v. Here it is noted that the approach
of Geweke (1994)—considered in the present section—works well for small ¥ but mixing tends to worsen for
larger v. Therefore, other sampling strategies are recommended when v may be larger.

5 Discussion and Conclusions

The density p(u) which arises in direct sampling (Walker et al., 2011) is monotone, nonincreasing on [0, 1],
and subject to sudden jumps. This motivated us to consider step functions to approximate p(u). Useful
samplers may be obtained for some univariate target distributions where 4, = {z € Q : w(x) > cu} is an
interval, and may further be combined with rejection sampling to generate exact draws with a small number
of rejections. Examples in Sections 4.2 and 4.3 illustrated sampling from non-standard conditionals within
in a Gibbs sampler. All three examples already have practical samplers described in the literature; our
proposed sampler may be useful when encountering unfamiliar weighted distributions where no such method
is readily available.

Care is required in the implementation of the sampler; e.g., the possibility of encountering very small
magnitude floating point numbers motivates use of the geometric midpoint and carrying out many of the
calculations on the log-scale. The idea may be extended to settings where A, is a more complicated set
such as a union of intervals, provided that the endpoints can be identified without too much computation.
Multivariate settings may also be possible, provided that A, is not too difficult to characterize and draws
from f(x | u) x g(x)I(x € A,) can be reliably generated.
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Figure 6: The true function p(r) (solid red curve), pointwise 95% credible interval for u(r) (dashed blue
curve), and pointwise 95% interval for posterior predictive distribution of y(r) = u(r)+e¢, € ~ t,(0,0) (dotted
blue line), for r € [0,10]. Observed y1, ..., y, are shown as block dots.
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