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Abstract

Markov chains with variable length are useful parsimonious stochastic
models able to generate most stationary sequence of discrete symbols. The
idea is to identify the suffixes of the past, called contexts, that are relevant
to predict the future symbol. Sometimes a single state is a context, and
looking at the past and finding this specific state makes the further past
irrelevant. States with such property are called renewal states and they
can be used to split the chain into independent and identically distributed
blocks. In order to identify renewal states for chains with variable length,
we propose the use of Intrinsic Bayes Factor to evaluate the hypothesis
that some particular state is a renewal state. In this case, the difficulty lies
in integrating the marginal posterior distribution for the random context
trees for general prior distribution on the space of context trees, with
Dirichlet prior for the transition probabilities, and Monte Carlo methods
are applied. To show the strength of our method, we analyzed artificial
datasets generated from different binary models models and one example
coming from the field of Linguistics.
Keywords: Variable length Markov Chains, Renewal States, Bayes Factor,
intractable normalizing constant

1 Introduction

Markov Chains with variable length are useful stochastic models that provide
a powerful framework for describing transition probabilities for finite-valued se-
quences due the possibility of capturing long-range interactions while keeping
some parsimony in the number of free parameters. These models were intro-
duced in the seminal paper of Rissanen (1983) for data compression and became
known in the statistics literature as Variable Length Markov Chain (VLMC) by
Bühlmann and Wyner (1999), and as Probabilistic Suffix Trees (PST) in the
machine learning literature (Ron et al., 1996). The idea is that, for each past,
only a finite suffix of the past is enough to predict the next symbol. Rissanen
called context, the relevant ending string of the past. The set of all contexts can
be represented by the set of leaves of a rooted tree if we require that no context
is a proper suffix of another context. For a fixed set of contexts, estimation of
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the transition probabilities can be easily achieved. The problems lies into esti-
mating the set of contexts from the available data. In his seminal 1983 paper,
Rissanen introduced the Context algorithm, which estimates the context tree
by aggregating irrelevant states in the history of the process using a sequential
procedure. A nice introductory guide to this type of models and particularly to
the Context algorithm can be found in Galves and Löcherbach (2008).

Many of the tree model methods related to data compression tasks involve
obtaining better predictions based on weighting over multiple models. A clas-
sical example is the Context-Tree Weighting (CTW) algorithm (Willems et al.,
1995), which computes the marginal probability of a sequence by weighting over
all context trees and all probability vectors using computationally convenient
weights. Using CTW, Csiszár and Talata (2006) showed that context trees can
be consistently estimated in linear time using the Bayesian information criterion
(BIC). These weighting strategies can be translated to a Bayesian framework
where unobserved parameters of a probabilistic system are treated as additional
random components with given prior distribution and inference is based on in-
tegrating over the nuisance parameters, which is a form of weighting over these
quantities based on the prior distribution. Nonetheless, inference performed fol-
lowing the Bayesian paradigm for VLMC models is a relatively recent topic of
research. Some works that explicitly use Bayesian statistics in combination with
VLMC models are Dimitrakakis (2010) which introduced an online prediction
scheme by adding a prior, conditioned on context, on the Markov order of the
chain, and Kontoyiannis et al. (2020) which provided more general tools such
as posterior sampling through Metropolis-Hastings algorithm and Maximum a
Posteriori context tree estimation focusing on model selection, estimation, and
sequential prediction. A Bayesian approach for model selection in high-order
Markov chains, allowing conditional probabilities to be partitioned into more
general structures than the tree-based structures of VLMC models, is also pro-
posed in Xiong et al. (2016).

As aforementioned, the effort was mostly concentrated in estimating the con-
text tree structure. On the other hand, hypothesis testing for VLMC is a difficult
topic, first tackled by Balding et al. (2009) and pursued further by Busch et al.
(2009) using a Kolmogorov-Smirnov-type goodness-of-fit test, to compare if two
samples come from the same distribution. Under the Bayesian paradigm, hy-
pothesis testing is done though Bayes Factor, but computing Bayes Factors may
depend on integrations that require enormous computational effort depending
on the random objects and hypotheses involved. Particularly for VLMC prob-
lems, Bayes Factors require summing over the set of all possible context trees,
which cardinality grows doubly exponentially with the maximum depth consid-
ered, quickly becoming intractable. To avoid such intractable quantities, we use
the Monte Carlo approximations of the Intrinsic Bayes Factor (Berger and Per-
icchi, 1996), which is based on averaging over posterior distributions, that tend
to be highly concentrated within a small set of context trees for VLMC models,
and have been used recently in many different fields with the same purpose,
such as Cabras et al. (2015), Charitidou et al. (2018) and Villa and Walker
(2021). Alternatives to Bayes Factors based on using posterior distributions
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instead of the prior distribution in integrations have been evolving over the past
decades, the classical method using this strategy is the Posterior Bayes Factor
Aitkin (1991), with applications in a variety of models such as Aitkin (1993)
and Aitkin et al. (1996).

In this work, we focus on one characteristic of interest in a context tree, the
presence of a renewal state or a renewal context. Renewal states play an impor-
tant role in some computational methods frequently used in statistical analysis
such as designing Bootstrap schemes and defining proper cross-validation strate-
gies based on blocks. Therefore, having some methodology not only to detect
renewal states, but also to quantify how plausible these assumptions are, can
improve the robustness of analysis at the cost of some pre-processing compu-
tations. For example, Galves et al. (2012) proposed a constant free algorithm
(Smallest Maximizer Criterion) to find the tree that maximizes the BIC based
on a Bootstrap scheme that uses the renewal property of one of the states.
To the best of our knowledge, using Bayes Factors for evaluating hypotheses
involving probabilistic context trees is a topic that has not been explored.

2 Variable-Length Markov Chains

2.1 Model Description

Let A be an alphabet of m symbols, and without loss of generality, consider A =
{0, 1, . . . , (m− 1)} for simplicity. For t2 > t1, a string (zt1 , . . . , zt2) ∈ At2−t1+1

will be denoted by zt2t1 and its length by `(zt2t1) = t2 − t1 + 1. A sequence snn−l
is a suffix of a string zn1 if sj = zj for all j = n− l, . . . , n. If l < n we say that
snn−l is a proper suffix of the string zn1 .

Definition 1 Let L > 0 and τ ⊂ ∪Lj=1Aj be a set of strings formed by symbols

in A. We say that τ satisfies the suffix property if, for every string s−1
−j+j′ =

(s−j+j′ , . . . , s−1) ∈ Aj−j′ , s−1
−j+j′ ∈ τ implies that s−1

−j 6∈ τ for j > 1, j′ =
1, . . . , j.

Definition 2 Let L > 0 and τ ⊂ ∪Lj=1Aj be a set of strings formed by symbols
in A. We say that τ is an irreducible tree if, no string belonging to τ can be
replaced by a proper suffix without violating the suffix property.

Definition 3 Let τ be an irreducible tree. We say that τ is full if, for each
string s ∈ τ , any concatenation of a symbol k ∈ A and a suffix of s is the suffix
of a string s′ ∈ τ .

Examples Suppose that we have a binary alphabet A = {0, 1}, then:

• τ = {0, 1, 11} does not satisfy the suffix property because it contains
both the strings 1 and 11.
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• τ = {0, 01} is not an irreducible tree, because the string 01 can be
replace by its suffix, 1, without violating the suffix property, as the set
{0, 1} satisfies the suffix property.

• τ = {0, 011, 111} is irreducible, but it is not full because 1 is a suffix of
a string in τ (either 011 or 111), but 01 (the concatenation of 0 ∈ A and
1) is not.

• τ1 = {0, 100, 101, 110, 111}, τ2 = {01, 00, 10, 11} and τ3 = {0, 10, 110, 1110, 1111}
are full irreducible trees.

A full irreducible tree τ can be represented by the set of leaves of a rooted
tree with a finite set of labeled branches such that

(1) The root node has no label,

(2) each node has either 0 or m children (fullness) and

(3) when a node has m children, each child has symbol of the alphabet A as
a label.

The elements of τ will be called contexts and we will refer to full irreducible
trees as context trees henceforth. Figure 1 presents 3 examples of contexts trees.
The depth ` of a tree τ is given by the maximal length of a context belonging
to τ , defined as

`(τ) = max{`(z); z ∈ τ}.

In this work we will assume that the depth of the tree is bounded by an integer
L. In this case, it is straightforward to conclude that, for any string zt2t1 with

at least L + 1 symbols, there exist a suffix zt2t2−l and a leaf of τ such that the

symbols between the leaf (including) and the root node are exactly zt2t2−l. Galves
et al. (2012) referred to this property as the properness of a context tree.

For each context tree τ , we can associate a family of probability measures
indexed by elements of τ ,

p = {p(·|s) : A → [0, 1]; s ∈ τ}.

The pair (τ,p) is called a probabilistic context tree.
Given a tree τ with the described properties and depth bounded by L, define

a suffix mapping function ητ : ∪∞j=L+1Aj → τ such that ητ (zt2t1) = zt2t2−l is the

unique suffix zt2t2−l ∈ τ .

Definition 4 A sequence of random variables Z = (Zt)
T
t=1 with state space A

is a Variable Length Markov Chain (VLMC) compatible with the probabilistic
tree (τ,p) if it satisfies

P
(
Zt = k|Zt−1

1 = zt−1
1

)
= p(k|ητ (zt−1

1 )), (1)

for all L < t ≤ T , zt−1
1 ∈ At−1, where ητ (zt−1

1 ) ∈ τ is the suffix of zt−1
1 .
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Figure 1: Examples of context trees.

2.2 Likelihood Function

In order to extend the scope of VLMC models introduced previously to data
involving multiple sequences, we define a VLMC dataset of size I, denoted as Z̃,
as a set of independent VLMC sequences Z̃ = (Z(i))i=1,...,I and z̃ = (z(i))i=1,...,I

will denote its observed realizations.
For each sequence Z(i), with length Ti, we will consider its first L elements

as constant values, allowing us to write the joint probabilities as a product
of transition probabilities in (1), without requiring additional parameters for
consistently defining the probabilities of the first symbols in each sequence.
Hence, the likelihood function is given by

f(z̃|τ,p) =
∏
s∈τ

m−1∏
k=0

(p(k|s))
nsk(z̃)

, (2)

where nsk(z̃) =
∑I
i=1

∑Ti

t=L+1 1
(
z

(i)
t = k, ητ (z

t−1(i)
1 ) = s

)
counts the number

of occurrences of the symbol k after strings with suffix s across all sequences.

2.3 Renewal States

A symbol a ∈ A is called a renewal state if

P
(
Zt
′

t+1 = zt
′

t+1|Zt−1
1 = zt−1

1 , Zt = a
)

= P
(
Zt
′

t+1 = zt
′

t+1|Zt = a
)
,

for all t > L, t′ > t + 1, zt−1
1 ∈ At−1, zt

′

t+1 ∈ At
′−t. That is, conditioning on

Zt = a, the distribution of the chain after t, (Zu)u>t, is independent from the
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past (Zu)u<t.
This property of conditional independences in a Markov Chain can be di-

rectly associated to the structure of the context tree of a VLMC model. For a
VLMC model with associated context tree τ , a state a ∈ A is a renewal state if
a does not appear in any inner node of the context tree. That is, for any context
s ∈ τ , expressing s as the concatenation of l symbols s = sl . . . s2s1, si 6= a for
i = 1, . . . , l − 1. In this case, we say that the tree τ is a-renewing.

Two out of the three trees displayed in Figure 1 present renewal states. Tree
(I) has 0 as a renewal state, Tree (II) has no renewal states due to the presence
of the contexts 001 and 00111, Tree (III) has only 1 as a renewal state. If, in
Tree (III), the branch formed by contexts 002, 102, 202 and 302 was pruned and
substituted by the context 02 only, then 0 would also be a renewal state. Note
that a VLMC may contain multiple renewal states.

A remarkable consequence of a being a renewal state is that the random
blocks between two occurrences of a are independent and identically distributed.
This feature allows the use of block Bootstrap methods, enables a straightfor-
ward construction of cross-validation schemes and any other technique that
relies on exchangeability properties.

3 Bayesian Renewal Hypothesis Evaluation

A VLMC model is fully specified by the probabilistic context tree (τ,p). The
dimension of p depends on the branches of τ . Both these unobserved compo-
nents (τ,p) can be treated as random elements with given prior distribution to
carry out inference under the Bayesian paradigm.

From now on, we will use the following notation, for each s ∈ τ ,

ps = (p(0|s), . . . , p(m− 1|s)) ∈ ∆m

where ∆m denotes the m-simplex,

∆m =

{
x ∈ R{0,1,...,m−1} :

m−1∑
k=0

xk = 1 and ∀j, xj ≥ 0

}
.

In this section we discuss the prior specification for the probabilistic context
tree (τ,p), as well as the resultant posterior distribution and how to perform
hypothesis testing using partial and intrinsic Bayes factor.

3.1 A Bayesian Framework for VLMC models

We consider a general prior distribution for τ proportional to any arbitrary
non-zero function h : TL → [0,∞) and, given τ , for each s ∈ τ , ps will have
independent Dirichlet priors.
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The complete Bayesian system can be described by the hierarchical structure

τ ∼ h(τ)

ζ(h, L)
, τ ∈ TL,

p|τ ∼
∏
s∈τ

Γ(
∑m−1
k=0 αsk)∏m−1

k=0 Γ(αsk)

m−1∏
k=0

(p(k|s))
αsk−1

, p ∈ ∆|τ |m , (3)

Z̃|τ,p ∼ f(z̃|τ,p), z(i) ∈ ATi ,

where
ζ(h, L) =

∑
τ∈TL

h(τ) (4)

is the normalizing constant of the tree prior distribution and f(z̃|τ,p) is given
by (2). We are assuming that the prior distribution for the transition proba-
bilities ps are independent Dirichlet distribution with hyperparameters αs =
(αs1, . . . , αs(m−1)). Therefore, the joint distribution of (τ,p, Z̃) is given by

π(τ,p, z̃) =
h(τ)

ζ(h, L)

∏
s∈τ

Γ(
∑m−1
k=0 αsk)∏m−1

k=0 Γ(αsk)

m−1∏
k=0

(p(k|s))
nsk(z̃)+αsk−1

.

Since our interest lies in making inferences about the dependence struc-
ture represented by τ rather than the transition probabilities, we can simplify
our analysis by marginalizing the joint probability function over p, π(τ, z̃) =∫
π(τ,p, z̃)dp, obtaining a function that depends only on the context tree and

the data. The product of Dirichlet densities, assigned as the prior distribution
of p, conjugates to the likelihood function, allowing us to express the integrated
distribution in closed-form as

π(τ, z̃) =
h(τ)

ζ(h, L)

∏
s∈τ

Γ(
∑m−1
k=0 αsk)∏m−1

k=0 Γ(αsk)

∏m−1
k=0 Γ(nsk(z̃) + αsk)

Γ(
∑m−1
k=0 nsk(z̃) + αsk)

, (5)

obtained by multiplying the appropriate normalizing constant to achieve Dirich-
let densities with parameters (αs0 + ns,0(z̃), . . . , αs(m−1) + ns,m−1(z̃)) for each
s ∈ τ , so that the integration is done on a proper density. For a less convoluted
notation, we shall denote

q(τ, z̃) =
∏
s∈τ

Γ(
∑m−1
k=0 αsk)∏m−1

k=0 Γ(αsk)

∏m−1
k=0 Γ(nsk(z̃) + αsk)

Γ(
∑m−1
k=0 nsk(z̃) + αsk)

, (6)

and use, from now on, the shorter expression π(τ, z̃) = h(τ)
ζ(h,L)q(τ, z̃).

Finally, the model evidence (marginal likelihood) can now be obtained by
summing (5) over all trees in TL,

E(z̃;h) =
∑
τ∈TL

π(τ, z̃) =
∑
τ∈TL

h(τ)

ζ(h, L)
q(τ, z̃). (7)

Note that we explicitly describe the model evidence in terms of the prior dis-
tribution h as we will be interested in evaluating hypotheses based on different
prior distributions.

7



3.2 Bayes Factors for Renewal State Hypothesis

Let z̃ = (z(i))i=1,...,I be a VLMC sample compatible with a probabilistic con-
text tree (τ,p) where τ has maximum depth L. We will call maximal tree the
complete tree with depth L and let a ∈ A be a fixed state of the alphabet. Our
goal is to use Bayes Factors (Kass and Raftery, 1995) to evaluate the evidence
in favor of the null hypothesis Ha that τ is a-renewing against an alternative hy-
pothesis Hā that τ is not a-renewing. We denote T aL ⊂ TL the set of a-renewing
trees with depth no more than L and T̄ aL the set of trees with a as an inner
node and, consequently, a is not a renewal state for those trees.

We are interested in defining a metric for evaluating the hypothesis Ha :
τ ∈ T aL against its complement Hā : τ ∈ T̄ aL in a Bayesian framework. These
hypotheses can be expressed in terms of special prior distributions proportional
to functions ha and hā, respectively, such that ha(τ) = 0 if, and only if, τ ∈ T̄ aL .
Similarly, hā(τ) = 0 if, and only if, τ ∈ T aL .

The Bayes Factor for Ha against Hā is defined as

BFa,ā(z̃) =
E(z̃;ha)

E(z̃;hā)
=
ζ(hā, L)

ζ(ha, L)

∑
τ∈TL ha(τ)q(τ, z̃)∑
τ∈TL hā(τ)q(τ, z̃)

, (8)

where ζ(·, L) is given by (4) and q is given by (6).
Kass and Raftery (1995) proposed the following interpretation for the quan-

tity log10 (BFa,ā(z̃)) as a measure of evidence provided by the data z̃ in favor
of the hypothesis that corresponds to a-renewing trees as opposed to the al-
ternative one. A value between 0 and 1/2 is considered to provide evidence
that is “Not worth more than a bare mention”, “Substantial” for values be-
tween 1/2 and 1, “Strong” if they are between 1 and 2 and “Decisive” for values
greater than 2. By symmetry, these intervals with negative sign provide the
same amount of evidence but reversing the hypotheses considered. Therefore,
the sign of log10 (BFa,ā(z̃)) provides a straightforward measure whether the data
provides more evidence that the chain is compatible with a context tree τ that
is a-renewing or that τ belongs to T̄ aL .

3.3 Metropolis-Hastings algorithm for context tree poste-
rior sampling

Before further development of methods to compute the Bayes Factors from
(8), we need to introduce a Metropolis-Hastings algorithm for sampling from
the marginal posterior distribution of context trees, π(τ |z̃). From (5) and the
Bayes rule we obtain

π(τ |z̃) =

h(τ)
ζ(h,L)q(τ, z̃)

E(z̃;h)
∝ h(τ)q(τ, z̃), (9)

which has a simple expression up to the intractable proportionality terms,
suggesting that the Metropolis-Hastings algorithm (Hastings, 1970; Chib and
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Greenberg, 1995) is an appropriate strategy to obtain an empirical sample from
the posterior distribution given by (9).

The main step for constructing the algorithm is defining a suitable proposal
kernel κ(τ ′|τ), τ ′, τ ∈ TL to move to new context trees from a current tree τ .
We propose the use of a graph-based kernel that can be viewed as a modifi-
cation of the Monte Carlo Markov Chain Model Composition (MC3) method
from Madigan et al. (1995) by defining a neighborhood system N over TL and
constructing a proposal kernel that allows transitions only between neighboring
trees only.

We first specify a set directed edges Nd such that, an edge (τ, τ ′), from
τ to τ ′, is included if, and only if, |τOτ ′| = m + 1 and |τ ′| > |τ |, where O
denotes the symmetric difference operator AOB = (A ∩ Bc) ∪ (Ac ∩ B). An
equivalent definition is that an edge from τ to τ ′ is obtained substituting one
of the contexts s ∈ τ , by the contexts associated with its m children nodes,
{ks, k ∈ A}, in τ ′. We refer to this substitution as growing a branch from s.

Additionally, we define the grow (⊕) and prune (	) operators, as

⊕(τ, h) = {τ ′ ∈ TL : (τ, τ ′) ∈ Nd and h(τ ′) > 0},
	(τ, h) = {τ ′ ∈ TL : (τ ′, τ) ∈ Nd and h(τ ′) > 0}.

The operator ⊕ maps a tree τ to the set of trees with positive prior distribution
that can be obtained by growing new branches from τ , whereas 	 maps τ to
the set of trees in TL from which τ can be obtained after growing a branch.

Some important properties that can be easily checked are

1. For every τ ∈ TL, if τ ′ ∈ ⊕(τ, h) and h(τ) > 0, then τ ∈ 	(τ ′, h).

2. For every τ ∈ TL, if τ ′ ∈ 	(τ, h) and h(τ) > 0, then τ ∈ ⊕(τ ′, h).

3. For any finite sequence τ (1), τ (2), . . . , τ (N) such that h(τ (1)) > 0 and
τ (n+1) ∈ ⊕(τ (n), h)∪	(τ (n), h), we have τ (n) ∈ ⊕(τ (n+1), h)∪	(τ (n+1), h).

It follows from Properties 1 and 2 that any context tree τ can be recovered
by applying sequentially grow and prune operations. Property 3 is a direct
consequence of Properties 1 and 2 and means that any sequence of context
trees obtained by a sequence of grow or prune operations can also be visited in
reverse order with a sequence of grow and prune operations. These properties
also suggest that combining ⊕ and 	 for constructing a set of transitions with
positive probabilities in a proposal kernel is a good strategy in order to achieve
the irreducibility condition κ(τ |τ ′) > 0 if, and only if, κ(τ ′|τ) > 0.

We define a transition kernel κ as

κ(τ ′|τ) =


1

|⊕(τ,h)|1 (τ ′ ∈ ⊕(τ, h)) , if 	(τ, h) = ∅,
1

|	(τ,h)|1 (τ ′ ∈ 	(τ, h)) , if ⊕(τ, h) = ∅,
1
2

1
|⊕(τ,h)|1 (τ ′ ∈ ⊕(τ, h)) + 1

2
1

|	(τ,h)|1 (τ ′ ∈ 	(τ, h)) , o/w,
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Algorithm 1: Metropolis-Hastings algorithm for sampling context
trees from π(τ |z̃) under a tree prior distribution proportional to h.

1 Set an initial tree τ (0) ∈ TL;
2 for t = 1, . . . , niter do
3 Sample an operation ⊕ or 	 which leads to a non-empty set when

applied to τ (t−1), with equal probabilities;

4 Randomly pick a proposed tree τ ′ from ⊕(τ (t−1), h) or 	(τ (t−1), h);
5 Compute the acceptance ratio

A(τ ′|τ (t−1)) = min

(
h(τ ′)q(τ ′, z̃)

h(τ (t−1))q(τ (t−1), z̃)

κ(τ (t−1)|τ ′)
κ(τ ′|τ (t−1))

, 1

)
;

Generate a random variable U ∼ Unif(0, 1);

6 if U < A(τ |τ (t−1)) then
7 τ (t) ← τ ′

8 else
9 τ (t) ← τ (t−1)

10 end if

11 end for

which allows us to propose a tree τ ′ in a simple two-step process. First, pick
the operator to be applied to τ , ⊕ or 	 with probabilities 1/2 if both lead to
non-empty set of trees, otherwise pick the operation that produces a non-empty
set. Then, pick τ ′ from ⊕(τ, h) or 	(τ, h) with uniform probabilities.

The idea of a proposal kernel for context trees based on growing and pruning
nodes of trees was already used in Kontoyiannis et al. (2020) for a specific
prior distribution h. The complete Metropolis-Hastings algorithm described in
Algorithm 1, not only formally defines the construction in terms of graphs, but
also extends it to accommodate arbitrary prior distributions.

3.4 Partial Bayes Factors and Intrinsic Bayes Factors

While BFa,ā(z̃) given by (8) provides a measure of the plausibility of one hypoth-
esis with respect to another, computing this quantity may present an enormous
computational cost as the sum over TL involves a doubly exponential number
of terms. In fact, even the normalizing constant of the tree prior distribution
ζ(h, L) is intractable in the general case for moderate values L, hindering the
evaluation of the model evidence E(z̃;h).

Previous algorithms proposed in the literature that use similar ideas to com-
pute the marginal likelihood, like the Context Tree Weighting (CTW) algorithm
from Willems et al. (1995), are not suitable for our purposes. While we are
aiming to compute (7) for an arbitrary prior, their weighting of context trees
correspond to a very specific choice of prior distributions as h(τ) such that (7)
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can be computed recursively based on the nodes of the maximal tree rather
than every subtree. To overcome this difficulty, we consider the Partial Bayes
Factor (PBF) described in O’Hagan (1995) as an alternative approach for model
comparison.

The methodology consists of dividing the data z̃ into two independent chunks,
z̃train and z̃test and then computing the Bayes Factor based on part of the data,
z̃test, conditioned on z̃train as follows,

PBFa,ā(z̃test|z̃train) =

∑
τ∈TL πa(τ |z̃train)q(τ, z̃test)∑
τ∈TL πā(τ |z̃train)q(τ, z̃test)

, (10)

where πa(τ |z̃train) and πā(τ |z̃train) are the posterior distributions of τ condi-
tioned on the training data z̃train under the hypotheses Ha and Hā, respectively.

Although the original goal of using PBF is to avoid undefined behaviors when
evaluating the ratio of terms involving improper priors, that are replaced by the
posterior distributions conditioned on the training sample, we can see that the
same strategy is very useful to avoid the intractable normalizing constant from
the prior distribution.

Note that, even though (10) still involves sums over TL, the terms∑
τ∈TL

πa(τ |z̃train)q(τ, z̃test) and
∑
τ∈TL

πā(τ |z̃train)q(τ, z̃test)

can be written as expected values EHa
(q(τ, z̃test)|z̃train) and EHā

(q(τ, z̃test)|z̃train),

which can be obtained from ergodic Markov Chains (τ
(t)
a )t≥1 and (τ

(t)
ā )t≥1with

invariant measures πa(τ |z̃train) and πā(τ |z̃train), respectively.
Therefore, we can use MCMC methods to approximate Partial Bayes Factors

by sampling two Markov Chains (τ
(t)
a ) and (τ

(t)
ā ) and using the ratio of empirical

averages instead of the expected values

P̂BFa,ā(z̃test|z̃train) =

∑niter

t=1 q(τ
(t)
a , z̃test)∑niter

t=1 q(τ
(t)
ā , z̃test)

. (11)

To avoid the arbitrary segmentation of the dataset into train and test sub-
sets, Berger and Pericchi (1996) proposed the Intrinsic Bayes Factor (IBF),
which averages PBFs obtained using different segmentations, based on minimal
training samples. Denote by Iv the collection of subsets of {1, . . . , I} of size v,
i.e.,

Iv = {{i1, i2, . . . , iv} ⊂ {1, 2, . . . , I}}.

The dataset is divided into minimal training samples, which we will consider a
v-tuple of sequences iv1 = {i1, i2, . . . , iv} ∈ Iv, denoted z̃(iv1) and the remaining
I−v sequences, denoted as z̃(−iv1) to be used as the test sample. For each possible
subset of v sequences iv1, we compute the Monte Carlo approximation of the PBF
in (11) and take either the arithmetic average to obtain the Arithmetic Intrinsic
Bayes Factor (AIBF) or the geometric average for the Geometric Intrinsic Bayes
Factor (GIBF).
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Denoting by (τ
(t)
a,iv1

) and (τ
(t)
ā,iv1

), t = 1, . . . , niter the Markov Chains of con-

text trees obtained using Algorithm 1 with target distribution πa(τ |z(iv1)) and
πā(τ |z(iv1)) (considering prior distribution proportional to ha and hā), respec-
tively, the AIBF and GIBF are defined as

AIBFa,ā(z̃) =
∑
iv1∈Iv

1(
I
v

)
∑niter

t=1 q
(
τ

(t)
a,iv1

, z̃(−iv1)
)

∑niter

t=1 q
(
τ

(t)
ā,iv1

, z̃(−iv1)
)
 ,

and

GIBFa,ā(z̃) =
∏
iv1∈Iv

∑niter

t=1 q
(
τ

(t)
a,iv1

, z̃(−iv1)
)

∑niter

t=1 q
(
τ

(t)
ā,iv1

, z̃(−iv1)
)
(I

v)
−1

.

The complete procedure for obtaining these quantities for a given VLMC dataset
is described in Algorithm 2.

Note that, while a single sequence (v = 1) is theoretically sufficient to identify
the context tree and can be considered a minimal training sample, computing
posterior distributions using small datasets may result in posterior distributions
that assign very low probabilities to context trees with long branches due to
smaller total counts on those longer branches. Therefore, using more sequences
(higher value for v), may lead to more consistent results as the posterior distri-
bution used in each PBF is more likely to capture long-range contexts. On the
other hand, the number of PBFs to be computed is |Iv| =

(
I
v

)
which quickly

becomes prohibitive when v increases. The choice of v is a trade-off between
computational cost and the deepness of contexts to be captured by partial pos-
terior distributions.

4 Simulation Studies and Application

To show the strength of our method, we analyzed artificial VLMC datasets
generated from two binary models models and a real one coming from the field
of Linguistics.

4.1 Simulation for binary models

In this section, the primary goal is to examine the performance of the AIBF
and GIBF for evaluating the evidence in favor of a null hypothesis of τ be-
ing a-renewing considering aspects of the effect of the number of independent
samples, the size of each chain, and discrimination ability when similar trees
are considered. We consider simulations for binary VLMC models with three
different sample sizes I = 3, 10, 25. For each scenario we sample I chains of
equal length, but three different values Ti = 1000, 2500, 5000. A dataset was
simulated for each combination of I and Ti, resulting in 9 datasets.

The two models considered are presented in Figure 2. Model 1 has a depth
equal to 6 with a = 0 being a renewal state, while Model 2 is a modified version
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Algorithm 2: Complete algorithm for computing AIBF and GIBF
with MCMC approximations of Partial Bayes Factors for a dataset z̃
based on v-tuples.

1 for iv1 ∈ Iv do

2 Generate
(
τ

(t)
a,iv1

)
, t = 1, . . . , niter with the Context Tree Metropolis

Hastings algorithm with target distribution πa(τ |z(iv1));

3 Generate
(
τ

(t)
ā,iv1

)
, t = 1, . . . , niter with target distribution πā(τ |z(iv1));

4 Compute the Partial Bayes Factor for the v-tuple iv1

P̂BFa,ā(z̃(−iv1)|z(iv1)) =

∑niter

t=1 q(τ
(t)
a,iv1

, z̃(−iv1))∑niter

t=1 q(τ
(t)
ā,iv1

, z̃(−iv1))
.

5 end for
6 Return the averages

AIBFa,ā(z̃) =
1(
I
v

) ∑
iv1∈Iv

P̂BFa,ā(z̃(−iv1)|z(iv1))

GIBFa,ā(z̃) =
∏
iv1∈Iv

(
P̂BFa,ā(z̃(−iv1)|z(iv1))

)(I
v)
−1
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with an additional branch grown from the node 01111, which is substituted by
the two suffixes 001111 and 101111. Therefore, in Model 2, 0 is no longer a
renewal state although both trees are very similar.
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Figure 2: Probabilistic Context Trees for Model 1 and Model 2. The pair of
values below each leaf corresponds to the transition probabilities for the suffix
associated with that leaf.

For each possible renewal state a = 0 or a = 1, we compute both Intrinsic
Bayes Factors (AIBF and GIBF) using Algorithm 2 considering prior distribu-
tions proportional to

ha(τ) = 1(τ ∈ T aL ) and hā(τ) = 1(τ ∈ T̄ aL )

which correspond to the uniform distribution in the space of context trees that
are allowed under Ha and Hā, respectively.

For the hyper-parameter α, we choose αsk = 0.001 for all s and k, resulting
in symmetrical prior distributions for the transition probabilities and a higher
density for vectors that are more concentrated.

In each scenario, we considered v = 1 and v = 2 as the number of sequences
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Table 1: AIBF and GIBF computed in log10 scale for simulations for Model 1.

a I v
Ti = 1000 Ti = 2500 Ti = 5000

AIBF GIBF AIBF GIBF AIBF GIBF
0 3 1 4.28 2.39 2.35 2.03 1.69 1.65
0 3 2 1.04 0.66 1.54 1.20 1.88 1.86
0 10 1 25.32 6.00 1.97 1.94 2.55 2.53
0 10 2 4.05 2.31 1.96 1.90 2.49 2.46
0 25 1 68.98 11.87 4.40 2.90 2.59 2.57
0 25 2 67.29 3.54 2.63 2.60 2.59 2.57
1 3 1 -46.87 -49.03 -137.09 -147.48 -285.28 -287.18
1 3 2 -17.82 -20.41 -61.80 -68.78 -135.72 -138.05
1 10 1 -248.24 -265.45 -683.99 -695.28 -1401.88 -1411.24
1 10 2 -234.44 -238.54 -596.78 -616.72 -1237.09 -1252.95
1 25 1 -688.51 -741.06 -1921.76 -1951.27 -3834.79 -3862.61
1 25 2 -705.66 -719.25 -1822.97 -1869.77 -3653.59 -3701.06

to be used for the minimal training sample and ran niter = 105 Metropolis-
Hastings steps for each PBF Monte Carlo approximation.

From Table 1, we can see that, for Model 1, both AIBF and GIBF lead to
the correct decision for both renewal states tested. For a = 0, which was in fact
a renewal state, all cases returned a value, in log10 scale, greater than 1 (except
one equals 0.66) The discrepancy between AIBF and GIBF diminishes as Ti
and I increase converging to a value around 2.5 which was considered Decisive
Evidence in the Kass-Raftery scale. On the other hand, for a = 1, which was
not a renewal state, all cases reported AIBF and GIBF in log10 scale smaller
than −15, converging to values around −3000 when Ti = 500 and I = 25.

The results for Model 2, which includes a new pair of contexts causing 0
to be no longer a renewal state, presented in Table 2, showed a similar perfor-
mance rejecting the 1-renewing hypothesis when compared to Model 1, which is
expected due to the similarity of both models with respect to the short-length
nodes that do not involve 1. The main difference occurred in the computed
values for the 0-renewing hypothesis, where the computed GIBFs were positive
in logarithmic scale for Ti = 1000, for all values of I and v. Moreover, we can
see that for Ti = 5000, GIBF was negative for all scenarios whereas AIBF was
strongly positive for larger values of I. For intermediate value of the sequences
sizes (Ti = 2500), AIBF pointed to the wrong direction in all scenarios while
GIBF identified the right hypothesis in three cases (I = 10 and v = 1 and 2 and
I = 25 and v = 2). This suggests that for smaller sample sizes, the posterior
distributions obtained from the training samples were insufficient to capture the
long-range contexts 111100 and 111101 that break the renewal condition of the
state 0.

Figures 3 and 4 present the empirical distributions of PBFs computed in
log10 scale for each scenario and each model. In general, the strength of the
evidence tends to be larger for v = 1 as more data is being used on the test

15



Table 2: AIBF and GIBF computed in log10 scale for simulations for Model 2.

a I v
Ti = 1000 Ti = 2500 Ti = 5000

AIBF GIBF AIBF GIBF AIBF GIBF
0 3 1 2.58 2.45 14.38 0.06 -7.51 -8.24
0 3 2 1.34 1.22 7.40 0.05 -2.94 -3.29
0 10 1 13.58 4.13 26.40 -7.77 70.50 -38.47
0 10 2 12.49 2.39 26.27 -2.94 65.34 -34.02
0 25 1 46.19 9.11 94.14 13.73 230.50 -95.80
0 25 2 46.49 5.54 93.36 -26.54 227.65 -111.42
1 3 1 -38.24 -40.92 -101.68 -114.08 -216.82 -233.08
1 3 2 -15.16 -18.32 -52.24 -54.20 -111.01 -113.50
1 10 1 -215.74 -222.35 -539.57 -573.34 -1062.60 -1167.87
1 10 2 -190.76 -201.17 -479.56 -509.43 -930.81 -1041.44
1 25 1 -566.23 -601.98 -1432.13 -1528.50 -2867.44 -3186.70
1 25 2 -535.09 -583.43 -1365.51 -1502.80 -2746.98 -3091.29

set, but on the other hand, v = 2 leads to more stable PBFs computed. The
same behavior is observed as the number of independent sequences I increases,
what is expected as adding more data has an impact in the scale of the marginal
likelihood function, also rescaling the Bayes Factors.

With Ti = 2500, log10 PBFs tend to be distributed around 0, with high
variance, as can be observed in Figure 4, resulting in a very unstable average,
leading to correct results in some of the scenarios, and incorrect ones in oth-
ers. As the sample size increases, those long-range contexts are more likely to
be captured by the posterior distribution. With Ti = 5000, we have decisive
evidence that 0 is not a renewal state, except for the scenario with I = 3 and
v = 1, where the value of 0.13 provides very weak evidence, and, in general, the
distribution of log10 PBFs was highly concentrated with negative sign, except
for a few outliers. AIBF was highly affected by outliers and resulted in incorrect
conclusions with high evidence for some scenarios.

Note that, especially for the datasets with small samples (Ti = 1000), outliers
with large values are observed, having great effect on the computed averages, al-
though the conclusions are not affected. For large datasets (Ti = 5000), we have
smaller variance in the computed PBFs among different training sets compared
to scenarios with sequences of smaller sizes.

Therefore, we conclude that a decision based on GIBF leads to, at least,
strong evidence in the scale from Kass and Raftery (1995) (greater than 1/2
in log10 scale) for the correct hypothesis in all cases where we had v = 2 and
Ti = 2500 or 5000. The AIBF was not robust to the presence of outliers in
the set of PBFs, leading to incorrect conclusions in the scenarios where the
correct detection of the renewal state is harder task and the sample sequences are
shorter. The present of outliers also suggests other functions to summarize PBFs
other than geometric and arithmetic averages may be useful for avoiding having
results highly influenced for the results obtained for particular test samples, like
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Figure 3: Computed PBFs for Model 1 of the simulation study. Only 0 is a
renewal state for this model, therefore, the panels with a = 0 are expected to
have positive PBFs in logarithmic scale and negative values for a = 1.

trimmed averages, removing the most extreme values from the IBF computation,
or using the median PBF, which corresponds to a trimmed average trimming
all but one value, as used in Charitidou et al. (2018). Context trees that break
renewal state condition on long-ranged contexts require larger samples (Ti or
v) in order to be captured and result in evidence against the renewal state
hypothesis, while states that break renewal state condition in short contexts
can be immediately identified, even with short observed sequences.

4.2 Application to rhythm analysis in Portuguese texts

It is known that Brazilian and European Portuguese (henceforth BP and EP)
have different syntaxes. For example, Galves et al. (2005) infered that the place-
ment of clitic pronouns in BP and EP differ in two senses, one of them being:
“EP clitics, but not BP clitics, are required to be in a non-initial position with
respect to some boundary”. However, the question remains: are the choices
of word placement related to different stress patterns preferences? This ques-
tion was addressed by Galves et al. (2012) that found distinguishing rhythmic
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Figure 4: Computed PBFs for Model 2 of the simulation study. Neither 0 or
1 are renewal states for this model, therefore, all panels are expected to have
negative PBFs in logarithmic scale. The structure of the tree used makes the
renewal state hypothesis violation for a = 0 to not be captured (or does not
produce strong evidence against the renewal state hypothesis) for lower sample
sizes.

patterns for BP and EP based on written journalistic texts. The data consists
of 40 BP texts and 40 EP texts randomly extracted from an encoded corpus
of newspaper articles from the 1994 and 1995 editions of Folha de São Paulo
(Brazil) and O Público (Portugal). Texts were encoded according on rhyth-
mic features resulting in discrete sequences with around 2500 symbols each and
are available at http://dx.doi.org/10.1214/11-AOAS511SUPP. After a pre-
processing of the texts (removing foreign words, rewriting of symbols, dates,
compound words, etc) the syllables were encoded by assigning one of four sym-
bols according to whether or not (i) the syllable is stressed; (ii) the syllable is
the beginning of a prosodic word (a lexical word (noun, verbs,...) together with
the functional non-stressed words (articles, prepositions, ...) which precede or
succeed it). This classification can be represented by 4 symbols. Additionally
an extra symbol was assigned to encode the end of each sentence. The alphabet
A = {0, 1, 2, 3, 4} was obtained as follows.
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• 0 = non-stressed, non-prosodic word initial syllable;

• 1 = stressed, non-prosodic word initial syllable;

• 2 = non-stressed, prosodic word initial syllable;

• 3 = stressed, prosodic word initial syllable;

• 4 = end of each sentence.

For example, the sentence O sol brilha forte agora. (The sun shines bright
now.) is coded as

Sentence O sol bri lha for te a go ra .
Code 2 1 3 0 3 0 2 1 0 4

The Smallest Maximizer Criteria proposed by Galves et al. (2012) to select
the best tree for BP and EP, uses the fact that the symbol 4 appears as a renewal
state to perform Bootstrap sampling. Moreover, they conclude that “the main
difference between the two languages is that whereas in BP both 2 (unstressed
boundary of a phonological word) and 3 (stressed boundary of a phonological
word) are contexts, in EP only 3 is a context.” These are exactly the type of
questions to be addresses by the renewal state detection algorithm.

Due to the encoding used, the grammar of the language, and the general
structure of written texts, some transitions are not possible. For example, two
end of sentences (symbol 4) cannot happen consecutively, therefore, a transition
from 4 to 4 is not allowed. Furthermore, there is one, and only one, stressed
syllable in each prosodic word. Table 3 summarizes the allowed and prohibited
one-step transitions.

Table 3: Allowed transitions for each encoded symbol.
From/To 0 1 2 3 4

0 yes yes yes yes yes
1 yes no yes yes yes
2 yes yes no no no
3 yes no yes yes yes
4 no no yes yes no

These prohibited transition conditions are included in the model with proper
modifications to the prior distribution, assigning zero probability to some con-
text trees and forcing the probabilities related to prohibited transitions to be
zero. The modifications are:

1. If a transition from k to k′ is prohibited and a context s has k as its last
symbol, we force ps,k = 0 in our prior distribution. The remaining proba-
bilities associated with allowed transitions are then a priori distributed as
a Dirichlet distribution with lower dimension.

For example, for a context 102, the only allowed transitions from 2 are
to 0 and 1, we have p102,2 = p102,3 = p102,4 = 0 with prior probability 1,
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and the free probabilities, (p102,0, p102,1), distributed as a 2-dimensional
Dirichlet distribution with hyper-parameters (α102,0, α102,1).

2. If s ∈ τ includes a prohibited transition, then ns,k(z̃) = 0 as there will
not be any occurrences of such sequence in the sample. As a consequence,
these suffixes have no contribution in q(τ, z̃) as the term related to s of
the product in (5) gets cancelled.

3. We define T ∗L the space of context trees that do not have prohibited tran-
sitions in inner nodes. For example, since the transition 44 is prohibited,
a tree that contains a suffix 044 cannot be in T ∗L because the transition
from 4 to 4 is not in a leaf (final node), whereas a tree in TL can contain
the suffix 44.

Note that, allowing final nodes to contain a prohibited transition is nec-
essary to keep the consistency of our definition based on full m-ary trees,
as full tree contains the suffix 34 (allowed) if, and only if, it contains an-
other suffix ending in 44 (prohibited), what is not a problem because this
prohibited suffix will not contribute to the marginal likelihood.

For each set of sequences in BP and EP, we compute Intrinsic Bayes Factors
as evidence for the five hypotheses that 0, 1, 2, 3, and 4 are renewal states. We
took L = 5 which should be enough to cover all relevant context trees based on
the results from the original paper. For prior distributions, we used the same
uniform distributions as in the simulation experiment, but restricted to the trees
that do not include prohibited transitions on inner nodes, i.e.,

ha(τ) = 1(τ ∈ T a5 ∩ T ∗5 ) and hā(τ) = 1(τ ∈ T̄ a5 ∩ T ∗5 ).

We also set αsk = 0.001 for every s ∈ τ and k ∈ A. The algorithm ran
for niter = 106 iterations for computing each tree posterior distribution under
each hypothesis, using v = 2 sequences (around 5000 symbols in each training
sample) for each Partial Bayes Factor, resulting in a total of

(
40
2

)
= 780 posterior

distributions for each hypothesis and PBFs to average.
Due to the numerical instabilities caused by outliers in the set of estimated

PBFs as identified in the simulation study, especially in the AIBF, when some
particular texts z(i) are used as the training sample, we also computed a trimmed
version of AIBF (and GIBF), which consists of computing the arithmetic (and
geometric) average excluding the 10% lowest and 10% highest PBFs, this strat-
egy was also used in Berger and Pericchi (1996). The empirical distributions
for the estimated Partial Bayes Factors for all renewal state hypotheses after
the10% trimming are shown in Figure 5.

From the results presented in Table 4, we can see that decisive evidence was
obtained when evaluating the renewal hypothesis for states 2, 3 and 4 for the
BP dataset and 3 and 4 for the EP dataset which are consistent with the results
from Galves et al. (2012).

Finally, for completeness of the Bayesian analysis of this example, we ran
the Metropolis Hastings algorithm for the entire BP and EP datasets, con-
sidering the same uniform prior distribution on every tree in T ∗5 (no renewal
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Table 4: AIBF and GIBF for the BP and EP datasets.
AIBF GIBF

a Untrimmed Trimmed Untrimmed Trimmed
BP 0 -10321.12 -10591.73 -10720.48 -10727.80
BP 1 5.88 -7.92 -7.56 -8.55
BP 2 3.49 2.00 1.64 1.64
BP 3 19.41 17.69 14.17 14.10
BP 4 7.96 6.61 6.68 6.61
EP 0 -11487.31 -11641.82 -11744.90 -11747.73
EP 1 7.87 -10.51 -11.67 -11.19
EP 2 1.52 -2.05 -2.56 -2.60
EP 3 18.37 13.49 13.40 13.37
EP 4 12.52 6.66 6.64 6.57
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Figure 5: Boxplots presenting the distribution of estimated Partial Bayes Fac-

tors P̂BF for the
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pairs of sequences used as training sets, in each of the

BP and EP datasets after a trimming of 10% of the highest and lowest PBFs.
Each pane corresponds to a hypothesis of a different state being evaluated as a
renewal state.
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state hypothesis considered, but controlling for prohibited transitions) and with
αs,k = 0.001 for each valid pair (s, k). The two context trees with highest
posterior probabilities for BP and EP are presented in Figure 6 and Figure 7,
respectively. Leaves corresponding to contexts that contain prohibited transi-
tions, or other contexts with no occurrences are omitted from the trees in the
figures for interpretability purposes.
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Figure 6: Highest posterior probability context trees for the BP dataset.

5 Conclusions

We propose a Bayesian approach to Variable-Length Markov Chain models with
random context trees that allows us to evaluate evidence in favor of renewal
hypothesis based on a priori distributions that assign positive probability to each
tree on a subset of trees that depends on the renewal state being considered.
The main novelties of this work are:

1. The use of Bayes Factor to test the renewal hypothesis for VLMC models;

2. The use of Intrinsic Bayes Factor to evaluate this evidence and overcame
the problem of intractable normalizing constant from the prior distribu-
tion;

3. The proposal of a Metropolis-Hastings algorithm for sampling context
trees that can be performed under a tree prior distribution proportional
to any arbitrary function h. This freedom allows not only to incorporate
experts prior information about the possible context trees, but also to
exclude forbidden trees just by assigning zero probability to them.
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Figure 7: Highest posterior probability context trees for the EP dataset.

To show the strength of our method, we analyzed artificial datasets generated
from two binary models and one example coming from the field of Linguistics.
The analysis of the artificial datasets suggests that evidence becomes stronger
as the number of replicates increases and/or the size of the sequences increases.
However, it is possible to obtain good results with as few as 3 replicates of each
chain. In the linguistics example we could observe that trimmed GIBF is more
robust to possible outliers in the sample.

An R package containing functions for all the computations used in this work
is available at github.com/Freguglia/ibfvlmc and R scripts used to reproduce
the simulation study are available upon request.
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