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Abstract

Gaussian processes are widely used as priors for unknown functions in statistics and
machine learning. To achieve computationally feasible inference for large datasets, a
popular approach is the Vecchia approximation, which is an ordered conditional ap-
proximation of the data vector that implies a sparse Cholesky factor of the precision
matrix. The ordering and sparsity pattern are typically determined based on Euclidean
distance of the inputs or locations corresponding to the data points. Here, we propose
instead to use a correlation-based distance metric, which implicitly applies the Vecchia
approximation in a suitable transformed input space. The correlation-based algorithm
can be carried out in quasilinear time in the size of the dataset, and so it can be ap-
plied even for iterative inference on unknown parameters in the correlation structure.
The correlation-based approach has two advantages for complex settings: It can result
in more accurate approximations, and it offers a simple, automatic strategy that can
be applied to any covariance, even when Euclidean distance is not applicable. We
demonstrate these advantages in several settings, including anisotropic, nonstation-
ary, multivariate, and spatio-temporal processes. We also illustrate our method on
multivariate spatio-temporal temperature fields produced by a regional climate model.

Keywords: covariance approximation; maximum-minimum-distance ordering; nearest neighbors;

spatial statistics; Vecchia approximation

1 Introduction

Gaussian processes (GPs) are used for modeling functions in a variety of settings, including
geostatistics (e.g., Banerjee et al., 2004; Cressie and Wikle, 2011), nonparametric regression
and machine learning (e.g., Rasmussen and Williams, 2006), the analysis of computer ex-
periments (e.g., Sacks et al., 1989; Kennedy and O’Hagan, 2001; Gu and Wang, 2018), and
optimization (Jones et al., 1998). GPs can also be used to represent wide neural networks
(Yang, 2019). However, direct application of GPs requires working with and decomposing
the data covariance matrix at a cost that is cubic in the data size, which is often too expensive
for today’s large datasets.

∗Department of Statistics, Texas A&M University
†Corresponding author: katzfuss@gmail.com

1

ar
X

iv
:2

11
2.

14
59

1v
2 

 [
st

at
.C

O
] 

 7
 A

pr
 2

02
3



Many approaches have been proposed to scale GP inference to large numbers of observa-
tions (see Heaton et al., 2019; Liu et al., 2020, for recent reviews). Among these, probably
the most promising class of approximations in spatial statistics consists of the Vecchia ap-
proximation (Vecchia, 1988) and its extensions (e.g., Stein et al., 2004; Datta et al., 2016a;
Guinness, 2018; Sun and Stein, 2016; Katzfuss and Guinness, 2021; Katzfuss et al., 2020;
Schäfer et al., 2021). As detailed in Katzfuss and Guinness (2021), the class also contains
many other popular GP approximations as special cases (e.g., Snelson and Ghahramani,
2007; Finley et al., 2009; Sang et al., 2011; Eidsvik et al., 2012; Datta et al., 2016a; Katzfuss,
2017; Katzfuss and Gong, 2020) and it is closely related to composite-likelihood methods
(e.g., Varin, 2008; Eidsvik et al., 2014). Vecchia approximations obtain a sparse Cholesky
factor of the precision matrix via an ordered conditional approximation, based on removing
conditioning variables in a factorization of the joint density of the GP observations into a
product of conditional distributions.

The performance of a Vecchia approximation depends heavily on the choice of ordering
of the variables and the choice of conditioning sets (which determines the Cholesky sparsity
pattern). So far, Vecchia approximations have been mostly applied in geospatial applications
featuring isotropic GPs in low-dimensional input spaces, for which the ordering and condi-
tioning can be carried out based on the inputs or locations. Specifically, the observations
can be ordered using a maximum-minimum-distance algorithm, and the sparsity is deter-
mined by nearest-neighbor conditioning (Guinness, 2018). Both ordering and conditioning
are typically carried out based on Euclidean distance of the corresponding inputs. We call
this existing approach Euclidean-based Vecchia (EVecchia). EVecchia has also been used for
nonisotropic settings, including for nonstationary (Konomi et al., 2019; Risser and Turek,
2020), multivariate (Zhang et al., 2021), space-time (White and Porcu, 2019), and periodic
GPs (Datta et al., 2016a, Supplement A.9).

Here, we propose Vecchia approximations whose ordering and conditioning employ a
correlation-based distance metric; we refer to this approach as correlation-based Vecchia
or CVecchia. Correlation-based conditioning (but not ordering) was already mentioned in
the early Vecchia papers (Vecchia, 1988; Jones and Zhang, 1997; Stein et al., 2004), but it
was dismissed and not thoroughly explored, mainly due to concerns about high computa-
tional cost and instability. In contrast, we argue that CVecchia can improve approximation
accuracy, and it can be carried out efficiently even in the presence of unknown parame-
ters, allowing both frequentist and Bayesian parameter inference. Yu et al. (2017) proposed
a related correlation-based idea in the context of hierarchical low-rank compression (but
not factorization) of a positive-definite matrix. So far, all previous Vecchia approaches have
based the ordering on spatial or temporal locations, without considering the covariance func-
tion to be approximated. Conditioning sets have also been selected based on the locations;
one exception is the dynamic spatio-temporal nearest-neighbor GP (Datta et al., 2016b),
whose adaptive neighbor-selection scheme defines a space-time distance as a function of the
spatio-temporal covariance.

EVecchia and CVecchia are equivalent for strictly decreasing isotropic correlation func-
tions (Jones and Zhang, 1997; Stein et al., 2004), but CVecchia has two advantages for more
complex situations, such as anisotropic, nonstationary, multivariate, and spatio-temporal
processes: It can provide much higher accuracy, and it offers a simple, automatic strategy
even when Euclidean distance is not applicable. Thus, CVecchia greatly expands the appli-
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cability of the Vecchia approach; in fact, CVecchia can be applied to any covariance matrix
whose individual entries can be obtained or computed quickly, as the approximation only
relies on evaluating or accessing a near-linear number of entries. CVecchia implicitly applies
a Vecchia approximation in a suitable transformed input domain, in which the GP of interest
is isotropic and Euclidean distance is meaningful.

The remainder of this document is organized as follows. In Section 2, we review Vecchia
approximations from a perspective that enables our extensions. In Section 3, we introduce
correlation-based Vecchia and discuss its properties. Section 4 provides numerical com-
parisons. In Section 5, we illustrate the performance of our method using output from a
regional climate model. Section 6 concludes and discusses future work. Appendix A con-
tains proofs. The code for running our method and reproducing figures can be found at
https://github.com/katzfuss-group/correlationVecchia.

2 Review of Euclidean-based Vecchia

2.1 The Vecchia approximation

Consider a centered Gaussian random vector y = (y1, y2, . . . , yn)> ∼ Nn(0,K), where K is an
n×n positive-definite covariance matrix. For example, y may be a vector of observations of a
GP. Evaluating the Gaussian density p(y), which typically relies on Cholesky decomposition
of K, generally requiresO(n3) computing time andO(n2) memory; this is often too expensive
for large n� 103.

A promising approach to reduce the computational effort is the Vecchia approximation.
Motivated by the exact factorization p(y) =

∏n
i=1 p(yi|y1:i−1) with y1:0 := ∅, the Vecchia

approximation is given by

p̂(y) =
n∏
i=1

p(yi|yc(i)) = Nn(0, K̂), (1)

where c(1) = ∅ and c(i) ⊂ {1, . . . , i − 1} for i = 2, . . . , n. We assume that all conditioning
sets are at most of size m, |c(i)| = min(m, i− 1), for some integer m� n. The approximate
covariance matrix K̂ has a sparse inverse Cholesky factor: K̂−1 = UU>, where U is a
sparse upper triangular matrix with at most m off-diagonal nonzeros per column, given by

Uc̃(i),i = (Kc̃(i),c̃(i))
−1e1/

(
e>1 (Kc̃(i),c̃(i))

−1e1

)1/2
, where c̃(i) = {i} ∪ c(i) and e1 is a vector of

length m + 1 with the first entry equal to one and all other entries equal to zero (Schäfer
et al., 2021). Each of the n columns of U can be computed in O(m3) time, completely in
parallel. Further, the U implied by the Vecchia approximation is the optimal sparse inverse
Cholesky factor of K in terms of Kullback-Leibler (KL) divergence between N (0,K) and
N (0, (UU>)−1) for the sparsity pattern for U implied by the c(i) as above (Schäfer et al.,
2021).

The size of conditioning sets, m, acts as a tuning parameter that trades off sparsity
and computational speed against approximation accuracy. In particular, if m = 0, then
the Vecchia approximation assumes diagonal K̂ and yields independent y1, . . . , yn. If c(i) =
{1, . . . , i − 1} and hence m = n − 1, then the Vecchia approximation is exact. In general,
adding indices to the conditioning sets is guaranteed to result in lower or equal KL divergence
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(Guinness, 2018). In many settings, high accuracy can be achieved even using relatively small
m. In practice, often m < 100 is chosen with respect to available computational resources
(see, e.g., the guidelines and discussion in Katzfuss and Guinness, 2021).

2.2 Ordering and conditioning

For givenm, the accuracy of a Vecchia approximation depends on the choice of ordering of the
variables y1, . . . , yn in y, and on the choice of conditioning sets c(m+ 2), . . . , c(n). Arguably
the preferred approach in this setting is to combine a maximum-minimum-distance ordering
(MM; Guinness, 2018) and nearest-neighbor conditioning (NN), as illustrated in Figure 1.

Specifically, for MM ordering, the first index i1 can be selected arbitrarily (e.g., i1 = 1),
and then the subsequent indices are selected for k = 2, . . . , n as

ik = arg max
i∈I\I1:k−1

min
j ∈I1:k−1

τ(i, j), (2)

where I = {1, . . . , n} and I1:k−1 = {i1, . . . , ik−1}, using a predefined distance measure τ
between the entries of y. For simplicity of notation, assume henceforth and in (1) that
y = (y1, . . . , yn) follows MM ordering (i.e., yk = yik).

For NN conditioning, yi conditions on the min(m, i − 1) previously ordered variables
yc(i) that are nearest to yi in terms of τ . Specifically, for 1 < i ≤ m + 1, we have c(i) =
{1, . . . , i− 1}; for i > m+ 1, we have

c(i) ⊂ {1, . . . , i−1} of size |c(i)| = m, s.t. τ(i, j) ≤ τ(i, k)∀j ∈ c(i), k ∈ {1, . . . , i−1}\c(i).
(3)

We also employ an algorithm that groups similar conditioning sets (Guinness, 2018) to
lessen overall computational cost of Vecchia approximation. Although we only consider
conditioning sets consisting of the m nearest neighbors here, our framework also allows the
use of other neighbor-selection strategies. For instance, Schäfer et al. (2021) uses conditioning
sets consisting of all variables within a ball of a certain radius, which decreases systematically
with the MM-ordering index i; however, we carried out exploratory numerical studies, in
which this radius-based approach was often significantly less accurate than NN conditioning,
especially for irregularly spaced inputs.

As we can see, specifying a Vecchia approximation requires a choice of distance τ(i, j)
between pairs (yi, yj) to determine MM and NN. So far, the Vecchia approximation has been
applied in the setting where y is a realization of a GP y(·) ∼ GP(0, K) at inputs x1, . . . ,xn,
so that yi = y(xi) and Kij = K(xi,xj). Then, the ordering and conditioning for y1, . . . , yn
are typically based on the Euclidean distance between corresponding inputs:

τE(i, j) = ‖xi − xj‖,

which we call Euclidean-based maximum-minimum-distance ordering (E-MM) and Euclidean-
based nearest neighbor conditioning (E-NN), respectively. E-MM and E-NN are illustrated
in Figure 1. We refer to a Vecchia approximation based on this approach as EVecchia (which
is then only a function of m). EVecchia has been shown to outperform Vecchia approxima-
tions based on other ordering and conditioning schemes for GPs in low-dimensional input
spaces (e.g., Guinness, 2018; Katzfuss and Guinness, 2021; Schäfer et al., 2021).
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Figure 1: Euclidean (top) and correlation-based (bottom) maximum-minimum-distance ordering (MM) and
nearest-neighbor conditioning (NN) for n = 400 spatio-temporal inputs (grey points), assuming a spatio-
temporal covariance (8) with the ratio of temporal to spatial range, rt/rs = 4. The first 40 ordered inputs
are numbered, and boxes denote the nearest m = 6 previously ordered neighbors c(i) of the i = 38th input
(red circle), in the unit-square input space [0, 1]2 (left panels) and the transformed input space [0, 4]× [0, 1]
(right). Correlation-based MM and NN can be thought of as Euclidean MM and NN in the transformed
input space (bottom right). This figure is inspired by Figure 1 in Katzfuss et al. (2022).

3 Correlation-based Vecchia approximation

3.1 Definition and overview

We propose a correlation-based Vecchia (CVecchia) approximation of y ∼ Nn(0,K). CVec-
chia consists of a Vecchia approximation (1) for which the MM ordering (2) and NN condi-
tioning (3) are carried out using a correlation-based distance,

τC(i, j) = (1− |ρij|)1/2, where ρij = Kij/(KiiKjj)
1/2, i, j ∈ I = {1, . . . , n} (4)

which we will call C-MM and C-NN, respectively.
As we will explore in more detail below, CVecchia is equivalent to EVecchia for many

popular isotropic kernels; CVecchia can be more accurate than EVecchia for nonisotropic
kernels (e.g., anisotropic, nonstationary, spatio-temporal); and CVecchia is applicable even
when EVecchia is not (e.g., multivariate GPs, GPs based on discrete or non-Euclidean inputs
such as in text analysis or natural language processing).

Provided that K is positive-definite, τC : I × I → [0, 1] in (4) is a proper distance
metric (Van Dongen and Enright, 2012) and, in particular, satisfies the triangle inequality.
This allows us to rapidly compute C-MM and C-NN with an adaptation of the algorithm in
Schäfer et al. (2021) in quasilinear time in n, assuming that each entry of K can be computed
in O(1) time; in practice, this computational cost is often small relative to that of the core
Vecchia approximation in (1), and so the computational complexity of CVecchia can still be
thought of as O(nm3), same as for EVecchia. Among other things, this means that CVecchia
is useful even when K depends on unknown parameters that must be inferred.

As MM and NN only depend on the ranking of distances (not the distances themselves),
other correlation-based distance metrics that are ordinally equivalent (e.g., Van Dongen and
Enright, 2012) to τC in (4) will result in equivalent CVecchia approximations.
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By definition of the correlation-based distance in (4), C-MM and C-NN ignore the
marginal variances of the variables y1, . . . , yn. Thus, one may ask whether, for example,
a better conditioning set c(i) could be obtained based on a distance metric that takes into
account highly varying marginal variances. However, this is not the case. To see this, note
that we have KL(p(y)|p̂(y)) =

∑
i log(var(yi|yc(i))/var(yi|y1:i−1))/2 (e.g., Guinness, 2018),

where var(yi|ayj) is the same for any a 6= 0 and so var(yi|yc(i)) does not depend on the
marginal variances of the conditioning variables.

3.2 Properties of CVecchia in the special case of reducible GPs

CVecchia is equivalent to EVecchia if K is the covariance matrix of a realization of an isotropic
GP with strictly decreasing positive covariance function: Kij = K(xi,xj) = σ2ρ(τE(i, j)),
where ρ : R+

0 → [0, 1] is strictly decreasing; examples include Matérn and power-exponential
covariance functions. Taken one step further, this finding suggests that CVecchia can be
interpreted as EVecchia on a transformed input space in the special case of reducible GPs,
which we define as follows:

Definition 1 (q-reducibility). A zero-mean Gaussian process y(·) on Rd with d ≥ 1 is q-
reducible if there exists a ψ : Rd → Rq such that y

(
ψ−1(·)

)
is a Gaussian process with a

strictly decreasing isotropic covariance function. In particular, y is bijectively reducible if
q = d.

Definition 1 is broad enough to include many GPs of interest. For some covariance
functions, the deformation function ψ can be easily identified, including (geometrically)
anisotropic GPs, automatic relevance determination, and latent-dimension (i.e., dimension-
expansion) approaches to multivariate and spatio-temporal GPs. Also, some popular non-
stationary GPs are explicitly constructed in the way we define the reducibility (e.g., Perrin
and Monestiez, 1999; Schmidt and O’Hagan, 2003; Vu et al., 2020).

A major advantage of CVecchia is that it is not required to identify the deformation ψ
explicitly, but that it automatically carries out the approximation in a transformed space in
which Euclidean distance is meaningful:

Proposition 1. Assume that a zero-mean Gaussian process y(·) is q-reducible with respect
to ψ. If the first index is chosen to be the same for both C-MM and E-MM, then CVecchia
of y(·) at inputs x1, . . . ,xn is identical to EVecchia of y

(
ψ−1(·)

)
at the transformed inputs

ψ(x1), . . . , ψ(xn).

The dimension q in Proposition 1 is important, in that EVecchia approximations become
more challenging as the input dimension increases. There have been studies on necessary
and sufficient conditions for reducibility and how large q must be (e.g., Perrin and Senoussi,
2000; Curriero, 2006), and sufficient conditions for related concepts have been identified (e.g.,
Porcu et al., 2010; Perrin and Meiring, 2003; Perrin and Schlather, 2007). In some settings,
theoretical guarantees depending on q on the performance of CVecchia for reducible GPs
can be provided using recent results for isotropic GPs (Schäfer et al., 2021). For example, if
a process is q-reducible to an isotropic GP whose kernel is the Green’s function of an elliptic
PDE (which is equivalent to a Matérn covariance up to edge effects), then CVecchia can
provide an ε-accurate approximation in O

(
n log3q(n/ε)

)
time.
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While Proposition 1 provides an explanation for why CVecchia can produce adaptive ap-
proximations to some popular nonisotropic GPs, this property deserves further investigation
for its relationship to Euclidean embeddings (Witsenhausen, 1986; Matousek, 2013; Maehara,
2013). It is well-known that an exact representation of a given metric space into Euclidean
space is not easy to find and that is why approximate embeddings have been studied. For
instance, the Johnson-Lindenstrauss flattening lemma (Johnson and Lindenstrauss, 1984)
states the existence of low-distortion (no more than a factor of 1± ε) Euclidean embedding
of a given finite metric space to q-dimensional Euclidean space where q ≥ O (log(n)/ε). This
may provide another way to carry out performance evaluation of CVecchia approximations.

3.3 Estimation of parameters

So far, we have assumed a fixed K and p(y) = Nn(y|0,K), but in practice K = Kθ and
hence pθ often depend on unknown parameters θ. Our CVecchia approximation p̂(y) =∏n

i=1 p(yi|yc(i)) depends on θ both via pθ and via the correlation distance τθC in (4) used to
determine the MM ordering of y1, . . . , yn and the NNs in the c(i). To emphasize this, we will
sometimes use p̂θ2θ1(y) to denote a CVecchia approximation of pθ1 based on τθ2C .

For frequentist inference, Guinness (2021) proposed to find the maximum likelihood es-
timator of θ by optimizing the Vecchia loglikelihood via Fisher scoring. Given that

log p̂(y) =
∑n

i=1 log p(yi|yc(i)) =
∑n

i=1

(
log p(yc̃(i))− log p(yc(i))

)
, (5)

the score g(k) and the Fisher information M(k) of p̂(y) at the kth iteration of the Fisher-
scoring algorithm can be computed by addition and subtraction of the score and Fisher
information of each of the 2n normal distributions of dimension at most m+ 1 on the right-
hand side of (5). The parameter vector is then updated as θ(k+1) = θ(k) + (M(k))−1g(k).

For CVecchia, we propose to use a modified Fisher-scoring algorithm, where we now
compute g(k) = ∂

∂θ
log p̂θ̃

(k)

θ (y)|θ=θ(k) and M(k) = −E ∂2

∂θ2 log p̂θ̃
(k)

θ (y)|θ=θ(k) with fixed order-

ing and conditioning based on τ θ̃
(k)

C . In other words, when computing derivatives of the
CVecchia loglikelihood for the Fisher-scoring updates, the dependence of the ordering and
conditioning on θ is ignored. Instead, the ordering and conditioning are updated based on
θ̃(k) = θ(k) after certain iterations k ∈ G, and θ̃(k) = θ̃(k−1) otherwise. For simplicity, we
can update the ordering and conditioning at the end of each iteration, G = {1, 2, 3, 4, . . .}.
Alternatively, the computational cost can be reduced by setting G = {1, 2, 4, 8 . . .} and thus
skipping this update for exponentially increasing numbers of iterations, exploiting that the
parameter values tend to change less and less with increasing iteration numbers. In either
case, repeatedly updating the ordering and conditioning over the course of the Fisher-scoring
algorithm did not introduce convergence problems in our numerical experiments.

As the Vecchia approximation implies a valid density p̂(y) = Nn(y|0, K̂), it is also
possible to carry out Bayesian inference on θ, assuming a prior p(θ) has been specified.
However, the dependence of C-MM and C-NN on θ again presents a challenge. In the context
of a spatio-temporal covariance, Datta et al. (2016b) essentially proposed to approximate
the posterior as p̂(θ|y) ∝ p(θ)p̂θθ(y) based on C-NN, meaning that the conditioning sets c(i)
are recomputed for every θ at which the posterior is evaluated. However, in our exploratory
studies, we found this approach to lead to unstable and sinuous approximate posteriors.
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Instead, we propose to first obtain a maximum likelihood or maximum a posteriori estimate
θ̂ using Fisher scoring, as above. Then, we approximate the posterior as p̂(θ|y) ∝ p(θ)p̂θ̂θ(y),

with fixed correlation distance τ θ̂C and hence fixed C-MM and C-NN based on θ = θ̂. This
approach leads to smooth posteriors, as illustrated in Section 4.7.

3.4 Prediction

Our method can be used for accurate and efficient prediction of an unobserved vector y∗ =

(y∗1, . . . , y
∗
n∗) with

(
y>,y∗>

)> ∼ Nn+n∗
(
0,Kall

)
. For prediction and uncertainty analysis,

the goal is to obtain the joint posterior predictive distribution p(y∗|y). Following Katzfuss

et al. (2020), we apply a Vecchia approximation to
(
y>,y∗>

)>
with the entries of y∗ ordered

after those of y to obtain a CVecchia approximation of the posterior predictive distribution,

p̂(y∗|y) =
n∗∏
i=1

p(y∗i |yco(i),y∗cu(i)) = Nn∗(µ∗, K̂∗), (6)

where y∗1, . . . , y
∗
n∗ are assumed to follow a restricted C-MM ordering, which is obtained from

a C-MM ordering of all (observed and unobserved) variables under the restriction of having
the observed variables be ordered first (in which case the ordering of the unobserved vari-
ables takes the distances to observed variables into account). As recommended in Katzfuss
et al. (2020), we allow the unobserved variables to condition on both observed and (previ-
ously ordered) unobserved variables. Specifically, y∗i conditions on the nearest (in terms of
correlation-based distance with respect to Kall) m variables among y1, . . . , yn, y

∗
1, . . . , y

∗
i−1.

For notational convenience, in (6) the resulting conditioning set is split into indices co(i)
corresponding to observed variables and cu(i) corresponding to unobserved variables; either
co(i) or cu(i) can be an empty set for any i. Each of the conditional distributions in the prod-
uct in (6) can be computed in O (m3) time, resulting in fast prediction or joint simulation
even for large n and n∗.

In practice, Kall will typically depend on unknown parameters θ. Predictions can then
be based on a frequentist estimate of θ or based on samples from the Bayesian posterior
of θ, which can be obtained using the observed data y as described in Section 3.3. Then,
given a frequentist estimate θ̂, the posterior predictive distribution is obtained as p̂θ̂

θ̂
(y∗|y)

using similar notation as in Section 3.3. Given samples θ(1), . . . ,θ(L) from the posterior,
we can account for posterior uncertainty in θ and obtain an averaged posterior predictive
distribution p̂(y∗|y) = (1/L)

∑L
l=1 p̂

θ̂
θ(l)(y

∗|y), where θ̂ is again a maximum likelihood or
maximum a posteriori estimate.

3.5 Noise

The methods discussed so far are most appropriate if y is observed without noise. However,
data in many application areas are typically modeled as a GP with additive noise. Suppose
now that we observe z = y + ε with ε = (ε1, . . . , εn)> ∼ Nn(0,D), where D is diagonal.

A straightforward way of extending our methods to this noisy setting is to apply the
same CVecchia approach to the covariance matrix of z, which is Σ = K + D. However, in
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this approach the noise terms weaken the screening effect and hence an accurate CVecchia
approximation will often require a larger m than in the noise-free case. Interestingly, if
the signal and noise variances are both constant (i.e., Kii = Kjj and Dii = Djj for all
i, j), then C-MM and C-NN do not depend on the noise variance (even if it is zero). This
can be seen by noting that τC(i, j) ≤ τC(i, k) if and only if τ+D

C (i, j) ≤ τ+D
C (i, k), where

τ+D
C (i, j) = (1 − |ρ+D

ij |)1/2 with ρ+D
ij = Σij/(ΣiiΣjj)

1/2 for i, j ∈ I. For varying noise
variances, high-noise observations move farther away from other observations in terms of
correlation distance, and so they are less likely to be included in conditioning sets; this
makes intuitive sense, in that their high noise means that they contain less information
about y.

An alternative way of extending our methods to the noisy setting is to apply CVecchia
to the (now latent) noise-free variables y as before and then add noise. In other words,
we set Σ̂ = K̂ + D, where K̂ is obtained using CVecchia as in previous sections. While
this is conceptually simple, inference then requires obtaining the Cholesky factor of the
posterior precision matrix var(y|z)−1 = K̂−1 + D−1, which can be very expensive due to fill-
in. Fortunately, the computational speed of CVecchia can be maintained without introducing
meaningful additional approximation error by approximating the Cholesky factor using an
incomplete Cholesky factorization (IC), as proposed for EVecchia in Schäfer et al. (2021).
This approach is useful both for parameter inference based on evaluating the CVecchia
likelihood and for making predictions. We demonstrate numerically in Section 4.7 that this
IC-based approach can by highly accurate in the context of CVecchia as well.

4 Examples and numerical comparisons

We conducted simulation experiments to demonstrate that CVecchia is widely applicable
and highly accurate. Specifically, we considered anisotropic, nonstationary, multivariate,
and spatio-temporal GPs, and an example without any explicit inputs. We begin by assum-
ing that the covariance matrices are known; then, we demonstrate parameter estimation and
prediction using our methods. Throughout, our proposed CVecchia approach is denoted by
C-MM + C-NN. We compared to existing or other reasonable competing Vecchia approx-
imations, which necessarily differ between simulation scenarios, because none of them are
meaningfully applicable across all the scenarios. We compared the different Vecchia methods
in terms of the KL-divergence between the exact distribution N (0,K) and the approximate
distribution N (0, K̂), averaged over 10 simulations in settings with known covariance struc-
ture and over 200 simulations in parameter-inference or prediction settings. Comparisons
are carried out as a function of m, as all considered Vecchia methods become more accurate
and more computationally expensive as m increases, with a time complexity of O(nm3).

4.1 Anisotropic and nonstationary GPs

We considered nonstationary GPs at n = 302 = 900 inputs selected uniformly at random
on the unit square, X = [0, 1]2. We compared various combinations of ordering (E-MM,
C-MM, X-ord, Y-ord) and conditioning (E-NN, C-NN) schemes, where X-ord and Y-ord
denote ordering by the first or second coordinate of the input space, respectively. EVecchia

9



corresponds to E-MM + E-NN. Vecchia (1988)’s original approach is given by Y-ord + E-NN.
We used a nonstationary Matérn covariance function (Stein, 2005; Paciorek and Schervish,

2006):

K(x,x′) = σ2 |A(x)|1/4|A(x′)|1/4

|Ã(x,x′)|1/2 M ν(x)+ν(x′)
2

((
(x−x′)>Ã(x,x′)−1(x−x′)

)1/2)
, x,x′ ∈ X , (7)

where Mν(0) = 1, Mν(x) = xνBν(x) for x > 0, Bν is a modified Bessel function of order ν,
ν : X → R+ is the smoothness, A : X → Rd×d is a (positive definite) anisotropy matrix, and
Ã(x,x′) = (A(x) + A(x′))/2. For simplicity, we assumed σ = 1.

We considered the following settings as special cases of (7):

Anisotropic: ν(x) ≡ 0.5, A(x) ≡ 10−2 diag(a−2, 1), where a is the degree of anisotropy.

Varying smoothness: ν(x) = 0.2+1.3x1 (i.e., varying as a function of the first coordinate),
A ≡ 10−2 diag(1, 1).

Varying rotation: ν(x) ≡ 0.5,

A(x) =

(
cos η(x) sin η(x)
− sin η(x) cos η(x)

)>
diag(10−4, 10−2)

(
cos η(x) sin η(x)
− sin η(x) cos η(x)

)
is a rotation matrix with spatially varying angle η(x) = πx1

2
.

In the anisotropic setting, the correlation-based distance τC(i, j) is a strictly increasing
function of ‖x̃i − x̃j‖, where x̃i = A−1/2xi, because Bν(·) is strictly decreasing; thus, CVec-
chia is equivalent to EVecchia applied to the transformed inputs x̃1, . . . , x̃n. For varying
smoothness and rotation, the transformed space is not easily identified. However, as shown
in Figure 2, C-NN was always more accurate than E-NN. In addition, using C-MM in-
stead of E-MM led to further improvements for the anisotropic and varying-rotation setting.
The improvement of CVecchia over existing methods was especially pronounced for strong
anisotropy (i.e., large a) and for varying rotation.

4.2 Multivariate GP

We considered a p-variate GP, y(·) = (y(1)(·), . . . , y(p)(·))> ∼ GP(0, K), with a cross-
covariance function based on a latent dimension separating the processes (Apanasovich and
Genton, 2010),

Ki,j(x,x
′) = cov

(
y(i)(x), y(j)(x′)

)
= σ2 exp

(
−‖x̃i− x̃′j‖/r

)
, x,x′ ∈ X , i, j ∈ {1, . . . , p},

where x̃i =
(
x>, νi

)> ∈ R2+1, and νi represents the location of the i-th component of the

multivariate GP in the latent dimension. Thus, the dependence between y(i)(·) and y(j)(·)
decreases with their latent distance |νi − νj|. We assumed σ2 = 1, r = 0.1, and ν1 = 0.
We considered a total of n observations stacked into a vector y = (y(1)>, . . . ,y(p)>)>, where

y(j) = (y
(j)
1 , . . . , y

(j)
nj )> with y

(j)
i = y(j)(x

(j)
i ), and n =

∑
nj.

Here, τC(i, j) is a strictly increasing function of ‖x̃i− x̃j‖, and so CVecchia is equivalent
to EVecchia applied to the transformed inputs x̃1, . . . , x̃n in the expanded (2+1)-dimensional
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Figure 2: Log10-scale KL divergences between true and approximate likelihoods of GPs with the degree of
anisotropy a = 10 for increasing size of conditioning sets m (top left), with m = 30 for increasing a (top
right), with varying smoothness parameter ν = 0.2+1.3x1 (a function of the first coordinate) for increasing
m (bottom left), and with varying rotation angle η = πx1

2 for increasing m (bottom right)

input space. The competing methods considered in Section 4.1 are not directly applicable in
this multivariate setting, and so we considered the following alternative approaches. S-E-MM
separately orders the entries of each y(j) according to an MM ordering of the corresponding
inputs x

(j)
1 , . . . ,x

(j)
nj , and then orders y(1), then y(2), and so forth, in y. To construct con-

ditioning sets of size m, J-E-NN considers the nearest m inputs in X among all previously
ordered variables in the joint vector y, while S-E-NN carries out nearest-neighbor condi-
tioning separately for each y(1), . . . ,y(p). D-E-NN divides m by p and finds the m/p nearest
previously ordered neighbors among each of the components y(1), . . . ,y(p) (according to their
inputs in X ).

We compared these various Vecchia approaches for bivariate (p = 2) and trivariate (p = 3)
GPs, with each process observed at nj = 400 randomly sampled locations in X . In both

cases, we assumed that the processes were observed in a misaligned manner (i.e., x
(j)
i 6= x

(k)
i

for j 6= k). As shown in Figure 3, C-NN outperformed other conditioning approaches; C-MM
provided additional improvements in some settings over S-E-MM. We also considered the
setting of identical observation locations for the different processes (i.e., x

(j)
i = x

(k)
i ), but the

results were very similar to the misaligned case and are hence not shown.
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Figure 3: Log10-scale KL divergences between true and approximate likelihoods of distinctly observed bi-
variate GPs with distance in latent dimension ∆ = |ν1 − ν2| = 0.4 for increasing size of conditioning sets
m (top left) and with m = 20 for increasing ∆ (top right), and distinctly observed trivariate GPs with
distance in latent dimension ∆ = 0.4, where νj = (j−1)∆, for increasing m (bottom left) and with m = 20
for increasing ∆ (bottom right)

4.3 Spatio-temporal GP

We considered a spatio-temporal GP indexed by a space-time input coordinate x = (s>, t)>,
where we assumed that space is scaled to the unit square, s ∈ [0, 1]2, and time is scaled to
the unit interval, t ∈ [0, 1]. We considered a space-time covariance function of the form

K (x,x′) = σ2 exp(−‖(s− s′)‖/rs − |t− t′|/rt) = σ2 exp(−‖A−1(x− x′)‖), (8)

where rs and rt are the spatial and temporal range parameters, and A = diag(rs, rs, rt). We
assumed that σ2 = 1, rs = 0.1, and rt = 1.0.

Here, τC(i, j) is a strictly increasing function of ‖x̃i − x̃j‖, where x̃i = A−1/2x, and so
CVecchia is equivalent to EVecchia applied to the transformed inputs x̃1, . . . , x̃n. As space
and time are not commensurable, the previous competing methods are again not meaningful.
We considered ordering by time (T-ord), and conditioning on the NN in time (T-NN). Note
that, when inputs are taken at the same time point, T-ord orders the inputs according to
the values of the second spatial coordinate. If these values are again the same, it uses the
values of the first coordinate. Further, we considered E-NN based on the distance of the
(unit-scaled) space-time coordinates, ‖x− x′‖. To our understanding, the correlation-based
conditioning approach proposed in Datta et al. (2016b) corresponds to T-ord + C-NN.
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Figure 4: Inputs for spatio-temporal simulation scenarios plotted against spatial coordinates x1 and x2. The
inputs are color-coded by time, although later time points exactly cover earlier time points in the Station
and Gridded case, and also to some degree in the Satellite scenario due to its two repeat cycles.

As illustrated in Figure 4, we simulated n = 900 space-time observations on the unit
cube according to four different simulation scenarios, the latter three of which were chosen
to mimic common observation patterns for environmental data:

Random Space-time coordinates are selected uniformly at random, and so they are irregular
in space and time.

Station Observations are obtained at 9 regular time points at 100 irregularly spaced “mon-
itoring stations.”

Gridded Observations are obtained at 9 regular time points on a regular grid of size 10×
10 = 100 in space (e.g., mimicking output from climate models).

Satellite Similar to data from polar-orbiting satellites, at 900 regularly spaced time points,
we have 90 observations along each of 5 one-dimensional tracks at two repeat cycles.

As shown in Figure 5, CVecchia outperformed the competing methods.
Note that we repeated the experiments from Sections 4.1–4.3 for larger n = 3, 600, but

we found out that the shapes of the KL curves were very similar to those in Figures 2, 3 and
5.

4.4 Gaussian hierarchical model

We have so far considered only cases in which covariance structure is computed based on
inputs. In this subsection, we offer an example that has no inputs, so that CVecchia is
applicable but EVecchia is not. Motivated by hierarchical models which are widely used for
combining information and describing heterogeneity between sub-populations, we assumed
that µ ∼ N (0, σ2

0) and

µi1,...,ij | µi1,...,ij−1

i.i.d.∼ N (µi1,...,ij−1
, σ2

j ) , ik = 1, 2, k = 1, . . . , j, j = 1, . . . , J,

where σ2
0 = σ2

1 = . . . = σ2
k = 1. We observe y = {yi1,...,iJ : ik = 1, 2, k = 1, . . . , J} with

yi1,...,iJ = µi1,...,iJ at the finest level. This hierarchical model is illustrated for depth J = 3 on
the left side of Figure 6. We have cov (yi1,...,iJ , yl1,...,lJ ) =

∑α
r=0 σ

2
r , where α is the level up to

which yi1,...,iJ and yl1,...,lJ have a common ancestor.
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Figure 5: Log10-scale KL divergences between true and approximate likelihoods of spatio-temporal GPs
(Figure 4) for increasing size of conditioning sets m

We conducted a numerical comparison using depth J = 12, and so n = 212 = 4,096.
Because the competing methods used in other experiments are again not directly applicable,
we compared three variants of the Vecchia approximation in the right panel of Figure 6,
where L-ord denotes lexicographic (or simply left-to-right) ordering, R-ord denotes random
ordering, and R-N conditions on randomly selected previously ordered entries. We repeated
R-ord + R-N 200 times, but interestingly the resulting KL divergences appear quite similar
when plotted on the log scale. CVecchia strongly outperformed the other two methods.

4.5 Parameter estimation

We examined the performance of frequentist parameter estimation using Fisher scoring (Sec-
tion 3.3) in the Station and Satellite space-time scenarios of Section 4.3. The task was to
estimate the range parameters rs and rt. We updated the ordering and conditioning at every
Fisher-scoring iteration (G = {1, 2, 3, . . .}).

We compared the different approximation methods described in Section 4.3. For refer-
ence, we also considered “optimal” parameter estimation using the exact GP without Vecchia
approximation (or, equivalently, a Vecchia approximation with m = n − 1). The methods
were compared in terms of the average KL divergence between the true distribution (using
the true parameter values) and the approximate distribution (using each method’s estimated
parameters). We also computed the root mean squared difference (RMSD) between the val-
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Figure 6: A graphical representation of the hierarchical normal model with J = 3 (left) and log10-scale KL
divergences between true and approximate likelihoods with J = 12 for increasing m (right)

ues of rs and rt as estimated by the exact GP and as estimated by the different Vecchia
approximations.

As shown in Figure 7, CVecchia produced by far the most accurate estimated distribu-
tions, which were similar to those based on the exact GP for m ≥ 25. While the RSMDs
were quite noisy, despite averaging over 200 simulated datasets, CVecchia also generally
performed best in terms of RMSD.

4.6 Prediction

To illustrate prediction performance, we again considered the Random, Station, and Satel-
lite space-time scenarios from Section 4.3. Of the 900 space-time observations, 100 were
randomly selected as test data, and so the training data consisted of the remaining n = 800
observations. To lessen the computational cost of our many comparisons, we assumed that
the covariance parameters were known.

Figure 8 shows the prediction performance for the 100 test data, as measured by the
logarithmic score (see Gneiting and Katzfuss, 2014, for details) averaged over 200 simulation
runs. In the Random and Station scenarios, CVecchia and T-ord + C-NN both performed
well. In the Satellite scenario, CVecchia performed best.

4.7 Bayesian inference for noisy data

We considered Bayesian inference with CVecchia for noisy data under the Random, Sta-
tion, and Satellite space-time scenarios of Section 4.3. The task was to calculate posterior
densities of the range parameters rs and rt. We assumed that the priors were log(rs) ∼
N (log(0.1), 0.62) and log(rt) ∼ N (log(1.0), 0.62), with constant noise variances, D = (0.4)In.
Figure 9 presents two different approaches described in Section 3.5: one is the naive approach
that directly uses the covariance matrix of the noisy observations, and the other is the IC-
based approach that applies CVecchia to the noise-free variables and then adds the noise. As
claimed in Section 3.5, Figure 9 shows that, while CVecchia provided reliable approximate
posteriors compared to the other methods, the IC-based approach provided further improve-
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Figure 7: Performance in parameter estimation using Fisher scoring under two spatio-temporal scenarios
(station and satellite) in Figure 4. Each subfigure contains three plots: Log10-scale KL divergences between
true and estimated likelihoods (left) and root mean squared difference (RMSD) for spatial range parameter
(top right) and for temporal range parameter (bottom right), for increasing size of conditioning sets m.
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Figure 8: Logarithmic score for predictions under three space-time scenarios: Random (left), Station (cen-
ter), and Satellite (right). Note that the y-axes of the panels are on a log scale.

ments. C-MM and C-NN were fixed based on the true values of θ; we also tried updating
C-MM for each evaluated θ value, but this resulted in unstable posteriors.

5 Application to real data

We assessed the use and efficacy of CVecchia to fit and predict regional climate model (RCM)
outputs. The North American Regional Climate Change Assessment Program (NARCCAP;
Mearns et al., 2009) is a research program designed to (1) provide high-resolution projections
of climate change, (2) investigate uncertainties in regional climate change simulations based
on different atmosphere-ocean general circulation models (AOGCMs), and (3) evaluate RCM
performance over North America (Mearns et al., 2012). While the program ran 50-km
spatial resolution simulation based on multiple RCMs driven by multiple AOGCMs, we only
considered the Canadian regional climate model (CRCM) using the NCEP-DOE Reanalysis
II (NCEP) as boundary conditions. The details on RCMs and AOGCMs in the NARCCAP
are available from https://www.narccap.ucar.edu/.

In particular, we studied a bivariate spatio-temporal dataset given by a maximum and
minimum daily surface air temperature (tasmax and tasmin) for June–August 2001 (92
days) in the South region (Arkansas, Kansas, Louisiana, Mississippi, Oklahoma, and Texas;
see Karl and Koss, 1984). Figure 10 shows tasmax and tasmin fields in the South region
on selected days. The cartographic boundary files of the south region are available from
https://www.census.gov/. The total sample size is ntotal = 78,384 × 2 = 156,768. We split
the dataset into training (ntrain = 114,298) and test (ntest = 42, 470) sets in the following
manner: (1) randomly select 12 locations for each time slice; (2) assign observations (for
both variables) corresponding to space-time locations on the 52×3 space-time cube centered
at the selected locations to the test set; and (3) assign the remaining space-time locations
to the training set.

We fit a joint model of tasmin and tasmax using the training set and then carried out
predictions on the test set. Let ytasmin and ytasmax be training vectors of tasmin and tasmax,
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Figure 9: True and approximate posterior densities of spatial and temporal ranges under three space-time
scenarios from Figure 4: Random (top), Station (center), and Satellite (bottom). For each scenario, the
left (right) five columns are posteriors of the spatial (temporal) range parameter. For each range parameter,
the first (second) row presents posteriors with the naive (IC-based) approach for size of conditioning sets
m = 5, 10, 20, 30, 40. For m ≥ 10, some lines are not visible because they are covered by the (exact) black
lines.
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Table 1: For the NARCCAP data, parameter estimates for the six methods (m = 50) using a Matérn
covariance function with a different range parameter for each dimension, smoothness ν = 0.75, and zero
nugget. Temperatures are in Kelvin, the spatial region is scaled to fit into the unit square (without changing
its shape), and the time period is scaled to the unit interval.

β̂0 β̂1 σ̂2 r̂lat r̂lon r̂t r̂l
S-E-MM + S-E-NN 278.513 12.084 61.983 0.819 0.742 0.036 2.000
S-E-MM + J-E-NN 278.200 14.033 62.906 0.828 0.750 0.036 2.681
T-ord + T-NN 275.143 13.613 70.134 0.890 0.792 0.001 2.000
T-ord + S-C-NN 268.826 11.451 51.585 0.719 0.656 0.040 2.000
T-ord + J-C-NN 266.677 12.198 51.331 0.716 0.654 0.040 2.498
C-MM + C-NN 276.754 13.054 38.859 0.593 0.543 0.026 1.668

respectively. We modeled them as[
ytasmin
ytasmax

]
∼ Nn+n

([
1 0
1 1

] [
β0

β1

]
,K

)
using a Matérn covariance function with a different range parameter for each dimension
(latitude, longitude, time, and latent dimension); that is,

Ki,j = K(x̃i, x̃j) = σ2 21−ν

Γ(ν)
‖A−1(x̃i − x̃j)‖ν Bν(‖A−1(x̃i − x̃j)‖),

x̃ =
(
x>, ξ

)>
, x is a space-time coordinate, ξ is an indicator variable that indicates whether

x̃ corresponds to tasmin, Γ is the gamma function, Bν is the modified Bessel function of the
second kind, and A = diag(rlat, rlon, rt, rl). Assuming that ν = 0.75 (based on preliminary
analyses) and a nugget of zero, we estimated the unknown parameters β0, β1, rlat, rlon, rt,
rl using the Fisher scoring approach described in Section 3.3; the result is given in Table 1.

Figure 11 shows the prediction performance for the test set, as measured by the root
mean square prediction error (RMSPE), compared to five other Vecchia variants. S-E-MM
+ S-E-NN and S-E-MM + J-E-NN are from Section 4.2 and based on Euclidean distance
between unit-scaled space-time coordinates. T-ord + T-NN is from Section 4.3. Note that
T-ord separately orders observations of each temperature field by time and then joins them.
S-C-NN carries out C-NN conditioning separately for each temperature field, while J-C-NN
searches C-NN in the joint vector. We applied a grouping algorithm (Guinness, 2018) for im-
proving computational efficiency to all methods except T-ord + T-NN, because interestingly
it resulted in a doubling of the computational cost for that method.

CVecchia (C-MM + C-NN) provided the lowest RMSPE for any m considered. The
improvement was substantial, with CVecchia’s accuracy with m = 10 surpassing that of S-
E-MM + J-E-NN with m = 50, whose computational cost is roughly two orders of magnitude
higher due to the cubic scaling in m. Moreover, as shown in the right panel of Figure 11,
CVecchia offered a better trade-off between run time and prediction accuracy. The run-time
analysis was performed on a 64-bit workstation with 16 GB RAM and an Intel Core i7-8700K
CPU running at 3.70 GHz. We also carried out a comparison in terms of the logarithmic
score, but the resulting curves looked almost identical to the RMSPE curves in Figure 11.
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Figure 10: Minimum (top row) and maximum (bottom row) surface air temperature fields (in degrees
Kelvin) in the South region (Arkansas, Kansas, Louisiana, Mississippi, Oklahoma and Texas) from NARC-
CAP
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Figure 11: For the NARCCAP data, root mean squared prediction error (on a log scale) at held-out test
points as a function of m (left) and as a function of training time of the Fisher-scoring algorithm (right)
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6 Conclusions

We have introduced CVecchia, a covariance approximation that results in a sparse inverse
Cholesky factor, whose ordering and sparsity pattern are based on the correlation structure.
For reducible GPs, CVecchia implicitly applies a Euclidean-based Vecchia approximation in
a transformed input domain in which the GP is isotropic. CVecchia is applicable to any
covariance matrix, and it even allows for likelihood-based inference on unknown covariance
parameters. We numerically demonstrated the applicability of CVecchia to a variety of
covariance structures, some of which had no applicable existing Vecchia approximations. In
settings with suitable existing approximations, CVecchia strongly outperformed them.

Special cases of our general CVecchia idea have already been successfully employed in
several applications (which were started later but completed earlier than the present paper):
Katzfuss et al. (2022) used the idea to approximate anisotropic GPs for computer-model em-
ulation in high input dimension; Messier and Katzfuss (2021) approximated spatio-temporal
land-use regression for ground-level nitrogen dioxide; and in the context of nonparamet-
ric inference (Kidd and Katzfuss, 2021), ideas related to CVecchia were used with sample
correlations instead of parametric correlations.

While we have largely focused on geospatial settings here, CVecchia can also be applied to
large-scale machine learning settings where input domains are not Euclidean and there is no
explicit expression of covariance function. Examples include: multi-task learning (Williams
et al., 2007; Groot et al., 2011), where multiple observations are collected from multiple
related tasks and joint modeling utilizes intra- and inter-task relatedness; natural language
processing (NLP; see Min et al., 2021, for recent review), where words are represented in
a latent vector space using word embedding methods (e.g., Beck et al., 2014; Beck, 2017;
Deriu et al., 2017) and CVecchia can be applied efficiently based on only geometric rela-
tions between word vectors; and modeling of multiple interacting latent chemical species in
biochemical interaction networks (Gao et al., 2008), where the covariance function of gene
expression is an integral equation of inputs.
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A Proofs

Before proving the main result (Proposition 1 in Section 3.2), we shall need the following simple lemma.

Lemma 1. Suppose that y(·) ∼ GP(0,K) on Rd is q-reducible with respect to ψ. Define y0(·) = y
(
ψ−1(·)

)
∼

GP(0,K0). Then,
K(x,x′) = K0(‖ψ(x)− ψ(x′)‖), x,x′ ∈ Rd.

Proof of Lemma 1. Note that the isotropic covariance function K0 is only a function of Euclidean distance
between inputs. For any inputs x,x′ ∈ Rd,

K(x,x′) = cov (y(x), y(x′)) = cov
(
y
(
ψ−1(ψ(x))

)
, y
(
ψ−1(ψ(x′))

))
= K0 (‖ψ(x)− ψ(x′)‖) ,

where ψ(x), ψ(x′) ∈ Rq.

21



Proof of Proposition 1. From Lemma 1,

τC(i, j) =

(
1− K(xi,xj)√

K(xi,xi)
√
K(xj ,xj)

)1/2

=

(
1− K0 (‖ψ(xi)− ψ(xj)‖)√

K0 (‖ψ(xi)− ψ(xi)‖)
√
K0 (‖ψ(xj)− ψ(xj)‖)

)1/2

=

(
1− K0 (‖ψ(xi)− ψ(xj)‖)

K0(0)

)1/2

,

which is strictly increasing in τψE (i, j) = ‖ψ(xi)−ψ(xj)‖, the Euclidean distances between the corresponding
transformations. Then, since each step of the MM ordering only depends on the ranking of distances between
inputs, for each k,

arg max
i∈I\I1:k−1

min
j ∈I1:k−1

τC(i, j) = arg max
i∈I\I1:k−1

min
j ∈I1:k−1

τψE (i, j),

and so C-MM of the inputs is identical to E-MM of their transformations. For the same reason, C-NN of
the inputs is identical to E-NN of their transformations. Therefore, if the first index is chosen to be same
for both C-MM and E-MM orderings, CVecchia of y(·) at the inputs x1, . . . ,xn is equivalent to EVecchia of
y
(
ψ−1(·)

)
at the transformed inputs ψ(x1), . . . , ψ(xn).
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