Skip to main content
Log in

Functional concurrent hidden Markov model

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This study considers a functional concurrent hidden Markov model. The proposed model consists of two components. One is a transition model for elucidating how potential covariates influence the transition probability from one state to another. The other is a conditional functional linear concurrent regression model for characterizing the state-specific effects of functional covariates. A distribution-free random effect is introduced to the conditional model to describe the dependency of individual functional observations. The soft-thresholding operator and the adaptive group lasso are introduced to simultaneously accommodate the local and global sparsity of the functional coefficients. A Bayesian approach is developed to jointly conduct estimation, variable selection, and the detection of zero-effect regions. This proposed approach incorporates the dependent Dirichlet process with stick-breaking prior for accommodating the unspecified distribution of the random effect and a blocked Gibbs sampler for efficient posterior sampling. Finally, the empirical performance of the proposed method is evaluated through simulation studies, and the utility of the methodology is demonstrated by an application to the analysis of air pollution and meteorological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agresti, A.: Categorical Data Analysis, vol. 792. Wiley (2012)

    MATH  Google Scholar 

  • Altman, R.M.: Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting. J. Am. Stat. Assoc. 102(477), 201–210 (2007)

    MathSciNet  MATH  Google Scholar 

  • Alvarez, H.A.O., Myers, O.B., Weigel, M., Armijos, R.X.: The value of using seasonality and meteorological variables to model intra-urban PM2.5 variation. Atmos. Environ. 182, 1–8 (2018)

    Google Scholar 

  • Bartolucci, F., Farcomeni, A.: A multivariate extension of the dynamic logit model for longitudinal data based on a latent Markov heterogeneity structure. J. Am. Stat. Assoc. 104(486), 816–831 (2009)

    MathSciNet  MATH  Google Scholar 

  • Berkner, K., Wells, R.O., Jr.: Smoothness estimates for soft-threshold denoising via translation-invariant wavelet transforms. Appl. Comput. Harmon. Anal. 12(1), 1–24 (2002)

    MathSciNet  MATH  Google Scholar 

  • Celeux, G., Forbes, F., Robert, C. P., & Titterington, D. M. (2006). Deviance information criteria for missing data models

  • Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models. Springer (2006)

    MATH  Google Scholar 

  • Chen, Y., Goldsmith, J., Ogden, R.T.: Variable selection in function-on-scalar regression. Stat 5(1), 88–101 (2016)

    MathSciNet  Google Scholar 

  • Ciarleglio, A., Ogden, R.T.: Wavelet-based scalar-on-function finite mixture regression models. Comput. Stat. Data Anal. 93, 86–96 (2016)

    MathSciNet  MATH  Google Scholar 

  • Donaldson, K., Li, X., MacNee, W.: Ultrafine (nanometre) particle mediated lung injury. J. Aerosol Sci. 29(5–6), 553–560 (1998)

    Google Scholar 

  • Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    MathSciNet  MATH  Google Scholar 

  • Eilers, P.H., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–102 (1996)

    MathSciNet  MATH  Google Scholar 

  • Eubank, R., Huang, C., Maldonado, Y.M., Wang, N., Wang, S., Buchanan, R.: Smoothing spline estimation in varying-coefficient models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 66(3), 653–667 (2004)

    MathSciNet  MATH  Google Scholar 

  • Feng, X., Wang, G., Wang, Y., Song, X.: Structure detection of semiparametric structural equation models with Bayesian adaptive group lasso. Stat. Med. 34(9), 1527–1547 (2015)

    MathSciNet  Google Scholar 

  • Frühwirth-Schnatter, S.: Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J. Am. Stat. Assoc. 96(453), 194–209 (2001)

    MathSciNet  MATH  Google Scholar 

  • Gao, W., Zhang, X., Yang, L., Liu, H.: An improved Sobel edge detection. In: 2010 3rd International Conference on Computer Science and Information Technology, vol. 5, pp. 67–71 (2010). IEEE

  • Gelfand, A.E., Kottas, A., MacEachern, S.N.: Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Am. Stat. Assoc. 100(471), 1021–1035 (2005)

    MathSciNet  MATH  Google Scholar 

  • Gertheiss, J., Maity, A., Staicu, A.-M.: Variable selection in generalized functional linear models. Stat 2(1), 86–101 (2013)

    MathSciNet  Google Scholar 

  • Ghosal, R., Maity, A., Clark, T., Longo, S.B.: Variable selection in functional linear concurrent regression. J. R. Stat. Soc. Ser. C (Appl. Stat.) 69(3), 565–587 (2020)

    MathSciNet  Google Scholar 

  • Goldsmith, J., Schwartz, J.E.: Variable selection in the functional linear concurrent model. Stat. Med. 36(14), 2237–2250 (2017)

    MathSciNet  Google Scholar 

  • Guo, R., Zhu, H., Chow, S.-M., Ibrahim, J.G.: Bayesian lasso for semiparametric structural equation models. Biometrics 68(2), 567–577 (2012)

    MathSciNet  MATH  Google Scholar 

  • Hazlett, H.C., Gu, H., Munsell, B.C., Kim, S.H., Styner, M., Wolff, J.J., Elison, J.T., Swanson, M.R., Zhu, H., Botteron, K.N., et al.: Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641), 348–351 (2017)

    Google Scholar 

  • Ip, E., Zhang, Q., Rejeski, J., Harris, T., Kritchevsky, S.: Partially ordered mixed hidden Markov model for the disablement process of older adults. J. Am. Stat. Assoc. 108(502), 370–384 (2013)

    MathSciNet  MATH  Google Scholar 

  • Ishwaran, H., James, L.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96, 161–173 (2001)

    MathSciNet  MATH  Google Scholar 

  • Ishwaran, H., Zarepour, M.: Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika 87(2), 371–390 (2000)

    MathSciNet  MATH  Google Scholar 

  • James, G.M., Wang, J., Zhu, J., et al.: Functional linear regression that’s interpretable. Ann. Stat. 37(5A), 2083–2108 (2009)

    MathSciNet  MATH  Google Scholar 

  • Kang, J., Reich, B.J., Staicu, A.-M.: Scalar-on-image regression via the soft-thresholded Gaussian process. Biometrika 105(1), 165–184 (2018)

    MathSciNet  MATH  Google Scholar 

  • Kang, K., Cai, J., Song, X., Zhu, H.: Bayesian hidden Markov models for delineating the pathology of Alzheimer’s disease. Stat. Methods Med. Res. 28(7), 2112–2124 (2019)

    MathSciNet  Google Scholar 

  • Kent, J.T.: Continuity properties for random fields. Ann. Probab. 17(4), 1432–1440 (1989)

    MathSciNet  MATH  Google Scholar 

  • Kim, J.S., Maity, A., Staicu, A.-M.: Additive nonlinear functional concurrent model. Stat. Interface 11(4), 669 (2018)

    MathSciNet  MATH  Google Scholar 

  • Kowal, D.R., Matteson, D.S., Ruppert, D.: A Bayesian multivariate functional dynamic linear model. J. Am. Stat. Assoc. 112(518), 733–744 (2017)

    MathSciNet  Google Scholar 

  • Lang, S., Brezger, A.: Bayesian P-splines. J. Comput. Graph. Stat. 13(1), 183–212 (2004)

    MathSciNet  MATH  Google Scholar 

  • Leroux, B.G.: Maximum-likelihood estimation for hidden Markov models. Stoch. Process. Appl. 40(1), 127–143 (1992)

    MathSciNet  MATH  Google Scholar 

  • Lin, Z., Cao, J., Wang, L., Wang, H.: Locally sparse estimator for functional linear regression models. J. Comput. Graph. Stat. 26(2), 306–318 (2017)

    MathSciNet  Google Scholar 

  • Lu, L., Jin, W., Wang, X.: Non-local means image denoising with a soft threshold. IEEE Signal Process. Lett. 22(7), 833–837 (2014)

    Google Scholar 

  • Lu, Z., Khondker, Z., Ibrahim, J.G., Wang, Y., Zhu, H., Initiative, A.D.N., et al.: Bayesian longitudinal low-rank regression models for imaging genetic data from longitudinal studies. Neuroimage 149, 305–322 (2017)

    Google Scholar 

  • MacEachern, S.N.: Dependent nonparametric processes. In: ASA Proceedings of the Section on Bayesian Statistical Science, vol. 1, pp. 50–55 (1999). Alexandria: American Statistical Association

  • MacEachern, S.N.: Dependent Dirichlet processes, pp. 1–40. Unpublished manuscript, Department of Statistics, The Ohio State University (2000)

  • Manrique, T., Crambes, C., Hilgert, N., et al.: Ridge regression for the functional concurrent model. Electron. J. Stat. 12(1), 985–1018 (2018)

    MathSciNet  MATH  Google Scholar 

  • Martino, A., Guatteri, G., Paganoni, A.M.: Hidden Markov models for multivariate functional data. Stat. Probab. Lett. 167, 108917 (2020)

  • Maruotti, A.: Mixed hidden Markov models for longitudinal data: an overview. Int. Stat. Rev. 79(3), 427–454 (2011)

    MATH  Google Scholar 

  • Ni, X., Huang, H., Du, W.: Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmos. Environ. 150, 146–161 (2017)

    Google Scholar 

  • Park, T., Casella, G.: The Bayesian Lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)

    MathSciNet  MATH  Google Scholar 

  • Pope Iii, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9), 1132–1141 (2002)

    Google Scholar 

  • Qu, A., Li, R.: Quadratic inference functions for varying-coefficient models with longitudinal data. Biometrics 62(2), 379–391 (2006)

    MathSciNet  MATH  Google Scholar 

  • Qu, L., Song, X., Sun, L.: Identification of local sparsity and variable selection for varying coefficient additive hazards models. Comput. Stat. Data Anal. 125, 119–135 (2018)

    MathSciNet  MATH  Google Scholar 

  • Schwartz, J.: The distributed lag between air pollution and daily deaths. Epidemiology 11(3), 320–326 (2000)

    Google Scholar 

  • Scott, S.L., James, G.M., Sugar, C.A.: Hidden Markov models for longitudinal comparisons. J. Am. Stat. Assoc. 100(470), 359–369 (2005)

    MathSciNet  MATH  Google Scholar 

  • Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4(2), 639–650 (1994)

    MathSciNet  MATH  Google Scholar 

  • Silverman, J.O.R.W.: Functional Data Analysis. Wiley Online Library (2004)

    Google Scholar 

  • Song, X., Lu, Z.: Semiparametric transformation models with Bayesian P-splines. Stat. Comput. 22, 1085–1098 (2012)

    MathSciNet  MATH  Google Scholar 

  • Song, X., Xia, Y., Zhu, H.: Hidden Markov latent variable models with multivariate longitudinal data. Biometrics 73(1), 313–323 (2017)

    MathSciNet  MATH  Google Scholar 

  • Wang, S., Huang, M., Wu, X., Yao, W.: Mixture of functional linear models and its application to CO2-GDP functional data. Comput. Stat. Data Anal. 97, 1–15 (2016)

    MATH  Google Scholar 

  • Wang, P., Guo, H., Hu, J., Kota, S.H., Ying, Q., Zhang, H.: Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China. Sci. Total Environ. 662, 297–306 (2019)

    Google Scholar 

  • Wu, C.O., Chiang, C.-T., Hoover, D.R.: Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J. Am. Stat. Assoc. 93(444), 1388–1402 (1998)

    MathSciNet  MATH  Google Scholar 

  • Xie, Y., Zhao, B., Zhang, L., Luo, R.: Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO\(_2\), NO\(_2\), CO and O\(_3\). Particuology 20, 141–149 (2015)

  • Xu, Z., Chen, S.X., Wu, X.: Meteorological change and impacts on air pollution: results from North China. J. Geophys. Res. Atmos. 125(16), e2020JD032423 (2020)

  • Yang, Y.: Novel methods for estimation and inference in varying coefficient models. PhD thesis (2020)

  • Yao, F., Fu, Y., Lee, T.C.: Functional mixture regression. Biostatistics 12(2), 341–353 (2011)

    MATH  Google Scholar 

  • Ye, M., Lu, Z., Li, Y., Song, X.: Finite mixture of varying coefficient model: estimation and component selection. J. Multivar. Anal. 171, 452–474 (2019)

    MathSciNet  MATH  Google Scholar 

  • Zhang, H., Li, Y.: Unified principal component analysis for sparse and dense functional data under spatial dependency. J. Bus. Econ. Stat. 40, 1523–1537 (2021)

    MathSciNet  Google Scholar 

  • Zhang, W., Wang, H., Zhang, X., Peng, Y., Zhong, J., Wang, Y., Zhao, Y.: Evaluating the contributions of changed meteorological conditions and emission to substantial reductions of PM2.5 concentration from winter 2016 to 2017 in Central and Eastern China. Sci. Total Environ. 716, 136892 (2020)

    Google Scholar 

  • Zhou, J., Wang, N.-Y., Wang, N.: Functional linear model with zero-value coefficient function at sub-regions. Stat. Sin. 23(1), 25–50 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was fully supported by Research Grant Council of the Hong Kong Special Administration Region (GRF 14301918, 14302220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyuan Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1811 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Song, X. Functional concurrent hidden Markov model. Stat Comput 33, 57 (2023). https://doi.org/10.1007/s11222-023-10226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-023-10226-2

Keywords

Navigation