Skip to main content
Log in

The first-passage-time moments for the Hougaard process and its Birnbaum–Saunders approximation

  • Original Paper
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Hougaard processes, which include gamma and inverse Gaussian processes as special cases, as well as the moments of the corresponding first-passage-time (FPT) distributions are commonly used in many applications. Because the density function of a Hougaard process involves an intractable infinite series, the Birnbaum–Saunders (BS) distribution is often used to approximate its FPT distribution. This article derives the finite moments of FPT distributions based on Hougaard processes and provides a theoretical justification for BS approximation in terms of convergence rates. Further, we show that the first moment of the FPT distribution for a Hougaard process approximated by the BS distribution is larger and provide a sharp upper bound for the difference using an exponential integral. The conditions for convergence coincidentally elucidate the classical convergence results of Hougaard distributions. Some numerical examples are proposed to support the validity and precision of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bar-Lev, S.K., Enis, P.: Reproducibility and natural exponential families with power variance functions. Ann. Stat. 14, 1507–1522 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Birnbaum, Z.W., Saunders, S.C.: A new family of life distributions. J. Appl. Probab. 6, 319–327 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Çinlar, E.: On a generalization of gamma processes. J. Appl. Probab. 17, 467–480 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Capała, K., Dybiec, B.: Random acceleration process on finite intervals under stochastic restarting. J. Stat. Mech. Theory Exp. 2021, 083216 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Chung, K.L.: A Course in Probability Theory. Academic Press, New York (2000)

    MATH  Google Scholar 

  • Condamin, S., Benichou, O., Tejedor, V., Voituriez, R., Klafter, J.: First-passage times in complex scale-invariant media. Nature 450, 77–80 (2007)

    Article  Google Scholar 

  • Gould, H.W.: Euler’s formula for \(n\)th differences of powers. Am. Math. Mon. 85, 450–467 (1978)

    MATH  Google Scholar 

  • Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  • Heston, S.: Invisible parameters in option prices. J. Finance 48, 933–947 (1993)

    Article  Google Scholar 

  • Hougaard, P.: Survival models for heterogeneous populations derived from stable distributions. Biometrika 73, 387–396 (1986). (correction, 75, 395)

  • Hougaard, P., Lee, M.L.T., Whitmore, G.A.: Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes. Biometrics 53, 1225–1238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Jordan, C.: Calculus of Finite Differences. Chelsea, New York (1979)

    MATH  Google Scholar 

  • Jørgensen, B.: The Theory of Dispersion Models. Chapman & Hall, New York (1997)

    MATH  Google Scholar 

  • Küchler, U., Sørensen, M.: Exponential Families of Stochastic Processes. Springer, New York (1997)

    Book  MATH  Google Scholar 

  • Lee, M.L.T., Whitmore, G.A.: Stochastic processes directed by randomized time. J. Appl. Probab. 30, 302–314 (1993)

    Article  MathSciNet  Google Scholar 

  • Leiva, V.: The Birnbaum–Saunders Distribution. Academic Press, New York (2016)

    MATH  Google Scholar 

  • Marshall, A.W., Olkin, I.: Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. Springer, New York (2007)

    MATH  Google Scholar 

  • Menshikov, M., Williams, R.J.: Passage-time moments for continuous nonnegative stochastic processes and applications. Adv. Appl. Probab. 28, 747–762 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Park, C., Padgett, W.J.: Accelerated degradation models for failure based on geometric Brownian motion and gamma processes. Lifetime Data Anal. 11, 511–527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, C.Y.: Inverse Gaussian processes with random effects and explanatory variables for degradation data. Technometrics 57, 100–111 (2015)

    Article  MathSciNet  Google Scholar 

  • Polizzi, N.F., Therien, M.J., Beratan, D.N.: Mean first-passage times in biology. Isr. J. Chem. 56, 816–824 (2016)

    Article  Google Scholar 

  • Prasad, M., Gopika, V., Sridharan, A., Parida, S., Gaikwad, A.J.: Hougaard process stochastic model to predict wall thickness in flow accelerated corrosion. Ann. Nucl. Energy 117, 247–258 (2018)

    Article  Google Scholar 

  • Stefanov, V.T.: On the moments of some first-passage times. J. Appl. Probab. 22, 461–466 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai, C.C., Tseng, S.T., Balakrishnan, N.: Mis-specification analyses of gamma and Wiener degradation processes. J. Stat. Plan. Inference 141, 3725–3735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Tweedie, M.C.K.: An index which distinguishes between some important exponential families. In: Ghosh, J.K., Roy, J. (eds.) Statistics: Applications and New Directions. Proceedings of the Indian Statistical Institute Golden Jubilee International Conference, pp. 579–604. Indian Statistical Institute, Calcutta (1984)

    Google Scholar 

  • Vinogradov, V.: On the power-variance family of probability distributions. Commun. Stat. Theory Methods 33, 1007–1029 (2004)

Download references

Acknowledgements

This work by Peng was partially supported by the Ministry of Science and Technology (MOST-109-2118-M-001-009-MY3) and Academia Sinica (AS-CDA-107-M09) of Taiwan, Republic of China. Professor Fan was supported by the Ministry of Science and Technology (MOST-109-2118-M-008-004-MY3) of Taiwan, Republic of China. The authors are grateful to the editor-in-chief, associate editor and referees for their insightful suggestions and constructive comments which greatly improved the quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Yu Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 98 KB)

Appendix

Appendix

Lemma 5.1

For \(c \in {\mathbb {R}}{\setminus } \{0\} \) and \(0< \alpha < 1\), the real part of \((1+ c \imath )^\alpha -1\) is positive, i.e., \({{\textrm{Re}}}{(1+c \imath )^\alpha } > 1\).

Proof

By Euler formula and De Moivre formula, there is a unique principal argument \(\vartheta = \arctan \left( c \right) \in (-\pi /2,\pi /2]\) such that \((1+ c \imath )^\alpha = (1+c^2)^\frac{\alpha }{2} \left( \cos (\alpha \vartheta ) + \imath \sin (\alpha \vartheta ) \right) \). Let \(g( \alpha ) = \ln \left( {{\textrm{Re}}}(1+c\imath )^\alpha \right) = \frac{\alpha }{2} \ln (1+c^2) + \ln \left( \cos (\alpha \vartheta )\right) \) for \(\alpha \in [0, 1]\). Hence, it is easy to check \(g(0) = g(1) = 0\) and \({ \text{ d}^2 }g(\alpha )/{\text{ d } \alpha ^2} = - \vartheta ^2 \sec (\alpha \vartheta )^2 < 0\), indicating that \(g(\alpha )\) is concave. Thus, we have \(\ln \left( {{\textrm{Re}}}(1+c\imath )^\alpha \right) = g(\alpha ) > \min \{ g(0), g(1) \} = 0\) for \(\alpha \in (0, 1)\), which is equivalent to \({{\textrm{Re}}}{(1+c \imath )^\alpha }>1\). \(\square \)

Lemma 5.2

  1. (i)

    For \(n \in {\mathbb {N}}, s > 0\) and \(0< \alpha < 1\),

    $$\begin{aligned}&\frac{ (1 -\exp (\alpha \pi \imath )s^\alpha )^{-n} - (1 -\exp (-\alpha \pi \imath ) s^\alpha )^{-n} }{2 \imath } \nonumber \\&\quad = \frac{\sin \left( n \arctan \left( \frac{\sin (\alpha \pi ) s^\alpha }{1- \cos (\alpha \pi ) s^\alpha } \right) \right) }{ \left( 1-2\cos (\alpha \pi )s^\alpha + s^{2\alpha }\right) ^\frac{n}{2} } {{\textrm{sgn}}} \left( \left( 1 - \cos (\alpha \pi ) s^\alpha \right) ^n \right) . \end{aligned}$$
    (13)
  2. (ii)

    When \(\alpha = 0\), the above equation reduces to

    $$\begin{aligned}{} & {} \frac{ (-\pi \imath - \ln s)^{-n} - ( \pi \imath - \ln s )^{-n} }{2 \imath } \\{} & {} \quad = -\frac{\sin \left( n \arctan \left( \pi / \ln s \right) \right) }{ \left( \pi ^2 + (\ln s)^2 \right) ^\frac{n}{2} } {{\textrm{sgn}}} \left( \left( 1 - s \right) ^n \right) . \end{aligned}$$

Proof

(i) By the identity \(\exp ( \alpha \pi \imath ) = \cos (\alpha \pi ) + \sin (\alpha \pi ) \imath \) and binomial Theorem, we have

$$\begin{aligned}&\frac{ \left( 1- \exp (\alpha \pi \imath )s^\alpha \right) ^{-n} - \left( 1- \exp (-\alpha \pi \imath ) s^\alpha \right) ^{-n}}{2 \imath } \nonumber \\&\quad =\frac{ ( 1 - \cos (\alpha \pi ) s^\alpha + \sin (\alpha \pi ) \imath s^\alpha )^n -( 1 - \cos (\alpha \pi ) s^\alpha - \sin (\alpha \pi )\imath s^\alpha )^n }{2 \imath ( 1 - 2 \cos (\alpha \pi ) s^\alpha + s^{2\alpha } )^n } \nonumber \\&\quad =\frac{ \sum \nolimits _{j=0}^n {n \atopwithdelims ()j} ( 1 - \cos (\alpha \pi ) s^\alpha )^{n-j} (\sin (\alpha \pi ) s^\alpha )^{j} \left( \imath ^j - ( -\imath )^{j} \right) }{2 \imath ( 1 - 2 \cos (\alpha \pi ) s^\alpha + s^{2\alpha } )^n } \nonumber \\&\quad =\frac{ \sum \nolimits _{j=0}^{ \lfloor \frac{n-1}{2} \rfloor } {n \atopwithdelims ()2j+1} (-1)^j ( 1 - \cos (\alpha \pi ) s^\alpha )^{n-2j-1} (\sin (\alpha \pi ) s^\alpha )^{2j+1} }{ ( 1 - 2 \cos (\alpha \pi ) s^\alpha + s^{2\alpha } )^n }, \end{aligned}$$
(14)

where \(\lfloor \cdot \rfloor \) denotes the floor function. Let \(x = 1 - \cos (\alpha \pi ) s^\alpha \) and \(y = \sin (\alpha \pi ) s^\alpha >0\). Use the multi-angle formula to get

$$\begin{aligned}&\sin ( n \arctan ( y / x ) ) \\&\quad = \sum \limits _{j=0}^{ \lfloor \frac{n-1}{2} \rfloor } {n \atopwithdelims ()2j+1} (-1)^j \left( \cos ( \arctan ( y / x ) ) \right) ^{n-2j-1} \\&\qquad \left( \sin (\arctan ( y / x ) ) \right) ^{2j+1} \\&\quad = \left( 1+ \frac{y^2}{x^2} \right) ^\frac{-n}{2} x^{-n} \sum \limits _{j=0}^{ \lfloor \frac{n-1}{2} \rfloor } {n \atopwithdelims ()2j+1} (-1)^j x^{n-2j-1} y^{2j+1}. \end{aligned}$$

Substituting the above identity to the numerator of (14) gives the desired result. (ii) For \(\alpha = 0\), multiplying \(\alpha ^n\) on both sides in (13) and applying L’Hôpital rule, the result follows. \(\square \)

Lemma 5.3

  1. (i)

    For \(0<\alpha <1\),

    $$\begin{aligned}&\int _{0}^{\infty } \frac{ 1 }{ s + 1} \frac{ \sin \left( n \arctan \left( \frac{\sin (\alpha \pi ) s^\alpha }{1 - \cos (\alpha \pi ) s^\alpha } \right) \right) }{ ( 1 - 2 \cos (\alpha \pi ) s^\alpha + s^{2\alpha } )^\frac{n}{2} }\nonumber \\&\quad {{\textrm{sgn}}} \left( \left( 1 - \cos (\alpha \pi ) s^\alpha \right) ^n \right) {{\textrm{d}}} s \nonumber \\&\quad = \pi {{\textrm{Res}}}\left( \frac{(1-s^\alpha )^{-n}}{1-s},s=1 \right) . \end{aligned}$$
    (15)
  2. (ii)

    For \(\alpha = 0\),

    $$\begin{aligned}{} & {} \int _{0}^{\infty } \frac{ -1 }{ s + 1} \frac{ \sin \left( n \arctan \left( \pi / \ln s \right) \right) }{ ( \pi ^2 + (\ln s)^2 )^\frac{n}{2} } {{\textrm{sgn}}} \left( \left( 1 - s \right) ^n \right) {{\textrm{d}}} s \\{} & {} \quad = \pi {{\textrm{Res}}}\left( \frac{(- \ln s)^{-n}}{1-s},s=1 \right) . \end{aligned}$$

Proof

(i) Define

$$\begin{aligned} q(s) = \frac{1}{2\imath } \frac{1}{1-s} \frac{1}{(1-s^\alpha )^n}, s \in {\mathbb {C}}. \end{aligned}$$

Then \(s=1\) is a single pole of q(s) with order \(n+1\). Consider the following closed keyhole contour IJKLI plotted in Fig. 5.

Fig. 5
figure 5

Keyhole contour IJKLI and a pole at (1, 0)

We show that

$$\begin{aligned}&\left| \int _{\overset{\frown }{{\textrm{JK}}}} q(s) {{\textrm{d}}}s\right| \\&\quad = \frac{1}{2} \left| \int _{-\pi }^\pi \frac{r\exp ( \imath \vartheta )}{1- r\exp ( \imath \vartheta ) } \frac{1}{\left( 1- r^\alpha \exp ( \alpha \imath \vartheta )\right) ^n} {{\textrm{d}}} \vartheta \right| \\&\quad \le \frac{1}{2} \int _{-\pi }^\pi \frac{ \left| r\exp ( \imath \vartheta ) \right| }{\left| 1 - |r\exp ( \imath \vartheta )| \right| ^n }\frac{1}{\left| 1- |r^\alpha \exp ( \alpha \imath \vartheta )| \right| } {{\textrm{d}}} \vartheta \\&\quad = \frac{1}{2} \int _{-\pi }^\pi \frac{ r }{\left| 1 - r \right| } \frac{1}{\left| 1- r^\alpha \right| ^n} {{\textrm{d}}} \vartheta \rightarrow 0 \text{ as } r \rightarrow 0 \end{aligned}$$

and

$$\begin{aligned}&\left| \int _{\overset{\frown }{{\textrm{LI}}}} q(s) {{\textrm{d}}}s\right| \\&\quad =\frac{1}{2} \left| \int _{-\pi }^\pi \frac{R\exp ( \imath \vartheta )}{1- R\exp ( \imath \vartheta ) } \frac{1}{\left( 1- R^\alpha \exp ( \alpha \imath \vartheta )\right) ^n} {{\textrm{d}}} \vartheta \right| \\&\quad \le \frac{1}{2} \int _{-\pi }^\pi \frac{ R }{\left| R - 1 \right| } \frac{1}{\left| R^\alpha -1 \right| ^n} {{\textrm{d}}} \vartheta \rightarrow 0 \text{ as } R \rightarrow \infty . \end{aligned}$$

By the Euler formula, we have

$$\begin{aligned}&\left( \int _{\overline{{\textrm{IJ}}} } + \int _{\overline{{\textrm{KL}}} } \right) q(s) \text{ d } s \\&\quad = \exp ( \pi \imath ) \int _\infty ^0 q( r \exp ( \pi \imath ) ) \text{ d } r +\exp ( - \pi \imath ) \\&\qquad \int _0^\infty q( r \exp (-\pi \imath ) ) \text{ d } r \\&\quad = \int _0^ \infty q( r \exp ( \pi \imath ) ) \text{ d } r - \int _0^\infty q( r \exp (-\pi \imath ) ) \text{ d } r \\&\quad = \int _0^ \infty \frac{1}{2\imath } \frac{ 1 }{1-r \exp ( \pi \imath ) } \frac{1}{\left( 1-r^\alpha \exp (\alpha \pi \imath )\right) ^n} \text{ d } r \\&\qquad - \int _0^ \infty \frac{1}{2\imath } \frac{ 1 }{1-r \exp ( -\pi \imath ) } \frac{1}{\left( 1-r^\alpha \exp (-\alpha \pi \imath )\right) ^n} \text{ d } r \\&\quad = \int _0^ \infty \frac{\left( 1-r^\alpha \exp (\alpha \pi \imath )\right) ^{-n}-\left( 1-r^\alpha \exp (-\alpha \pi \imath )\right) ^{-n} }{2 (1 + r)\imath } \text{ d } r. \end{aligned}$$

Then the result follows by Lemma 5.2(i) and the Cauchy residue Theorem. (ii) For \(\alpha = 0\), multiplying \(\alpha ^n\) on both sides in (15) and applying L’Hôpital rule, the result follows. \(\square \)

Proof of Theorem 2.2

The following auxiliary Lemmas 5.45.5 are needed to prove Theorem 2.2.

Lemma 5.4

Let \(n, \ell , m_\ell \in {\mathbb {N}}\), \(h(x) = (1 - b \imath x)^\alpha \) for \( 0< \alpha < 1\), \(b > 0\) and \(x \in {\mathbb {C}}\). Then

$$\begin{aligned}&\lim \limits _{x \rightarrow 0} \frac{{{\textrm{d}}}^{ m_\ell } \left( 1 - h\left( \ell x \right) \right) ^n}{{{\textrm{d}}} x^{ m_\ell } } \\&\quad =1\{m_\ell \ge n \} (-1)^n \left( - b \ell \imath \right) ^{m_\ell } \Gamma (m_\ell +1) \\&\qquad \sum \limits _{ i=0 }^{ n-1 } { i-n-1 \atopwithdelims ()i} { (n-i) \alpha \atopwithdelims ()m_\ell }. \end{aligned}$$

Proof

Define

$$\begin{aligned} {\mathscr {D}}^n_w&= \left\{ (m_1^*,\ldots , m_n^*) \in \{{\mathbb {N}}\cup \{0\} \}^n \bigg | \sum \limits _{i=1}^{n} m_i^* = m_\ell , m_w^* = 0 \right\} , \\&\quad w = 1, \ldots , n,\\ {\mathscr {E}}_0^n&= \left\{ (m_1^*,\ldots , m_n^*) \in \{{\mathbb {N}}\cup \{0\} \}^n \bigg | \sum \limits _{i=1}^{n} m_i^* = m_\ell \right\} \end{aligned}$$

and \({\mathscr {E}}_i^n = \bigcup _{1 \le w_1< w_2< \cdots < w_i \le n} \bigcap _{j = 1}^i {\mathscr {D}}^n_{w_j}\) for \(i = 1,2, \ldots , n-1\).

By the general Leibniz rule, we have

$$\begin{aligned}&\lim \limits _{x \rightarrow 0} \frac{{{\textrm{d}}}^{ m_\ell } \left( 1 - h\left( \ell x\right) \right) ^n}{{{\textrm{d}}} x^{ m_\ell } } \\&\quad = \lim \limits _{x \rightarrow 0} \Gamma (m_\ell +1)\sum \limits _{ {\mathscr {E}}_0^n } \prod \limits _{j=1}^n \frac{{{{\textrm{d}}}^{ m^*_{j} } \left( 1 - h\left( \ell x\right) \right) }/{{{\textrm{d}}} x^{ m^*_{j} } } }{ \Gamma (m_{j}^*+1) }. \end{aligned}$$

Since

$$\begin{aligned} \frac{{{\textrm{d}}}^{ m^*_{j} } \left( 1 - h\left( \ell x\right) \right) }{{{\textrm{d}}} x^{ m^*_{j} } }= & {} 1\{ m^*_{j} \ge 1 \} (-1) \left( - b \ell \imath \right) ^{m^*_j}\\{} & {} \frac{\Gamma (\alpha +1)}{\Gamma (\alpha - m^*_{j} + 1 )} \end{aligned}$$

for each \(j=1,2,\ldots , n\),

$$\begin{aligned}&\lim \limits _{x \rightarrow 0} \frac{{{\textrm{d}}}^{ m_\ell } \left( 1 - h\left( \ell x\right) \right) ^n}{{{\textrm{d}}} x^{ m_\ell } } \nonumber \\&\quad = 1\{ m_\ell \ge n \} \Gamma (m_\ell +1) \sum \limits _{ {\mathscr {C}}^n_{ m_\ell } }\prod \limits _{j=1}^n \frac{(-1) \left( - b \ell \imath \right) ^{m^*_j} \Gamma (\alpha +1)}{\Gamma (m_{j}^*+1) \Gamma (\alpha - m^*_{j} + 1 )} \nonumber \\&\quad = 1\{ m_\ell \ge n \} (-1)^n \left( - b \ell \imath \right) ^{m_\ell } \Gamma (m_\ell +1) \sum \limits _{ {\mathscr {C}}^n_{ m_\ell } } \prod \limits _{j=1}^n { \alpha \atopwithdelims ()m_j^* }. \end{aligned}$$
(16)

Then applying the exclusion-inclusion principle, we obtain

$$\begin{aligned} \sum \limits _{ {\mathscr {C}}^n_{ m_\ell } } \prod \limits _{j=1}^n { \alpha \atopwithdelims ()m_j^* }&= \sum \limits _{ i=0 }^{ n-1 } (-1)^i \sum \limits _{ {\mathscr {E}}^n_i } \prod \limits _{j=1}^n { \alpha \atopwithdelims ()m_j^* } \\&= \sum \limits _{ i=0 }^{ n-1 } (-1)^i {n \atopwithdelims ()i} \sum \limits _{ {\mathscr {E}}^{n-i}_0 } \prod \limits _{j=1}^{n-i} { \alpha \atopwithdelims ()m_j^* } \\&= \sum \limits _{ i=0 }^{ n-1 } {i-n-1 \atopwithdelims ()i} { (n-i) \alpha \atopwithdelims ()m_\ell }, \end{aligned}$$

where the last equality is due to the generalized Chu-Vandermonde identity (see Graham et al. 1994, page 248). By substituting the above identity into (16), we get the desired result. \(\square \)

Lemma 5.5

(Gould 1978)

  1. (i)

    If \(f: {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a function which nth derivative exists, then we get

    $$\begin{aligned} f^{(n)}(x) = \lim \limits _{h \rightarrow 0} \frac{1}{h^n} \sum \limits _{k=0}^n (-1)^{n-k} {n \atopwithdelims ()k} f\left( x + k h \right) . \end{aligned}$$
  2. (ii)

    For \(n \in {\mathbb {N}}\), we have

    $$\begin{aligned} \sum \limits _{k=0}^n (-1)^k {n \atopwithdelims ()k} k^n = \Gamma (n+1). \end{aligned}$$

Now, we return to the proof of Theorem 2.2.

Proof

(i)-(a) Since the integrand, \(\frac{1-\exp \left( -\omega \imath s\right) }{s(1-h(s))^n}\), has a pole of order n at \(s=0\), we have

$$\begin{aligned}&\text{ Res }\left( \frac{1-\exp \left( -\omega \imath s\right) }{s(1-h(s))^n},s=0 \right) \nonumber \\&\quad = \frac{1}{\Gamma (n)} \lim \limits _{s \rightarrow 0}\left( \frac{{{\textrm{d}}}^{n-1}}{{{\textrm{d}}} s^{n-1} } \frac{ s^{n-1}\left( 1-\exp \left( -\omega \imath s\right) \right) }{(1-h(s))^n} \right) , \end{aligned}$$
(17)

where \(h(s) = (1 - b \imath s)^\alpha \) is defined in Lemma 5.4. By Lemma 5.5 (i), the Eq. (17) can be expressed as

$$\begin{aligned}&\text{ Res }\left( \frac{1-\exp \left( -\omega \imath s\right) }{s(1-h(s))^n},s=0 \right) \nonumber \\&\quad = \frac{1}{\Gamma (n) } \lim _{s \rightarrow 0, x \rightarrow 0} \frac{1}{x^{n-1}} \sum _{k=0}^{n-1} (-1)^{n-1-k} {n-1\atopwithdelims ()k} \nonumber \\&\qquad \frac{ (s + kx)^{n-1} \left( 1 - \exp \left( - \omega \imath \left( s + kx\right) \right) \right) }{ \left( 1 - h\left( s + kx\right) \right) ^{n} } \nonumber \\&\quad = \frac{1}{\Gamma (n) } \lim \limits _{x \rightarrow 0} \bigg \{ \frac{ (-1)^{n-1} \omega \imath }{( \alpha b \imath x)^n}\nonumber \\&\qquad + \sum \limits _{k=1}^{n-1} (-1)^{n-1-k} {n-1\atopwithdelims ()k} \left( kx\right) ^{n-1} \frac{ 1 - \exp \left( - k \omega \imath x \right) }{ \left( 1 - h\left( k x\right) \right) ^{n} } \bigg \} \nonumber \\&\quad = \lim \limits _{x \rightarrow 0} \frac{1}{\Gamma (n) ( \alpha b \imath )^{ n } x^{n-1} \prod \limits _{k=1}^{n-1} \left( 1 - h\left( k x\right) \right) ^n } \nonumber \\&\qquad \bigg \{ (-1)^{n-1} \omega \imath \prod \limits _{\ell =1 }^{n-1} \left( 1 - h\left( \ell x\right) \right) ^n \nonumber \\&\qquad + \sum _{k=1 }^{n-1} (-1)^{n-1-k} {n-1\atopwithdelims ()k} \left( \alpha b \imath \right) ^{n} (k x)^{n-1} \nonumber \\&\qquad \left( 1 - \exp \left( - k \omega \imath x \right) \right) \prod \limits _{\ell =1, \ell \ne k }^{n-1} \left( 1 - h\left( \ell x\right) \right) ^n \bigg \}. \end{aligned}$$
(18)

To calculate the limit in (18) by L’Hôpital rule, taking the derivative \(n^2-1\) times of the denominator of (18) and using Lemma 5.5(i), we get

$$\begin{aligned}&\lim \limits _{x \rightarrow 0} \frac{{{\textrm{d}}}^{ n^2-1 } }{{{\textrm{d}}} x^{ n^2-1 } } \bigg \{ \Gamma (n) ( \alpha b \imath )^{ n } x^{n-1} \prod \limits _{k=1}^{n-1} \left( 1 - h\left( k x\right) \right) ^n \bigg \} \nonumber \\&\quad = \Gamma (n) ( \alpha b \imath )^{ n } \lim \limits _{x \rightarrow 0, y \rightarrow 0} \frac{1}{y^{n^2-1}} \sum _{k_1=0}^{n^2-1} (-1)^{n^2-1-k_1} {n^2-1 \atopwithdelims ()k_1} \nonumber \\&\qquad \bigg \{ \left( x+ k_1y \right) ^{ n-1 } \prod \limits _{k=1}^{n-1} \left( 1 - h\left( k \left( x+ k_1y\right) \right) \right) ^n \bigg \} \nonumber \\&\quad = \Gamma (n) ( \alpha b \imath )^{ n } \lim \limits _{y \rightarrow 0} \sum _{k_1=0}^{n^2-1} (-1)^{n^2-1-k_1} {n^2-1 \atopwithdelims ()k_1} k_1^{n-1}\nonumber \\&\qquad \prod \limits _{k=1}^{n-1} \frac{ \left( 1 - h\left( k k_1y\right) \right) ^n}{y^n} \nonumber \\&\quad = \Gamma (n) ( \alpha b \imath )^{ n } \sum _{k_1=0}^{n^2-1} (-1)^{n^2-1-k_1} {n^2-1 \atopwithdelims ()k_1} k_1^{n-1}\nonumber \\&\qquad \prod \limits _{k=1}^{n-1} \left( \alpha b k k_1\imath \right) ^n \nonumber \\&\quad = \Gamma (n)^{n+1} \left( \alpha b \imath \right) ^{ n^2 } \Gamma (n^2), \end{aligned}$$
(19)

where the last identity holds according to Lemma 5.5(ii). Taking the derivative \(n^2-1\) times of the numerator of (18) and using the general Leibniz rule, we have

$$\begin{aligned}&\lim \limits _{x \rightarrow 0} \frac{{{\textrm{d}}}^{ n^2 -1} }{{{\textrm{d}}} x^{ n^2-1 } } \bigg \{ (-1)^{n-1} \omega \imath \prod \limits _{\ell =1 }^{n-1} \left( 1 - h\left( \ell x\right) \right) ^n\nonumber \\&\quad + \sum _{k=1 }^{n-1} (-1)^{n-1-k} {n-1\atopwithdelims ()k} \left( \alpha b \imath \right) ^{n} (k x)^{n-1} \nonumber \\&\quad \times \left( 1 - \exp \left( - k \omega \imath x \right) \right) \prod \limits _{\ell =1, \ell \ne k }^{n-1} \left( 1 - h\left( \ell x\right) \right) ^n \bigg \} \nonumber \\&=(-1)^{n-1} \omega \imath \sum _{{\mathscr {F}}^n_{0}} \frac{\Gamma (n^2)}{\prod \limits _{j=0}^{n-1} \Gamma (m_{j}+1) } \nonumber \\&\qquad \lim \limits _{x \rightarrow 0} \prod \limits _{\ell =1}^{n-1} \frac{{{\textrm{d}}}^{ m_\ell }}{{{\textrm{d}}} x^{ m_\ell } } \left( 1 - h\left( \ell x\right) \right) ^n\nonumber \\&\qquad +\sum _{k=1}^{n-1} (-1)^{n-1-k} {n-1\atopwithdelims ()k} (\alpha b \imath )^n k^{n-1} \nonumber \\&\qquad \times \sum \limits _{ {\mathscr {F}}^n } \frac{\Gamma (n^2+1)}{\prod \limits _{j=0}^{n-1} \Gamma (m_{j}+1) } \lim \limits _{x \rightarrow 0} \bigg \{ \frac{{{\textrm{d}}}^{ m_0 } }{{{\textrm{d}}} x^{ m_0 } } x^{ n - 1 } \frac{{{\textrm{d}}}^{m_k} }{{{\textrm{d}}} x^{m_k}} \nonumber \\&\qquad \left( 1 - \exp \left( - k \omega \imath x \right) \right) \prod \limits _{\ell =1 }^{n-1} \frac{{{\textrm{d}}}^{m_\ell } }{{{\textrm{d}}} x^{m_\ell }} \left( 1 - h\left( \ell x\right) \right) ^n \bigg \}, \end{aligned}$$

where

$$\begin{aligned} {\mathscr {F}}_0^n&= \left\{ (m_0, \ldots , m_{n-1}) \in \{{\mathbb {N}}\cup \{0\} \}^{n} \bigg | \sum \limits _{i=0}^{n-1}m_i = n^2, m_0 = 1 \right\} ,\\ {\mathscr {F}}^n&= \left\{ (m_0,\ldots , m_{n-1}) \in \{{\mathbb {N}}\cup \{0\} \}^n \bigg | \sum \limits _{i=0}^{n-1}m_i = n^2 - 1 \right\} . \end{aligned}$$

Using Lemma 5.4 with

$$\begin{aligned}{} & {} \lim \limits _{x \rightarrow 0} \frac{{{\textrm{d}}}^{ m_0 } }{{{\textrm{d}}} x^{ m_0 }} x^{n} = 1 \{m_{ 0 } =n \} \Gamma (n+1)\\{} & {} \quad \text{ and }\quad \lim \limits _{x \rightarrow 0} \frac{{{\textrm{d}}}^{ m_k } }{{{\textrm{d}}} x^{ m_k } } \left( 1-\exp \left( - k \omega \imath x\right) \right) \\{} & {} \qquad = - 1 \{m_k \ge 1 \} \left( - k \omega \imath \right) ^{m_k}, \end{aligned}$$

we get

$$\begin{aligned}&(-1)^{n-1} \omega \imath \sum \limits _{ {\mathscr {A}}^n_0 } \frac{\Gamma (n^2)}{\prod \nolimits _{j=1}^{n-1} \Gamma (m_{j}+1) }\nonumber \\&\quad \prod \limits _{\ell =1 }^{n-1} \bigg \{ (- 1)^n \Gamma (m_\ell + 1) \left( - b \ell \imath \right) ^{m_\ell } \nonumber \\&\quad \sum \limits _{ i=0 }^{ n-1 } { i-n-1 \atopwithdelims ()i} { (n-i) \alpha \atopwithdelims ()m_\ell } \bigg \} \nonumber \\&\quad + \sum _{k=1}^{n-1} (-1)^{n-1-k} {n-1\atopwithdelims ()k} \left( \alpha b \imath \right) ^{n} k^{n-1}\nonumber \\&\quad \sum \limits _{ {\mathscr {A}}^n_{k} } \frac{\Gamma (n^2)}{\prod \nolimits _{j=1}^{n-1} \Gamma (m_{j}+1) } \Gamma (n) (-1) \left( - k \omega \imath \right) ^{m_k} \nonumber \\&\quad \times \prod \limits _{\ell =1, \ell \ne k }^{n-1} \bigg \{(-1)^n \left( - b \ell \imath \right) ^{m_\ell } \Gamma (m_\ell +1)\nonumber \\&\quad \sum \limits _{ i=0 }^{ n-1 } { i-n-1 \atopwithdelims ()i} { (n-i) \alpha \atopwithdelims ()m_\ell } \bigg \} \nonumber \\&\quad = \Gamma (n^2) b^{n^2} \imath ^{n^2} \Bigg \{ \sum \limits _{ {\mathscr {A}}^n_0 } (\omega /b) \prod \limits _{\ell =1 }^{n-1} \bigg \{ \ell ^{m_\ell }\sum \limits _{ i=0 }^{ n-1 } { i-n-1 \atopwithdelims ()i}\nonumber \\&\qquad { (n-i) \alpha \atopwithdelims ()m_\ell } \bigg \} \nonumber \\&\qquad + \sum _{k=1}^{n-1} (-1)^{k} {n-1\atopwithdelims ()k} \alpha ^n \sum \limits _{ {\mathscr {A}}^n_{k} } \frac{(\omega /b)^{m_k}}{\Gamma (m_{k}+1) } k^{n-1+m_k}\nonumber \\&\qquad \prod \limits _{\ell =1}^{n-1} \bigg \{ \ell ^{m_\ell } \sum \limits _{ i=0 }^{ n-1 } { i-n-1 \atopwithdelims ()i} { (n-i) \alpha \atopwithdelims ()m_\ell } \bigg \} \Bigg \}. \end{aligned}$$
(20)

By combining (19) and (20), we obtain the desired result of the residue.

(i)-(b) The derivation of the residue can be followed by similar procedure. (ii) The results can be established by L’Hôpital rule directly. This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, CY., Dong, YS. & Fan, TH. The first-passage-time moments for the Hougaard process and its Birnbaum–Saunders approximation. Stat Comput 33, 59 (2023). https://doi.org/10.1007/s11222-023-10235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-023-10235-1

Keywords

Navigation