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Abstract
We introduce a computationally efficient variant of the model-based ensemble Kalman filter (EnKF).We propose two changes
to the original formulation. First, we phrase the setup in terms of precision matrices instead of covariance matrices, and
introduce a new prior for the precision matrix which ensures it to be sparse. Second, we propose to split the state vector
into several blocks and formulate an approximate updating procedure for each of these blocks. We study in a simulation
example the computational speedup and the approximation error resulting from using the proposed approach. The speedup is
substantial for high dimensional state vectors, allowing the proposed filter to be run on much larger problems than can be done
with the original formulation. In the simulation example the approximation error resulting from using the introduced block
updating is negligible compared to the Monte Carlo variability inherent in both the original and the proposed procedures.

Keywords Bayesian inference · Data assimilation · Ensemble Kalman filter · Gaussian Markov random field · Hidden
Markov model · Spatial statistics

1 Introduction

State-spacemodels are frequently used inmany applications.
Examples of application areas are economics (Creal 2011;
Chan and Strachan 2020), weather forecasting (Houtekamer
and Zhang 2016; Hotta and Ota 2021), signal processing
(Loeliger et al. 2007) and neuroscience (Smith and Emery
2003). A state-space model consists of an unobserved latent
{xt } discrete time Markov process and a related observed
{yt } process, where yt gives information about xt , and the
yt ’s are assumed to be conditionally independent given the
{xt } process. Given observed values y1, . . . , yt the goal is
to do inference about one or more of the xt ’s. In this arti-
cle the focus is on the filtering problem, where the goal is
to find the conditional distribution of xt given observations
y1:t = (y1, . . . , yt ). The filtering problem is also known as
sequential data assimilation and online inference.

The Markov structure in the specification of the state-
space model allows the filtering problem to be solved
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recursively. Having available a solution of the filtering prob-
lem at time t−1, i.e. the distribution p(xt−1|y1:t−1), one can
first use this filtering distribution to find the one-step forecast
distribution p(xt |y1:t−1), which one in turn can combinewith
the observed data at the next time step, yt , to find p(xt |y1:t ).
The identification of the forecast distribution is often termed
the forecast or prediction step, whereas the process of find-
ing the filtering distribution is called the update or analysis
step. If a linear-Gaussian model is assumed analytical solu-
tions are available both for the forecast and update steps, and
is known as the Kalman filter (Kalman 1960; Kalman and
Bucy 1961). Another situationwhere an analytical solution is
available for the forecast and update steps is when xt is a vec-
tor of categorical or discrete variables. In essentially all other
situations, however, analytical solutions are not available and
one has to resort to approximate solutions. Ensemble-based
methods are here the most popular choice, where each dis-
tribution of interest is represented by a set of particles, or an
ensemble of realisations, from the distribution of interest. In
ensemble-based methods one also alternates between a fore-
cast and an update step. The forecast step is straightforward
to implement without approximations in ensemble methods,
whereas the update step is challenging. In the update step an
ensemble of realisations, x (1)

t , . . . , x (M)
t , from the forecast

distribution p(xt |y1:t−1) is available and the task is to update
each realisation x (m)

t to a corresponding realisation x̃ (m)
t from
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the filtering distribution p(xt |y1:t ). The forecast distribution
p(xt |y1:t−1) serves as a prior in the update step, and the fil-
tering distribution p(xt |y1:t ) is the resulting posterior. In the
following we therefore refer to the ensemble of realisations
from the forecast distribution as the prior ensemble and the
ensemble of realisations from the filtering distribution as the
posterior ensemble.

There are two popular classes of ensemble filtering meth-
ods, particle filters (Doucet et al. 2001; Doucet and Johansen
2011) and ensemble Kalman filters (EnKFs) (Burgers et al.
1998; Evensen 2009). Particle filters are based on importance
sampling and resampling and has the advantage that it can be
shown to converge to the correct filtering solution in the limit
when the number of particles goes towards infinity. However,
in applications with high dimensional state vectors, xt , par-
ticle filters typically collapse when run with a finite number
of particles. The updating procedure in EnKFs is based on
a linear-Gaussian model, but experience in applications is
that EnKFs produce good results also in situations where
the linear-Gaussian assumptions are not fulfilled. However,
except when the linear-Gaussian model is correct the EnKF
is only approximate, even in the limit when the number of
ensemble elements goes towards infinity. Most of the EnKF
literature is in applied journals and has not much focus on
the underlying statistical theory, but some publications has
also appeared in statistical journals (Sætrom andOmre 2013;
Katzfuss et al. 2016, 2020; Loe and Tjelmeland 2020, 2022).

In EnKF the update step consists of two parts. First a prior
covariance matrix is established based on the prior ensem-
ble, which thereafter is used to modify each prior ensemble
element to a corresponding posterior element. Many vari-
ants of the original EnKF algorithm of Evensen (1994) have
been proposed and studied in the literature, see for example
Evensen (2009) andHoutekamer andZhang (2016) and refer-
ences therein. In particular the original algorithm of Evensen
(1994) is known to severely underestimate the uncertainty
and much attention has focused on how to correct for this.
The most frequent approach to this problem is the rather ad
hoc solution of variance inflation, see the discussion in Luo
and Hoteit (1997). Houtekamer and Mitchell (1997) identi-
fied the source of the problem to be inbreeding, that the same
prior ensemble elements that are first used to establish the
prior covariance matrix are thereafter modified into poste-
rior ensemble elements. To solve this problem Houtekamer
and Mitchell (1997) proposed to split the prior ensemble
in two, where the prior ensemble elements in one part is
used to establish a prior covariance matrix which is used
when modifying the prior ensemble elements in the other
part into corresponding posterior elements. As discussed in
Houtekamer and Zhang (2016) this cross validation setup
is later generalised to a situation where the prior ensem-
ble is split into more than two parts. Myrseth et al. (2013)
propose to use a resampling approach to solve the inbreed-

ing problem. Another issue with the original EnKF setup of
Evensen (2009) that has been focused in the literature is that
the empirical covariance matrix of the prior ensemble is used
as the prior covariance matrix, thereby effectively ignoring
the associated estimation uncertainty. To copewith this prob-
lem Omre andMyrseth (2010) set the problem of identifying
the prior covariance matrix in a Bayesian setting. To obtain
an analytically tractable posterior distribution for the mean
vector and the covariance matrix of the prior ensemble, the
natural conjugate normal inverse Wishart prior is adopted.
For each ensemble element, a sample from the resulting nor-
mal inverse Wishart posterior distribution is generated and
used in the updating of that ensemble element. Correspond-
ing Bayesian schemes for establishing the prior covariance
matrix are later adopted in Bocquet (2011), Bocquet et al.
(2015) andTsyrulnikov andRakitko (2017). Loe andTjelme-
land (2021) propose to base the updating step of the EnKF on
an assumed Bayesian model for all variables involved. The
updating step is defined by restricting it to be consistent with
the assumed model at the same time as it should be robust
against modeling error. Both the need for defining a prior for
the covariance matrix and the cross validation approach dis-
cussed above comes as necessary consequences of this setup.
In addition it entails that the new data yt should be taken into
account when generating the prior covariance matrix.

In the present article we adopt the model-based EnKF
approach of Loe and Tjelmeland (2021), but our focus
is to formulate a computationally efficient variant of this
approach. To obtain this we do two important changes. First,
in Loe and Tjelmeland (2021) the natural conjugate normal
inverse Wishart prior is used for the mean vector and covari-
ance matrix of the prior ensemble elements. When sampling
from the corresponding posterior distribution this results in a
covariance matrix that is full. To update a prior ensemble ele-
ment to the corresponding posterior element the covariance
matricesmust be used in a series ofmatrix operations, such as
various matrix decompositions and multiplications with vec-
tors.We rephrase the approach of Loe and Tjelmeland (2021)
to use precision matrices, or inverse covariance matrices,
instead of covariance matrices and propose to use a Gaus-
sian partially ordered Markov model (Cressie and Davidson
1998) to construct a prior for the mean vector and the preci-
sionmatrix of the prior ensemble. This prior is also conjugate
for the assumed normal likelihood for the ensemble elements,
and the resulting posterior is therefore analytically tractable.
Moreover, with this prior distribution we are able to ensure
that the precision matrices sampled from the resulting pos-
terior distribution are band matrices. With a band structure
in the precision matrix some of the matrix operations in the
updating of a prior ensemble element to the corresponding
posterior element can be done more efficiently. However,
some of the matrix operations, singular value decomposi-
tions, do not benefit from this band structure. To make also
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this part of the procedure computationally more efficient we
propose to do an approximation which allows us to replace
the singular value decomposition of one large matrix with
singular value decompositions of several smaller matrices.

Compared to the updating procedure in the original EnKF
setup of Evensen (1994), the updating procedure resulting
from adopting the Bayesian scheme introduced in Omre and
Myrseth (2010) is clearly computationallymuchmore expen-
sive. The increased computational demands come for two
reasons. First, the Bayesian setup requires one covariance
matrix to be generated for each ensemble element, whereas
the original EnKF setup uses the same covariance matrix for
all ensemble elements. Second, the covariance matrices gen-
erated by the original Bayesian setup of Omre and Myrseth
(2010) are full and without any special structure, whereas the
covariance matrix used in the original EnKF setup has a low
rankwhich can be used to speed up the necessarymatrix com-
putations. In the present paper we resolve the second issue
by adopting a prior model producing sparse precision matri-
ces. Regarding the first issue, Loe and Tjelmeland (2021)
demonstrated that with their model-based EnKF approach
the generated ensemble gave a realistic representation of
the uncertainty, whereas the original EnKF setup produced
ensembles which underestimated the uncertainty. For small
ensemble sizes the underestimation of the uncertainty when
adopting the original EnKF setup is severe, whereas with
large enough ensemble sizes it becomes negligible. To obtain
a realistic representation of the uncertainty we therefore have
two possible strategies.One can either adopt themodel-based
EnKF approach used in Loe and Tjelmeland (2021) and in
the present paper, or one can use the original EnKF setupwith
a very large number of ensemble elements. Which of the two
approaches that are computationally more efficient depends
on the computational cost of running the forward function.
If the forward function is computationally expensive, so that
this part dominates the total computing time of the filter, it
is clearly computationally most efficient to adopt the model-
based EnKF procedure introduced in the present paper. If the
computation time is not dominated by the running of the for-
ward function, the picture is less clear. Depending on how
many ensemble elements that are necessary to get a suffi-
ciently small underestimation of the uncertainty, the original
EnKF with a large number of ensemble elements may be the
computationally most efficient alternative.

This article is structured as follows. In Sect. 2 we first
review some numerical algorithms for sparse matrices and
some properties of the Gaussian density. In the same section
we also present the state-space model. In Sect. 3 we rephrase
the approach introduced in Loe and Tjelmeland (2021) to use
precision matrices instead of covariance matrices. The new
prior for the precision matrix is proposed in Sect. 4. In Sect. 5
we propose a computationally efficient approximation of the
updating procedure presented in Sect. 3.We present results of

simulation examples in Sect. 6, and finally we provide some
closing remarks in Sect. 7.

2 Preliminaries

This section introduces material necessary to understand the
approach proposed in later sections. We start by discussing
some numerical properties of sparse matrices, thereafter
review how themultivariate Gaussian distribution can be for-
mulated in terms of precision matrices. Lastly, we introduce
the state-space model and provide a brief introduction on
simulation-based techniques.

2.1 Numerical properties of sparse matrices

Suppose that x, y ∈ R
n , that Q ∈ R

n×n is a given symmet-
ric positive definite band matrix with bandwidth p, where
n � p, that y is given, and that we want to solve the matrix
equation

Qx = y (1)

with respect to x . Since we assume that Q is a symmetric
matrix, we can solve the equation above using the Cholesky
decomposition Q = LLT , where L ∈ R

n×n is a lower trian-
gular matrix. Due to the band structure of Q we know that
L has lower bandwidth p, which in turn enables us to com-
pute L with complexity O(np2), see Algorithm 2.9 in Rue
and Held (2005). Since we now are able to compute L effi-
ciently, we can make use of Algorithm 2.1 in Rue and Held
(2005) to solve (1) efficiently as well. In the following, we
describe the algorithm step by step.

First, we rewrite (1) as

LLT x = y. (2)

If we define LT x = v, we can solve (1) by first solving
Lv = y for v and then solving LT x = v for x .We can exploit
the band structure of L to solve these equations efficiently.
Using that L is lower triangular, we can solve Lv = y row by
row, using “forward substitution” (Rue andHeld 2005, p. 32).
We denote the (i, j)th entry of L as Li, j and the i th element
of y as yi . The i th element of v, denoted vi , is computed as
follows

vi = 1

Li,i

⎛

⎝yi −
i−1
∑

j=max{1,i−p}
Li, jv j

⎞

⎠ . (3)

Similarly, we can solve v = LT x for x using “backward
substitution”
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xi = 1

Li,i

⎛

⎝vi −
min{i+p,n}
∑

j=i+1

L j,i x j

⎞

⎠ . (4)

Notice that we compute the entries of x “backwards”; we
first compute xn and then move our way backwards to x1. If
we again assume n � p, the computational complexity of
forward and backward substitution isO(np). Thismeans that
the overall complexity of computing x using the presented
approach is O(np2). Note that solving (1) with the “brute
force” approach, i.e. computing x = Q−1y, has computa-
tional complexity O(n3).

Backward substitution can also be used to sample effi-
ciently from a Gaussian distribution when the precision
matrix is a band matrix. Assume that z is a vector of standard
normally distributed variables and that we want to simulate
x from a Gaussian distribution with mean 0 and covariance
matrix Q−1. We can simulate x by solving

LT x = z (5)

using backward substitution, as specified in (4). When Q is
a band matrix with bandwidth p, where n � p, the compu-
tational complexity is O(np2). However, when Q is full the
computational complexity of simulating x is O(n3).

2.2 Gaussian distribution phrased with precision
matrices

Let x ∈ R
n have a multivariate Gaussian distribution with

mean μ ∈ R
n and precision matrix Q ∈ R

n×n . We let
N (x;μ, Q) denote the density function of this distribution,
i.e.

N (x;μ, Q) = (2π)−n/2|Q|1/2

exp

(

−1

2
(x − μ)T Q(x − μ)

)

. (6)

Defining A ⊂ {1, . . . n} and B = {1, . . . , n}\A, we can
partition x , μ and Q into blocks

x =
(

x A

x B

)

, μ =
(

μA

μB

)

, Q =
(

QAA QAB

QBA QBB

)

. (7)

According to Theorem 2.5 in Rue and Held (2005), we then
have that

p
(

x A|x B) = N (x A; μA − (QAA)−1
QAB(x B − μB), QAA).

(8)

Similarly,

p
(

x B
) = N (x B;μB, QBB − (QAB)T (QAA)−1

QAB). (9)

The last expression can be derived by picking out the parts
of the mean vector μ and covariance matrix Q−1 that corre-
sponds to x B . When we have found the covariance matrix of
x B we find the precision matrix by inversion. From the first
expression we see that computing the precision matrix for
x A|x B is particularly easy when the Gaussian distribution is
formulated with precision matrices.

2.3 State-spacemodel

A state-space model (Shumway and Stoffer 2016; Brock-
well and Davis 1990) consists of a set of latent variables,
denoted {xt }Tt=1, xt ∈ R

nx , and a set of observations {yt }Tt=1,
yt ∈ R

ny . The latent variables follow a first order Markov
chain with initial distribution p(x1) and transition probabil-
ities p(xt |xt−1), t ≥ 2. That is, the joint distribution for
x1:T = (x1, . . . , xT ) can be written as

p(x1:T ) = p(x1)
T
∏

t=2

p(xt |xt−1). (10)

In addition, each observation yt is considered to be condi-
tionally independent of the remaining observations, given xt .
The joint likelihood for the observations y1:T = (y1, . . . , yT )

can be formulated as

p(y1:T |x1:T ) =
T
∏

t=1

p(yt |xt ). (11)

A state-space model is illustrated by a directed acyclic graph
(DAG) in Fig. 1, where each variable is represented with a
node and the edges symbolise the dependencies between the
variables.

The main interest of this article, and the reason we intro-
duce the state-space model, is to assess the filtering problem.
The objective of the filtering problem is to compute the fil-
tering distribution, p(xt |y1:t ), for t = 1, . . . , T . That is, we
want to find the distribution for the latent variable at time
t , i.e. xt , given all of the observations up to the same time
step, y1:t . Due to the Markov assumptions made in the state-
space model, we are in principle able to assess this quantity
sequentially. Each iteration is performed in two steps, namely

p(xt |y1:t−1) =
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1, (12)

p(xt |y1:t ) = p(xt |y1:t−1)p(yt |xt )
∫

p(xt |y1:t−1)p(yt |xt )dxt . (13)

The first expression is the prediction step and gives the fore-
cast distribution p(xt |y1:t−1), while the second expression
is called the update step and yields the filtering distribution
p(xt |y1:t ). Note that the filtering distribution is computed
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Fig. 1 DAG illustration of a state-space model. The edges illustrate the stochastic dependencies between the nodes. The latent variables xt , t =
1, . . . , T are unobserved, while yt , t = 1, . . . , T are observations

through Bayes’ rule, where p(xt |y1:t−1) is the prior, p(yt |xt )
is the likelihood and p(xt |y1:t ) is the posterior. In the follow-
ing we therefore use the terms prior and forecast, and the
terms posterior and filtering, interchangeably. In this article,
our main focus is on the update step.

When the state-space model is linear and Gaussian, the
expressions can be solved analytically through the Kalman
filter (Kalman 1960). However, the prediction and update
steps in (12) and (13) are generally speaking not feasible to
solve analytically. Hence approximative methods are used.
A common approach is to use simulation-based techniques,
where a set of realisations, which is called an ensemble, are
used to explore the state-space model by moving the reali-
sations forward in time according to the state-space model.
The filtering and forecast distributions are then represented
by an ensemble at each time step, which is initially sampled
from p(x1). The following paragraph provides an overview
of how this is done for one iteration.

Assume that a set ofM independent realisations {̃x (1)
t−1, . . . ,

x̃ (M)
t−1 } from p(xt−1|y1:t−1) is available at time t . If we are
able to simulate from the forward model p(xt |xt−1), we
can obtain M independent realisations from p(xt |y1:t−1)

by simulating from x (m)
t |̃x (m)

t−1 ∼ p(xt |̃x (m)
t−1) independently

for m = 1, . . . ,M. This is the prediction step, and can
usually be performed without any approximations. Next,
we use the prediction, or prior, ensemble {x (1)

t−1, . . . , x
(M)
t−1 }

to obtain samples from the filtering distribution p(xt |y1:t ),
which is often called a posterior ensemble. This can be done
by conditioning the samples from the forecast distribution,
{x (1)

t , . . . , x (M)
t }, on the new observation yt . This step is

called the update step and is generally not analytically fea-
sible. Hence approximative methods are necessary. In the
following section, we present a procedure that enables us to
carry out the update step.

3 Model-based EnKF

In this section we start by reviewing the model-based EnKF
framework introduced in Loe and Tjelmeland (2021). The
focus in our presentation is on the underlying model frame-
work, the criterion used for selecting the particular chosen
update, and on the resulting updating procedure. We do not

include the mathematical derivations leading to the compu-
tational procedure. Moreover, we phrase the framework in
terms of precision matrices, whereas Loe and Tjelmeland
(2021) use covariance matrices.

The focus in the section is on how to use a prior ensemble
{x (1)

t , . . . , x (M)
t } to update one of these prior ensemble ele-

ments, numberm say, to a corresponding posterior ensemble
element x̃ (m)

t . All the variables involved in this opera-
tion are associated with the same time t . To simplify the
notation we therefore omit the time subscript t in the fol-
lowing discussion. So we write {x (1), . . . , x (M)} instead of
{x (1)

t , . . . , x (M)
t } for the available prior ensemble, we write

x̃ (m) instead of x̃ (m)
t for the generated posterior ensemble

element number m, we write x instead of xt for the latent
variable at time t , and we write y instead of yt for the new
data that becomes available at time t .

3.1 Assumed Bayesianmodel

In model-based EnKF the updating of a prior ensemble ele-
ment x (m) to the corresponding posterior ensemble element
x̃ (m) is based on an assumed model. The dependence struc-
ture of the assumed model is illustrated in the DAG in Fig. 2.
It should be noted that the assumed model is not supposed
to be correct, it is just used as a mean to formulate a rea-
sonable and consistent updating procedure. To stress this we
follow the notation in Loe and Tjelmeland (2021) and use
f as the generic symbol for all densities associated to the
assumed model, whereas we continue to use p to denote the
corresponding correct (and typically unknown) densities.We
use subscripts on f to specify what stochastic variables the
density relates to. For example fy|x (y|x) is the conditional
density for the new observations y given the latent variable
x .

In the assumed model we let the prior ensemble elements
x (1), . . . , x (M) and the unobserved latent variable x at time
t be conditionally independent and identically Gaussian dis-
tributed with a mean vector μ and a precision matrix Q, i.e.

fx |θ (x |θ) = N (x;μ, Q), (14)

fx (i)|θ (x (i)|θ) = N (x (i);μ, Q), i = 1, . . . ,M, (15)
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Fig. 2 DAGrepresentation of the assumedBayesianmodel for updating
the mth realisation

where θ = (μ, Q). For the parameter θ of this Gaussian
density we assume some prior distribution fθ (θ). Loe and
Tjelmeland (2021) assume a normal inverse Wishart prior
for (μ, Q−1), which implies that Q is full, whereas we want
to adopt a prior which ensures that Q is a band matrix. In
Sect. 4.1 we detail the prior we are using. The last element of
the assumed model is to let the new data y be conditionally
independent of x (1), . . . , x (M) and θ given x , and

fy|x (y|x) = N (y; Hx, R). (16)

Based on the assumed model the goal is to construct a
procedure for generating an updated version x̃ (m) of x (m).
One should first generate a θ = (μ, Q) and thereafter x̃ (m).
In addition to being a function of x (m) it is natural to allow
x̃ (m) to depend on the generated θ and the new data y, as also
indicated in the DAG in Fig. 2. The corresponding condi-
tional distribution for x̃ (m) we denote by q (̃x (m)|x (m), θ, y).
The updated x̃ (m) is to be used as an (approximate) sample
from p(xt |y1:t ), which in the ensemble based setting we are
considering here is represented by p(xt |x (1)

t , . . . , x (M)
t , yt ).

However, as we want to use x (m) as a source for ran-
domness when generating x̃ (m), the x (m) must be removed
from the conditioning set so one should instead con-
sider p(xt |x (1)

t , . . . , x (m−1)
t , x (m+1)

t , . . . , x (M)
t , yt ). Under

the assumedmodel this density is equal to fx |z(m),y(x |z(m), y)

when using the shorthand notation z(m) = (x (1), . . . , x (m−1),

x (m+1), . . . , x (M)). Thus, we should construct q (̃x (m)|x (m),

θ, y) so that

fx̃ (m)|z(m),y

(

x |z(m), y
) = fx |z(m),y

(

x |z(m), y
)

(17)

holds for all values of x , z(m) and y. Loe and Tjelmeland
(2021) show that (17) is fulfilled if x̃ (m) is generated by first
sampling θ = (μ, Q) from fθ,z(m),y(θ |z(m), y) and thereafter

x̃ (m) is sampled according to a q (̃x (m)|x (m), θ, y) defined by

x̃ (m) = B
(

x (m) − μ
)+ μ + K (y − Hμ) + ε̃(m), (18)

where ε̃(m) is independent of everything else and generated
from a zero-mean Gaussian distribution with a covariance
matrix S, B is a matrix connected to the positive semidefinite
S by the relation

BQ−1BT + S = (I − K H)Q−1, (19)

and K is the Kalman gain matrix

K = (Q + HT RH)−1HT R. (20)

We note in passing that by inserting for K in (19) and there-
after applying the Woodbury identity (Woodbury 1950), one
gets (I − K H)Q−1 = (Q + HT RH)−1, so (19) is equiva-
lent to

BQ−1BT + S = (Q + HT RH)−1. (21)

3.2 Optimality criterion

When applying the updating Eq. (18) we have a freedom in
the choice of the matrices B and S. The restrictions are that
S must be positive semidefinite and that B and S should be
related as specified by (21).

Under the assumed model all choices of B and S fulfilling
the given restrictions are equally good, as they are all generat-
ing an x̃ (m) from the samedistribution.When recognising that
the assumed model is wrong, however, all solutions are no
longer equally good. Sowe should choose a solutionwhich is
robust against the assumptions made in the assumed model.
Loe andTjelmeland (2021) formulate a robust solution as one
where the x (m) is changed as little as possible when form-
ing x̃ (m), under the condition that B and S satisfy (21). The
intuition is that this should allow non-Gaussian properties in
x (m) to be transferred to x̃ (m). Mathematically the criterion
is formulated as minimising the expected squared Euclidean
distance between x (m) and x̃ (m). Thus, we should minimise

E
[

(

x (m) − x̃ (m)
)T (

x (m) − x̃ (m)
)

]

, (22)

with respect to B and S under the restriction (21), where the
expectation iswith respect to the joint distribution of x (m) and
x̃ (m) under the assumedmodel. Note that Loe andTjelmeland
(2021) is considering a slightly more general solution by
using a Mahalanobis distance. Loe and Tjelmeland (2021)
show that (22) is minimised under the specified restrictions
when S = 0 and

B = U�− 1
2 PFT D

1
2 V T , (23)
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Algorithm 1 Summary of the resulting updating procedure for computing the posterior ensemble x̃ (1), . . . , x̃ (M) from the
prior ensemble x (1), . . . , x (M).

Given x (1), . . . , x (M), y, H and R.
For m = 1, . . . ,M:
1. Sample θ = (μ, Q) from fθ |z(m),y(θ |z(m), y).
2. Do singular value decomposition in (24): V DV T = Q.
3. Do singular value decomposition in (25): U�UT = Q + HT RH .

4. Evaluate Z in (26): Z = �− 1
2UT V D− 1

2 .
5. Do singular value decomposition in (26): PGFT = Z .

6. Evaluate B in (23): B = U�− 1
2 PFT D

1
2 V T .

7. Evaluate x̃ (m): x̃ (m) = B(x (m) − μ) + μ + K (y − Hμ)

where U and V are orthogonal matrices and D and � are
diagonalmatrices given by the singular value decompositions

Q = V DV T , (24)

Q + HT RH = U�UT , (25)

and P and F are orthogonal matrices given by the singular
value decomposition

Z = �− 1
2UT V D− 1

2 = PGFT . (26)

3.3 Resulting updating procedure

The resulting procedure for updating a prior ensemble
x (1), . . . , x (M) to the corresponding posterior ensemble
x̃ (1), . . . , x̃ (M) is summarised by the pseudocode in Algo-
rithm 1.

In the following sections our focus is on how to make
this updating procedure computationally efficient when the
dimensions of the state vector and corresponding observation
vector are large. First, in Sect. 4, we propose a new prior for θ
which enables efficient sampling of θ = (μ, Q) from the cor-
responding posterior fθ |z(m),y(θ |z(m), y). The generated Q is
then a sparsematrix,which also limits thememory usage nec-
essary to store it, since we of course only need to store the
non-zero elements.However, sparsity of Q does not influence
the computational efficiency of the singular value decompo-
sitions in Steps 2, 3 and 5 of Algorithm 1. One should note
that we may rephrase Steps 2 and 3 to use Cholesky decom-
positions instead, since Q and Q + HT RH are symmetric
and positive definitematrices. Under reasonable assumptions
also Q + HT RH is a sparse matrix so thereby these two
steps can be done computationally efficient. The Z in Step 5,
however, is in general neither a symmetric positive definite
matrix, nor sparse. To introduce Cholesky decompositions
in Steps 2 and 3 will therefore not change the order of the
computational complexity of the procedure. Instead of sub-
stituting the singular value decompositions in Steps 2 and 3

with Cholesky decompositions, we therefore in Sect. 5 pro-
pose an approximation of Steps 2–6 by splitting the state
vector into a series of blocks and running Steps 2–6 for each
of the blocks separately.

4 Prior model and sampling of � = (�,Q)

In this section we first formulate the new prior for θ =
(μ, Q), where Q is restricted to be a band matrix. There-
after we formulate a computationally efficient procedure to
generate a sample from the resulting fθ |z(m),y(θ |z(m), y). We
start by formulating the prior.

4.1 Prior for� = (�,Q)

To obtain a band structure for the precision matrix Q we
restrict the assumed Gaussian distributions in (14) and (15)
to be a Gaussian partially orderedMarkovmodel, a Gaussian
POMM (Cressie and Davidson 1998). To be able to give a
mathematically precise definition of theGaussian POMMwe
first introduce some notation.

We let xk denote the k’th element of x , so x =
(x1, . . . , xnx ). To each element xk of x weassociate a sequen-
tial neighbourhood�k ⊆ {1, . . . , k−1}, and use the notation
introduced in Sect. 2.2 to denote the elements in x associated
to �k by x�k . The number of elements in �k we denote by
|�k |. Moreover, we let �k(1) denote the smallest element in
the set�k , we let�k(2) be the second smallest element in�k ,
and so on until �k(|�k |), which is the largest element in �k .
We let the distribution of x be specified by the two parameter
vectors η = (η1, . . . , ηnx ) andφ = (φ1, . . . , φnx ), where for
each k = 1, . . . , nx we have that ηk ∈ R

|�k |+1 and φk > 0 is
a scalar. With this notation the Gaussian POMM is specified
as

fx |η,φ(x |η, φ) =
nx
∏

k=1

fxk |ηk ,φk ,x�k

(

xk |ηk, φk, x�k
)

, (27)
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where xk |ηk, φk, x�k is Gaussian with mean

E
[

xk |ηk, φk, x�k
] = ηk,1 + x�k (1)ηk,2 + · · ·

+ x�k (|�k |)ηk,|�k |+1

=
[

1
(

x�k
)T
]

ηk (28)

and variance Var[xk |ηk, φk, x�k ] = φk .
It should be noted that θ = (μ, Q) in N (x;μ, Q) is

uniquely specified by η and φ. If the number of sequen-
tial neighbours is small, the resulting precision matrix Q
becomes sparse, see Appendices A and B for a detailed dis-
cussion.We can therefore specify a prior for θ by specifying a
prior for η and φ, which we choose as conjugate to the Gaus-
sian POMM just defined. More specifically, we first assume
the elements in φ to be independent, and each element φk

to be inverse Gamma distributed with parameters αk and βk .
Next, we assume the elements of η to be conditionally inde-
pendent and Gaussian distributed given φ,

ηk |φ ∼ N (ηk; ζ k,
(

φk�ηk
)−1)

, (29)

where ζ k ∈ R
|�k |+1 and �ηk ∈ R

(|�k |+1)×(�k |+1) are hyper-
parameters that have to be set.

4.2 Sampling from f�|z(m),y(�|z(m), y)

To sample from fθ |z(m),y(θ |z(m), y) we adopt the same gen-
eral strategy as proposed in Loe and Tjelmeland (2021). We
include the underlying state vector at time t , x , as an auxiliary
variable and simulate (θ, x) from

fθ,x |z(m),y(θ, x |z(m), y)

∝ fθ (θ) fx |θ (x |θ) fy|x (y|x)
∏

i 	=m

fx (i)|θ (x (i)|θ)

= fθ (θ) N (x;μ, Q) N (y; Hx, R)
∏

i 	=m

N (x (i);μ, Q).

(30)

By thereafter ignoring the simulated x we have a sam-
ple of θ from the desired distribution. To simulate from
the joint distribution fθ,x |z(m),y(θ, x |z(m), y) we adopt a
two block Gibbs sampler, alternating between drawing x
and θ from the full conditionals fx |θ,z(m),y(x |θ, z(m), y) and

fθ |x,z(m),y(θ |x, z(m), y), respectively. We initialise the Gibbs

sampler by setting x = 1
M−1

∑

i 	=m x (i). This initial value

should be centrally located in fx |z(m),y(x |z(m), y), and since
the Gibbs sampler we are using only consists of two blocks
we should expect it to converge very fast. So just a few iter-
ations should suffice.

From (30) we get the full conditional for x

fx |θ,z(m),y(x |θ, z(m), y) = fx |θ,y(x |θ, y)

∝ N (x;μ, Q) N (y; Hx, R). (31)

It is straightforward to show that this is a Gaussian distribu-
tion with mean μ̃ and covariance matrix ˜Q given by

μ̃ = μ + (Q + HT RH)−1HT R(y − Hμ), (32)

˜Q = Q + HT RH . (33)

As discussed in Appendices A and B, the Q becomes sparse
whenever the number of sequential neighbours is small. If x
represents values in a two dimensional lattice and the sequen-
tial neighbourhoods �k are chosen as translations of each
other, as we use in the simulation example in Sect. 6, the
Q is a band matrix, again see the discussion in Appendix
B. Assuming also R and H to be band matrices, the prod-
uct HT RH can be efficiently computed and is also a band
matrix. The ˜Q is thereby also a band matrix, so the Cholesky
decomposition of it can be computed efficiently as discussed
in Sect. 2.1. The band structures of H and R can be used to
evaluate the right hand side of (32) efficiently, and in addi-
tion computational efficiency can be gained by computing
the product HT R(y − Hμ) in the right order. In general,
multiplying two matrices C ∈ R

u×v and D ∈ R
v×w has

computational complexity O(uvw). Hence, we should first
compute R(y−Hμ) before calculating HT R(y−Hμ). Hav-
ing ˜Q and the Cholesky decomposition of ˜Q we can both get
μ̃ and generate a sample from the Gaussian distribution effi-
ciently as discussed in Sect. 2.1.

From (30) we also get the full conditional for θ ,

fθ |x,z(m),y(θ |x, z(m), y) = fθ |x,z(m) (θ |x, z(m))

∝ fθ (θ) N (x;μ, Q)
∏

i 	=m

N (x (i);μ, Q). (34)

To simulate from this full conditional we exploit that θ =
(μ, Q) is uniquely given by the parameters φ and η of the
Gaussian POMM prior, which means that we can first sim-
ulate values for φ and η from fφ,η|x,z(m) (φ, η|x, z(m)) and
thereafter use the generated φ and η to compute the corre-
sponding μ and Q. In Appendix C we study in detail the
resulting fφ,η|x,z(m) (φ, η|x, z(m)) and show that it has the
same form as the corresponding prior fφ,η(φ, η), but with
updated parameters. More specifically, the elements of φ are
conditionally independent given x and z(m), with

φk |z(m), x ∼ InvGam
(

α̃k,˜β(m),k
)

, (35)

where

123



Statistics and Computing (2023) 33 :63 Page 9 of 23 63

Algorithm 2 Summary of the block updating procedure for computing the posterior ensemble x̃ (1),Block, . . . , x̃ (M),Block from
the prior ensemble x (1), . . . , x (M).

Given x (1), . . . , x (M), y, H , R and Cb, Db, Eb for b = 1, . . . ,B.
For m = 1, . . . ,M:
1. Sample θ = (μ, Q) from fθ |z(m),y(θ |z(m), y).
2. For b = 1, . . . ,B:

a. Form the set Jb in (47).
b. Form g(x Eb , y Jb |θ) in (48).
c. Form g(xDb , y Jb |θ) by marginalising g(x Eb , y Jb |θ) over x Eb\Db .
d. Form g(xDb |θ) and g(y Jb |θ, xDB ) from g(xDb , y Jb |θ), and identify μ̃b, ˜Qb, ãb, ˜Hb and ˜Rb.
e. Compute x̃ (m),Db by Steps 2 to 7 in Algorithm 1 when x (m), x̃ (m),

y, μ, Q, H and R are replaced with x (m),Db , x̃ (m),Db , y Jb − ãb, μ̃b,
˜Qb, ˜Hb and ˜Rb, respectively.

3. Define x̃ (m),Block by setting x̃ (m),Block
� = x̃ (m),Db

�b
for � ∈ Cb,

b = 1, . . . ,B.

α̃k = αk + M
2

, (36)

˜β(m),k =
(

1

βk
+ 1

2

(

γ (m),k−(ρ(m),k)T(�(m),k)−1
ρ(m),k)

)

−1,

(37)

γ (m),k = (ζ k)T�−1
ηk

ζ k + (χ(m),k)T · χ(m),k, (38)

ρ(m),k = �−1
ηk

ζ k + (1, (χ(m),�k
)T )T · (χ(m),k)T , (39)

�(m),k = �−1
ηk

+ (1, (χ(m),�k
)T )T · (1, (χ(m),�k

)T ) (40)

and

χ(m),k = (x (1),k, . . . , x (m−1),k, x (m+1),k, . . . , x (M),k, xk
)

,

(41)

χ(m),�k = (x (1),�k , . . . , x (m−1),�k , x (m+1),�k , . . . ,

x (M),�k , x�k
)

. (42)

The distribution for η given φ, x and z(m) becomes

fη|φ,z(m),x

(

η|φ, z(m), x
) =

nx
∏

k=1

fηk |φk ,z(m),x

(

ηk |φk, z(m), x
)

(43)

where

ηk |φk, z(m), x ∼ N (ηk; (�i,k)−1
ρi,k,

(

φk)−1
�i,k). (44)

Inparticularwe see that it is easy to sample from fφ,η|x,z(m) (φ,

η|x, z(m)) by first sampling the elements of φ independently
according to (35) and thereafter generate the elements of
η according to (44). Having samples of φ and η we can
thereafter compute the corresponding μ and Q as detailed
in Appendix A.

5 Block update

Section3 presents a set of updating procedures that allows
us to update a prior realisation into a posterior realisation,
where the posterior realisation takes the observation in the
current time step into account. In Sect. 3.2, we found the
optimal filter according to our chosen criterion. However, as
also discussed in Sect. 3.3, parts of this procedure is com-
putationally demanding. In the following we introduce the
approximate, but computationally more efficient procedure
for Steps 2 to 7 inAlgorithm 1 that wementioned in Sect. 3.3.
So the situation considered is that we want to update a prior
realisation x (m) and that we already have generated a mean
vector μ and a sparse precision matrix Q. The goal is now to
define an approximation to the vector x̃ (m) given in Step 7 in
Algorithm 1. The strategy is then to use the approximation to
x̃ (m), which we denote by x̃ (m),Block, instead of x̃ (m). In the
following we assume the matrices H and R to be sparse.

The complete block updating procedure we propose is
summarised in Algorithm 2. In the following we motivate
and explain the various steps, and define the notation used.

Our construction of x̃ (m),Block is general, but to motivate
our construction we consider a situation where the elements
of the state vector are related to nodes in a two-dimensional
(2D) lattice of nodes, with r rows and s columns say, and
where the correlation between two elements of the state vec-
tor decay with distance between the corresponding nodes.
We assume the nodes in the lattice to be numbered in the
lexicographical order, so node (k, �) in the lattice is related
to the value of element number (k − 1) · s + � of the state
vector. We use S = {(k, �) : k = 1, . . . , r , l = 1, . . . , s}
to denote the set of all indices of the elements in the state
vector, where we for the 2D lattice example have nx = rs.

The first step in the construction of x̃ (m),Block is to define a
partitionC1, . . . ,CB of S. The setsCb, b = 1, . . . ,B should
be chosen so that elements of the state vector corresponding
to elements in the same set Cb are highly correlated. In the
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Fig. 3 Example of how the sets
Cb, Db and Eb can be chosen
when the elements of x are
related to the nodes of a 2D
lattice. The dots denote nodes.
In a the nodes are partitioned in
B different blocks, while b
shows an example of how Db
and Eb might look like

2D lattice example the most natural choice would be to let
each Cb be a block of consecutive nodes in the lattice, for
example a block of rC × sC nodes. Such a choice of the par-
tition is visualised in Fig. 3a. One should note that a similar
partition of S is also used in the domain localisation version
of EnKF (Janjic et al. 2011). However, the motivation for
the partition in domain localisation is mainly to eliminate or
at least reduce the effect of spurious correlations (Haugen
and Evensen 2002), whereas in our setup the motivation is
merely to reduce the computational complexity of the updat-
ing procedure. In particular, if the dimension of the state
vector, nx , is sufficiently small we recommend not to use the
block updating procedure at all, one should then rather use
the procedure summarised in Sect. 4.

When forming x̃ (m) from x (m) in Step 7 of Algorithm
1 one would intuitively expect that element number k of
x (m) has a negligible effect on element � of x̃ (m) when-
ever the correlation between elements k and � of the state
vector is sufficiently weak. In numerical experiments where
the dimension of the state vector is sufficiently small so
that we can use the procedure in Sect. 3.3, this intuition has
already been confirmed. This motivates our first approxima-
tion, which is to not allow an element of x (m) to influence
an element of x̃ (m),Block when the two elements of the state
vector have a very low correlation. More formally, for each
b = 1, . . . ,B we define a set of nodes Db so that Cb ⊆ Db,
where Db should be chosen so that in the state vector, ele-
ments j ∈ Cb are only weakly correlated with elements
i ∈ S\Db. In the approximation we only allow an element
� ∈ Cb of x̃ (m),Block to be a function of element k of x (m) if
k ∈ Db. In the 2D lattice example it is natural to define Db by
expanding the Cb block of nodes with u, say, nodes in each
direction, see the illustration in Fig. 3b where u = 2 is used.

To decide how x̃ (m),Block
� , � ∈ Cb is given from x (m)

k , k ∈
Db, the most natural procedure would be the following. Start
with the assumed joint Gaussian distribution for the state
vector x and the observation vector y,

fx,y|θ (x, y|θ) = N (x;μ, Q) · N (y; Hx, R). (45)

Thenwe could havemarginalised out all elements of the state
vector that are not in Db,

fx Db ,y|θ
(

xDb , y|θ) =
∫

fx,y|θ (x, y|θ)dx−Db , (46)

where we use the notation introduced in Sect. 2.2 and let
xDb and x−Db denote vectors of the elements of x related
to the sets Db and S\Db, respectively. From this, one
could find the marginal distribution for the elements of the
state vector x related to the block Db, i.e. fx Db |θ (xDb |θ),
and the conditional distribution for the observation vec-
tor y given the elements of the state vector related to Db,
fy|xDb ,θ (y|xxb , θ). As fx Db |θ (xDb |θ) becomes a Gaussian
distribution, and fy|xDb ,θ (y|xxb , θ) becomes a Gaussian dis-
tribution where the mean vector that is a linear function of
xDb and the precision matrix is constant, one could use the
procedure specified in Sect. 3.3 to find the optimal update
of the sub-vector x (m),Db , x̃ (m),Db say. Finally, we could for
each � ∈ Cb have set x̃ (m),Block

� equal to the the value of
the corresponding element in x̃ (m),Db . However, such a pro-
cedure is not computationally feasible when the dimension
of the state vector is large, and for two reasons. First, the
marginalisation in (45) is computationally expensive when
dependence is represented by precision matrices. Second,
when the dimension of the state vector is large the dimen-
sion of the observation vector y is typically also large, which
makes such a marginalisation process even more computa-
tionally expensive. We therefore do one more approximation
before following the procedure described above. Instead of
starting out with (45), we start with a corresponding con-
ditional distribution, where we condition on the value of
elements of the state vector x andobservationvector y that are
onlyweakly correlatedwith the elements in xDb . Themotiva-
tion for such a conditioning is twofold. First, to condition on
elements that are only weakly correlated with the elements
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in xDb should not change the distribution of xDb much. Sec-
ond,when representing dependence by precisionmatrices the
computation of conditional distributions is computationally
very efficient. In the following, we define this last approx-
imation more formally and discuss related computational
aspects.

For each b = 1, . . .B, we define a set of nodes Eb such
that Db ⊆ Eb. The set Eb should be chosen so that the nodes
in Db are weakly correlated with the nodes that are not in Eb.
For the 2D lattice example it is reasonable to define Eb by
expanding the Db block with, say, v nodes in each direction.
Figure3b displays an example of Eb where v = 2.Moreover,
we let a set Jb contain the indices of the elements in y that
by the likelihood are linked to one or more elements in x Eb ,
i.e.

Jb = {k ∈ S : Hk,� 	= 0 for at least one (k, �),

k ∈ {1, . . . , ny}, � ∈ Eb}. (47)

Starting from(45)wenowfind the corresponding conditional
distribution when conditioning on xk being equal to its mean
valueμk for all k /∈ Eb, and conditioning on yk being equal to
itsmean value (Hx)k for all k /∈ Jb. The resulting conditional
distribution we denote by

g
(

x Eb , y Jb |θ) = f
(

x Eb , y Jb |θ, x−Eb = μ−Eb ,

y−Jb = (Hx)−Jb
)

. (48)

This (conditional) distribution is also multivariate Gaussian,
and the mean vector and the precision matrix can be found
by using the expressions in Sect. 2.2. One should note that
the conditional precision matrix is immediately given, sim-
ply by clipping out the parts of the unconditional precision
matrix that belong to x Eb and y Jb . The formula for the con-
ditional mean includes a matrix inversion, where the size of
the matrix that needs to be inverted equals the sum of the
dimensions of the vectors x Eb and y Jb . The dimension of the
matrix is thereby not problematically large. Moreover, one
should note that in practice the conditional mean is computed
using the techniques discussed in Sect. 2.1, thereby avoid-
ing the matrix inversion. From g(x Eb , y Jb |θ)wemarginalise
over x Eb\Db to get g(xDb , y Jb |θ), which is also Gaussian
and where the mean vector and the precision matrix can be
found as discussed in Sect. 2.2. The g(xDb , y Jb |θ) should
be thought of as a substitute for the f (xDb , y Jb |θ) defined
in (46). So following what we ideally would have liked to
do with f (xDb , y Jb |θ) we use g(xDb , y Jb |θ) to form the
marginal distribution for xDb , g(xDb |θ), and the conditional
distribution for y Jb given xDb , g(y Jb |θ, xDb ). These two
distributions are both Gaussian and can be found using the
expressions in Sect. 2.2. The g(xDb |θ) should be thought of
as a prior for xDb , and the g(y Jb |θ, xDb ) represents the like-

lihood for y Jb given xDb . In the following we let μ̃b and
˜Qb denote the resulting mean vector and precision matrix
in the prior g(xDb |θ), respectively. From (8) we get that the
Gaussian likelihood g(y Jb |θ, xDb ) has a conditional mean in
the form E[y Jb |xDb , θ ] = ãb + ˜HbxDb , where ãb is a col-
umn vector of size |Jb| and ˜Hb is a |Jb| × |Db| matrix. The
precisionmatrix of the likelihood g(y Jb |θ, xDb )we in the fol-
lowing denote by ˜Rb. Noting that observing y Jb is equivalent
to observing y Jb −ãb, we thereby have aBayesianmodel cor-
responding towhat we discussed in Sect. 3.1, except that now
x is replacedwith xDb , the ensemble element x (m) is similarly
replaced with the sub-vector x (m),Db , and y, μ, Q, H and R
are replaced with y Jb − ãb, μ̃b, ˜Qb, ˜Hb and ˜Rb, respectively.
To update x (m),Db we can thereby use Steps 2 to 7 in Algo-
rithm 1 to find the optimal update of x (m),Db , x̃ (m),Db say.
Finally, for each � ∈ Cb, we set x̃

(m),Block
� = x̃ (m),Db

�b
, where

�b is the index of the element in x̃ (m),Db that corresponds to
element � in x̃ (m),Block.

6 Simulation example

In the following we present a numerical experiment with the
model-based EnKF using the proposed block update approx-
imations. The purpose of the experiment is both to study the
computational speedup we obtain by using the block updat-
ing, and to evaluate empirically the quality of approximation
introduced by adopting the block updating procedure. To do
this we do a simulation study where we run the model-based
EnKF with block updates and the exact model-based EnKF
on the same observed values, and compare the run time and
filter outputs. As our focus is on the effect of the approx-
imation introduced by using the block update, we use the
Gaussian POMMprior distribution introduced in Sect. 4.1 for
both filter variants and we also use the exact same observed
data in both cases. We first define and study the results for a
linear example in Sect. 6.1 and thereafter discuss a non-linear
example in Sect. 6.2.

6.1 Linear example

In the simulation experiment we first generate a series of
reference states {xt }Tt=1 and corresponding observed values
{yt }Tt=1. The series of reference states we consider as the
unknown true values of the latent xt process and we use the
corresponding generated observed values in the two versions
of EnKF. We then compare the computational demands and
the output of the two filtering procedures. Lastly, we compare
the output of the block update procedure to the Kalman filter
solution.
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Fig. 4 Linear example:
Reference states at times a t = 1
and b t = 5, and corresponding
generated observed values at
times c t = 1 and d t = 5

6.1.1 Reference time series and observations

To generate the series of reference states we adopt a two
dimensional variant of the one dimensional setup used in
Omre and Myrseth (2010). So for each time step t =
1, . . . , T the reference state xt represents the values in a two
dimensional s × s lattice. As described in Sect. 5 we number
the nodes in the lexicographical order. The reference state
at time t = 1 we generate as a moving average of a white
noise field.More precisely, we first generate independent and
standard normal variates z(k,�) for each node (k, �), and to
avoid boundary effects we do this for an extended lattice. The
reference state at node (k, �) and time t = 1 is then defined
by

x (k−1)·s+�
1 =

√

20

|�3,(k,�)|
∑

(i, j)∈�3,(k,�)

z(i, j), (49)

where �r ,(k,�) is the set of nodes in the extended lattice, that
are less than or equal to a distance r from node (k, �), and
|�r ,(k,�)| is the number of elements in that set. One should
note that the factor

√

20/|�3,(k,�)| gives that the variance of
each generated x (k−1)·s+�

1 is 20. Figure4a shows a generated
x1 with s = 100, which is used in the numerical experiments
discussed in Sects. 6.1.4 and 6.1.5.

Given the reference state at time t = 1, corresponding
reference states at later time steps are generated sequentially.
For t = 2, . . . , T the reference state at time t − 1 is used to
generate the reference state at time t by performing a mov-
ing average operation on nodes that are inside an annulus
defined by circles centred at the middle of the lattice. For
t = 2 the radius of the inner circle defining the annulus
is zero, and as t increases the annulus is gradually moved
further away from the centre. More precisely, to generate
xt from xt−1 we define the annulus by the two radii r1 =
max{0, 
( s2 − 1

) 1
T−1

(

t − 5
2

)

�} and r2 = 
 ( s2 − 1
) t−1
T−1�,

where 
v� denotes the largest integer less than or equal to v.
For all nodes (k, �) inside the annulus we define

x (k−1)·s+�
t = 1

|�1,(k,�)|
∑

(i, j)∈�1,(k,�)

x (i−1)·s+ j
t−1 . (50)

For nodes (k, �) that are not inside the specified annu-
lus the values are unchanged, i.e. for such nodes we have
x (k−1)·s+�
t = x (k−1)·s+�

t−1 . The reference solution at time
T = 5 corresponding to the x1 given in Fig. 4a is shown
in Fig. 4b. By comparing the two we can see the effect of the
smoothing operations.

For each time step t = 1, . . . , T we generate an observed
value associated to each node in the lattice, so ny = nx . We
generate the observed values at time t , yt , by blurring xt and
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Fig. 5 The sequential neighbourhood used in the numerical examples.
The red dots denote the sequential neighbours of the green node. (Color
figure online)

adding independent Gaussian noise in each node. More pre-
cisely, the observed value in node (k, �) at time t is generated
as

y(k−1)·s+�
t = 1

|�√
2,(k,�) ∩ S|

∑

(i, j)∈�√
2,(k,�)∩S

x (i−1)·s+ j
t + w(k−1)·s+�, (51)

where w(k−1)·s+� is a zero-mean normal variate with vari-
ance 20. Figure4c and d show the generated observations
corresponding to the x1 and x5 in Fig. 4a and b, respectively.
These observations are used in the numerical experiments
discussed in Sects. 6.1.4 and 6.1.5.

6.1.2 Assumedmodel and algorithmic parameters

In the numerical experiments with EnKFs we use the
assumed model defined in Sect. 3.1. For nodes sufficiently
far away from the lattice borders we let the sequential neigh-
bourhood consist of ten nodes as shown in Fig. 5.

This set of sequential neighbours should be sufficient to be
able to represent a large variety of spatial correlation struc-
tures at the same time as it induces sparsity in the resulting
precision matrix. For nodes close to the lattice borders we
reduce the number of sequential neighbours to consist of only
the subset of the ten nodes shown in Fig. 5 that are within the
lattice.

As priors forη andφweuse the parametric forms specified
in Sect. 4.1. We want these priors to be vague so that the
resulting posterior distributions are mainly influenced by the
prior ensemble. We let the prior for φ be improper by setting
αk = 0 and βk = ∞ for all k. In the prior for ηk |φk we set
ζ k = 0 and �ηk = 100 · I|�k |+1 for all k.

In preliminary simulation experiments we found that the
Gibbs sampler for the sampling of θ converged very rapidly,
consistent with our discussion in Sect. 4.2. In the numeri-

cal experiments we therefore only used five iterations of the
Gibbs sampler. When using the block update procedure we
let each Cb consist of a block of 20 × 20 nodes. To define
the corresponding sets Db and Eb we follow the procedure
outlined in Sect. 5 with u = v = 5.

6.1.3 Comparison of computational demands

The main objective of the block update procedure is to pro-
vide a computationally efficient approximation to the optimal
model-based EnKF procedure defined in Sect. 3. In this sec-
tion we compare the computational demands of the two
updating procedures as a function of the number of nodes
in the lattice.

For an implementation in Python, we run the two EnKF
updating procedures discussed above with M = 25 ensem-
ble elements for T = 5 time steps for different lattice sizes
andmonitor the computing timeused in each case. The results
are shown in Fig. 6. The observed computing times are shown
as dots in the plot, in blue for the optimal model-based EnKF
procedure and in orange for the block updating procedure.
The lines between the dots are just included to make it easier
to read the plot. As we should expect from the discussion in
Sect. 5 we observe that the speedup resulting from adopting
the block update increases quickly with the lattice size.

6.1.4 Approximation error by the block update

When adopting the block update in an EnKF procedure we
will clearly get an approximation error in each update. When
assessing this approximation error it is important to realise
that the approximation error in one update may influence
the behaviour of the filter also in later iterations. First, the
effect of the approximation error emerged in one update may
change when later iterations of the filter is run, the error may
increase or decrease when run through later updates. Second,
since the EnKF we are using is a stochastic filter, with the
stochasticity lying in the sampling of θ , even a small change
after one update may have a large impact on the resulting val-
ues in later iterations. In particular it is important to note that
even if the approximation error in one update onlymarginally
change the distribution of the values generated in later iter-
ations, it may have a large impact on the actually sampled
values. In this section our focus is first to assess the approx-
imation error in one update when using the block update,
whereas in the second part of this section we concentrate on
the accumulated effect of the approximations after several
iterations.

Adopting the reference time series and the data described
in Sect. 6.1.1 and the assumedmodel and algorithmic param-
eters defined in Sect. 6.1.2 we isolate the approximation error
in one update by the following procedure. We first run the
optimal model-based EnKF procedure for all T = 5 steps.
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Fig. 6 Linear example: Computing time used for running each of the
two model-based EnKF procedures with M = 25 ensemble elements
for T = 5 time steps as a function of the number of nodes nx = s2 in

the lattice. Computing time for the optimal model-based EnKF proce-
dure is shown in blue, and corresponding computing time for the block
updating procedure is shown in orange. (Color figure online)

Fig. 7 Linear example:Assessment of the approximation error by using
the block update at step t = 4. The figure shows values for nodes
(50, �), � = 1, . . . , 100. The values of the reference are shown in black
and the observations at t = 4 are shown in red. The ensemble aver-
ages and bounds for the empirical 90% credibility intervals when using

the optimal model-based EnKF are shown in blue. The corresponding
ensemble averages and bounds for the empirical 90% credibility inter-
vals when using the block update are shown in dashed orange. (Color
figure online)

Thereafter, for each t = 1, . . . , T , we start with the prior
ensemble generated for that time step in the optimal model-
based EnKF and perform one stepwith the block update. One
should note that since we are using the same prior ensemble
for the block update as for the optimal model-based EnKF
the generated parameters θ are identical for both updates, so
the resulting difference in the updated values are only due to
the difference in the B matrix used in the two procedures.

Figure7 shows results for the nodes (50, �), � = 1, . . . , 100
at time step t = 4. The ensemble averages and bounds
of the empirical 90% credibility intervals for the optimal
model-based EnKF procedure are shown in blue, and the cor-

responding valueswhen using the block update procedure for
time t = 4 are shown in dashed orange. For comparison the
reference is shown in black. One can observe that for most
nodes the mean value and interval bounds when using the
block update are visually indistinguishable from the corre-
sponding values when using the block update. The largest
difference can be observed for the lower bound of the cred-
ibility interval for � = 80. Remembering that we are using
blocks of 20 × 20 nodes in the block update it should not
come as a surprise that the largest errors are for values of �

that are multiples of 20.

123



Statistics and Computing (2023) 33 :63 Page 15 of 23 63

Fig. 8 Linear example:
Difference between the averages
of the ensembles when using the
optimal model-based EnKF and
when using the block update.
Results are shown for each
t = 1, . . . , 5

To study the approximation errors in more detail and in
particular how the block structure used in the block update
influence the approximation, we in Fig. 8 show, for each
t = 1, . . . , 5, the difference between the averages of the
ensembles when using the optimal model-based EnKF and
when using the block update procedure.As one should expect
we see that the largest differences occur along the borders of
the 20 × 20 blocks used in the block update. We can, how-
ever, also observe that the magnitude of the errors are all
small compared with the spatial variability of the underlying
xt process, which explains why the approximation errors are
almost invisible in Fig. 7.

We then turn our focus to the accumulated effect of the
approximation error over several iterations. To do this we

again adopt the reference time series and the data described
in Sect. 6.1.1, and the assumedmodel and algorithmic param-
eters defined in Sect. 6.1.2. Based on this we run each of the
optimal model-based EnKF and the block update procedures
several times, each time with a different initial ensemble
and using different random numbers in the updates. For
two runs with each of the two filters, Fig. 9 shows in green
the values of all the M = 25 ensemble elements in nodes
(50, �), � = 1, . . . , 100 at time T = 5. The reference state
at T = 5 is shown in black and the observations at time
T = 5 are again shown as red dots. Figure9a and c show
results for the optimal model-based EnKF, whereas Fig. 9b
and d show results for the proposed block update procedure.
Since all four runs are based on the same observations they
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Fig. 9 Linear example: The
reference solution (black) and
the observations (red) along one
cross section of the grid at time
T = 5. The green lines are the
ensemble elements along the
same cross section. a and c
show two simulations from the
optimal update procedure, while
b and d display two simulations
from the block update. (Color
figure online)

obviously have many similarities. However, all the ensem-
bles are different. Ensembles updatedwith the same updating
procedure differ because of Monte Carlo variability, i.e.
because they used different initial ensembles and different
random numbers in the updates. When comparing an ensem-
ble updated with the optimal model-based EnKF procedure
with an ensemble updated with the block update, they differ
both because of Monte Carlo variability and because of the
accumulated effect of the approximation errors up to time T .
In Fig. 9, however, the differences between the ensembles in
a and b and between the ensembles in c and d seem similar to
the differences between the ensembles in a and c and between
the ensembles in b and d. So this indicates that the accumu-
lated effect of the approximation error is small compared to
the Monte Carlo variability.

To compare themagnitude of the accumulated approxima-
tion error with the Monte Carlo variability in more detail we
adopt the two-sampleKolmogorov–Smirnov statistic tomea-
sure the difference between the values of two ensembles in
one node. More precisely, letting ̂F1(x; k, �) and ̂F2(x; k, �)
denote the empirical distribution functions for the values in
node (k, �) in two ensembles we use

D(k, �) = max
x

|̂F1(x; k, �) − ̂F2(x; k, �)| (52)

to measure the difference between the two ensembles at node
(k, �). One should note that since we are usingM = 25 ele-
ments in each ensemble the D(k, �) is a discrete variablewith
possible values 0.04d; d = 0, 1, . . . , 25. Using three runs
based on the optimalmodel-basedEnKFwecompute D(k, �)
for each possible pair of ensembles, for each t = 1, . . . , 5
and for each node in the 100 × 100 lattice. In Fig. 10 his-
togram of the resulting 30,000 values for each t = 1, . . . , 5
are shown in blue. Correspondingly we estimate the distri-
bution of D(k, �) when one of the ensembles is based on
the optimal model-based EnKF and the other is using the
block update, and this is shown in red in Fig. 10. Compar-
ing the blue and the red histograms for each t = 1, . . . , 5 in
Fig. 10 one may arguably see a tendency of the mass in the
red histograms to be slightly moved to the right relative to the
corresponding blue histograms. This is as one would expect,
but we also observe that the effect of the approximation error
is negligible compared to the Monte Carlo variability.

6.1.5 Comparison of the results with the Kalman filter
output

Since the forward model in this numerical example is linear
and deterministic and the observation model is Gauss-linear,
we are able to compare the block update to the Kalman
filter solution. Figure11 displays the mean of the Kalman
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Fig. 10 Linear example:
Histograms of the two-sample
Kolmogorov–Smirnov statistics.
The statistics computed from
two ensembles updated with the
optimal ensemble are displayed
in blue, while the statistics
computed by two ensembles
from different updating
procedures are visualised in red.
(Color figure online)

filter solution along with the 90% credibility interval for the
nodes (50, �), l = 1, . . . , 100 in blue at t = 4. The red lines
visualise the empirical mean and empirical 90% credibility
interval as given by one simulation of the block update.When
comparing the two set of curves one should remember that
the EnKF output is stochastic, so for another EnKF run a dif-
ferent set of curves would be produced. In general, however,
we notice that the mean given by the block update follows
the mean of the Kalman filter quite well.

When comparing the credibility intervals we can observe
that the intervals provided by the block update appears to
be somewhat longer than the credibility intervals provided

by the Kalman filter. This is as one should expect. At each
step of the block update filter, as for any other ensemble based
filter, we represent the credibility and filtering distribution by
a rather small set of realisations. So compared to the Kalman
filter, where the exact credibility and filtering distributions
are represented bymean vectors and covariance matrices, we
necessarily loose some information about the the underlying
true state vector at each iteration of the block update filter,
when representing the distributions by a set of realisations
only.

The results for times t = 1, 2, 3 and 5 are similar to the
results for time t = 4, except that the widths of the credibility
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intervals decrease with time. The shrinkage of the widths of
the credibility intervals is clearly visible for both the Kalman
filter and the blockupdate filter, but is stronger for theKalman
filter than for the block update filter. Such a shrinkage is as
one should expect when the forward function is determinis-
tic. That the shrinkage is strongest for the Kalman filter is
reasonable since in each iteration of block update filter we
loose some information about the underlying true state when
just representing the distributions by ensembles.

6.2 Non-linear example

In the following we consider a non-linear example. We first
describe how the reference solution and observations are gen-
erated, before we proceed to compare the results provided by
the block update filter with the results of the optimal model-
based EnKF.

6.2.1 Reference time series and observations

The reference state for the initial time step, x1, is generated
in the exact same manner as for the linear case. The forward
model used is inspired by the non-linear forward function in
Omre and Myrseth (2010). The forward function is acting
on each element of the state vector separately. The reference
state at time t > 1 for node (k, �) is defined by

x (k−1)·s+�
t = x (k−1)·s+�

t−1 + 0.5 · arctan
(

x (k−1)·s+�
t−1

2

)

. (53)

The term0.5·arctan(x/2) is chosen tomake the forward func-
tion clearly non-linear over the interval inwhich the elements
of the state vector vary. The term is displayed in Fig. 12. The
observations are generated in the exact samemanner as in the
linear example. The assumed model and all the algorithmic
parameters are also chosen identical to what we used in the
linear example.

6.2.2 Approximation error in block update

As for the linear example,wefirst consider the approximation
error obtained in one update, and thereafter study how the
approximation error accumulates over multiple iterations.

To study the effect of the approximation error in one iter-
ation we follow the same procedure as used in Sect. 6.1.4.
In Fig. 13 we compare the credibility intervals provided by
the optimal update and block update at time t = 4, simi-
lar to Fig. 7 for the linear case. The credibility interval for
the nodes (50, �), � = 1, . . . , 100 provided by the optimal
update is displayed in blue, while the credibility interval pro-
vided by the block update is visualised in orange. We notice
that the credibility intervals provided by the two update pro-

Fig. 11 Linear example: The blue lines display themean of the Kalman
filter solution along with the 90% credibility intervals for one cross
section at time t = 4. The red lines visualise the empirical mean and
empirical 90% credibility interval for the block update for the same
cross section at the same time step. (Color figure online)

Fig. 12 Non-linear example: The term 0.5 · arctan(x/2) in the forward
function of the non-linear example

Fig. 13 Non-linear example: Assessment of the approximation error by
using the block update at step t = 4. The figure shows values for nodes
(50, �), � = 1, . . . , 100. The values of the reference are shown in black
and the observations at t = 4 are shown in red. The ensemble aver-
ages and bounds for the empirical 90% credibility intervals when using
the optimal model-based EnKF are shown in blue. The corresponding
ensemble averages and bounds for the empirical 90% credibility inter-
vals when using the block update are shown in dashed orange. (Color
figure online)

cedures are practically speaking visually indistinguishable,
similar to what we observe for the linear case. We have also
studied the spatial variability of the approximation errors by
inspecting plots of the difference of the means of the ensem-
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Fig. 14 Non-linear example:
Histograms of the two-sample
Kolmogorov–Smirnov statistics.
The statistics computed from
two ensembles updated with the
optimal ensemble are displayed
in blue, while the statistics
computed by two ensembles
from different updating
procedures are visualised in red.
(Color figure online)

bles provided by the two update procedures, similar to Fig. 8.
The results for the non-linear example are similar to what we
observed in the linear case. The largest approximation errors
are again concentrated around the block borders, and the rel-
ative approximation errors are similar to what we had with
the linear forward function.

To study how the approximation errors accumulated over
several iterations, we followed the same procedure as in the
linear example. When comparing ensembles resulting from

the two filters, corresponding to what is done in Fig. 9, the
accumulated effect of the approximation error again seem to
be small compared to the Monte Carlo variability. Figure14
displays the histograms of the Kolmogorov–Smirnov statis-
tics for t = 1, . . . , 5, analogous to Fig. 10 for the linear case.
We arguably can observe that the tendency of the mass in
the red histograms to be moved to the right compared to the
corresponding blue histograms, is slightly stronger in this
non-linear example than in the linear case.
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7 Closing remarks

In this paper we propose two changes in the model-based
EnKF procedure introduced in Loe and Tjelmeland (2021).
Our motivation is to get a procedure that is computationally
faster than the original one, so that it is feasible to use it also
in situations with high dimensional state vectors. The first
change we introduce is to formulate the assumed model in
terms of precision matrices instead of covariance matrices,
and to adopt a prior for the precision matrix that ensures the
sampled precision matrices to be sparse. The second change
we propose is to adopt the block update, which allows us to
do singular value decompositions of many smaller matrices
instead of for one large one.

In a simulation example we have studied both the com-
putational speedup and the associated approximation error
resulting when adopting the proposed procedure. The com-
putational speedup is substantial for high dimensional state
vectors and this allows the proposed filter to be run on much
larger problems than can be done with the original formula-
tion. At the same time the approximation error resulting from
using the introduced block updating is negligible compared
to the Monte Carlo variability inherent in both the original
and the proposed procedures.

In order to further investigate the strengths and weak-
nesses of the proposed approach, it should be applied on
more examples. It is of interest to gain more experience with
the proposed procedure both in other simulation examples
and in real data situations. In particular it is of interest to
experiment more with different sizes for the Cb, Db and Eb

blocks to try to find the best sizes for these when taking both
the computational time and the approximation quality into
account. As for all EnKFs the proposed procedure is ideal
for parallel computation and with an implementation more
tailored for parallellisation it should be possible get a code
that is running much faster than our more basic implementa-
tion.

AuthorContributions Theauthors contributed equally to thismanuscript.

Funding Open access funding provided by NTNU Norwegian Univer-
sity of Science and Technology (incl St. Olavs Hospital - Trondheim
University Hospital) Geophysics and Applied Mathematics in Explo-
ration and Safe production (GAMES) at NTNU (Research Council of
Norway; Grant No. 294404).

Declaration

Conflict of interest No conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendices

A Derivation of � = (�,Q) from � and �

To find how θ = (μ, Q) is given from φ and η we restrict
the Gaussian densities f (x |θ) and f (x |φ, η) to be identical.
The density f (x |θ) is given by

f (x |θ) ∝ exp

{

−1

2
(x − μ)T Q(x − μ)

}

= exp

{

−1

2
xT Qx + μT Qx

}

= exp

{ nx
∑

k=1

(

−1

2
Qk,k

)

(xk)2 +
∑

�<k

(

−Qk,�
)

xkx�

+
nx
∑

k=1

( nx
∑

�=1

μ�Q�,k

)

xk
}

.

(54)

Using the definition of f (x |φ, η) from Sect. 4.1 we have

f (x |φ, η) =
nx
∏

k=1

f
(

xk |x�k , ηk , φk)

∝
nx
∏

k=1

exp

{

− 1

2φk

(

xk − (1, (x�k
)T ) · ηk

)2
}

= exp

⎧

⎪

⎨

⎪

⎩

−1

2

nx
∑

k=1

1

φk

⎛

⎝xk − ηk,1 −
|�k |
∑

�=2

ηk,�x�k (�)

⎞

⎠

2
⎫

⎪

⎬

⎪

⎭

∝ exp

⎧

⎨

⎩

nx
∑

k=1

⎛

⎝− 1

2φk
− 1

2

∑

�:k∈��

1

φ�

(

η�,�−1
� (k)+1

)2

⎞

⎠ (xk)2

+
∑

�<k

(

1

φk
ηk,�

−1
k (�)+1

I(� ∈ �k)

−
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t :k,�∈�t

1

φt
ηt,�

−1
t (k)+1ηt,�

−1
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⎞

⎠ xk x�

+
nx
∑

k=1

⎛

⎝

ηk,1

φk
−
∑

�:k∈��

1

φ�
η�,1η�,�−1

� (k)+1

⎞

⎠ xk

⎫

⎬

⎭

, (55)

where�−1
� (k) is the inverse function of��(k), i.e.�

−1
� (k) =

t ⇔ ��(t) = k, and I(� ∈ �k) is the indicator function
returning one if � ∈ �k and zero otherwise. By setting equal
corresponding coefficients in front of (xk)2, xkx� and xk in
(54) and (55)we can identify the elements ofμ and Q. Setting

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Statistics and Computing (2023) 33 :63 Page 21 of 23 63

equal the coefficients in front of (xk)2 we get the diagonal
elements of Q,

Qk,k = 1

φk
+
∑

�:k∈��

1

φ�

(

η�,�−1
� (k)+1

)2
. (56)

Toget the non-diagonal elementswe set equal the coefficients
in front of xkx�. For � < k we have

Qk,� = Q�,k = − 1

φk
ηk,�

−1
k (�)+1

I(� ∈ �k)

+
∑

t :k,�∈�t

1

φt
ηt,�

−1
t (k)+1ηt,�

−1
t (�)+1. (57)

In particular one should note that for � < k we get Qk,� = 0
if � /∈ �k and there is no node t so that k, � ∈ �t . Thus, if
the sequential neighbourhoods are chosen to be sufficiently
small, Q will be sparse. For a more detailed discussion see
Appendix B. Finally, by equating corresponding coefficients
in front of xk we get

nx
∑

�=1

μ�Q�,k = ηk,1

φk
−
∑

�:k∈��

1

φ�
η�,1η�,�−1

� (k)+1, (58)

which can be used to find the elements of the mean vector μ.
Since Q is sparse the strategy discussed in Sect. 2.1 can be
used to compute μ efficiently.

B Sparseness ofQ

In the following we discuss the relationship between the
sequential neighbourhood and the structure of the precision
matrix Q. We first identify a general expression for the set of
non-zero elements in Q, and thereafter discuss the situation
in more detail when the state vector is associated with the
nodes in a two-dimensional lattice.

From (56) and (57) we see that element (k, �) of the pre-
cision matrix, Qk,�, may be non-zero only when

� ∈ ∂k = {k} ∪ �k ∪ {� ∈ S : ∃t ∈ S so that k, � ∈ �t },
(59)

where S is the set of all nodes in the lattice. A perhaps more
instructive formulation of the set ∂k is as a union of sequential
neighbourhoods,

∂k =
⋃

t∈S:k∈�t∪{t}
(�t ∪ {t}) . (60)

Now consider a situation where the state vector is associ-
ated with the nodes in a two-dimensional lattice and assume

Fig. 15 The green node represents node k, while the red nodes represent
�k . The nodes inside the red rectangle visualises �k . The blue nodes
represent the remaining nodes in ∂k, while the nodes inside the green
rectangle represent �k . (Color figure online)

all the sequential neighbourhoods to be of the same form,
except for nodes close to the lattice boundaries where the
sequential neighbourhood is necessarily smaller. In this sit-
uation (60) can be used to identify an upper bound on the
number of non-zero elements in Q. The situation for this
two-dimensional lattice case is illustrated in Fig. 15.

In the figure the red nodes are sequential neighbours of the
green node. Assuming the green node to represent element k
in the state vector, we let�k denote the set of nodes inside the
smallest rectangle that contains node k and all the sequential
neighbours of k. By construction we then have �k ∪ {k} ⊆
�k . In Fig. 15 the set �k consists of all nodes inside the red
rectangle. Letting u and v denote the vertical and horizontal
dimensions, respectively, of the rectangle defining �k , again
as illustrated in Fig. 15, we get that the number of nodes in
�k is |�k | = (u + 1)(v + 1). In Fig. 15 we have u = 2 and
v = 5 and |�k | = 18. As �k ∪ {k} ⊆ �k it follows from
(60) that

∂k ⊆ �k =
⋃

t :k∈�t

�t . (61)

Thereby an upper bound on the number of non-zero elements
in row k of Q is the number of nodes in the set �k . Since
�k is defined by a rectangle, the set �k can also be defined
from a rectangle. In Fig. 15, the set �k consists of all nodes
inside the green rectangle, whereas the set ∂k consists of
the green, red and blue nodes in the figure. The vertical and
horizontal dimensions of the rectangle defining �k become
2u and 2v, respectively, and the number of elements in �k

becomes |�k | = (2u+1)(2v+1). So the the number of non-
zero elements in row k of Q is bounded by (2u+1)(2v +1).
Moreover, since we have nx elements in the state vector, we
will have at most (2u + 1)(2v + 1)nx non-zero elements in
the precision matrix Q.
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In the two-dimensional lattice case we can also provide an
upper bound for the bandwidth of Q. Still assuming that each
node in the lattice is assigned similar sequential neighbour-
hoods, an upper bound for the bandwidth is the maximum
distance between node k and any node � ∈ �k , i.e. su + v,
where s is the number of columns in the grid.

C Derivation of posterior for hyperpriors

In the following we derive the posterior distribution for
(η, φ). In the derivation we simplify the notation by omit-
ting the subscripts on the f ’s as it should be clear from the
context what densities we are dealing with. We start by iden-
tifying f (φ|x, z(m)) and thereafter find f (η|φ, x, z(m)).

Using the definitions of f (x |η, φ), f (φ) and f (η|φ) given
in Sect. 4.1, and that z(m) and x are conditionally independent
given φ and η, we get

f
(

φ|z(m), x
) ∝ f (φ) f

(

z(m), x |φ)

= f (φ)

∫

f (η|φ) f
(

z(m), x |φ, η
)

dη

= f (φ)

∫

f (η|φ) f (x |φ, η) f
(

z(m)|φ, η
)

dη

= f (φ)

∫

f (η|φ) f (x |φ, η)
∏

i 	=m

f
(

x (i)|φ, η
)

dη

=
K
∏

k=1

[

f (φk)

∫

f
(

ηk |φk) f
(

xk |φk , ηk , x�k
)

∏

i 	=m

f
(

x (i),k |φk , ηk , x�k
)

dηk

⎤

⎦

∝
K
∏

k=1

f
(

φk |z(m), x
)

,

where

f
(

φk |z(m), x
) ∝ f (φk)

∫

f
(

ηk |φk) f
(

xk |φk, ηk, x�k
)

∏

i 	=m

f
(

x (i),k |φk, ηk, x�k
)

dηk

= f (φk) · 1

(φk)(|�k |+M+1)/2
∫

exp

{

−1

2

(

ηk − ζ k)T (φk�ηk
)−1(

ηk − ζ k)

− 1

2φk

(

xk − (1, (x�k
)T )

ηk
)2 − 1

2φk

∑

i 	=m

(

x (i),k − (1, (x (i),�k
)T )

ηk
)2

⎫

⎬

⎭

dηk . (62)

We note that the exponent in the integrand is a second order
function in ηk , so by completing the square it is straight-
forward to evaluate the integral analytically. When having
evaluated the integral and inserting for f (φk) this gives, using
the notation defined in (38) to (40),

f
(

φk |z(m), x
) ∝ e

− 1
φkβk

(φk)α
k+1

·
1

(φk)M/2
e
− 1

2φk

(

γm,k−(ρm,k )T (�m,k)−1ρm,k
)

= e
− 1

φk β̃m,k

(φk)α̃
k+1

,

where α̃k and β̃m,k are as given in (36) and (37), respec-
tively. We recognise this as the density of a inverse gamma
distribution, so

φk |z(m), x ∼ InvGam
(

α̃k, β̃m,k). (63)

This concludes the derivation of the posterior distribution for
φ, and we proceed to the derivation of the posterior for η|φ.
Using the definitions of f (x |η, φ) and f (η|φ) we get

f
(

η|x, z(m), φ
) ∝ f (η|φ) f

(

x, z(m)|η, φ
)

= f (η|φ) f (x |η, φ)
∏

i 	=m

f
(

x (m)|η, φ
)

=
K
∏

k=1

[

f
(

ηk |φk) f
(

xk |ηk, φk, x�k
)

∏

i 	=m

f
(

x (i),k |ηk, φk, x�k
)

⎤

⎦

∝
∏

i 	=m

f
(

ηk |x, z(m), φk),

where

f
(

ηk |x, z(m), φk) ∝ f
(

ηk |φk) f
(

xk |ηk, φk, x�k
)

∏

i 	=m

f
(

x (i),k |ηk, φk, x�k
)

∝ 1

(φk)(|�k |+M+1)/2

exp

{

−1

2

(

ηk − ζ k)T (φk�ηk
)−1(

ηk − ζ k)
}

× exp

⎧

⎨

⎩

− 1

2φk

(

xk − (1, (x�k
)T )

ηk
)2 − 1

2φk

∑

i 	=m

(

x (i),k − (1, (x (i),�k
)T )

ηk
)2

⎫

⎬

⎭

.
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Again introducing γ i,k , ρi,k and �i,k , as defined in (38) to
(40) this can be simplified to

f
(

ηk |x, z(m), φk)

∝ exp

{

− 1

2φk

(

ηk − (�m,k)−1
ρm,k)T

�m,k(ηk − (�m,k)−1
ρm,k)

}

,

which we recognise as the density of a normal distribution,
so

ηk |x, z(m), φk ∼ N
((

�m,k)−1
ρm,k, φk(�m,k)−1)

. (64)

Thereby the derivation of f (η, φ|x, z(m)) is complete.
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