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Abstract

Functional binary datasets occur frequently in real practice, whereas discrete charac-

teristics of the data can bring challenges to model estimation. In this paper, we propose

a sparse logistic functional principal component analysis (SLFPCA) method to handle

the functional binary data. The SLFPCA looks for local sparsity of the eigenfunctions

to obtain convenience in interpretation. We formulate the problem through a penalized

Bernoulli likelihood with both roughness penalty and sparseness penalty terms. An efficient

algorithm is developed for the optimization of the penalized likelihood using majorization-

minimization (MM) algorithm. The theoretical results indicate both consistency and

sparsistency of the proposed method. We conduct a thorough numerical experiment to

demonstrate the advantages of the SLFPCA approach. Our method is further applied to

a physical activity dataset.

Keywords: Functional principal component analysis, penalized Bernoulli likelihood,

binary data, local sparsity, MM algorithm

1 Introduction

Functional principal component analysis (FPCA) is an indispensable tool in functional data

analysis (FDA), for its utility in dimensionality reduction and variation mode exploration. A

great many remarkable efforts have been put into FPCA, such as Silverman [1996], Cardot
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[2000], James et al. [2000], Yao et al. [2005], and Hall and Hosseini-Nasab [2006], among oth-

ers. In this article, we focus on functional data with binary outcomes and pursue sparsity of

functional principal components (FPCs) for better interpretability.

FPCA for binary data without regard to the local sparsity has been studied by several

researchers in the framework of exponential family. Hall et al. [2008] performed FPCA to non-

Gaussian sparse longitudinal data by employing a latent Gaussian process (LGP) model with a

known link function. van der Linde [2009] considered a Bayesian FPCA approach for data from

one-parameter exponential families. Gertheiss et al. [2017] conducted FPCA via a generalized

additive mixed model to handle non-Gaussian cases, and established estimating procedures in

both frequentist and Bayesian perspectives. Li et al. [2018] presented an exponential family

functional principal component analysis (EFPCA) method that accommodates two-way non-

Gaussian functional data. Admittedly, exploration of functional binary data is not sufficient as

that of functional data from continuous distributions, for the obstacles caused by their discrete

characteristics.

Nevertheless, FPCs obtained from the above methods and general FPCA approaches are

almost non-zero on the whole observation interval, which increases the difficulties in interpret-

ing the dominant variability source of the curves. Consequently, a few novel FPCA methods

have been developed to gain FPCs with local sparsity, which means being strictly zero on some

subintervals. Chen and Lei [2015] proposed a localized functional principal component analy-

sis (LFPCA) method, in which they added an L1 penalty on the discretized eigenfunction and

constructed a deflated Fantope to estimate FPCs sequentially. An interpretable functional prin-

cipal component analysis (iFPCA) method was introduced in Lin et al. [2016]. They utilized

an L0 penalty and devised a greedy backward elimination algorithm to achieve approximate

optimization. Li et al. [2016] made use of additional variables to incorporate some supervision

information in the sparse functional principal component framework. Nie and Cao [2020] estab-

lished sparse FPCA methods taking advantage of means in functional regression. Additionally,

Wang and Tsung [2020] and Zhang et al. [2019] considered sparse FPCA in more complicated

multivariate functional settings. The aforementioned techniques are only suitable for functional

data from continuous distributions, thus cannot be used for functional binary data that abound

in practice. Moreover, to the best of our knowledge, there has been no relevant work considering

sparse FPCA for binary data in the literatures.

In this article, we propose a new sparse FPCA approach, called sparse logistic functional

principal component analysis (SLFPCA), which can be applied to functional binary data under

both dense and sparse designs. Specifically, a likelihood-based method is established for the

proposed SLFPCA, inspired by sparse principal component analysis techniques for multivariate

binary data [Lee et al., 2010, Lee and Huang, 2013]. Further, James et al. [2000] and Zhou
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et al. [2008] executed FPCA by constructing an appropriate likelihood function for Gaussian

data. Different from them, we introduce a penalized Bernoulli likelihood. To meet the need for

both optimal performance and high interpretability, two types of penalty, roughness penalty

and sparseness penalty, are imposed correspondingly. The roughness penalty is commonly used

in FDA to control the degree of smoothing for model fitting and obtain better estimation. And

the sparseness penalty can be exerted to identify non-zero subintervals and contribute to more

comprehensible and interpretable conclusions. However, it poses great challenges to optimize

the penalized Bernoulli likelihood with roughness and sparseness penalties, for the reasons that

the objective function is no more quadratic and the selection of tuning parameters must be

taken into account. Here we employ the majorization-minimization (MM) algorithm, in which

we define a simpler surrogate objective function iteratively. Moreover, Bayesian information

criterion (BIC) [Schwarz, 1978] is embedded in the computation for selecting tuning parameters.

Compared with the existing works, our contributions are three-fold. First, it is the first

attempt to ponder sparse FPCA for binary data and the proposed SLFPCA is formulated as the

optimization of a penalized Bernoulli likelihood. Second, we provide an innovative algorithm for

the model fitting, which gives out satisfying estimating results. For the implementation, we also

develop an R package SLFPCA, which is available on https://CRAN.R-project.org/package=

SLFPCA. Third, asymptotic properties on both consistency and sparsistency are established.

The paper is laid out as follows. In Section 2, we introduce the methodology, including the

construction of penalized likelihood and computational details of the algorithm. Theoretical

results are provided in Section 3. A numerical study is executed in Section 4 to assess the

performance of our method. Section 5 shows a real data example on physical activity. We

conclude this paper with some discussions in Section 6.

2 Methodology

2.1 Penalized Likelihood

Consider a random process Y (t), t ∈ T with binary outcomes, where T = [0, T ] is a bounded

and closed interval. For a given time point t, assume that Y (t) follows Bernoulli(1, p(t)),

where p(t) = Pr{Y (t) = 1}. Let X(t) denote the canonical parameter for Bernoulli(1, p(t)),

and {X(t), t ∈ T } is supposed to be a latent square integrable process with mean function

EX(t) = µ(t) and covariance function Σ(s, t) = cov{X(s), X(t)}. Moreover, we have

p(t) =
exp{X(t)}

exp{X(t)}+ 1
, π{X(t)}.

3

https://CRAN.R-project.org/package=SLFPCA
https://CRAN.R-project.org/package=SLFPCA


In practice, let {tij : i = 1, . . . , n, j = 1, . . . ,mi} be the observation time points for n inde-

pendent subjects, each with mi measurements, and {yij : i = 1, . . . , n, j = 1, . . . ,mi} be the

corresponding observations. We further define Yij = Yi(tij), where Yi(·) is the random tra-

jectory of the i-th subject, then yij can be seen as a realization of the random variable Yij ,

thus

Pr(Yij = yij) = π(Xij)
yij{1− π(Xij)}1−yij = π(qijXij), (1)

where Xij = Xi(tij) and qij = 2yij − 1.

The latent process Xi(t) admits the following Karhunen-Loève expansion

Xi(t) = µ(t) +

∞∑
k=1

ξikφk(t), (2)

where φk(t) is the k-th eigenfunction of Σ(s, t) such that
∫
T φ

2
k(t)dt = 1 while

∫
T φk(t)φl(t)dt =

0 for l 6= k, and ξik is the corresponding FPC score. In addition, let λk be the k-th eigenvalue of

Σ(s, t), then ξik, for k ≥ 1, are uncorrelated random variables with Eξik = 0 and var(ξik) = λk.

Considering the feasibility for practical estimation [Gervini, 2008, Huang et al., 2014], we adopt

a reduced rank model

Xi(t) = µ(t) +

p∑
j=1

ξikφk(t), (3)

where p is chosen in advance. In order to construct an appropriate likelihood function when

the curves are not fully observed, we make use of the B-spline basis here. The reasons for

selecting B-spline basis rather than other basis functions are discussed in Section 2.2. Let

{Bl(t), l = 1, . . . , L} be the B-spline basis functions on T with degree d and knots 0 = τ0 <

τ1 < · · · < τK < τK+1 = T , where K is the number of interior knots, then we have L = K+d+1.

Let B(t) = {B1(t), . . . , BL(t)}>. Therefore, µ(t) and φk(t) can be expressed as

µ(t) = B(t)>µ,

φk(t) = B(t)>θk, k = 1, . . . , p,

where µ and θk are the coefficients of the mean function and the k-th eigenfunction respectively.

Let Θp×L = (θ1, · · · ,θp)>, then in term of (3),

Xij = Xi(tij) = B(tij)
>µ+ B(tij)

>Θ>ξi

= B>ijµ+ B>ijΘ
>ξi, (4)
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where Bij = B(tij) and ξi = (ξi1, . . . , ξip)
>. Combining (1) and (4), we obtain the log-likelihood

function

l(µ,Θ, ξ) =

n∑
i=1

mi∑
j=1

log π(qijXij)

=

n∑
i=1

mi∑
j=1

log π{qij(B>ijµ+ B>ijΘ
>ξi)}, (5)

where ξn×p = (ξ1, . . . , ξn)>.

We next impose two types of structural regularization on the estimation in (5). First, to

alleviate the excessive variability of the estimated mean function and eigenfunctions, rough-

ness penalty is exerted on µ(t) and φk(t) to control the degree of smoothing. We adopt the

most common roughness penalties,
∫
T {µ

(2)(t)}2dt and
∫
T {φ

(2)
k (t)}2dt, where µ(2)(t) and φ

(2)
k (t)

are the second derivatives of µ(t) and φk(t) respectively. Using B-spline basis, the roughness

penalties are represented as∫
T
{µ(2)(t)}2dt = µ>

∫
T

B(2)(t)B(2)(t)>dtµ = µ>V µ,∫
T
{φ(2)k (t)}2dt = θ>k

∫
T

B(2)(t)B(2)(t)>dtθk = θ>k V θk,

where B(2)(t) is the second derivative of B(t) and V =
∫
T B(2)(t)B(2)(t)>dt. Second, to

enhance interpretability, we pursue eigenfunction estimates that reflet local sparsity. Hence, a

sparseness penalty is also exerted on the eigenfunctions. The formulation of sparseness penalty

is discussed at length in Section 2.2 and we denote it by PENλ(Θ) at present, where λ is the

tuning parameter that controls the level of sparseness. At last, the penalized likelihood method

minimizes the following objective

−
n∑
i=1

mi∑
j=1

log π{qij(B>ijµ+ B>ijΘ
>ξi)}

+Nκµµ
>V µ+Nκθ

p∑
k=1

θ>k V θk +NPENλ(Θ), (6)

with respect to µ,Θ and ξ, where N =
∑n
i=1mi, κµ and κθ are two tuning parameters. Note

that for simplicity, we take same tuning parameters κθ and λ for all eigenfunctions.

2.2 Sparseness Penalty

We expect the estimated eigenfunctions to possess some local sparse features through the im-

posed sparseness penalty. We generalize the functional SCAD penalty suggested in Lin et al.
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[2017] to our FPCA framework. In specific,

PENλ(Θ) =
K + 1

8T

p∑
k=1

∫
T
pλ(|φk(t)|)dt

≈ 1

8

p∑
k=1

K+1∑
m=1

pλ

(√
K + 1

T

∫ τm

τm−1

φ2k(t)dt

)
, (7)

where pλ(·) is the SCAD function proposed in Fan and Li [2001], which is defined as

pλ(v) =


λv when 0 ≤ v ≤ λ

− v
2−2aλv+λ2

2(a−1) when λ < v < aλ
(a+1)λ2

2 when v ≥ aλ
,

where a is chosen to be 3.7 suggested by Fan and Li [2001]. The local quadratic approximation

is applied to (7). Specifically, for a given v0 close to v, the local quadratic approximation can

be expressed as pλ(|v|) ≈ pλ(|v0|) + 1
2{p

′

λ(|v0|)/|v0|}(v2 − v20). Further, substituting φk(t) with

its basis representation, we finally have

PENλ(Θ) ≈ 1

8

p∑
k=1

θ>kWλ,kθk,

with the constant term ignored, where

Wλ,k =
1

2

K+1∑
m=1

{
p
′

λ

(√
K+1
T

∫ τm
τm−1

φ2k,0(t)dt
)√

T
K+1

∫ τm
τm−1

φ2k,0(t)dt
Vm

}
,

with Vm =
∫ τm
τm−1

B(t)B(t)>dt and φk,0(t) close to φk(t). In the iterative procedure, φk,0(t) is

replaced by the initial values or the estimates obtained from previous iteration. Hence, we aim

to minimize

−
n∑
i=1

mi∑
j=1

log π{qij(B>ijµ+ B>ijΘ
>ξi)}

+Nκµµ
>V µ+Nκθ

p∑
k=1

θ>k V θk +
N

8

p∑
k=1

θ>kWλ,kθk (8)

in the computation. More details are provided in Section 2.3.

We complete this subsection with a discussion on the reasons for the choice of B-spline

basis. From the sparseness penalty (7), we constraint the magnitude of eigenfunctions via each

subinterval, that means exerting localized regularization to capture particular local features.
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Through basis representations, we transfer the penalization to the basis coefficients. For a

general basis system, a set of sparse coefficients does not necessarily generate a function with

local sparse feature, which may make trouble in the computation. On the contrary, B-spline

basis enjoys the compact support property [Ramsay and Silverman, 2005], which elucidates

that the basis is non-zero over no more than d+1 adjacent subintervals. Therefore, consecutive

d+ 1 zero-valued basis coefficients indicate the resulting function being zero-valued on certain

interval. This outstanding property of B-spline basis makes it crucial for the work on local

sparsity, see Zhou et al. [2013], Wang and Kai [2015], Lin et al. [2017], and Tu et al. [2020].

2.3 Algorithm

The minimization of (6) or (8) is a tough task for the complicated expression of their first term.

Thus, we first apply the MM algorithm to obtain a sequence of surrogate objective functions,

which are simple enough for computation. For function π(v), we have

− log π(v) ≤ − log π(v0) +
1

8
[v − v0 − 4{1− π(v0)}]2,

for any v0 [Lee et al., 2010]. Then the upper bound of − log π(qijXij) can be achieved by

− log π(qijXij) ≤ − log π(qijXij,0) +
1

8
(Xij − zij,0)2,

where Xij,0 can be the initial value or be obtained from the last iteration, and zij,0 = Xij,0 +

4qij{1 − π(qijXij,0)}. As the constant − log π(qijXij,0) has no effect on the optimization, the

surrogate objective function can be written as

n∑
i=1

mi∑
j=1

{zij,0 − (B>ijµ+ B>ijΘ
>ξi)}2

+Nκµµ
>V µ+Nκθ

p∑
k=1

θ>k V θk +N

p∑
k=1

θ>kWλ,kθk, (9)

where the extra multiplier 8 can be absorbed into the tuning parameters κµ and κθ in the

second and third terms respectively.

To optimize (9), we consider the minimizations with respect to µ, ξ and Θ sequentially.

First, for fixed ξ and Θ, let z̃ij = zij,0 −B>ijΘ
>ξi. Then we have

µ̂ = arg min
µ

n∑
i=1

mi∑
j=1

{z̃ij −B>ijµ}2 +Nκµµ
>V µ

= (BB> +NκµV )−1B>Z̃, (10)
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where B = (B11 · · ·B1m1
· · ·Bnmn

)> and Z̃ = (z̃11 · · · z̃1m1
· · · z̃nmn

)>. Second, we estimate

ξk and θk iteratively. Specifically, given ξl and θl for l 6= k, define z̄ij = zij,0 − B>ijµ̂ −
B>ij

∑
l 6=k ξijθl. Subsequently, ξ̂ik also has an explicit expression

ξ̂ik = arg min
ξik

n∑
i=1

mi∑
j=1

{z̄ij −B>ijθkξik}2

= arg min
ξik

mi∑
j=1

{z̄ij −B>ijθkξik}2

=

∑mi

j=1 B>ijθkz̄ij∑mi

j=1(B>ijθk)2
. (11)

Then ξ̂k = (ξ̂1k, . . . , ξ̂nk)>. On the other hand, the estimation of θk is more complex for

it involves the sparseness penalty and we construct a sub-iteration procedure for θk. The

corresponding objective function can be written as

n∑
i=1

mi∑
j=1

{z̄ij − ξikB>ijθk}2 +Nκθθ
>
k V θk +Nθ>kWλ,kθk.

If Wλ,k is known, we have

θ̂k = (U>U +NκθV +NWλ,k)−1U>Z̄, (12)

where U = (ξ1kB11 · · · ξ1kB1m1
· · · ξnkBnmn

)> and Z̄ = (z̄11 · · · z̄1m1
· · · z̄nmn

)>. As Wλ,k de-

pends on the value of θk, we update Wλ,k using the new estimated θk until convergence. The

appearance of small elements in θ̂k may make U>U+NκθV +NWλ,k almost singular during the

sub-iteration procedure. To avoid that, we shrink the small elements to zero directly. Further-

more, we enforce the first and last elements in θ̂k to zero at the beginning of the sub-iteration

procedure to alleviate boundary effect for the estimation of eigenfunctions.

For the sake of clarity, we summarize the algorithm as follows:

Step 1: Give the initial value of µ, ξ and Θ.

Step 2: Estimate µ using (10), then µ̂(t) = B(t)>µ̂.

Step 3: Start with k = 1,

(1) For i = 1, . . . , n, update ξ̂ik using (11).

(2) Repeat the computation in (12) until the convergence of θ̂k.

(3) Repeat Step 3(1)–(2) until convergence.
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(4) If k < p, let k = k + 1, repeat Step 3(1)–(3).

Step 4: Let ψ̂k(t) = B(t)>θ̂k, k = 1, . . . , p, then φ̂k(t) = ψ̂k(t)/‖ψ̂k(t)‖2, where ‖ψ̂k(t)‖2 =

{
∫
T ψ̂

2
k(t)dt}1/2. Rescale ξ̂k correspondingly.

Let µ(0), ξ(0) and Θ(0) denote the initial values of µ, ξ and Θ respectively. Generally,

one can set the initial values in a random way. Alternatively, we set µ(0) and Θ(0) as the

FPCA estimates for {qij ; i = 1, . . . , n, j = 1, . . . ,mi} using local linear smoother [Yao et al.,

2005], neglecting the fact that these observations are binary, and then generate ξ(0) randomly

using the estimated eigenvalues. Throughout this article, we implement the latter scheme in

initialization. Furthermore, choice for the number of FPCs is a long-standing issue in FPCA.

Some popular information criterion, such as Akaike information crierion (AIC) [Yao et al., 2005]

and BIC, can be applied. Note that as the FPCs are estimated sequentially in our algorithm,

the number of FPCs has little effect on the SLFPCA estimates.

2.4 Selection of Tuning Parameters

We take into account the selection of three tuning parameters involved in (6): the smooth-

ing parameter κµ of mean function, the smoothing parameter κθ of eigenfunctions, and the

parameter λ that controls the sparseness of eigenfunctions.

First, κµ is selected via generalized cross-validation (GCV) method. In specific, κµ only

makes sense in the estimation of µ in (10), which can be regard as smoothing {z̃ij ; i =

1, . . . , n, j = 1, . . . ,mi} through the penalized sum of squared errors fitting criterion. The

details about GCV for the smoothing problem are provided in Ramsay and Silverman [2005].

Next, we consider κθ and λ jointly as these two tuning parameters cooperate with each other

in Step 3 of the algorithm. We define the following BIC-type criterion for the selection,

BIC(κθ, λ) = −2

n∑
i=1

mi∑
j=1

log π{qij(B>ijµ̂+ B>ijΘ̂
>ξ̂i)}+

( p∑
k=1

dfk

)
· logN, (13)

where dfk stands for the degrees of freedom in estimating θk. For a given k, let Ak be a set

indexing non-zero elements in θ̂k. Then

dfk = tr
[
UAk

{
U>Ak

UAk
+NκθVAk

}−1
U>Ak

]
.

In practice, we select (κθ, λ) that minimizes (13) from a set of candidates.

3 Theoretical Results

In this section, we study the consistency and sparsistency of the proposed method. We first

discuss properties of φ̂k(t). Let NULL(f) = {t ∈ T : f(t) = 0} and SUPP(f) = {t ∈ T : f(t) 6=

9



0}. The assumptions needed are listed as follows:

Assumption 1. There exists some constant c > 0 such that |φ(p
′)

k (t1) − φ
(p′)
k (t2)| ≤ c|t1 −

t2|ν , ν ∈ [0, 1]. Moreover, 3/2 < r ≤ d, where r = p′ + ν and d is the degree of the B-spline

basis.

Assumption 2. The tuning parameter λ varies with N , and we assume that
√∫

SUPPk
p′λ(|φk(t)|)2dt =

O(N−1/2K−3/2) and
√∫

SUPPk
p′′λ(|φk(t)|)2dt = o(K−3/2) as λ goes to zero, where SUPPk =

SUPP(φk) and K is the number of interior knots for the B-spline basis.

Assumption 3. For the number of interior knots, we assume K = o(N1/4) and K/N
1

2(r+1) →
∞. For smoothing parameters, we assume κµ = o(N−1/2) and κθ = o(N−1/2). For sparseness

parameter, we assume λ = o(1) and λN1/2K−3/2 →∞.

Assumption 1 requires the eigenfunctions to be sufficiently smooth and refers to (H.3) in

Cardot et al. [2003] and (C2) in Lin et al. [2017]. Assumption 2 can be regarded as a functional

generalization of (B′) and (C′) in Fan and Peng [2004] and is the same as (C3) in Lin et al.

[2017]. This assumption ensures that the influence of the sparseness penalty on the estimation

can be dominated by that of the likelihood function. Assumption 3 specifies the choosing

condition for tuning parameters, which can be a guideline in the parameter selection.

Theorem 1. Under Assumptions 1 - 3, for k = 1, . . . , p,

sup
t∈T
|φ̂k(t)− φk(t)| = Op(N

−1/2K),

when FPC score ξ0 is given.

Theorem 2. Under Assumptions 1 - 3, NULL(φ̂k)→ NULL(φk) and SUPP(φ̂k)→ SUPP(φk)

in probability, as N →∞, when FPC score ξ0 is given.

Consistency and sparsistency of the estimated eigenfunctions are stated in the above two

theorems. We then explore the asymptotic property of the estimated FPC scores. The following

assumption is required:

Assumption 4. The observation sizes mi’s are independent realizations of the random variable

m, and are independent of
{

(tij , Yij) : j = 1, . . . ,mi

}
. Assume that mi = Op(M), i = 1, . . . , N

and M →∞.

Theorem 3. Under Assumption 4, we have

|ξ̂ik − ξik| = Op(M
−1/2),

for i = 1, . . . , n, k = 1, . . . , p, when coefficient matrix Θ0 of eigenfunctions is given.

10



Remark 1. In fact, the simultaneous derivation of asymptotic properties for the estimated

eigenfunctions φ̂k(t) and FPC scores ξ̂ik is intractable, because of the large number of param-

eters. Hence, we discuss their properties separately. However, the above theoretical results

can still bring some insights for the estimates. It shows that the imposed penalties would not

lead to invalid results, and the sparseness penalty is effective in identifying non-zero subinterval

for our problem. Moreover, the simulation studies in Section 4 further demonstrate the good

performance of the SLFPCA method in practice.

Remark 2. Theorem 3 implies that the convergence rate of the estimated FPC scores depends

on the observation size M . In specific, a divergent observation size is needed for the consistency

of FPC scores, while the requirement is dispensable for asymptotic properties of the estimated

eigenfunctions, as shown in Theorem 1 and Theorem 2. It is quite natural as FPC scores are

varied from individual to individual, while eigenfunctions are specific for all subjects.

4 Simulation

In this section, we conduct a comprehensive numerical study to evaluate the performance of

our SLFPCA method. We consider two scenarios in our simulation. First, we set functions

that being strictly zero-valued in some subintervals as the true eigenfunctions. Second, the true

eigenfunctions are set to be non-zero almost in the whole interval. We compare our SLFPCA

method with the LGP method in Hall et al. [2008]. The criteria for assessment are as follows:

ISEµ = ‖µ− µ̂‖2 =

∫
T
{µ(t)− µ̂(t)}2dt,

ISEk = ‖φk − φ̂k‖2 =

∫
T
{φk(t)− φ̂k(t)}2dt,

where ISEµ and ISEk measure the error of mean function estimates and eigenfunction estimates

respectively. Obviously, a lower ISEµ or ISEk indicates a more precise estimate.

4.1 Sparse FPCs

We first discuss the behaviours of SLFPCA and LGP methods when the true FPCs possess

local sparse features. To generate binary data {yij : i = 1, . . . , n, j = 1, . . . ,mi}, we begin with

constructing n = 200 independent latent processes Xi(t) through (2). The latent processes have

mean function µ(t) = 2 · sin(πt/5)/
√

5, t ∈ [0, 10]. For the eigenfunctions φk(t), let Bl(t) denote

the l-th B-spline basis on [0, 10], with degree three and nine equally spaced interior knots. We

explore the following two cases:

• Case 1: Define ψ1(t) = B4(t), ψ2(t) = B10(t), then φk(t) = ψk(t)/‖ψk‖2, k = 1, 2.
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• Case 2: Define ψ1(t) = B7(t), ψ2(t) = B4(t)−B10(t), then φk(t) = ψk(t)/‖ψk‖2, k = 1, 2.

Moreover, the eigenvalues are set as λ1 = 32, λ2 = 22 and λk = 0, k ≥ 3. The FPC scores ξik

are simulated from N (0, λk). Finally, we yield yij using the probability obtained from Xi(t).

With regard to the observation grids, as our method can be executed to both dense and sparse

(or longitudinal) designs, we take into account these two various designs in our simulation.

Specifically, for the dense design, we consider the regular case and the observation sizes for all

subjects are set as m1 = · · · = mn = 51. On the other hand, for the sparse design, mi is

uniformly selected from {8, . . . , 12} and observation grids tij are uniformly sampled from [0, 10]

corresponding to mi. We report the results for the dense design here and relegate the analysis

for sparse design in the Supplementary Material. In addition, we also consider the settings in

which only the first eigenvalue is non-zero as Hall et al. [2008] and present the results in the

Supplementary Material.

Table 1 lists the simulation results of SLFPCA and LGP over 100 Monte Carlo runs for the

dense design when the true FPCs with local sparse features are provided. For the two considered

cases that accept various FPC settings, it is evident that SLFPCA achieves much smaller ISE1

and ISE2, which implies SLFPCA outperforms LGP on the estimation of eigenfunctions. The

attractive performance of SLFPCA compared with LGP is in accordance with our expectation,

as the sparse FPCs scenario here is in favor of our method. Moreover, these two methods

are at a similar level in estimating the mean functions, for they get nearly the same ISEµ.

Schematically, Figures 1 and 2 exhibit the estimated FPCs in one randomly chosen run for

both Case 1 and Case 2 respectively. It is shown that the estimated eigenfunctions obtained

from LGP are non-zero over almost the whole interval, while SLFPCA can correctly identify

the subinterval on which the true FPCs are non-zero valued. As SLFPCA owns a great capacity

in capturing the local sparse features, it is natural that SLFPCA gains more promising ISE1

and ISE2.

Table 1: Average ISEµ and ISEk with standard deviation in parentheses for 100 Monte Carlo

runs, when the true FPCs are sparse.

Method ISEµ ISE1 ISE2

Case 1
SLFPCA 0.3632(0.1472) 0.0182(0.0143) 0.0172(0.0131)

LGP 0.3653(0.1230) 0.1142(0.0624) 0.1064(0.0617)

Case 2
SLFPCA 0.1541(0.0805) 0.0455(0.1308) 0.0475(0.1211)

LGP 0.1627(0.0834) 0.3551(0.4712) 0.3319(0.4804)
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Figure 1: Eigenfunction estimates in one randomly chosen run for Case 1 illustrated in Section

4.1 when the true FPCs are sparse. Thick solid lines are for true eigenfunctions, while lines for

the estimated eigenfunctions obtained from SLFPCA and LGP are in dashed and dotted-dashed

types respectively.
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Figure 2: Eigenfunction estimates in one randomly chosen run for Case 2 illustrated in Section

4.1 when the true FPCs are sparse. Thick solid lines are for true eigenfunctions, while lines for

the estimated eigenfunctions obtained from SLFPCA and LGP are in dashed and dotted-dashed

types respectively.
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4.2 Non-sparse FPCs

We then explore the simulation results when the true FPCs are non-sparse. This scenario is

not inclined to SLFPCA any more, whereas we shall show our method still yields nice esti-

mating results compared with LGP. The setups are the same as that in Section 4.1, except for

eigenfunctions. We also consider two cases:

• Case 3: φ1(t) = cos(πt/5)/
√

5, φ2(t) = sin(πt/5)/
√

5, t ∈ [0, 10].

• Case 4: φ1(t) = cos(πt/5)/
√

5, φ2(t) = cos(2πt/5)/
√

5, t ∈ [0, 10].

These two cases have the same first eigenfunction, while the second eigenfunction in Case 4

undertakes more variability. We present the estimating results for dense design here. The

remaining results, for sparse design and for the case where only the first eigenvalue is non-zero,

are provided in the Supplementary Material.

The simulation results over 100 Monte Carlo runs when the true FPCs are non-sparse are

displayed in Table 2. It is observed that SLFPCA still reaches lower ISE1 and ISE2 than

LGP, though the difference between these two methods is much smaller than that in Section

4.1. SLFPCA also offers a more accurate estimate for the mean function according to ISEµ.

Therefore, SLFPCA is a competitive approach even when the true FPCs show no local sparse

feature. Further, the estimated eigenfunctions are visualized in Figures 3 and 4 for one randomly

chosen run. Both figures clarify that SLFPCA and LGP perform similarly when true FPCs

are non-sparse and yield estimates close to the true eigenfunctions. Note that SLFPCA does

not produce sparse eigenfunction estimates in Figures 3 and 4. The reason is that the tuning

parameter λ is selected to be zero via BIC, and SLFPCA is equivalent to general FPCA when

λ = 0. Hence, these two cases further demonstrate the ability of SLFPCA in identifying the

non-zero subintervals.

Table 2: Average ISEµ and ISEk with standard deviation in parentheses for 100 Monte Carlo

runs, when the true FPCs are non-sparse.

Method ISEµ ISE1 ISE2

Case 3
SLFPCA 0.2441(0.1292) 0.0151(0.0171) 0.0175(0.0172)

LGP 0.2678(0.1302) 0.0178(0.0181) 0.0218(0.0180)

Case 4
SLFPCA 0.1955(0.0715) 0.0113(0.0125) 0.0270(0.0170)

LGP 0.2075(0.0698) 0.0168(0.0145) 0.0298(0.0178)

14



0 2 4 6 8 10

−
0.

5
0.

0
0.

5

time

FPC1

TRUE
SLFPCA
LGP

0 2 4 6 8 10

−
0.

5
0.

0
0.

5

time

FPC2

TRUE
SLFPCA
LGP

Figure 3: Eigenfunction estimates in one randomly chosen run for Case 3 illustrated in Section

4.2 when the true FPCs are non-sparse. Thick solid lines are for true eigenfunctions, while

lines for the estimated eigenfunctions obtained from SLFPCA and LGP are in dashed and

dotted-dashed types respectively.
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Figure 4: Eigenfunction estimates in one randomly chosen run for Case 4 illustrated in Section

4.2 when the true FPCs are non-sparse. Thick solid lines are for true eigenfunctions, while

lines for the estimated eigenfunctions obtained from SLFPCA and LGP are in dashed and

dotted-dashed types respectively.
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5 Real Data Analysis

In this section, we apply our proposed SLFPCA method to the physical activity data collected

from Kozey-Keadle et al. [2014]. The data are generated from a health monitoring project

which measured the metabolic effects of several interventions to increase physical activity and

reduce sedentary behaviors (e.g. sitting or lying down) in office workers. A wearable monitor,

ActivPALTM (www.paltech.plus.com), was used to track the wearer’s leg movement over time.

In particular, the device detected leg angle change when the wearer stands up, which showed

an interruption of sedentary behavior (0, no; 1, yes). For each participant, the observations

obtained from the monitor are summarized into consecutive five-minute intervals. There are

n = 60 individuals involved in this project and each individual was tracked for 36 five-minute

records.

Figures 5 and 6 show the estimated mean function µ̂(t) and eigenfunctions φ̂k(t)’s by SLF-

PCA. The tuning parameters are selected as presented in Section 2.4. Moreover, we choose the

number of FPCs as p = 2 by BIC. The mean function for the latent process indicates individu-

als were likely to interrupt their sedentary behaviors to take intense exercises at about t = 12.

After about 30 minutes’ active physical exercises, more sedentary behaviors were observed and

then the interruptions of sedentary behaviors increased back to the starting level.
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Figure 5: Estimated mean function of the latent process X(t) for the physical activity data.
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(a) Estimate for the first eigenfunction
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(b) Estimate for the second eigenfunction

Figure 6: The estimates of the first two eigenfunctions for the physical activity data.

The estimated eigenfunctions reveal some local sparse features, which facilitate interpreta-

tion for the results. The first eigenfunction highlights the variation after t = 20, while being
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zero on the remaining part. It implies that individuals experienced similar activity pattern with

each other on [0, 20], as the variation around mean function at that interval is ignorable. On

the other hand, the variation after t = 20 is substantial, especially at t = 25 and t = 34. In this

physical activity study, most of the participants started to take a one-hour exercises at t = 12

based on training schedule. Thus, the variation after t = 20 showed different activity pattern

after about 30 minutes’ intense exercises. Some individuals were still active with frequent inter-

ruption of sedentary behaviors, while others preferred sitting for a long time to have a rest. For

the second eigenfunction, it is positive on [15, 25] and it turns to be negative on [30, 35], which

indicates a negative association relationship between the observations on these two intervals. A

possible explanation is that, the subject who were more active during the exercises with high

frequency of sedentary behavior interruptions may have longer sitting time after exercises.

6 Conclusion and Discussion

In this paper, we introduce a novel SLFPCA method for functional binary data and require

the estimated FPCs to be able to capture the local sparse features of the original FPCs for the

sake of interpretability. To this end, we construct a penalized Bernoulli likelihood with both

roughness penalty and sparseness penalty. The sparseness penalty is crucial for the realization

of local sparsity and we generalize the fSCAD penalty to our FPCA issue. The simulation study

shows the superiority of SLFPCA and illustrates its encouraging identifying ability for non-zero

subintervals. The practical application to the physical activity data suggests SLFPCA actually

helps the interpretation a lot.

As it is the first try on sparse FPCA for binary data, there exists plenty of extensions in

relevant field. First, other sparseness penalties, such as group bridge penalty [Wang and Kai,

2015, Tu et al., 2020] and LASSO penalty [Centofanti et al., 2020], can also be extended to the

sparse FPCA problem. And it may be an interesting affair to explore the influences of choosing

various sparseness penalties. Second, we presume identical sparseness tuning parameters for

all considered eigenfunctions in our work. There may be cases where eigenfunctions meet

different sparsity and thus distinct sparseness tuning parameters are necessary. The number

of tuning parameter increases for these cases and such multiple tuning parameter selections

would consume much computation time. Hence, a more effective method for selecting tuning

parameters is in need. Third, the idea in this paper can be applied to functional data from other

discrete distributions, such as Poisson distribution for functional count data, through altering

the penalized likelihood corresponding to the distribution. It is worthwhile to develop adaptive

algorithms for diverse distributions.
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A Proofs

For simplicity of notation, we neglect mean function µ(t) here, that is µ = 0. The proofs can

be easily generalized to the cases where µ 6= 0.

A.1 Proof of Theorem 1

Lemma 1. (Approximation properties of B-splines) Assume function f(t) satisfying |f (p′)(t1)−
f (p
′)(t2)| ≤ c|t1 − t2|ν , c > 0, ν ∈ [0, 1]. Then there is some f̃(t) =

∑L
l=1 blBl(t) such that

‖f̃(t)− f(t)‖∞ = O(K−r), where ‖f̃(t)− f(t)‖∞ = supt∈T |f̃(t)− f(t)| and r = p′ + ν.

Proof of Lemma 1. Let w(f ;h) = sup{|f(t) − f(s)| : t, s ∈ T , |t − s| ≤ h}. According to

Theorem XII (6) in de Boor [2001], there exists some f̃(t) =
∑L
l=1 blBl(t) such that

‖f̃ − f‖∞ ≤ C0 · hp
′
· w(f (p

′);h),

where h is the distance between the adjacent knots, thus h = O(K−1). Further, as |f (p′)(t1)−
f (p
′)(t2)| ≤ c|t1−t2|ν , c > 0, ν ∈ [0, 1], we have f (p

′) satisfies a Hölder condition with component

ν. Hence, according to Theorem II (21) in de Boor [2001], we have

w(f (p
′);h) ≤ C1h

ν ,

where C1 is some constant. Therefore,

‖f̃ − f‖∞ ≤ C0C1h
p′+ν = C0C1h

r = O(K−r).

The proof is completed.

Proof of Theorem 1. Let Ω = (θ>1 , . . . ,θ
>
p )>. Then our objective function is equivalent to

Q̃(Ω, ξ0) = − 1

N
L(Ω, ξ0) + κθ

p∑
k=1

θ>k V θk + PENλ(Θ),

where

L(Ω, ξ0) =

n∑
i=1

mi∑
j=1

log π{qij(B>ijΘ>ξ0i)}.
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Let αN = N−1/2K.We want to show that for any ε > 0, ∃C1 > 0, ∀C > C1,

P
{

inf
‖u‖2=C

Q̃(Ω0 + αNu, ξ0) > Q̃(Ω0, ξ0)
}
≥ 1− ε, (14)

where Ω0 = (θ>01, . . . ,θ
>
0p)
> is the true parameter. It indicates there exists a local minimizer in

the ball {Ω0 +αNu : ‖u‖2 ≤ C}, with probability at least 1− ε. Moreover, the local minimizer

satisfies ‖Ω̂−Ω0‖2 = Op(αN ), where Ω̂ = (θ̂>1 , . . . , θ̂
>
p )>.

In specific, let u = (u>1 , . . . ,u
>
p )> and φ̃k(t) = B>(t)θ0k. We have

DN (u) ,Q̃(Ω0 + αNu, ξ0)− Q̃(Ω0, ξ0)

=− 1

N
{L(Ω0 + αNu, ξ0)− L(Ω0, ξ0)}

+ κθ

p∑
k=1

{(θ0k + αNuk)>V (θ0k + αNuk)− θ>0kV θ0k}

+ {PENλ(Θ0αN
)− PENλ(Θ0)}

=− 1

N
{L(Ω0 + αNu, ξ0)− L(Ω0, ξ0)}

+ κθ

p∑
k=1

{(θ0k + αNuk)>V (θ0k + αNuk)− θ>0kV θ0k}

+
K + 1

8T

p∑
k=1

∫
T

{
pλ

(∣∣B>(t)(θ0k + αNuk)
∣∣)− pλ(∣∣B>(t)θ0k

∣∣)}dt
≥− 1

N
{L(Ω0 + αNu, ξ0)− L(Ω0, ξ0)}

+ κθ

p∑
k=1

{(θ0k + αNuk)>V (θ0k + αNuk)− θ>0kV θ0k}

+
K + 1

8T

p∑
k=1

∫
Gk

{
pλ

(∣∣B>(t)(θ0k + αNuk)
∣∣)− pλ(∣∣B>(t)θ0k

∣∣)}dt
,∆1 + ∆2 + ∆3,

where Θ0αN
is obtained from θ0k+αNuk, k = 1, . . . , p, and Gk = SUPP(φ̃k). For ∆1, according

to the Taylor expansion, we have

∆1 = − 1

N
[αN∇>L(Ω0, ξ0)u+

1

2
u>∇2L(Ω0, ξ0)uα2

N{1 + op(1)}],

where ∣∣∣− 1

N
αN∇>L(Ω0, ξ0)u

∣∣∣ ≤ 1

N
αN‖∇>L(Ω0, ξ0)‖2‖u‖2

= Op(αNN
−1/2K1/2)‖u‖2,
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− 1

2N
u>∇2L(Ω0, ξ0)uα2

N =
α2
N

2
u>I(Ω0, ξ0)u+ op(α

2
N ). (15)

The derivation of (15) is provided in the proof of Lemma 2. For ∆2, we have

κθ{(θ0k + αNuk)>V (θ0k + αNuk)− θ>0kV θ0k}

=2κθαNθ
>
0kV uk + κθα

2
Nu
>
k V uk

≤2κθαN‖θ>0k‖2‖V ‖2‖uk‖2 + κθα
2
N‖u>k ‖2‖V ‖2‖uk‖2

=o(N−1/2αNK)‖uk‖2 + o(N−1/2α2
NK)‖uk‖22

=o(N−1/2KαN )‖uk‖2.

Therefore,

∆2 = o(N−1/2KαN )
( p∑
k=1

‖uk‖2
)
.

For ∆3, we have

K + 1

8T

p∑
k=1

∫
Gk

{
pλ

(∣∣B>(t)(θ0k + αNuk)
∣∣)− pλ(∣∣B>(t)θ0k

∣∣)}dt
=
K + 1

8T

p∑
k=1

∫
Gk

[
αN∇>

{
pλ

(∣∣B>(t)θ0k
∣∣)}uk

+
α2
N

2
u>k∇2

{
pλ

(∣∣B>(t)θ0k
∣∣)}uk]dt

=
K + 1

8T
αN

p∑
k=1

∇>
{∫
Gk
pλ

(∣∣B>(t)θ0k
∣∣)dt}uk

+
K + 1

8T

α2
N

2

p∑
k=1

u>k∇2
{∫
Gk
pλ

(∣∣B>(t)θ0k
∣∣)dt}uk

≤Op(αNN−1/2K−1/2)
( p∑
k=1

‖uk‖2
)

+ op(α
2
NK

−1)
( p∑
k=1

u>k Zuk

)
,

where Z is a sparse matrix with 1 in the location (i, j) such that 0 ≤ |i− j| ≤ 4. The derivation

of the last inequality makes use of the results in Lin et al. [2017], that is∥∥∥∇>{∫
Gk
pλ

(∣∣B>(t)θ0k
∣∣)dt}∥∥∥

2
= O(N−1/2K−3/2)

∇2
{∫
Gk
pλ

(∣∣B>(t)θ0k
∣∣)dt} = o(K−2)Z.
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Allowing ‖u‖2 to be large enough, all terms are dominated by the second term of ∆1. Therefore,

we obtain (14) according to (15). Thus ‖θ̂k − θ0k‖2 = Op(N
−1/2K), k = 1, . . . , p.

According to Lemma 1, we have ‖φ̃k − φk‖∞ = O(K−r). Then

‖φ̂k − φk‖∞ ≤ ‖φ̂k − φ̃k‖∞ + ‖φ̃k − φk‖∞
= ‖(θ̂k − θ0k)>B‖∞ + ‖φ̃k − φk‖∞

≤ ‖θ̂k − θ0k‖∞ sup
t

L∑
j=1

|Bj(t)|+ ‖φ̃k − φk‖∞

= ‖θ̂k − θ0k‖∞ + ‖φ̃k − φk‖∞
≤ ‖θ̂k − θ0k‖2 + ‖φ̃k − φk‖∞
= Op(N

−1/2K) +O(K−r)

= Op(N
−1/2K).

The last equality is obtained from Assumption 3. The proof is completed.

Lemma 2. Under Assumptions 1 - 3, we have (15).

Proof of Lemma 2. We have

− 1

2N
u>∇2L(Ω0, ξ0)uα2

N

=− 1

2
u>
{ 1

N
∇2L(Ω0, ξ0) + I(Ω0, ξ0)

}
uα2

N +
α2
N

2
u>I(Ω0, ξ0)u.

22



According to Chebyshev’s inequality, for any ε > 0, as K = o(N1/4),

P
{∥∥∥ 1

N
∇2L(Ω0, ξ0) + I(Ω0, ξ0)

∥∥∥ ≥ ε

K

}
≤K

2

ε2
E
{∥∥∥ 1

N
∇2L(Ω0, ξ0) + I(Ω0, ξ0)

∥∥∥2}
=
K2

ε2
E
[∥∥∥ 1

N
∇2L(Ω0, ξ0)− 1

N
E{∇2L(Ω0, ξ0)}

∥∥∥2]
=

K2

N2ε2
E
[∥∥∥∇2L(Ω0, ξ0)− E{∇2L(Ω0, ξ0)}

∥∥∥2]
=

K2

N2ε2

pK∑
i,j=1

E
(∂2L(Ω0, ξ0)

∂θi∂θj
− E∂

2L(Ω0, ξ0)

∂θi∂θj

)2
=

K2

N2ε2

pK∑
i,j=1

var
(∂2L(Ω0, ξ0)

∂θi∂θj

)
≤ K2

N2ε2
· p2K2NC2

=
p2C2K

4

Nε2
→ 0,

where C2 is a constant and var
(
∂2L(Ω0,ξ0)
∂θi∂θj

)
is bounded by NC2. That means

∥∥∥ 1
N∇

2L(Ω0, ξ0)+

I(Ω0, ξ0)
∥∥∥ = op(K

−1). Then we have

− 1

2N
u>∇2L(Ω0, ξ0)uα2

N =
α2
N

2
u>I(Ω0, ξ0)u+ op(α

2
N ).

A.2 Proof of Theorem 2

Define

T (1)
k = {t ∈ T : |φk(t)| > aC(λ+K−r)},

T (2)
k = {t ∈ T : φk(t) = 0},

T (3)
k = T − T (1)

k − T (2)
k .

We further define Sl = SUPP(Bl), l = 1, . . . , L. Let A(j)
k = {l : Sl ⊂ T (j)

k }, j = 1, 2 and

A(3)
k = {1, . . . , L} − A(1)

k −A
(2)
k .
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Proof of Theorem 2. Consider θkl, where l ∈ A(2)
k . We have

∂Q̃(Ω̂, ξ0)

∂θkl
=− 1

N

∂L(Ω̂, ξ0)

∂θkl
+ κθ

∂(θ>k V θk)

∂θkl

∣∣∣
θk=θ̂k

+
K + 1

8T

∫
T
p′λ(|B>(t)θk|)

∣∣∣
θk=θ̂k

Bl(t)sgn(θ̂kl)dt

=− 1

N

{∂L(Ω0, ξ0)

∂θkl
+

1

2

L∑
g=1

∂2L(Ω0, ξ0)

∂θkl∂θkg
(θ̂kg − θ0kg)

}
+ κθ

∂(θ>k V θk)

∂θkl

∣∣∣
θk=θ̂k

+
K + 1

8T
sgn(θ̂kl)

∫
Sl
p′λ(|B>(t)θk|)

∣∣∣
θk=θ̂k

Bl(t)dt.

Then ∣∣∣∣∣λ−1 ∂Q̃(Ω̂, ξ0)

∂θkl
− K + 1

8T
sgn(θ̂kl)

∫
Sl
λ−1p′λ(|B>(t)θk|)

∣∣∣
θk=θ̂k

Bl(t)dt

∣∣∣∣∣
=

∣∣∣∣∣− λ−1 1

N

{∂L(Ω0, ξ0)

∂θkl
+

1

2

L∑
g=1

∂2L(Ω0, ξ0)

∂θkl∂θkg
(θ̂kg − θ0kg)

}
+ λ−1κθ

∂(θ>k V θk)

∂θkl

∣∣∣
θk=θ̂k

∣∣∣∣∣
≤Op(N−1/2K3/2λ−1) + op(N

−1/2λ−1)→ 0. (16)

As

lim inf
N→∞

lim inf
x→0+

λ−1p′λ(x) > 0,

the sign of K+1
8T sgn(θ̂kl)

∫
Sl λ
−1p′λ(|B>(t)θk|)

∣∣∣
θk=θ̂k

Bl(t)dt is determined by θ̂kl. Hence, the sign

of ∂Q̃(Ω̂,ξ0)
∂θkl

is determined by θ̂kl according to (16). Since θ̂kl is the local minimizer of Q̃(Ω, ξ0),

we have ∂Q̃(Ω̂,ξ0)
∂θkl

= 0, thus θ̂kl = 0. That means θ̂kl = 0 for all l ∈ A(2)
k in probability.

Define Â(2)
k = {l ∈ A(2)

k : θ̂kl = 0}. We have Â(2)
k = A(2)

k in probability. Moreover,⋃
l∈Â(2)

k

Sl =
⋃
l∈A(2)

k

Sl in probability. Since
⋃
l∈A(2)

k

Sl converges to NULL(φk) as K → ∞
according to the compact support property of B-spline basis, we have⋃

l∈Â(2)
k

Sl → NULL(φk) (17)

in probability.
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We further want to show T (1)
k ⊂ SUPP(φ̂k) in probability. By Theorem 1, ‖φ̂k − φk‖∞ =

Op(N
−1/2K + K−r) = Op(λ + K−r). Thus for any ε > 0, there exists some constant C4 > 0

such that P{|φ̂k(t)− φk(t)| ≤ C4a(λ+K−r), t ∈ T (1)
k } > 1− ε. Let C = 2C4 and making use

of the definition of T (1)
k , we have

P{|φ̂k(t)| ≥ C4a(λ+K−r), t ∈ T (1)
k } > 1− ε.

Since C4a(λ + K−r) > 0, we have T (1)
k ⊂ SUPP(φ̂k) in probability. Thus NULL(φ̂k) ⊂

T (2)
k ∪ T (3)

k . Further, as N →∞ and K →∞, we have⋃
l∈Â(2)

k

Sl ⊂ NULL(φ̂k) ⊂ T (2)
k ∪ T (3)

k = NULL(φk) ∪ T (3)
k . (18)

By (17), (18) and the fact that T (3)
k converges to ∅, we have NULL(φ̂k) → NULL(φk) and

SUPP(φ̂k)→ SUPP(φk) in probability. The proof is completed.

A.3 Proof of Theorem 3

Proof of Theorem 3. For ξi, the objective function is

Q∗(Θ0, ξi) = −
mi∑
j=1

log π{qij(B>ijΘ>0 ξi)}.

Let βM = M−1/2. We want to show that for any ε > 0, ∃C3 > 0, ∀D > C3, such that

P
{

inf
‖u‖2=D

Q∗(Θ0, ξ0i + βMu) > Q∗(Θ0, ξ0i)
}
≥ 1− ε, (19)

where ξ0i = (ξi1, . . . , ξip)
> is the true parameter. It indicates there exists a local minimizer in

the ball {ξ0i+βMu : ‖u‖2 ≤ D}, with probability at least 1− ε. Moreover, the local minimizer

satisfies ‖ξ̂i − ξ0i‖2 = Op(βM ).

Similarly, define DM (u) = Q∗(Θ0, ξ0i + βMu)−Q∗(Θ0, ξ0i). Then

DM (u) = −
[ mi∑
j=1

log π[qij{B>ijΘ>0 (ξ0i + βMu)}]−
mi∑
j=1

log π{qij(B>ijΘ>0 ξ0i)}
]

, −{l(Θ0, ξ0i + βMu)− l(Θ0, ξ0i)}

= −βM∇>l(Θ0, ξ0i)u+
Mβ2

M

2
u>I(Θ0, ξ0i)u{1 + op(1)}

, δ1 + δ2.
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In specific, as

|δ1| = |βM∇>l(Θ0, ξ0i)u| ≤ βM‖∇>l(Θ0, ξ0i)‖2‖u‖2 = Op(M
1/2βM ),

DM (u) is dominated by δ2 with a sufficient large D. That means we have (19) using a sufficient

large D. Since ‖ξ̂i − ξ0i‖2 = Op(βM ), |ξ̂ik − ξik| = Op(βM ) for all k = 1, . . . , p. The proof is

completed.
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