
Modularized Bayesian analyses and cutting feedback in

likelihood-free inference

Atlanta Chakraborty1, David J. Nott1,2, Christopher Drovandi3,

David T. Frazier4and Scott A. Sisson5

Abstract

There has been much recent interest in modifying Bayesian inference for misspecified

models so that it is useful for specific purposes. One popular modified Bayesian in-

ference method is “cutting feedback” which can be used when the model consists of a

number of coupled modules, with only some of the modules being misspecified. Cutting

feedback methods represent the full posterior distribution in terms of conditional and se-

quential components, and then modify some terms in such a representation based on the

modular structure for specification or computation of a modified posterior distribution.

The main goal of this is to avoid contamination of inferences for parameters of interest

by misspecified modules. Computation for cut posterior distributions is challenging, and

here we consider cutting feedback for likelihood-free inference based on Gaussian mixture

approximations to the joint distribution of parameters and data summary statistics. We

exploit the fact that marginal and conditional distributions of a Gaussian mixture are

Gaussian mixtures to give explicit approximations to marginal or conditional posterior

distributions so that we can easily approximate cut posterior analyses. The mixture ap-

proach allows repeated approximation of posterior distributions for different data based

on a single mixture fit, which is important for model checks which aid in the decision of

whether to “cut”. A semi-modular approach to likelihood-free inference where feedback

is partially cut is also developed. The benefits of the method are illustrated in two

challenging examples, a collective cell spreading model and a continuous time model for

asset returns with jumps.
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1 Introduction

Statisticians are increasingly using complex models which can be thought of as a collection

of coupled modules. The modules represent different aspects of our knowledge of the prob-

lem, and in a Bayesian analysis each module consists of likelihood terms for different data

sources and hierarchical prior terms for parameters or latent variables. There is much recent

interest in ways to modify Bayesian inference so that it is fit for purpose when the model

is misspecified, and for modularized Bayesian analyses so-called “cutting feedback” methods

are common. The main goal of such methods is to ensure that inference about parameters of

interest is not contaminated by misspecified modules. Cutting feedback approaches consider

representations of the conventional Bayesian posterior distribution in terms of conditional or

sequential components, but then modify certain terms for specification or computation of a

modified posterior distribution. Existing cutting feedback methods have been developed in

the context where the likelihood is tractable, and the purpose of this work is to develop suit-

able methods for intractable likelihood settings, where likelihood-free computational methods

not requiring likelihood evaluations are used.

To understand the motivation for cutting feedback methods, it is helpful to consider their

use in pharmacokinetic/pharmacodynamic (PK/PD) modelling (Bennett and Wakefield, 2001;

Lunn et al., 2009). This is one of the areas in which cutting feedback methods were first

used and formalized. In PK/PD applications, models with a two module structure are often

considered. One of the modules is a pharmacokinetic (PK) model describing the evolution of

a drug concentration in the blood stream, and the other is a pharmacodynamic (PD) model

which describes the effects of the drug on the body. There are module-specific data sources

informing corresponding module parameters, and the output of the PK module is used as an

input to the PD module. Often it can be difficult to specify the PD module adequately. This

can result in contamination of inferences of interest due to the misspecification, as parameters

of the PK module adapt to accommodate the misspecification in the PD module. Cutting

feedback methods have been used to prevent harmful effects arising from misspecification in

a situation like this, while still appropriately propagating uncertainty. There are many other

applications of cutting feedback methods – see Bayarri et al. (2009) and Jacob et al. (2017)

for further discussion of these and modularized Bayesian analyses more generally. Pompe and

Jacob (2021) and Frazier and Nott (2022) have recently studied the theoretical behaviour of
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the cut posterior distribution.

How are the goals of cutting feedback achieved? One way of formulating cutting feed-

back involves the modification of the steps of an MCMC sampling algorithm, where the cut

posterior distribution is defined implicitly as the stationary distribution of the sampler. The

“cut” function in the WinBUGS and OpenBUGS packages (see Lunn et al. (2009) for details)

is one way to make this operational. For a Gibbs sampling approach, the modified MCMC

sampler draws parameter blocks from distributions obtained by removing some terms in the

conventional posterior full conditional distributions. Removing misspecified terms when form-

ing some of the full conditionals reduces the influence of misspecified components on the final

inference. The modified full conditional distributions are not in general consistent with any

well-defined joint distribution (see for example Clarté et al. (2020) and Rodrigues et al. (2020)

for a discussion of Gibbs sampling for inconsistent conditionals in the likelihood-free inference

setting). When exact Gibbs sampling is intractable, it is natural to use Metropolis-within-

Gibbs steps in detailed balance with the modified conditional distributions. In this case, the

stationary distribution of the resulting Markov chain may depend on the proposal distribution

used (Woodard et al., 2013; Plummer, 2015). To clarify the idea of cutting feedback, Plummer

(2015) and several other authors have considered cutting feedback for a certain “two module”

system discussed further in Section 2, which is general enough to cover many applications of

interest. In this case, it is possible to characterize the cut posterior distribution explicitly.

This cut posterior distribution is not easy to sample from in most cases, due to the need to

calculate or approximate a difficult normalizing constant.

In this work we develop cutting feedback for likelihood-free inference. Likelihood-free

inference methods are used with complex models where computation of the likelihood is im-

practical, but where it is possible to simulate data under the model for any given value of

the parameter. We discuss these methods further in Section 3. To address the computa-

tional challenges of cutting feedback in the likelihood-free setting, we use Gaussian mixture

approximations to the joint distribution of parameters and data summary statistics. We ex-

ploit the fact that marginal and conditional distributions of a Gaussian mixture are Gaussian

mixtures to give explicit approximations to marginal or conditional posterior distributions for

any summary statistic value based on a single fitted mixture model, so that we can easily

approximate cut posterior analyses and perform appropriate diagnostics. To the best of our

knowledge, our work is the first time that cutting feedback methods have been considered for

likelihood-free inference. A semi-modular inference approach where feedback is partially cut

is also developed, extending work by Carmona and Nicholls (2020) and Nicholls et al. (2022)

to the case of likelihood-free inference.
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In the next section we discuss cutting feedback for the two module system discussed in

Plummer (2015). This is followed by a discussion of mixture approximations for likelihood-free

inference. Section 4 describes how mixture approximations used in likelihood-free inference are

able to address some of the computational difficulties of cutting feedback. Use of these mixture

approximations for semi-modular inference methods is then discussed, and our methodology

is applied to two challenging examples in Section 6, a collective cell spreading model and

a continuous time model for asset returns with jumps. Section 7 gives some concluding

discussion.

2 Cutting feedback

To describe cutting feedback methods and clarify previous “implicit” definitions of cutting

feedback in terms of modified MCMC algorithms, Plummer (2015) considered the two module

system represented graphically in Figure 1. Our discussion in this paper will be restricted to

the case of two modules, which is general enough to cover many applications of interest. For a

discussion of cutting feedback in a more general context, see Lunn et al. (2009). In Figure 1,

Figure 1: Graphical representation of a two module system with cutting feedback.

The two modules are represented by the components on the left and right of the

dashed line, which indicates the cut.

the complete data, which we will write as y, is comprised of two data sources, w and z. The

distribution of z depends on parameter ϕ, and the distribution of w depends on parameters

η and ϕ. We have two modules, the first consisting of the prior for ϕ and likelihood term for

z (module 1), and the second consisting of the prior for η and likelihood term for w, which

also depends on ϕ (module 2). Suppose that we are concerned that module 2 is misspecified,

and that this might adversely affect inferences of interest. The full posterior distribution can
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be written as

p(ϕ, η|y) = p(ϕ|y)p(η|ϕ,w)

∝ p(ϕ|z)p(w|ϕ)p(η|ϕ,w). (1)

We have used the conditional independence of η and z given w and ϕ in the first line above,

and the conditional independence of w and z given ϕ in the second line. In (1) the term

p(w|ϕ) is the “feedback” term which modifies the marginal posterior distribution for ϕ from

p(ϕ|z) to account for the information about ϕ in the second module. If the second module is

suspect, we might drop this term to obtain the so-called “cut” posterior distribution

pcut(ϕ, η|y) = p(ϕ|z)p(η|ϕ, y)

= p(ϕ|z)p(η|ϕ,w) (2)

which rejects the feedback from module 2 about ϕ while propagating uncertainty about ϕ

from module 1 for making inferences about η. The red line in the figure indicates the cut.

Computation for the cut posterior distribution is challenging. We can write

pcut(ϕ, η|y) ∝ p(ϕ)p(z|ϕ)
p(η|ϕ)p(w|η, ϕ)

p(w|ϕ)
, (3)

but implementing an MCMC sampler is not easy from the likelihood and prior specification,

because of the p(w|ϕ) term on the right-hand side above which is usually not tractable. A

number of computationally intensive methods for dealing with the intractable normalizing

factor have been suggested (Plummer, 2015; Jacob et al., 2020; Liu and Goudie, 2020). Yu

et al. (2021) and Carmona and Nicholls (2022) consider variational inference methods which

do not require approximation of the normalizing constant. However, these previous works

were concerned with the case where the likelihood is tractable, and our main interest is in

applications of cutting feedback to models with intractable likelihoods, where likelihood-free

methods are used.

3 Mixture approximations for likelihood-free inference

The approach we use for likelihood-free inference will now be introduced, which allows us to

easily approximate cut posterior analyses. Write y for the data and θ for the parameters and

we consider Bayesian inference with prior density p(θ). If the likelihood p(y|θ) is impractical

to compute, then conventional Bayesian computation methods are inapplicable. However,

there is now a large literature on likelihood-free inference methods able to perform Bayesian
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inference using only model simulation, with approximate Bayesian computation (ABC) (Sisson

et al., 2018b) and synthetic likelihood (Wood, 2010; Price et al., 2018) being the traditional

approaches. More recently, approaches using flexible classification and regression methods

from machine learning (Gutmann and Corander, 2016; Raynal et al., 2018; Hermans et al.,

2020; Thomas et al., 2022; Pacchiardi and Dutta, 2022) are increasingly used.

3.1 Mixture modelling of parameters and summaries

Here we will use an approach to likelihood-free inference based on mixture modelling of the

joint distribution of the parameters and some summary statistics of the data. This approach

is developed in Bonassi et al. (2011), where they consider induced conditional distributions

from a mixture model as a form of nonlinear regression adjustment. The method has been

refined within a sequential Monte Carlo framework in Bonassi and West (2015), although this

extension is not helpful for the application considered here where we require analytic forms

for marginal and conditional posterior densities. Other authors have considered mixture

models in likelihood-free inference as well, such as Fan et al. (2013) who consider mixture

of experts approximations to marginal summary statistics and copulas to approximate the

likelihood, and Forbes et al. (2021) who consider mixture posterior approximations to define

suitable functional discrepancy measures for ABC algorithms. Papamakarios and Murray

(2016), Lueckmann et al. (2017) and Greenberg et al. (2019) have considered machine learning

approaches based on mixture density networks. He et al. (2021) have recently developed

mixture variational posterior approximations for likelihood-free inference using a population

Monte Carlo algorithm.

The simple mixture approach of Bonassi et al. (2011) will be used here, since the ability to

approximate arbitrary marginal and conditional distributions from a single mixture fit given

any subset of the summary statistics, and for any values of those summary statistics, is crucial

for the cutting feedback applications we describe. The more sophisticated mixture methods

mentioned above either do not lead to closed form expressions for posterior approximations

or require expensive additional computations for each new posterior distribution to be ap-

proximated, or both. The method of Bonassi et al. (2011) uses the following approach. First,

we suppose that we have some summary statistics of the data S = S(y) available which are

informative about the model parameters. The observed value of S is written as Sobs = S(yobs),

where yobs is the observed value of y. We approximate p(θ|yobs) by p(θ|Sobs). If S is a sufficient

statistic then p(θ|yobs) and p(θ|Sobs) are the same, but a low-dimensional sufficient statistic

is rarely available in likelihood-free inference applications. It is important that S is low-

dimensional if we are to estimate the distribution of S from simulated data. Having chosen
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S, we simulate samples (θi, Si), i = 1, . . . , n from p(θ)p(S|θ). Next, we fit a Gaussian mixture

model to the simulated data. Writing U = (θ, S), this gives an estimate p̃(u) = p̃(θ, S) for

the joint density. The posterior density p(θ|Sobs) is just the conditional density of θ given

S = Sobs in p(θ, S), which we can approximate by the corresponding conditional density in

the mixture model, p̃(θ|S = Sobs).

An observation which is crucial later is that any marginal distribution of p̃(u) is a Gaussian

mixture model, and any conditional distribution is also a Gaussian mixture. So from the

mixture approximation p̃(u), we can obtain a closed form approximation to any marginal or

conditional posterior distribution conditional on any subset of summary statistics, and we can

do this for any value of the summary statistics based on a single mixture model fit. To make

this explicit, suppose our mixture approximation is

p̃(u) =
J∑
j=1

wj,uφj,u(u),

where J is the number of mixture components, wj,u, j = 1, . . . , J are non-negative mixing

weights summing to 1, and φj,u(u) is a multivariate normal component density with mean µj,u

and covariance matrix Σj,u, j = 1, . . . , J . Consider a subvector V = (X,W ) of U where X and

W are disjoint. In our later applications to cutting feedback, where we approximate marginal

and conditional posterior distributions, X will be a subset of the model parameters, and W can

consist of both parameters and summary statistics. Write the marginal distribution of V for

the mixture component φj,u(u) as φj,v(v), which is multivariate normal with mean vector µj,v

and covariance matrix Σj,v, j = 1, . . . , J . Write µj,v in partitioned form as µj,v = (µ>j,x, µ
>
j,w)>,

and

Σj,v =

[
Σj,x Σj,xw

Σ>j,xw Σj,w

]
,

where the partitioning is conforming to the partition of V as (X,W ). We also write the

marginal density of W for component j of the mixture as φj,w(w), j = 1, . . . , J . The condi-

tional density of X|W is a Gaussian mixture,

p̃(x|w) =
J∑
j=1

wj,x|wφj,x|w(x),

where

wj,x|w =
wj,uφj,w(w)∑J
l=1wl,uφl,w(w)

,

and φj,x|w(x) is multivariate normal with mean and covariance matrix

µj,x|w = µj,w + Σj,xwΣ−1j,w(w − µj,w),

7



and

Σj,x|w = Σj,x − Σj,xwΣ−1j,wΣ>j,xw,

respectively.

3.2 Mixture approximations and cutting feedback

Now we consider the issue of cutting feedback for likelihood-free inference. Suppose the

summary statistics are partitioned as S = (S>1 , S
>
2 )>, and write the corresponding partition

of Sobs as Sobs = (S>obs,1, S
>
obs,2)

>. We wish to base inference about parameters ϕ only on

S1, because we are worried that the summaries S2 adversely affect inference about ϕ. The

information in S2, however, may be valuable for inference about the remaining parameters η.

Example 5 of Sisson et al. (2018a) illustrates a simple situation where model misspecification

can lead to summary statistics with conflicting information. In most likelihood-free inference

applications there is no graphical structure to the model such as in Figure 1, and if we regard

S1 and S2 as data sources associated with two modules, there is no conditional independence

between them given the parameters. However, similar to (2) it is still useful to define a cut

posterior which ignores S2 in inference about ϕ. For any value of S, we write

pcut(θ|S) = p(ϕ|S1)p(η|ϕ, S). (4)

As discussed in the last section, given a mixture approximation p̃(θ, S) to p(θ, S), an

analytic form for the conditional densities for ϕ|S1 and η|ϕ, S can be written down. Then (4)

can be approximated by

p̃cut(θ|S) = p̃(ϕ|S1)p̃(η|ϕ, S), (5)

where p̃(ϕ|S1) and p̃(η|ϕ, S) are the conditional densities induced from p̃(θ, S). Monte Carlo

summarization of the cut posterior approximation (5) is easy, since we just need to do se-

quential simulation from two Gaussian mixture models. In the next subsection we discuss

methods for deciding whether or not to cut, where it is required to compute certain posterior

distributions repeatedly for different data simulated under a reference distribution; the mix-

ture approach can perform the required computations based on only a single mixture model

fit.

An interesting case of the framework above is when S = y, and the likelihood is tractable

but we wish to base inference about ϕ only on a low-dimensional summary statistic S1 for

which p(S1|ϕ) is not analytically available. The approximate Bayesian forecasting approach

considered in Frazier et al. (2019) falls into this framework, where the authors consider infer-

ring the parameter ϕ in a state space model using ABC with summary statistics, and then for
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ABC draws for ϕ they sample the conditional posterior distribution of latent states η given

y using a particle filter in order to produce forecasts. Only filtering, and not smoothing, is

needed for predictive inference. Here there is no need for ABC approximations in inferring

the conditional posterior distribution of the states p(η|ϕ, y), but ABC methods can be useful

for inferring the parameters ϕ. Frazier et al. (2019) use predictive criteria for the choice of

summary statistics, which might be particularly beneficial in the case of misspecification.

3.3 Deciding whether or not to cut

When considering the use of cut methods we may need to decide whether to use the cut or

conventional posterior. It is easy to see that the Kullback-Leibler divergence between the cut

posterior distribution (4) and the full posterior distribution is the Kullback-Leibler divergence

between their marginal posterior distributions for ϕ:

KL(p(θ|S)‖pcut(θ|S)) = KL(p(ϕ|S)‖p(ϕ|S1)).

This follows from the fact that the conditional posterior distribution for η given ϕ is the same

in both distributions. For a proof of this see Lemma 1 of Yu et al. (2021). Let us write

G(S2|S1) = KL(p(ϕ|S)‖p(ϕ|S1)) (6)

The statistic G(S2|S1) can be thought of as a prior-to-posterior divergence, in the situation

where S1 is known when forming the prior but before we know S2. Nott et al. (2020) consider

prior-data conflict checks based on such prior-to-posterior divergences, and Yu et al. (2021)

consider the use of these checks for deciding whether or not to cut feedback in a Bayesian

analysis with tractable likelihood. Similar conflict checks were developed in likelihood-free

inference in Chakraborty et al. (2022), although Chakraborty et al. (2022) do not consider

cutting feedback methods.

We can approximate (6) by replacing p(ϕ|S) and p(ϕ|S1) by p̃(ϕ|S) and p̃(ϕ|S1) re-

spectively. Since both of these densities are Gaussian mixtures, we can also make use of

closed form approximations to Kullback-Leibler divergences between mixtures (Hershey and

Olsen, 2007, Section 7) to obtain an approximation G̃(S2|S1) to G(S2|S1). For more details,

see Chakraborty et al. (2022). To decide whether or not to cut, we compare the statistic

G̃(Sobs,2|Sobs,1) to the distribution of G̃(S ′2|Sobs,1), where S ′2 is a draw from p(S2|Sobs,1), the

conditional prior predictive for S2 given S1 = Sobs,1. Simulation from p(S2|Sobs,1) can be

approximated by simulation from p̃(S2|Sobs,1) if necessary. If G̃(Sobs,2|Sobs,1) lies out in the

tails of this distribution, it says that the cut posterior distribution has changed an unusually
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large amount from the full posterior distribution if the model is correct for the observed S2.

Precisely, we consider the tail probability

p = P (G̃(S ′2|Sobs,1) ≥ G̃(Sobs,2|Sobs,1)), (7)

where S ′2 ∼ p(S2|Sobs,1). If this tail probability is small, the change from the cut posterior

distribution to the full posterior distribution is unusually large for the observed data compared

to what is expected if the model is correct. In approximating (7) by Monte Carlo simulation,

computation of the approximate Kullback-Leibler divergence between the full and cut marginal

posterior distributions for ϕ can be done for repeated simulated summary statistics S ′2 under

the reference distribution based on the same single mixture fit that was used for the cut model

computations for the observed summary statistics.

4 Semi-modular inference

As a generalization of cut posterior approaches, Carmona and Nicholls (2020) introduced semi-

modular inference, which gives a mechanism for partially cutting feedback. They consider the

two module system of Figure 1, and suggest using some of the full module structure in making

inference about ϕ. An influence parameter γ ∈ [0, 1] tempers the influence of the possibly

misspecified module on inference about ϕ, whereas the conditional posterior distribution for

η given ϕ is that of the full posterior.

The construction of Carmona and Nicholls (2020) considers a two stage approach. First, a

“power posterior distribution” is constructed for inference about ϕ and an auxiliary replicate

parameter η̃ of η, given the data z and w. The use of similar power posterior distributions

(Bissiri et al., 2016; Grünwald and van Ommen, 2017; Miller and Dunson, 2019) for robust

Bayesian inference originates outside the modular inference context. Following Carmona and

Nicholls (2020), we use the notation ppow,γ(ϕ, η̃|y) for the power posterior for (ϕ, η̃) with

influence parameter γ, and this is defined to be

ppow,γ(ϕ, η̃|y) ∝ p(z|ϕ)p(w|ϕ, η̃)γp(ϕ, η̃).

The influence parameter tempers the likelihood term from the second module, reducing its

influence. Next, the semi-modular posterior distribution is defined as

psmi,γ(ϕ, η, η̃|z, w) = ppow,γ(ϕ, η̃|z, w)p(η|w,ϕ),

and inference about θ = (ϕ, η) is achieved by integrating out η̃. Setting γ = 0, the cut

posterior for θ is obtained, and setting γ = 1 gives the full posterior. Hence the semi-modular
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approach interpolates between the cut and full posterior distributions. Carmona and Nicholls

(2020) suggest choosing γ using predictive methods. More recently, Nicholls et al. (2022)

consider validity of semi-modular inference in a generalized Bayesian inference framework,

and consider alternative forms of semi-modular inference. We consider one more alternative

below for the likelihood-free setting.

4.1 Likelihood-free semi-modular inference

We now develop an alternative semi-modular posterior construction for the likelihood-free

setting, using a method for constructing marginal inferences for ϕ inspired by linear opinion

pooling (Stone, 1961). Linear opinion pooling (Stone, 1961) combines distributions represent-

ing opinions of different experts using a mixture model. We define a semi-modular marginal

posterior distribution for ϕ as a mixture between the cut and full marginal posterior distribu-

tions with mixing weight γ. Such an approach is natural when mixture approximations are

used for computation. In that case, the cut marginal posterior approximation for ϕ and the

full marginal posterior approximation for ϕ are Gaussian mixtures, and a mixture of them

is also a Gaussian mixture. This makes it easy to approximate our proposed semi-modular

posterior distribution with an explicit form, and we suggest a convenient way to choose the

influence parameter γ based on calculations similar to those used for the prior-data conflict

checks in Section 3.3.

Define

pγ(ϕ|S) = γp(ϕ|S) + (1− γ)p(ϕ|S1), (8)

where γ ∈ [0, 1] is the influence parameter. We define a semi-modular posterior distribution

for θ = (ϕ, η) by

psmi,γ(θ|S) = pγ(ϕ|S)p(η|ϕ, S). (9)

Using the mixture posterior approximations of Section 3 for computation, the approximations

to the posterior densities of ϕ given S1 and ϕ given S respectively are written

p̃(ϕ|S1) =
J∑
j=1

wj,ϕ|S1φj,ϕ|S1(ϕ), (10)

and

p̃(ϕ|S) =
J∑
j=1

wj,ϕ|Sφj,ϕ|S(ϕ). (11)
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Similarly, write the mixture approximation to the density of η|ϕ, S as

p̃(η|ϕ, S) =
J∑
j=1

wj,η|ϕ,Sφj,η|ϕ,S(ϕ).

We approximate (8) by

p̃γ(ϕ|S) = γp̃(ϕ|S) + (1− γ)p̃(ϕ|S1), (12)

and the semi-modular posterior (9) by

p̃smi,γ(ϕ, η|S) = p̃γ(ϕ|S)p̃(η|S). (13)

p̃γ(ϕ|S) is itself a Gaussian mixture, with 2J components, and component densities

{φj,ϕ|S1(ϕ), φj,ϕ|S(ϕ) : j = 1, . . . , J}

and corresponding mixing weights

{γwj,ϕ|S, (1− γ)wj,ϕ|S1 : j = 1, . . . , J}.

Hence both terms on the right-hand side of (13) are Gaussian mixtures. Similar to the cutting

feedback case of Section 3.2, Monte Carlo summarization of the semi-modular approximation

is easy, involving sequential simulation from two mixture models.

4.2 Choosing the influence parameter

We now outline a convenient approach to the choice of the influence parameter γ. We write

Gγ(S) = KL(pγ(ϕ|S)‖p(ϕ|S1))

for the Kullback-Leibler divergence between the semi-modular marginal posterior distribution

for ϕ and p(ϕ|S1). If γ = 1, then this is the conflict checking statistic G(S2|S1) considered

in Section 3.3. Similar to the discussion of Section 3.3, we can replace pγ(ϕ|S) and p(ϕ|S1)

by their mixture approximations p̃γ(ϕ|S) and p̃(ϕ|S1), and use a closed-form approximation

to Kullback-Leibler divergences between mixtures (Hershey and Olsen, 2007, Section 7) to

obtain an approximate statistic G̃γ(S) that is easy to compute.

Define a tail probability

p(γ) = P (G̃(S ′2|Sobs,1) ≥ G̃γ(Sobs)), (14)
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where S ′2 ∼ p(S2|Sobs,1). Simulation of S ′2 can be approximated by simulation from p̃(S2|Sobs,1)

if needed. We propose to choose γ as the largest value γ′ such that p(γ′) > α, where α is a

cutoff for a measure of surprise such as 0.05. Finding γ′ can be done by computing p(γ) for

γ on a grid. The intuitive meaning of choosing γ in this way is the following. If there is no

conflict at level α according to the check of Section 3.3, then we choose γ = 1 and we use

the full posterior. If there is a conflict, then we back off from γ = 1 to a smaller value such

that the conflict would be avoided if p̃γ(ϕ|S) had been the full posterior marginal for ϕ. The

idea is to use as much of the full posterior information as possible, subject to retaining an

interpretation for the inference that is not in conflict with that based only on the summary

S1.

5 Examples

We consider two examples. The first concerns a collective cell spreading model. A common

use for cutting feedback methods is to explore whether misspecification of one module im-

pacts inference about certain parameters. If cut and full posterior inferences have a similar

interpretation, this might be reassuring that inferences of interest are not sensitive to the

misspecification. In the cell spreading model it has been noted in past work by Frazier and

Drovandi (2021) that the cell interaction component fails to capture some aspects of the ob-

served data, and for this example we use cutting feedback to demonstrate that this inadequacy

does not affect inference about cell proliferation. The example also illustrates the usefulness

of the mixture modelling approach for exploring the informativeness of summary statistics for

inference about different parameters in a computationally thrifty way. Our second example

considers time series models for asset returns with jumps. We start by considering a continu-

ous time model and explore cutting feedback so that jump parameters are estimated using only

summary statistics on high frequency intra-day returns. This results in different inferences

about the jump parameters compared to the ordinary posterior where summary statistics

incorporate both information from both daily and intra-day returns. A similar discrete-time

model is then discussed, where the performance of full, cut and semi-modular posterior dis-

tributions are explored for forecasting purposes, and where cut and semi-modular approaches

improve on the conventional posterior distribution for predictive purposes.

5.1 Collective cell spreading

Our first example considers a model developed in Browning et al. (2018) for collective cell-

spreading. Their model is useful in applications to understanding skin cancer growth and
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wound healing. Misspecification for this model was discussed in the supplementary material

of Frazier and Drovandi (2021), and we apply cutting feedback methods to understand the

effect of this misspecification on inference. The model has three unknown parameters, θ =

(m, ρ, γb)
>. The rates of motility (cell movement) and proliferation (cell birth) are given

by m and ρ, respectively. The parameter γb is part of a Gaussian kernel used to measure

the closeness of cells. The prior distribution for θ has independent uniform components,

ρ ∼ U(0, 10), m ∼ U(0, 0.1) and γb ∼ U(0, 20). The reader is referred to Browning et al.

(2018) for a detailed discussion of the model.

The summary statistics are as follows:

1. The number of cells at 12, 24 and 36 hours (S1).

2. The pair correlation computed at 12, 24 and 36 hrs (S2).

The summary statistic vector S1 is intended to be informative about ρ, and S2 is intended

to be informative about m and γb. It is reasonable to suspect that the observed number of

cells can be recovered for appropriate values of the model parameter. However, it is more

challenging to capture the spatial dependence of the cell population, i.e. how the cells interact

with each other. Accurate estimation of ρ is important as cell proliferation drives cancer

growth, and cancer treatments would aim to reduce this parameter. Therefore, there is an

interest in inferring ρ in a way that is robust to potential misspecification of the cell interaction

component of the model. We consider a simulated dataset first where the model is correctly

specified, using θ = (1, 0.04, 6). For the real data, Frazier and Drovandi (2021) show that the

model does not capture the way that the observed pair correlation changes over time.

We generate N = 105 simulations from the prior predictive distribution. In an effort to

improve the Gaussian mixture model (GMM) fit, we first transform each marginal summary

statistic and parameter distribution using the probability integral transform to uniform, and

then push the transformed samples through the standard normal quantile function. For the

prior distribution of the parameters, the distribution function has an analytic form. For

the summary statistics, the distribution function is estimated by kernel density estimation,

and so the marginal distribution of the transformed summaries is only approximately standard

normal. Based on Figure 2, even after transforming the marginal distributions, the dependence

structure is complex, both between parameters and summary statistics, and between the

summary statistics themselves. Hence this represents a challenging application for the GMM

approach.

A GMM with 10 components was fitted to the transformed prior predictive samples. In the

GMM we assumed unrestricted component covariance matrices, and estimation was performed
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Figure 2: Marginal distributions and bivariate scatterplots based on the joint

distribution of parameters and summary statistics generated from prior predic-

tive distribution (after a marginal transformation of the parameters and summary

statistics).

using an EM algorithm. The fitted GMM was then used to approximately sample the posterior

density p(θ|S1, S2) and the cut posterior density pcut(θ|S1, S2) = p(ρ|S1)p(m, γb|ρ, S1, S2). The

parameter samples generated from the fitted GMM were passed through the inverse transform

to generate samples from the approximate posterior distributions on the original parameter

space.

The marginal posterior estimates for the simulated and real datasets are shown in Fig-

ures 3 and 4, respectively. We also include the estimates from Frazier and Drovandi (2021)

using their robust BSL method with variance inflation, which should be robust to potential

misspecification of the spatial dependence of cells, in the sense that it can reduce the influ-

ence of summaries that the model is not compatible with. It can be seen that the cutting

feedback GMM posterior approximation does not differ greatly from the GMM posterior ap-

proximation, even for the real data. This is consistent with the results obtained in Frazier

and Drovandi (2021). This indicates that the inability to recover S2 is not adversely affecting

inference about ρ. The GMM posterior approximations are surprisingly accurate given the

greatly reduced number of model simulations used compared to BSL.

Another potential advantage of the GMM approach is that we can thriftily explore the

sensitivity of different summary statistic choices on each parameter. Figure 5 illustrates
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Figure 3: Estimates of marginal posterior densities for m, ρ and γb obtained us-

ing robust Bayesian synthetic likelihood with variance inflation (R-BSL-V), GMM

approximation to the full posterior (GMM) and GMM approximation to the cut

posterior (GMM cut) for the simulated data for collective cell spreading model.

this using the simulated data, where marginal posterior densities for different parameters are

estimated using each summary statistic individually. It can be seen that ρ is informed by the

number of cells at each time point, and the pair correlation statistics provide no information.

From this perspective, it is not surprising that ρ is not adversely influenced by potential

incompatibility of S2, since the parameter is not sensitive to these statistics. The estimated

posterior of ρ conditional on only the number of cells at 36 hrs is similar to the posterior

approximation conditional on all the statistics. The results suggest that it is only necessary

to include the number of cells at the final time point in the summary statistic vector. It is

evident that m and γb are informed by S2 and not S1. In the case of m, there does seem to

be a benefit in including all time points, as the posterior approximation with the three pair

correlation statistics is more concentrated than with any individual time point.

5.2 Continuous time model for asset returns with jumps

Our next example considers a continuous time model for asset returns with jumps and illus-

trates the use of our conflict checking approach for deciding whether or not to cut feedback,

as well as our proposed semi-modular method. Here the use of a cut posterior distribution

results in different inferences to those of the full posterior distribution. Let Pt denote the in-

stantaneous price of an asset at time t ≥ 0. For pt = lnPt, suppose that pt evolves according
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Figure 4: Estimates of marginal posterior densities for m, ρ and γb obtained us-

ing robust Bayesian synthetic likelihood with variance inflation (R-BSL-V), GMM

approximation to the full posterior (GMM) and GMM approximation to the cut

posterior (GMM cut) for the real data for collective cell spreading model.

to the bivariate jump-diffusion process

dpt = µpdt+ exp (Vt/2) dW p
t + dJpt (15)

dVt = κ (α− Vt) dt+ σvdW
v
t (16)

dJpt = ZtdNt, Zt ∼ N
(
µz, σ

2
z

)
, (17)

where W j
t , j ∈ {v, p}, are correlated Brownian motion processes, with instantaneous correla-

tion ρ, Nt is a counting process, Vt is a latent volatility process Jpt is a process of unobservable

jumps, and µp, κ, α, σv, µz and σz are unknown parameters.

The above model is similar to the model of Creel and Kristensen (2015), however, we

model the jump process via a conditionally deterministic Hawkes process (Aı̈t-Sahalia et al.,

2015; Maneesoonthorn et al., 2017) for which

Pr (dNt = 1) = δtdt+ o(1), dδt = (d+ βδt)dt+ τdNt, (18)

where d, β and τ are positive unknown parameters. We refer to (15) as the returns model,

(16) as the volatility model, and (17) and (18) as the jump model. The unknown parameters

are collected as θ = (ϕ>, η>)>, where

ϕ = (µz, σz, d, β, τ)>, η = (µp, κ, α, σv, ρ)>.

The parameters ϕ control the jump dynamics, while the parameters η are those appearing in

the returns and volatility models.

17



Figure 5: Sensitivity of posterior approximations to different summary statistics

based on simulated data for the collective cell spreading example. Estimated

marginal posterior densities are shown for m, ρ and γb. The different lines in each

plot are estimates obtained by conditioning on different scalar summary statistics.

For a general value of θ, and a given sequence of observed log-returns {rt = pt− pt−1 : t ≥
1}, the likelihood associated with the model in (15)-(18) is intractable. This intractability is

due to the presence of the unobservable state variables Vt, the latent volatilities, and Jt, the

unobservable jumps. These variables must be integrated out of the measurement equation

for the observables to obtain a likelihood that depends only on the observable data. This

integration is made even more difficult by the fact that the transition equations for the latent

states do not admit closed-form densities, due to their continuous-time evolution, and must

generally be approximated. In contrast, simulation-based methods bypass calculation of the

likelihood function by simulating data directly from the model.

We consider the case where the researcher is uncertain of the error specification in the

volatility/returns equations, and/or the specification of the jump dynamics. Let us focus on

the jump dynamics as a single module, and the volatility/returns specification as a separate

module. If intra-day returns are available, inference on the parameters ϕ governing the jump

dynamics can proceed by “cutting” the link with the returns and volatility equations. We

observe daily log returns rt = pt−pt−1 at integer times t = 1, . . . , T , and, for each t, we observe

M equally spaced intra-day returns rt,i, with i = 1, . . . ,M . Define the bipower variation, BVt,

and jump-variation, JVt, as

BVt :=
π

2

(
M

M − 1

) M∑
i=2

∣∣rt,irt,(i−1)∣∣ , JVt := max {RVt − BVt, 0} ,

where RVt denotes realized volatility RVt =
∑M

i=1 r
2
t,i. ABC inference on the jump-dynamics
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can be carried out using the following summary statistics (Frazier, et al., 2019):

S1,1 :=
1

T

T∑
t=1

sgn (rt)
√

JVt, S1,2 :=
1

T

T∑
t=1

(
JVt − JVt

)2
,

S1,3 :=
1

T

T∑
t=2

(
JVt − JVt

) (
JVt−1 − JVt

)
,

where JVt = T−1
∑T

t=1 JVt. We also define S1,4 and S1,5 as the sample skewness and kurtosis

respectively of log BVt. The summary statistic vector S1 used for inference on ϕ in the “cut”

posterior is S1 = (S1,1, S1,2, S1,3, S1,4, S1,5)
>.

The unknown parameters in the return and volatility equations can be identified using sev-

eral possible auxiliary models, including those that explicitly capture the relationship between

volatility, realized variance, and bipower variation, or various combinations of these compo-

nents. However, for reasons of parsimony, we only specify an auxiliary model for returns and

volatility. In particular, we follow Frazier et al. (2019) and use a TARCH-T auxiliary model

(threshold GARCH auxiliary model with student-t errors).

rt = σtεt, εt
iid∼ t(ν)

σ2
t = γ1 + γ2(rt−1 − γ0)2 + γ31l [rt−1 < 0] (rt−1 − γ0)2 + γ4σ

2
t−1

with γ = (γ1, . . . , γ4, ν)′, and where 1l[A] denotes the indicator function on the set A. The

summary statistics S2 are obtained by evaluating the score vector for the auxiliary model,

evaluated at the quasi maximum likelihood estimate (QMLE) for the observed data.

5.2.1 Simulation of the Model

Simulating data from the model can be done using an Euler discretization scheme with step

size 1/I and I large. Write pt,i/I = pt+i/I , and define Vt,i/I and δt,i/I similarly. Define ∆Nt,i/I =

Nt,(i+1)/I −Nt,i/I . We discretize the system and generate data recursively: for each day t, and

each intra-day time i = 1, . . . , I, simulate data according to

pt,(i+1)/I = pt,i/I + µ
1

I
+ exp

(
Vt,i/I/2

)
εpt,i

1√
I

+ Zt,i∆Nt,i/I

Vt,(i+1)/I = Vt,i/I + κ
(
α− Vt,i/I

) 1

I
+
σv√
I

(
ρεpt,i +

√
1− ρ2εvt,i

)
where εp, εv are bivariate standard normal random variables, Zt,i

iid∼ N(µz, σ
2
z) and ∆Nt,(i+1)/I

is 1 with probability I−1δt,(i+1)/I ,

δt,(i+1)/I = δt,i/I + (d+ βδt,i/I)I
−1 + τ∆Nt,i/I ,

19



and zero otherwise. Given a trajectory pt,i/I define rt,i/I = pt,i/I − pt,(i−1)/I , i = 1, . . . , I. Then

by downsampling these values to a sequence of M equally spaced values (assuming I is an

integer multiple of M) we obtain rt,i, i = 1, . . . ,M , corresponding to the M intraday return

on day t for the observed data.

5.3 Real data analysis

We consider daily returns data on the S&P500 index from 26 February 2010 to 7 February

2017. There are 1750 daily observations, and the most recent 250 observations are reserved for

out-of-sample predictive assessments using a related, but more parsimonious, model described

in the next subsection. These data were also used in Frazier et al. (2019). Uniform priors are

used for each parameter with lower and upper bounds for each parameter given in Table 1.

Table 1: Lower and upper bounds for uniform priors.

Parameter µp κ α σv ρ µz σz d τ β

Lower -0.1 0.05 -1.0 0.001 -0.70 -1.0 .0.0 0.01 0.001 0.5

Upper 0.1 0.50 3.0 1.99 0.0 1.0 3.0 0.2 0.2 1-τ

Figure 6 shows the marginal posterior distributions for the parameters ϕ in the jump

process, and the corresponding “cut” and semi-modular marginal posterior densities. The

influence parameter γ in the semi-modular approach is chosen as described in Section 4.1,

which results in the value γ = 0.41. The parameters µz and σz in the jump model, which

represent the (average) magnitude and variability of the jumps respectively, are estimated

quite differently in the full and cut posterior distributions; the interpretation is that cutting

feedback suggests that the magnitude of the jumps in daily returns are smaller (i.e., closer to

zero) than under the full posterior, and that the variability of the jump size is smaller than

under the full posteriors.

The marginal posterior distributions were estimated by fitting a Gaussian mixture model

to 50,000 simulations from the prior for parameters and summary statistics. Similar to the

first example, variables are transformed to be marginally univariate normal before fitting

the mixture, with transformation back to the original scale for estimation of the posterior

densities. The mclust package (Scrucca et al., 2016) was used to choose the number of mixture

components up to a maximum of 10 by BIC, considering different covariance structures for

the components. The final model had 8 mixture components, with distinct and unrestricted

component covariance matrices.
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Figure 6: Marginal densities for jump parameters in asset pricing model with jumps

for the full, cut and semi-modular posterior densities

Figure 7 (left) shows the location of the observed checking statistic G̃(Sobs,2|Sobs,1) (shown

by the red line) within its corresponding reference distribution, demonstrating that the tail

probability (7) is very small, and hence that the cut and full posterior distributions are

surprisingly different under the reference distribution for the check, supporting the decision

to cut. Figure 7 (right) shows how the tail probability (14) varies with γ in the semi-modular

approach.
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Figure 7: Observed statistic for conflict check G̃(Sobs,2|Sobs,1) (left), shown by the

red line, within the reference distribution for the check and the tail probability p(γ)

as γ varies for the semi-modular approach (right), for the asset pricing example.

Figure 8 shows how the semi-modular inference for the various parameters in the jump

process change with γ. Our chosen value of γ was 0.41 here, and the Figure confirms that for

larger values of γ the posterior inference is very different for the corresponding semi-modular

and full posterior, particularly for µz and σz.
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Figure 8: Marginal densities for jump parameters in asset pricing model for the

semi-modular posterior densities as γ changes.

While the continuous-time model in equations (15)-(17) yields parameters that have mean-

ingful structural interpretations, it is well-known that forecasts for returns obtained from
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continuous-time models are often outperformed by more parsimonious discrete-time models.

Furthermore, the use of continuous-time models in forecasting is hindered by their compu-

tational complexity. Producing forecast densities from continuous-time models requires se-

quentially approximating the transition density for the states in continuous time, and the

conditional density for the observable variables given the states. This approximation is car-

ried out by discretization of the process over a very fine grid, and then simulating forward

the process to accurately capture the dynamics. This procedure must then be repeated each

time one wishes to produce a forecast. We also note that such an approximation yields a

discretization error at each step, which can add additional noise to the resulting forecasts.

Consequently, in order to produce accurate forecasts, we follow Frazier et al. (2019) and

consider a more parsimonious discrete-time analogue of the continuous-time model, with

likelihood-free inference using summary statistics employed to produce the posterior for θ,

and a particle filter being used for estimation of the latent states in the production of the

forecasts. The resulting model has a similar structural interpretation to the continuous-time

model in (15)-(18) but is computationally much simpler to simulate, and does not require any

discretization to produce predictive densities.

5.4 Discrete time model

With similar notations to the previous subsection, and following Frazier et al. (2019), we

consider the following discrete time model for daily logarithmic returns and bipower variation:

rt = exp

(
ht
2

)
εt + ∆NtZt, εt ∼ N(0, 1), Zt ∼ N(µz, σ

2
z), (19)

log BVt = ψ0 + ψ1ht + σBVζt, ζt ∼ N(0, 1), (20)

ht = ω + ρht−1 + σhηt, ηt ∼ S(α,−1, 0, 1), (21)

where S(α, β, µ, σ) denotes the α-stable distribution with stability parameter α, skewness β,

location µ and scale σ, and

P (∆Nt = 1 | Ft−1) = δt = d+ βδt−1 + τ∆Nt−1, (22)

where Ft denotes the σ-field generated by the observations up to time t and ∆Nt plays a

similar role to the continuous time jump process dNt in (17). The above model has a similar

motivation and structure to the continuous-time model, but as discussed earlier it is more

convenient for forecasting. It includes an additional measurement equation (20) which depends

on intra-day returns, through ln BVt. We fix the parameter ψ0 to 0, since this parameter is

hard to identify. The set of unknown parameters is θ = (ϕ>, η>)>, where ϕ = (µz, σz, d, β, τ)>
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are the parameters in the jump module and η = (ψ0, ψ1, σBV, ω, ρ, σh)
> are the parameters in

the return/volatility module. Our prior distributions are the same as those in Frazier et al.

(2019), except for the fixed parameter ψ0.

Once again write the summary statistics as S = (S>1 , S
>
2 )>, where S1 is informative about

ϕ. Our summary statistics are related to those used in Frazier et al. (2019) for their TARCH-T

auxiliary model, which performed best for forecasting in their work. These summary statistics

were also the motivation for those used in our continuous-time model, but must be modified

here, since the jumps-variation JVt cannot be computed. The reason is that the discrete-

time model above only generates the summary of intra-day returns log BVt directly, without

generating the intra-day returns themselves which would be needed to compute the realized

volatility. We consider for S1 the summary statistics obtained from the TARCH-T auxiliary

model, so that S1 contains 5 summary statistics. The jump process appears only in the model

for the daily returns (19) in the discrete model, and so it is sensible to use the TARCH-T

auxiliary model fitted to the daily returns data to summarize the information about the jump

process. For S2, we consider summaries based on log BVt. We consider the mean, variance

and skewness of both log BVt, and log BVt − log BVt−1, as well as the correlation of BVt and

BVt−1, so that S2 contains 7 summary statistics.

Similar to Figure 9 for the continuous-time model, Figure 9 shows the marginal posterior

distributions for the parameters ϕ in the jump process for the discrete time model, and the

corresponding “cut” and semi-modular marginal posterior densities. Once again, the influence

parameter γ in the semi-modular approach is chosen as described in Section 4.1, resulting in

γ = 0.01 here so that the SMI posterior is nearly identical to the cut posterior. The marginal

posterior distributions for d and σz in the cut posterior suggest the presence of fewer jumps

with less variation around the average jump magnitude. The marginal posterior distributions

were estimated by fitting a Gaussian mixture model to 50,000 simulations from the prior for

parameters and summary statistics. Once again, variables are transformed to be marginally

univariate normal before fitting the mixture, and the mclust package (Scrucca et al., 2016)

was used to choose the number of mixture components up to a maximum of 10 by BIC,

considering different covariance structures for the components. The final model had 9 mixture

components, with distinct and unrestricted component covariance matrices.
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Figure 9: Marginal densities for jump parameters in discrete time asset pricing

model with jumps for the full, cut and semi-modular posterior densities. The cut

and semi-modular posterior densities are similar in all panels.

To assess the forecast performance, we first estimate the posterior distribution of θ based

on the training set observations. This estimate is then kept fixed throughout the forecast

period, and a bootstrap filter (Gordon et al., 1993) is used to estimate the latent states

ht,∆Nt, conditional on the data up to time t. We write this data as r1:t = (r1, . . . , rt)
>,

BV1:t = (BV1, . . . ,BVt)
>. Write yt = (r>1:t,BV>1:t)

>. We use 5, 000 particles in the particle

filter. To obtain a one-step ahead forecast at time T , write hsT,p, ∆N s
T,p for the pth particle

values respectively for hT , ∆NT for posterior parameter sample θs, s = 1, . . . ,S, p = 1 . . . , P .

Write δsT,p for the corresponding values of δt. We use S = 1, 000. The one-step ahead forecast

density is approximated by

p̂(yT+1|y1:T ) ≈ 1

S × P

S∑
s=1

P∑
p=1

p(yT+1|hT+1 = h̃sT+1,p,∆NT+1 = ∆̃N s
T+1,p, θ),

where h̃sT+1,p and ∆̃N s
T+1,p are obtained by simulating from (21)-(22) with hT = hsT,p and

δT = δsT,p, and p(yt|ht,∆Nt, θ) is defined from equation (19). Similar to Frazier et al. (2019),

out-of-sample predictive performance for the one-step ahead forecasts are assessed by average

predictive log score, quadratic score, and continuous ranked probability score, with results

shown in Table 2. Although the largest logarithmic and CRPS score values occur for small

values for γ for both outcomes, the differences in forecasting performance between methods

are minor in any practical sense.
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Table 2: Logarithmic (LS), quadratic (QS) and continuous rank probability score

(CRPS) for out of sample forecast assessment for outcomes rt and log BVt for

the discrete time model for semi-modular inference with γ = 0.2, 0.4, 0.6 and

0.8. γ = 0.01 is the value of the SMI influence parameter chosen by the conflict

checking method, giving similar predictive scores to the cut posterior with γ = 0.

γ = 1 is the full posterior. Scores are oriented so that larger values represent better

forecasting performance.

γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1.0

Outcome rt

LS -0.670 -0.673 -0.677 -0.682 -0.686 -0.690

QS 0.612 0.615 0.615 0.616 0.616 0.617

CRPS -0.259 -0.259 -0.260 -0.260 -0.260 -0.260

Outcome log BVt

LS -3.894 -3.877 -3.914 -3.909 -3.926 -3.924

QS -0.231 -0.231 -0.232 -0.228 -0.228 -0.228

CRPS -1.801 -1.806 -1.819 -1.823 -1.833 -1.840
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6 Discussion

Cutting feedback methods are useful in applications involving multi-modular models, where

they can be used both as a diagnostic for understanding misspecification and posterior sen-

sitivity as well as an alternative to using the full posterior for predictive inference when the

development of an alternative model is infeasible. As far as we are aware, the use of cutting

feedback methods has so far been restricted in the literature to models with tractable likeli-

hood. The extension to the intractable likelihood setting discussed here can be useful when

it is desired to restrict the information used for inference about a subset of the parameters

to that obtained from a subset of the summary statistics only. Our proposed Gaussian mix-

ture model approach to estimation of the posterior distribution makes the cutting feedback

computations easy to perform, and facilitates model checks which can help guide the decision

of whether or not to cut, as well as a semi-modular inference extension where feedback is

partially cut.

The use of cutting feedback methods in likelihood-free inference is particularly helpful since

model misspecification is known to negatively impact common likelihood-free inference proce-

dures. In the case of ABC, Frazier et al. (2020) demonstrate that if the model is misspecified,

then the ABC posterior does not produce valid inferences and can be ill-behaved. Frazier

et al. (2021) show that similar problems occur for Bayesian synthetic likelihood approaches.

Hence a benefit of cutting feedback is that it can be used to hedge against the potential con-

sequences of using misspecified models in likelihood-free inference. Recently, Pacchiardi and

Dutta (2021) consider a generalized Bayesian approach to likelihood-free inference based on

scoring rules which can deal with misspecification.

There has been renewed interest recently in the idea of robustifying Bayesian inference by

conditioning on an insufficient data summary to exclude information (Li et al., 2017; Lewis

et al., 2021). This is interesting regardless of whether the likelihood is tractable or not, and

the consideration of complex data summaries for conditioning leads to possible applications

of likelihood-free inference methods in models with tractable likelihood when misspecification

is a concern. Another recent work which is relevant to the likelihood-free inference literature

is Miller and Dunson (2019), where the authors make a connection between inference for

a “coarsened” version of the data, which is reminiscent of ABC methods, and the use of

power posterior distributions. In traditional ABC methods the ABC kernel can be interpreted

in terms of an allowance for model misspecification (Wilkinson, 2013), and an interesting

avenue for future research might be to pursue ABC approaches to the semi-modular inference

framework making use of this interpretation as a way of partially cutting feedback. This seems

27



related to the kernel-smoothing δ-SMI approach discussed in Nicholls et al. (2022).
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