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Abstract
We introduce the arbitrary rectangle-range generalized elastic net penalty method, abbreviated to ARGEN, for performing
constrained variable selection and regularization in high-dimensional sparse linear models. As a natural extension of the
nonnegative elastic net penalty method, ARGEN is proved to have both variable selection consistency and estimation con-
sistency under some conditions. The asymptotic behavior in distribution of the ARGEN estimators have been studied in this
framework. We also propose an algorithm called MU-QP-RR-W-l1 to efficiently solve the ARGEN problem. By conducting
simulation study we show that ARGEN outperforms the elastic net in a number of settings. Finally an application of S&P
500 index tracking with constraints on the stock allocations is performed to provide general guidance for adapting ARGEN
to solve real-world problems.

Keywords Rectangle-range generalized elastic net · High-dimensional sparse data · Quadratic programming · Multiplicative
updates · Index tracking
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1 Introduction

Variable selection and regularization are essential tools in
high-dimensional data analysis. Many existing strategies are
able to achieve both high prediction accuracy and inter-
pretability. For instance, the lasso (Tibshirani 1996) was
popularized thanks to its computational efficiency (Efron et al
2004), variable selection consistency (Zhao and Yu 2006),
and estimation consistency (Negahban et al 2012). We refer
to Zou (2006); Bickel et al (2009); Efron et al (2007); Lounici
(2008); Yuan and Lin (2006); Zhao et al (2009); Wang et al
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(2007) for more in-depth discussions of lasso. Later, elas-
tic net (Zou and Hastie 2005) is proposed through linearly
combining the lasso and ridge regression-like penalties. As
a more flexible model, elastic net is shown to be able to out-
perform the lasso for high-dimensional data.

Recall that a regularized linear model has the following
general form:

Y = β0 + β1X1 + . . . + βp X p + g(β1, . . . , βp) + ε, (1.1)

where Y ∈ R is the response variable, X1, . . . , X p ∈ R are
p predictors, g is some penalty function and ε is the resid-
ual. In the setting of ordinary linear models, one considers
no range constraint on the coefficients, i.e., it is assumed that
β1, . . . , βp ∈ R. However in practice β1, . . . , βp are often
restricted to a prior range of values. For example, in portfo-
lio management problem, the coefficients are considered as
allocations of assets in a fund, which are valued in [0, 1]; in
academic grading problem, the coefficients are interpreted
as weights of a list of courses, which are also ranged in
[0, 1]. Such constraints may influence the behavior of the
penalty g, as well as the estimated values of β1, . . . , βp.
Concerning adapting to this real world constraint, Wu et al
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(2014) and Wu and Yang (2014) introduced nonnegative
lasso and nonnegative elastic net approaches respectively,
which have been successfully applied to solve the real world
index tracking problem without short sales (this corresponds
to the nonnegative-value constraint on weights). There exist
more such range constraints on the regression coefficients
in the real world problems, therefore more flexible models
are needed to address problems that require arbitrary-range
constraints on the regression coefficients. With this motiva-
tion, our first goal is to suggest a novel method that concerns
arbitrary rectangle-range constraint on the regression coeffi-
cients. Also recall that Zou (2006), Mouret et al (2013) and
Sokolov et al (2016) introduced methods that generalize the
lasso and elastic net respectively, by placing adaptiveweights
on the predictors and penalties. We will also adopt this set-
ting in our model, i.e., the coefficients in the penalties will be
weighted. As conclusion, our paper proposes a method that
allows arbitrary rectangle-range constraints on the regression
coefficients of a generalized elastic net and provide rigor-
ous theoretical results to support the consistencies of the
model and its solution. To elaborate, the proposed arbitrary
rectangle-range generalized elastic net method (abbreviated
to ARGEN), is a regularization method that deals with high-
dimensional problems. ARGEN generalizes the nonnegative
elastic net. The motivation of using ARGEN is given below:

1. Like elastic net (Zou 2006), ARGEN also does the job
of reducing the estimation variance and removing unim-
portant factors. Being more general than the elastic net,
ARGEN often has better prediction result. This fact has
been shown in our simulation and experience study, see
Sects. 5 and 6.

2. Compared with nonnegative elastic net, ARGEN allows
adding arbitrary lower and upper bounds constraints
on the coefficients. As discussed before, restricting the
regression coefficients to specific rectangle-range is often
required in the real world applications. Therefore this set-
ting ensuresARGENmore adaptability to realworld con-
straints. In Sect. 6 we have provided the S&P 500 index
tracking problem as one example: instead of considering
nonnegative allocation parameters (i.e., each regression
coefficient β j ∈ [0,+∞)), our hyper-parameter tun-
ing result shows that considering β j ∈ [0.0082, 0.6]
or [0.0041, 0.8] yields lower out-of-sample error. Such
result reveals the fact that each stock considered to track
the S&P 500 index should have a weight no more than
80%.

3. ARGEN also considers effects of individual and interac-
tive penalty weights. These weights measure the factor
importances of the p features X1, . . . , X p in the regres-
sion. The traditional elastic net assumes the p features
have equal factor importance. However this is not often
the case in the real world. Not only this setting of weights

fits more the real world situation, but it also promises
better performance due to its larger parameter searching
space.

To solve ARGEN, we introduce a novel algorithm multi-
plicative updates for solving quadratic programming with
rectangle range and weighted l1 regularizer (abbreviated to
MU-QP-RR-W-l1). We summarize the main contributions of
our paper as follows:

1. We introduce ARGEN, a method of solving variable
selection and regularization problems that require the
regression coefficients to be ranged in some rectangle in
R

p (see (2.1)). As a flexible approach, ARGEN includes
the nonnegative elastic net and a number of new exten-
sions of the models lasso, ridge, and elastic net.

2. Subject to some condition on the inputs, the variable
selection consistency, the estimation consistency, and
the limiting distribution of the estimator of ARGEN are
obtained. We refer to Theorems 2.1, 2.2, and 2.4.

3. A novel algorithm MU-QP-RR-W-l1 is introduced to
solve thegeneral quadratic programmingproblemminv∈[0,l]
F(v) = v′Av/2 + b′v + d ′|v − v0|, following the nota-
tions in (3.3). The algorithm is implemented as a Python
library through the PyPi server and is publicly shared.1

4. We show a successful real world application of the
ARGEN approach in the S&P 500 index tracking prob-
lem. Readers can get full access to the Python script in
the Github repository.2

Throughout the paper, we denote the transpose of a matrix
by (·)′, the i-th column of a matrix by (·)i , the entry in the i-
th row and j-th column of a matrix by (·)i j , the diagonal
matrix with diagonal vector x by diag(x), and the maxi-
mum (resp. minimum) element of a vector by max(·) (resp.
min(·)). Besides, an n×nmatrix X can be expressed by X =
(Xi j )1≤i, j≤n . The elementwise absolute value of a vector or
matrix is |·|: for x = (x1, . . . , xp), |x| := (|x1|, . . . , |xp|)
and for an n× n matrix X , |X | := (|Xi j |)1≤i, j≤n . Moreover,
let x = (x1, . . . , xp), y = (y1, . . . , yp) be two equal-
length vectors, we denote the p-dimensional interval by
[x, y] := [x1, y1] × . . . × [xp, yp].

In the sequel, we consider the linear regression model

Y = Xβ∗ + ε, (1.2)

where X is a deterministic n × p design matrix, Y =
(y1 . . . yn)′ is an n×1 response vector and ε = (ε1 . . . εn)

′
is a Gaussian noise with marginal variance σ 2. Without loss
of generality, we assume all the p predictors are real-valued

1 https://pypi.org/project/generalized-elastic-net
2 https://github.com/songzhm/arbitraryElasticNet
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and centered, so the intercept can be ignored. β∗ ∈ R
p is the

regression coefficients.
The rest of the paper is organized as follows. In Sect. 2,

we discuss the analytical features of ARGEN and its variable
selection consistency (Theorem 2.1), estimation consistency
(Theorem 2.2) and estimator’s limiting distribution (The-
orem 2.4). In Sect. 3, we propose an efficient algorithm
MU-QP-RR-W-l1 for solving ARGEN. Approaches we use
to speed up hyper-parameter optimization are discussed in
Sect. 4. Simulations that compare the performances of var-
ious methods are conducted in Sect. 5. Section6 shows an
application of ARGEN to the real world S&P 500 index
tracking problem. Section7 is devoted to the conclusion and
discussion of future research. Technical proofs are provided
in Appendix.

2 The ARGEN

2.1 Definition

In practice it is often natural to assume sparsity in the high-
dimensional dataset problem. Therefore in the sequel we
assume that the linear model (1.2) is q-sparse, i.e., β∗ has
at most q (q � p) nonzero elements. We intend to cope
with the case when there is a control on the range of the
coefficients, that is, let s = (s1, . . . , sp), t = (t1, . . . , tp)
with si ∈ R ∪ {−∞}, ti ∈ R ∪ {+∞}, si < ti for all
i = 1, . . . , p, the optimal coefficients are in a p-dimensional
rectangle I := [s, t] ⊂ R

p. To capture the penalty weights
for individual features,we introducedwn = (wn,1 . . . wn,p)

′
asweights for each coefficient in the l1 penalty, and it satisfies
wn,i ≥ 0, i = 1, · · · , p. In addition to individual features,
�n , a positive semi-definitematrix, is introduced to represent
the penaltyweights for interactions between any two features.
Consider the linear model (1.2) and let β = (β1 . . . βp)

′ be
a vector in R

p. The ARGEN estimator of β is given by

̂β(λ(1)
n , λ(2)

n ,wn, �n)

= argmin
β∈I

(

‖Y − Xβ‖22 + λ(1)
n w′

n|β| + λ(2)
n β ′�nβ

)

.

(2.1)

Here λ
(1)
n , λ

(2)
n ≥ 0 are the tuning parameters which control

the importance of the l1 and l2 regularization terms, respec-
tively.

The ARGEN (2.1) naturally extends the elastic net
method. That is, it becomes the elastic net when I = R

p,
wn = (1 . . . 1)′, and�n is the identitymatrix. ThusARGEN
extends the lasso and ridge methods by further assigning
λ

(2)
n = 0 and λ

(1)
n = 0 respectively. In addition, ARGEN

becomes the nonnegative elastic net if we replace I = R
p

with I = R
p
+ := [0,+∞)p in the setting of elastic net.

2.2 Variable selection consistency

We define the variable selection consistency for the ARGEN
as follows. For i = 1, . . . , p, we decompose the interval
[si , ti ] with si < ti into 7 disjoint sub-intervals:

[si , ti ] =
6
⋃

k=2

G(k)
i

⋃

G(1−)
i

⋃

G(1+)
i ,

where

G(1−)
i = (si , ti ) ∩ (−∞, 0),

G(1+)
i = (si , ti ) ∩ (0,+∞),

G(2)
i = {si }\{0}, G(3)

i = {ti }\{0},
G(4)
i = {si } ∩ {0}, G(5)

i = {ti } ∩ {0},
G(6)
i = (si , ti ) ∩ {0}.

In addition, we define G(1)
i = G(1−)

i ∪ G(1+)
i for simplicity.

Correspondingly, each coefficient in β∗ belongs to one of
the 7 groups of values; i.e., for each i = 1, . . . , p, there is a
unique ki ∈ {1−, 1+, 2, . . . , 6} such that β∗

i ∈ G(ki )
i . Now

for j ∈ {1−, 1+, 2, . . . , 6}, denote by

S( j) =
{

i ∈ {1, . . . , p} : β∗
i ∈ G( j)

i

}

,

the set of indexes i for which β∗
i belongs to the j-th group

of values, and let #S( j) be the cardinality of the set. Corre-
spondingly, we can define

̂S( j)(λ
(1)
n , λ(2)

n ,wn, 6n)

=
{

i ∈ {1, . . . , p} : ̂βi ∈ G( j)
i

}

.

Definition 1 ARGEN (2.1) is said to have variable selection
consistency if there exist λ(1)

n , λ(2)
n , wn , and �n such that

P

(

̂S( j)
(

λ(1)
n , λ(2)

n ,wn, 6n
) = S( j)

∣

∣

∣S( j) 
= ∅
)

−−−→
n→∞ 1 for j ∈ {1−, 1+, 2, . . . , 6}. (2.2)

(2.2) implies that, starting from some n, it is of big oppor-
tunity that ̂βi equals β∗

i if β∗
i ∈ {0, si , ti }. Such property

includes the variable selection consistency of the nonnegative
elastic net and elastic net as particular cases. Therefore our
definition of the variable selection consistency for ARGEN
is in a broader sense than that for the “free-range” or non-
negative elastic net (Zhao and Yu 2006; Wu et al 2014; Wu
and Yang 2014).
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Let X(1) = (X(1−), X(1+)) and for j ∈ {1−, 1+, 2, . . . , 6},
let X( j) = (Xi )i∈S( j) be the observed predictor values cor-
responding to the j th group of indexes. Similarly, let β∗

( j) =
(

β∗
i

)

i∈S( j), s( j) = (si )i∈S( j), t( j) = (ti )i∈S( j), wn,( j) =
(

wn,i
)

i∈S( j), and�n,( j1 j2) = (

�n,i1,i2

)

i1∈S( j1),i2∈S( j2)
.More-

over, let C be

C := (

Ci j
)

1≤i, j≤6

= 1

n
X ′X =

(

1
n X

′
(i)X( j)

)

1≤i, j≤6

(2.3)

and �min(C11) be the minimal eigenvalue of C11. Denote by

ρ(1)
n

:= max

{

(

C11 + λ
(2)
n

n
�n,(11)

)−1
C11β

∗
(1) − t(1)

}

,

ρ(2)
n

:= min

{

(

C11 + λ
(2)
n

n
�n,(11)

)−1
C11β

∗
(1) − s(1)

}

,

Cn :=
(

C11 + λ
(2)
n

n
�n,(11)

)−1

×
(λ

(1)
n

2
diag(sign(β∗

(1)))wn,(1)

+ λ(2)
n (�n,(12)s(2) + �n,(13)t(3))

)

,

Cmax
n := maxCn, Cmin

n := minCn,

(2.4)

where for a vector v = (v1, . . . , vn), sign(v) := (sign(v1),
. . . , sign(vn)) denotes the vector of signs of the elements
in v, and diag(v) denotes the diagonal matrix with diagonal
elements v. To show ARGEN admits the variable selection
consistency (2.2), we assume that the following conditions
hold:

q > 1, p − q > 1, (2.5)

λ
(1)
n√
n

−−−→
n→∞ +∞, (2.6)

1

n
max
1≤i≤p

X ′
i Xi −−−→

n→∞ 0, (2.7)

max
j∈{2,...,6} �

−1
n,(11)�n,(i1) = O(1), as n → ∞, (2.8)

and for j ∈ {1−, 1+},

1

ρ
(1)
n

(

8σ
√

#S(1) trace(C11) log(#S( j))

n�min(C11 + λ
(2)
n �n,(11)/n)

+ |Cmin
n |
n

)

−−−→
n→∞ 0,

(2.9)

1

ρ
(2)
n

(

8σ
√

#S(1) trace(C11) log(#S( j))

n�min(C11 + λ
(2)
n �n,(11)/n)

+ |Cmax
n |
n

)

−−−→
n→∞ 0.

(2.10)

Besides,we assume that the arbitrary rectangle-range elastic
irrepresentable condition (AREIC), defined below, is satis-
fied.

Definition 2 The AREIC is given as: For j = 2, . . . , 6 sat-
isfying S( j) 
= ∅, there exists a positive constant vector η( j),
such that

(

C j1 + λ
(2)
n

n
�n,( j1)

)(

C11 + λ
(2)
n

n
�n,(11)

)−1

×
(

diag(sign(β∗
(1)))wn,(1) + 2λ(2)

n

λ
(1)
n

�n,(11)β
∗
(1)

+2λ(2)
n

λ
(1)
n

(

�n,(12)s(2) + �n,(13)t(3)
)

)

−2λ(2)
n

λ
(1)
n

�n,( j1)β
∗
(1)

− 2λ(2)
n

λ
(1)
n

(

�n,( j2)s(2) + �n,( j3)t(3)
)

⎧

⎨

⎩

≤ D( j)wn,( j) − η( j), if j = 2, 4;
≥ D( j)wn,( j) + η( j), if j = 3, 5;
≤ wn,(6) − η(6), if j = 6,

(2.11)

where (D(2) D(3) D(4) D(5)) = (

diag(sign(s(2)))
diag(sign(t(3))) 1 − 1

)

.

Let us roughly explain how the technical conditionAREIC
plays its role in the derivation of the variable selection con-
sistency of ARGEN. First by Lemma A.1 in the appendix,
for j ∈ {1−, 1+, 2, . . . , 6},

P

(

̂S( j)
(

λ(1)
n , λ(2)

n ,wn, 6n
) = S( j)

∣

∣

∣S( j) 
= ∅
)

≥ P
(E(V( j))

)

,

where the events E(V( j))’s are given in (A2). Next the condi-
tion AREIC (the left-hand side of (2.11) is the major part of
P
(E(V( j))

)

)will algebraically lead toP
(E(V( j))

) −−−−→
n→+∞ 1,
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which implies

P

(

̂S( j)
(

λ(1)
n , λ(2)

n ,wn, 6n
) = S( j)

∣

∣

∣S( j) 
= ∅
)

−−−−→
n→+∞ 1,

i.e., the variable selection consistency is established.
When s = 0, t = +∞, wn = 1 and �n is the identity

matrix, the AREIC becomes the nonnegative elastic irrepre-
sentable condition (NEIC) as follows:

C61

(

C11 + λ
(2)
n

n

)−1(

1 + 2λ(2)
n

λ
(1)
n

β∗
(1)

)

≤ 1 − η(6), (2.12)

which yielded the variable selection consistency of nonneg-
ative elastic net (Zhao et al 2014). If, in addition to (2.12),
λ

(2)
n = 0, the NEIC then becomes the nonnegative irrepre-

sentable condition (NIC):

C61C
−1
11 1 ≤ 1 − η(6),

which was a sufficient condition to obtain the variable selec-
tion consistency of the nonnegative lasso (Wu et al 2014).
Note that, NIC is a nonnegative version of the irrepresentable
condition (IC) for the variable selection consistency of the
lasso (Zhao and Yu 2006):

|C61C
−1
11 sign(β∗

(1))| ≤ 1 − η(6).

Although IC is a sufficient and necessary condition for the
variable selection consistency of the lasso (Zhao and Yu
2006) while NIC is only a necessary condition, in the real
world NIC is easier to be satisfied than IC since it does
not require the absolute value on the left-hand side of the
inequality. As a result AREIC is a natural general version
of the previous necessary conditions NEIC and NIC for the
variable selection consistency. Below we state the first main
result of the paper. Its proof is given in Appendix A.

Theorem 2.1 Under AREIC and the conditions (2.5) - (2.10),
the ARGEN possesses the variable selection consistency
property (2.2).

2.3 Estimation consistency

Recall that an estimation method with target parameter β∗
has the property of estimation consistency if

‖̂β − β∗‖2 P−−−→
n→∞ 0,

where ‖ · ‖2 denotes the Euclidean distance and
P−−−→

n→∞ is

the convergence in probability. Besides the variable selection

consistency, ARGEN admits estimation consistency, subject
to the following conditions.

(i) β∗ ∈ I. Let p = pn , q = qn be non-decreasing as n
increases.

(ii) wn = (wn,1, . . . ,wn,pn ) with wn,1, . . . ,wn,pn > 0 and
�n are given.

(iii) Let X j be the j th column of X , which satisfies

max
1≤ j≤pn

2(X ′
j X j + λ

(2)
n �n, j j )

(1 + λ
(2)
n )w2

n, j

≤ 1, for all n ≥ 1.

(iv) X satisfies the restricted eigenvalue (RE) condition, i.e.
there exists a constant κ > 0, such that for all n ≥ 1 and
all β ∈ I satisfying

6
∑

j=4

w′
n,( j)|β( j)| ≤ 3

3
∑

j=1

w′
n,( j)|β( j)|,

we have

2(‖Xβ‖22 + λ(2)
n β ′�nβ) ≥ κ(1 + λ(2)

n )‖ diag(wn)β‖22.

(v) λ
(1)
n , λ(2)

n , wn , pn and qn satisfy

qn(λ
(1)
n )2

(1 + λ
(2)
n )2

−−−→
n→∞ 0

and

pn exp

(

− n

8σ 2

(

λ
(1)
n

)2

1 + λ
(2)
n

)

−−−→
n→∞ 0,

where σ > 0 is the residual standard deviation of the
ARGEN.

Below we state the estimation consistency of the ARGEN.

Theorem 2.2 Consider a qn-sparse instance of the ARGEN
(2.1). Let X satisfy the conditions (i) - (iv) and let the regu-
larization parameters λ

(1)
n > 0, λ(2)

n ≥ 0, then the ARGEN
solution ̂β := ̂β(λ

(1)
n , λ

(2)
n ,wn, �n) satisfies:

P

(

‖ diag(wn)(̂β − β∗)‖22 >
9qn(λ

(1)
n )2

κ2(1 + λ
(2)
n )2

)

≤ 2pn exp

(

− n

8σ 2

(λ
(1)
n )2

1 + λ
(2)
n

)

,

(2.13)

P

(

‖ diag(wn)(̂β − β∗)‖1 >
12qnλ

(1)
n

κ(1 + λ
(2)
n )

)

≤ 2pn exp

(

− n

8σ 2

(λ
(1)
n )2

1 + λ
(2)
n

)

,

(2.14)
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where σ > 0 denotes the residual standard deviation of the
ARGEN. In addition if (v) holds, we have

‖̂β − β∗‖2 P−−−→
n→∞ 0. (2.15)

Proof Themain idea to the proof is to transform the ARGEN
problem into a rectangle-range lasso problem. Let

˜X =
√
2n

√

1 + λ
(2)
n

(

X diag (wn)
−1

√

λ
(2)
n �

1/2
n diag (wn)

−1

)

(n+p)×p

,

˜Y =
(√

2nY
0

)

(n+p)×1

,

˜β∗ =
√

1 + λ
(2)
n diag (wn)β

∗, λn = λ
(1)
n

√

1 + λ
(2)
n

,

˜I =
pn
∏

i=1

[√

1 + λ
(2)
n wn,i si ,

√

1 + λ
(2)
n wn,i ti

]

.

Then the ARGEN (2.1) can be written as the rectangle-range
lasso:

̂
˜β(λn) = argmin

β∈˜I

(

1

2n

∥

∥˜Y − ˜Xβ
∥

∥

2
2 + λn|β|

)

=
√

1 + λ
(2)
n diag(wn)̂β.

(2.16)

In view of the conditions (i)-(iv), all requirements of Corol-
lary 2 in Negahban et al (2012) are satisfied. Therefore,
applying Corollary 2 in Negahban et al (2012) to the lasso
(2.16) yields the results. We point out that: (1) Based on
its proof, Corollary 2 in Negahban et al (2012) works for
rectangle-range lasso. (2) There is a typo in the statement of
Corollary 2 in Negahban et al (2012): the inequalities (34) in
Negahban et al (2012) should be corrected to

‖̂θλn − θ∗‖22 ≤ 144σ 2

κ2
L

s log p

n

‖̂θλn − θ∗‖1 ≤ 48σ

κL
s

√

log p

n
.

��
If we assume wn � 0 as n → ∞ in Theorem 2.2, we

easily obtain the estimation consistency condition for the
nonnegative lasso (see Proposition 1 in Wu et al (2014)) and
the nonnegative elastic net. Note that the estimation consis-
tency of the nonnegative elastic net (Wu and Yang 2014)
has not yet been derived, hence we state it below as a corol-
lary of Theorem 2.2. To obtain the corollary it suffices to
observe

∑3
i=1 w

′
n,(i)wn,(i) = qn when wn, j = 1 for all

n ≥ 1, j = 1, . . . , pn .

Corollary 2.3 Consider a qn-sparse nonnegative elastic net
model. Assume:

(i) β∗ ≥ 0. pn, qn are non-decreasing as n increases.
(ii) Let X j be the j th column of X which satisfies

2(X ′
j X j + λ

(2)
n )

1 + λ
(2)
n

≤ 1, for all j = 1, . . . , p.

(iii) There exists a constant κ > 0, such that

2(‖Xβ‖22 + λ(2)
n ‖β‖22) ≥ κ(1 + λ(2)

n )‖β‖22
for all β ≥ 0 satisfying

∑

j∈{1,...,pn}: β∗
j =0

|β j | ≤ 3
∑

j∈{1,...,pn}: β∗
j 
=0

|β j |.

Let λ
(1)
n > 0, λ(2)

n ≥ 0, then the nonnegative elastic net
solution β̂ verifies the following inequalities:

P

(

‖̂β − β∗‖22 ≤ 9qn(λ
(1)
n )2

κ2(1 + λ
(2)
n )2

)

≥ 1 − 2pn exp

(

− n(λ
(1)
n )2

8σ 2(1 + λ
(2)
n )

)

,

P

(

‖̂β − β∗‖1 ≤ 12qnλ
(1)
n

κ(1 + λ
(2)
n )

)

≥ 1 − 2pn exp

(

− n(λ
(1)
n )2

8σ 2(1 + λ
(2)
n )

)

.

As a consequence of Corollary 2.3, ̂β is consistent if

qn(λ
(1)
n )2

(1 + λ
(2)
n )2

−−−→
n→∞ 0

and

pn exp

(

− n(λ
(1)
n )2

8σ 2(1 + λ
(2)
n )

)

−−−→
n→∞ 0.

If we take λ
(2)
n = 0 and λ

(1)
n = 4σ

√
log pn/n in Corollary

2.3, we obtain the nonnegative lasso’s tail probability control
as in Proposition 1 in Wu et al (2014). If we further assume
β∗ ∈ R in Corollary 2.3, we derive the tail bounds for the
lasso (see Corollary 2 in Negahban et al (2012)).

2.4 Limiting distributions of ARGEN estimators

We now study the asymptotic behavior in distribution of the
ARGEN estimators, as n → ∞. Again we can make use of
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the transformation of ARGEN to the rectangle-range lasso
model (2.16), since the limiting distributions of the lasso
regression estimators have been studied in Fu and Knight
(2000). Observe that (2.16) is equivalent to

̂
˜β(λn) = argmin

β∈˜I

(

∥

∥Y̆ − X̆β
∥

∥

2
2 + λn|β|

)

, (2.17)

where X̆ = ˜X/
√
2n and Y̆ = ˜Y/

√
2n. (2.17) is then the type

of lasso studied in Fu and Knight (2000). Assume that the
row vectors of X̆ , denoted by X̆ (i), i = 1, . . . , n, satisfy

1

n

n
∑

i=1

X̆ (i) X̆ (i)′ −−−→
n→∞ M, (2.18)

where M is a nonsigular nonnegative definite matrix and

1

n
max
1≤i≤n

X̆ (i)′ X̆ (i) −−−→
n→∞ 0. (2.19)

It follows from Theorem 2 in Fu and Knight (2000) that the
ARGEN estimator ̂β has the following asymptotic behavior
in distribution.

Theorem 2.4 Assume limn→∞ pn = p, limn→∞ λ
(2)
n = λ(2)

and limn→∞ wn = w = (w1, . . . ,wp). Let X, wn and �n

satisfy (2.18) and (2.19). Also assume

λ
(1)
n

√

n(1 + λ
(2)
n )

−−−→
n→∞ λ0 ≥ 0.

Then

√
n(̂β − β∗) law−−−→

n→∞ argmin
u∈I

(V (u)),

where
law−−−→
n→∞ denotes the convergence in distribution; V (u)

is a Gaussian random variable given as

V (u) = −2u′G + u′Mu

+ λ0

p
∑

j=1

(

u j sign(β
∗
j )1(β∗

j 
= 0) + |u j |1(β∗
j = 0)

)

.

In the above expression of V (u), G ∼ N (0, σ 2 M), u j

denotes the j th coordinate of u and 1 is the indicator func-
tion.

Theorem2.4 includes the asymptotic behaviors of the elas-
tic net and nonnegative elastic net estimators as its particular
examples. As another particular example, when λ0 = 0 and
p = 1 (then M is a single value and I = [s1, t1]), by the fact
that V is convex, we obtain

argmin
u∈I

(V (u)) =
⎧

⎨

⎩

M−1G if M−1G ∈ [s1, t1];
s1 if M−1G < s1;
t1 if M−1G > t1.

In the above example, if p ≥ 2 and I 
= R
p, argmin

u∈I
(V (u))

has no simple explicit expression. Note that argmin
u∈I

(V (u))

belongs to some quadratic programming problem. In the next
section we provide a multiplicative updates numerical algo-
rithm to solve the ARGEN. This algorithm may be further
applied to simulate argmin

u∈I
(V (u)) numerically.

3 MU-QP-RR-W-l1 Algorithm for Solving
ARGEN

In this section we provide a solution of ARGEN by using an
extensive multiplicative updates algorithm. Given wn, �n

and λ
(1)
n , λ

(2)
n ≥ 0, the ARGEN in (2.1) can be expressed as

the following equivalent problem:

⎧

⎪

⎨

⎪

⎩

minimize F1(β) = β ′(X ′X + λ
(2)
n �n

)

β

−2(X ′Y )′β + λ
(1)
n w′

n|β|,
subject to β ∈ [s, t].

(3.1)

To simplify the problem, we rewrite it by taking

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

v = β − s,

A = 2
(

X ′X + λ
(2)
n �n

)

,

b = As − 2X ′Y ,

d = λ
(1)
n wn,

l = t − s,
v0 = s−:= (max{0,−s1} . . .max{0,−sp})′ ≥ 0

and obtain an equivalent problem of (3.1), that is,

{

minimize F(v) = v′Av + b′v + d ′|v − v0|,
subject to v ∈ [0, l]. (3.2)
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This is obtained by arguing |v + s| − |v − v0| = s+ :=
(

max{0, s1} . . . max{0, sp}
)′ and omitting the constant

terms d ′s+ + (3/2)s′As−b′s.Here the matrix A is symmet-
ric positive semi-definite. The problem (3.2) is a quadratic
programming problem but contains an item of d ′|v − v0|.

Sha et al (2007a) derived the multiplicative updates for
solving the nonnegative quadratic programming problem.
The algorithm has been shown to have a simple closed-form,
and a rapid convergence rate. For our problem (3.2), however,
it contains the absolute values and lower and upper limits of
the optimization variables, so that direct application of the
algorithm in Sha et al (2007a) is impractical. Therefore, we
propose a new iterative algorithm to solve (3.2) and call it
multiplicative updates for solving quadratic programming
with rectangle range and weighted l1 regularizer (abbrevi-
ated to MU-QP-RR-W-l1).

Let us formulate amore general problem that canbe solved
by MU-QP-RR-W-l1:

{

minimize F(v) = 1
2v

′Av + b′v + d ′|v − v0|,
subject to v ∈ [0, l]. (3.3)

Here v, b, d, v0, l are column vectors of dimension p, where
elements of d, v0 are nonnegative and elements of l are pos-
itive. The matrix A = (Ai j )1≤i, j≤p is positive semi-definite.
In fact, the nonnegative quadratic programming (see e.g.
Equation (5) in Sha et al (2007a) or (20) in Wu and Yang
(2014)) is a special case of (3.3), where we take the elements
of d, v0 to be 0 and elements of l to be infinity.

Let us further adopt the following notations. For i, j ∈
{1, . . . , p}, we define the positive part and negative part of
Ai j by

A+
i j := max

{

0, Ai j
}

and A−
i j := max

{

0,−Ai j
}

.

Then denote the positive part and negative part of the matrix
A by

A+ := (

A+
i j

)

1≤i, j≤p and A− := (

A−
i j

)

1≤i, j≤p.

It follows that A = A+ − A− and |A| := (|Ai j |
)

1≤i, j≤p

= A+ + A−. Let ai (v) := (A+v)i and ci (v) := (A−v)i , we
then present the MU-QP-RR-W-l1 algorithm in pseudocode
below.

Algorithm 1MU-QP-RR-W-l1
Input: A, b, d, v0, l.
Initialization: v(1) > 0; v(0) ←− 0; m ←− 1;
while v(m−1) 
= v(m) do

for i = 1, . . . , p do

r1 ←− v
(m)
i (3.4)

×
(−(bi + di ) + √

(bi + di )2 + 4ai (v(m))ci (v(m))

2ai (v(m))

)

;

r2 ←− v
(m)
i

×
(−(bi − di ) + √

(bi − di )2 + 4ai (v(m))ci (v(m))

2ai (v(m))

)

;

v
(m+1)
i ←−

⎧

⎨

⎩

min{r1, li } if r1 > v0i ;
min{r2, li } if r2 < v0i ;
min{v0i , li } otherwise;

end
m ←− m + 1;

end
Output: v(m).

We point out that the conditions r1 > v0i and r2 < v0i in

(3.4) are mutually exclusive when v
(m)
i > 0. This is because,

on one hand, r1 > v0i is equivalent to

2ai (v)v0i

vi
+ (bi + di ) < 0

or
⎧

⎪

⎨

⎪

⎩

2ai (v)v0i
vi

+ (bi + di ) ≥ 0,

ai (v)

(

v0i
vi

)2

+ (bi + di )
v0i
vi

− ci (v) < 0.

(3.5)

On the other hand, r2 < v0i is equivalent to

⎧

⎪

⎨

⎪

⎩

2ai (v)v0i
vi

+ (bi − di ) ≥ 0,

ai (v)

(

v0i
vi

)2

+ (bi − di )
v0i
vi

− ci (v) > 0.
(3.6)

Since di ≥ 0, it is obvious that (3.5) and (3.6) are mutually
exclusive.

A special case of the algorithm is that when di = 0 and
li = +∞ for i = 1, . . . , p, (3.4) becomes
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vi ←− vi

(−bi +
√

b2i + 4ai (v)ci (v)

2ai (v)

)

,

for i = 1, . . . , p, which reduces to the one for nonnegative
quadratic programming (see e.g. (7) - (12) in Sha et al (2007a)
or (21) - (22) in Wu and Yang (2014)).

The MU-QP-RR-W-l1 converges monotonically to the
global (rectangle area) minimum of the objective function
F(·) in (3.3). This is summarized in the theorem below:

Theorem 3.1 Let F(·), A, b, d, v0, l be given as in the
problem (3.3). Define an auxiliary function G(·, ·) by: for
u, v ∈ [0, l],

G(u, v):=1

2

∑

1≤i, j≤p

( A+
i j u

2
i v j

vi
− A−

i jviv j
(

1 + log
uiu j

viv j

)

)

+
p

∑

i=1

(biui + di |ui − v0i |).

(3.7)

For any positive-valued vector v ∈ [0, l], pick a vector
U (v) ∈ argmin

u∈[0,l]
G(u, v). Then U (v) satisfies the following:

(i) For any v ∈ [0, l],

F(U (v)) ≤ F(v), (3.8)

F(U (v)) = F(v) if and only if U (v) = v. (3.9)

(ii) For each v ∈ [0, l], U (v) is the updated value of v,
presented in the form of (3.4).

The approach we used to prove Theorem 3.1 is simi-
lar to the ones used in Expectation-Maximization algorithm
(Dempster et al 1977), nonnegative matrix factorization (Lee
and Seung 2000), and Multiplicative Updates for Nonneg-
ative Quadratic Programming (Sha et al 2007a, b). More
specifically, the proof proceeds in two steps. First, we estab-
lish an auxiliary function G(·, ·) in (3.7) to show that the
MU-QP-RR-W-l1 monotonically decreases the value of the
objective function F(·) in (3.3). Then, we show that the iter-
atively updates (3.4) in Algorithm 1 converge to the global
minimum. The complete proof of Theorem 3.1 is provided
in Appendix B.

4 Hyper-parameter optimization

ARGEN is a family including many well-known linear mod-
els with constraints. For instance, in Table 1, the ARLS,

ARL,ARR, andARENcorrespond to the arbitrary rectangle-
range least squares, lasso, ridge, and elastic net, respectively.
Besides, based on the choice of parameters we can propose
some other new methods including ARGL, ARGR, ARLEN
and ARREN, which are applicable to more complicated
problems, and usually perform better than the free-range
regression coefficients models.

However, many of the methods in Table 1 involve dealing
with very high-dimensional hyper-parameter space, thus grid
search method for tuning parameters can be very computa-
tionally expensive.Other tuning approaches such asBayesian
optimization and gradient-based optimization, developed to
obtain better results in fewer evaluations, when applied to our
case, however, are also very costly because they easily search
around local minimumwhen the complexity of the surface is
relatively high. Because discovering better tuning methods
is not a focus in this paper, it is a potential direction of our
future research, thus we simply use random search (Ncalls

trials) to avoid costly searching on the entire grid. Follow-
ing the convention in Zou and Hastie (2005) and Tibshirani
(1996), we use the mean-squared error (MSE) as the score
function, that is,

MSE = E[X̂β−Xβ∗]2 = E
[

(̂β−β∗)′X ′X(̂β−β∗)
]

. (4.1)

To further speed up the tuning process, we select the fol-
lowing values for each of the potential hyper-parameters
to tune on. λ

(1)
n , λ

(2)
n take integer values in the sets �(1)

and �(2), respectively, where for each i = 1, 2, �(i) =
{

0, 1, . . . , λ(i)
up
}

for some λ
(i)
up ∈ Z+. The weight vector wn

takes values in

W=
{

(w1 . . . wp)
′

∑p
i=1 wi

: w1, . . . , wp ∈ {

0, · · · , wup
}

}

,

for some wup ∈ Z
+. The matrix 6n can be decomposed to

�n = PDP ′ with orthogonal matrix P and nonnegative
diagonalmatrix D. Therefore, the values of 6n are considered
in

� =
{

PDP ′ :D = diag(d1, · · · , dp),

d1, . . . , dp ∈ {

0, · · · , dup
}

}

,

for some dup ∈ Z
+ and orthogonal matrix P . The cardinality

of �(1), �(2), W , and � are λ
(1)
up + 1, λ(2)

up + 1, (wup + 1)p,
and (dup + 1)p, respectively, thus we obtain the total values
on the parameter grid for each method listed in Table 2.

To improve the performance of the methods, we can: (1)
randomly choose more trials, that is, increase Ncalls , to cover
more values on the grid, since theoretically searching on the
whole grid will give the best result; (2) increase the values
of wup and dup, but at the same time Ncalls also needs to be
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Table 1 Particular examples of
ARGEN methods and their
parameter setting

Method Abbreviation λ
(1)
n λ

(2)
n wn �n

AR least squares ARLS 0 0 1/p I

AR lasso ARL 0 1/p I

AR generalized lasso ARGL 0 I

AR ridge ARR 0 1/p I

AR generalized ridge ARGR 0 1/p

AR elastic net AREN 1/p I

AR lasso generalized elastic net ARLEN I

AR ridge generalized elastic net ARREN 1/p

AR generalized elastic net ARGEN

Note: 1/p is the value of each element of wn . I represents the identity matrix in R
p×p . Parameters with no

value assigned are hyper-parameters. AR stands for arbitrary rectangle-range.

Table 2 Tuning grid for
different methods

Methods Tuning grid Total number of values on grid

ARLS None 0

ARL �(1) λ
(1)
up + 1

ARGL �(1) × W (λ
(1)
up + 1)(wup + 1)p

ARR �(2) λ
(2)
up + 1

ARGR �(2) × � (λ
(2)
up + 1)(dup + 1)p

AREN �(1) × �(2) (λ
(1)
up + 1)(λ(2)

up + 1)

ARLEN �(1) × �(2) × W (λ
(1)
up + 1)(λ(2)

up + 1)(wup + 1)p

ARREN �(1) × �(2) × � (λ
(1)
up + 1)(λ(2)

up + 1)(dup + 1)p

ARGEN �(1) × �(2) × W × � (λ
(1)
up + 1)(λ(2)

up + 1)(wup + 1)p(dup + 1)p

increased since higher values of wup and dup will exponen-
tially enlarge the grid.

5 Simulations

5.1 Signal recovery

The purpose of the signal recovery examples below is to
explore the best possible performance of ARGEN, and to
showARGEN’s ability to “reduce noise” and deal with high-
dimensional (p � n) sparse signals.

First, we conduct the same problem as inMohammadi et al
(2018) to compare our results with theirs. In the following,
we briefly outline the problem. A sparse signal β∗ ∈ R

4096

with 160 spikes that have amplitude 1 is generated and plotted
in Fig. 1 (top), which is the true regression coefficient vector.
The design matrix X ∈ R

1024×4096 is generated with each
entry sampled from i.i.d. standard normal distribution and
each pair of rows orthogonalized. The response vector Y ∈
R
1024 is then generated through Y = Xβ∗ + ε, where ε ∈

R1024 is a vector of i.i.d Gaussian noise with zero mean and
variance 0.1. The lower and upper bounds of ̂β are−1 and 1,
respectively. Given λ

(1)
n = 10, λ(2)

n = 0, and wi = 0 if βi 
=

0 for i = 1, . . . , 4096, we obtain the recovery signal ̂β and
its difference from the true signal in the middle and bottom
plots in Fig. 1. As a result, ARGEN achieves a lower MSE of
0.00069 compared with the MSE of 0.00273 in Mohammadi
et al (2018).

To show that ARGEN can deal with more complicated
problems, we take another signal recovering problem as
example. We follow the same settings as in the previous
problem, but this time replace the amplitude of each spike
by a random value generated from a uniform distribution
over [0, 1). The corresponding true and recovery signals and
their difference are plotted in Fig. 2. The MSE obtained by
ARGEN is 0.00166.

5.2 Methods comparison

In this section, we compare the performances of the methods
listed in Table 1. We adopt the following setup to tune the
four hyper-parameters: λ

(1)
up = 100, λ

(2)
up = 100, wup =

2, dup = 2. Considering the computational cost, the number
of random values (Ncalls) on grid to try is 100 for ARL and
ARR, 500 for AREN, 1280 for ARGL and ARGR, 2560 for
ARLEN and ARREN, and 6554 for ARGEN.
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Fig. 1 Signal recovery with equal-length spikes. MSE = 0.00069

Fig. 2 Signal recovery with arbitrary-length spikes. MSE = 0.00166

We conduct 8 examples to test the performance of each
method. In each example, we simulate 50 datasets from Y =
Xβ∗ + ε, ε ∼ N (0, σ 2), and each of the data sets consists
of independent training, validation, and testing sets. We use
the training set to fit models. Parameters are tuned on the
validation set. The test error, measured by the MSE (4.1),
will be computed on the testing set. In the following, we
outline these examples.

In Example 1, let β∗ = (3 1.5 0 0 2 0 0 0)′, p = 8,
σ = 3, and the pairwise correlation between Xi and X j be
0.5|i− j | for all i, j . We use 20 observations for training, 20
for validation, and 200 for testing.

Example 2 is the same as Example 1, except that each
entry of β∗ is replaced with 0.85.

In Example 3, let σ = 15, p = 40,

β∗ = (0 · · · 0
︸ ︷︷ ︸

10 times

2 · · · 2
︸ ︷︷ ︸

10 times

0 · · · 0
︸ ︷︷ ︸

10 times

2 · · · 2
︸ ︷︷ ︸

10 times

)′,

and the pairwise correlation between Xi and X j be 0.5 for all
i, j . We use 100 observations for training, 100 for validation,
and 400 for testing.

In Example 4, let σ = 15, p = 15,

β∗ = (3 · · · 3
︸ ︷︷ ︸

6 times

0 · · · 0
︸ ︷︷ ︸

9 times

)′.

Let the design matrix X be generated as:

xi = Z1 + εxi , Z1 ∼ N (0, 1), i = 1, 2,

xi = Z2 + εxi , Z2 ∼ N (0, 1), i = 3, 4,

xi = Z3 + εxi , Z3 ∼ N (0, 1), i = 5, 6,

where εxi ’s are i.i.d. N (0, 0.01), i = 1, · · · , 6.

xi ∼ N (0, 1), xi ’s are i.i.d. , i = 7, · · · , 15.

We use 40 observations for training, 40 for validation, and
100 for testing.

Example 5 is the same as Example 1, except that β∗ =
(−3 − 1.5 0 0 2 0 0 0)′ and βi ≥ −1000 for all i .

Example 6 is the same asExample 1, except that each entry
of β∗ is replaced with a random generated number in [−5, 5]
and this values is used for all the 50 data sets. Besides, we
restrict βi ∈ [−5, 5] for all i .

Example 7 is the same as Example 1, but usesβ∗ = (−6−
8 0 0 7 0 0 0)′ and restricts βi ∈ [−5, 5] for all i .

Example 8 is the same as Example 4, but uses 5 observa-
tions for training, 5 for validation, and 50 for testing. Beside,
we restrict βi ≥ −1000 for all i and use

β∗ = (−3 · · · − 3
︸ ︷︷ ︸

6 times

0 · · · 0
︸ ︷︷ ︸

9 times

)′.

The first three examples above are from Zou and Hastie
(2005) and Tibshirani (1996), which are originally con-
structed for lasso. The fourth example is similar to that in Zou
andHastie (2005),which creates a groupedvariable situation.
None of the first four examples, however, requires constraints
on lower or upper bound for the coefficients. To show and test
that ARGEN is applicable to more general and complicated
problems, we add four more examples, which are Examples
5 to 8. In each of Examples 5, 6, and 8, constraints are added
and include the true coefficients. In Example 7, we provide
a case when the true coefficients are out of the interval con-
straints. The values 1000 and 5 were chosen arbitrarily to
illustrate the model’s ability to work with constrained coef-
ficients. Moreover, another purpose of introducing the last
example is to test model performance on high-dimensional
(p ≥ n) scenarios.

Table 3 summarizes the Median MSE and its correspond-
ing standard error over 50 data sets using each method in
Table 1 for each of the above 8 examples. The MSEs of
examples with different σ are not comparable because they
are simulated with different noise variances. Some of our
examples do, however, share a similar simulation process
and their MSEs are at the same level. For instance, Examples
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Table 3 Median MSE and the
corresponding standard error
(given in the parentheses) over
50 replications for each method
and example

Models Example 1 Example 2 Example 3 Example 4
MSE (SE) MSE (SE) MSE (SE) MSE (SE)

ARLS 2.28 (0.31) 3.30 (0.27) 43.34 (1.53) 159.47 (6.23)

ARL 1.55 (0.26) 2.61 (0.21) 41.72 (1.43) 130.98 (3.91)

ARR 1.73 (0.25) 1.31 (0.15) 19.55 (0.72) 111.63 (2.23)

AREN 1.53 (0.29) 1.43 (0.16) 19.58 (0.73) 109.44 (2.28)

ARGL 0.54 (0.17) 1.39 (0.13) 42.87 (1.52) 155.69 (5.70)

ARGR 0.71 (0.13) 0.92 (0.09) 39.12 (1.36) 138.12 (3.81)

ARLEN 0.62 (0.19) 1.22 (0.14) 19.45 (0.72) 111.47 (2.25)

ARREN 0.49 (0.14) 1.01 (0.11) 37.50 (1.31) 124.11 (2.91)

ARGEN 0.20 (0.11) 0.65 (0.11) 38.25 (1.38) 136.00 (3.41)

Models Example 5 Example 6 Example 7 Example 8
MSE (SE) MSE (SE) MSE (SE) MSE (SE)

ARLS 5.81 (0.45) 3.92 (0.34) 18.52 (0.82) 107 (5 × 105)

ARL 2.61 (0.31) 3.38 (0.29) 15.42 (0.48) 117.02 (7.53)

AREN 2.63 (0.30) 4.58 (0.71) 15.72 (0.48) 96.75 (5.36)

ARR 3.04 (0.30) 3.98 (0.40) 17.10 (0.66) 98.49 (5.62)

ARGL 1.14 (0.20) 1.78 (0.22) 15.53 (0.35) 357.39 (65.14)

ARGR 1.51 (0.24) 1.30 (0.22) 14.80 (0.42) 189.69 (30.35)

ARLEN 1.19 (0.23) 2.36 (0.25) 15.52 (0.33) 94.43 (8.39)

ARREN 1.15 (0.26) 1.70 (0.23) 14.67 (0.32) 94.73 (13.07)

ARGEN 0.72 (0.14) 1.25 (0.19) 14.41 (0.31) 152.57 (91.40)

1 and 5 are similar except that Example 5 has a lower limit of
−1000 on the coefficients, whereas Example 1 has no limit.
As a result of these lower constraints, Example 5 tends to
force coefficients above the lower limit, resulting in relatively
higher MSEs than Example 1. In addition to cross-example
comparisons, itwouldmakemore sense to compare theMSEs
across methods for each example. The overall performance
ofmethods consisting ofmore parameters is better than those
with fewer parameters.More specifically, theARGL,ARGR,
ARLEN, ARREN, and ARGEN are, in most cases, outper-
forming the ARLS, ARL, ARR, and AREN. For instance,
ARGEN, the most complicated method that includes all four
hyper-parameters, performs best in Examples 1, 2, 5, 6, and
7. ARLEN and ARREN, the second from the top regard to
complicity, provide second high accuracy in Examples 1, 2,
3, 4, 5, 7, and 8. ARGL and ARGR are at the third level
of performance in Example 1, 2, 5, 6, and 7. However, in
Table 2, performances are not always increasing as themodel
gets more complicated. This is because the ratio of values
searched (Ncalls) to the total number of values on the grid
is not the same for all the methods, due to the exponential
increase of the size of the grid as more hyper-parameters are
included. It is also because we keep the same Ncalls in each
method for all the examples, which, in fact, have different
dimensionality. Therefore, the performance of methods like

ARLEN, ARREN, and ARGEN is worse than expected in
some of the examples.

6 Real world application - S&P 500 index
tracking

6.1 Outline

Index tracking is passive management that replicates the
return of a market index (e.g., S&P 500 in New York and
FTSE 100 in London) by constructing an equity portfolio
that contains only a subset of the index constituents to reduce
the transaction and management costs (Connor and Leland
1995; Franks 1992; Jacobs and Levy 1996; Jobst et al 2001;
Larsen and Resnick 1998; Lobo et al 2000; Toy and Zurack
1989).

In this section, we show how ARGEN applies to index
tracking, an asset allocation (Markowitz 1952) problem with
allocation constraints, in the financial field and compare
the results with those of nonnegative lasso (Wu et al 2014)
and nonnegative elastic net (Wu and Yang 2014). Through
this example, (1) we provide general practice guidance for
adapting ARGEN to solve real world problems; (2) We
demonstrateARGEN’s feasibility andflexibility compared to
the existingmethods. In particular, we highlight that ARGEN
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can deal with problems that require constraints on the coef-
ficient, while none of the existing methods (Wu et al 2014;
Wu and Yang 2014) can.

We will take tracking the US S&P 500 index as the exam-
ple. It is worth noting that, inWu et al (2014), the nonnegative
lasso is applied to tracking the CSI 300 index; in Wu and
Yang (2014), the nonnegative elastic net is used to track the
CSI 300 and and SSE 180. Both indexes are based on stocks
without short sales. This is not the case for US stock mar-
ket, where short sales are allowed. Although short-selling
is allowed in the US market, traditional mutual funds still
hold long-only portfolios. Previous research (Almazan et al
2004; Agarwal et al 2009; Chen et al 2013; An et al 2021)
suggested that only a small portion of mutual funds hold
short positions in their portfolios, although short-selling is
allowed for a lot of mutual funds. Especially the data from
An et al (2021) suggested that about 90% of the sampled
mutual funds held long-only portfolios in the previous 8 quar-
ters before the research date (July, 2021), even though 40%
of those funds are explicitly allowed to hold short positions.
There are long-only funds in the US market, to name a few:
MS INVF Global Advantage Fund, Jennison Global Oppor-
tunity Fund, and Thematics Safety Fund. According to the
managing partner from Reverb ETF (a user-voting-based,
long-only, diversified equity fund), constraints are usually in
place for constituents to ensure portfolio diversification and
risk migration. From a global perspective, short selling still
faces limitations or additional regulations outside the US,
such as in China, India, and Brazil. In 2020, due to market
volatility, several countries (Belgian, French, Italy, etc.) in
Europe raised short-selling restrictions for 2 months from
March 18, 2020, and a few Asian countries (South Korea,
Indonesian, and Thailand) imposedmore extended short sell-
ing restrictions (Manson, 2020). Given the above, we believe
that an empirical study with a non-negative range setting
would be a good fit to general applications in practice.

In portfolio management, “how close is the constructed
tracking portfolio’s return compared to that of benchmark
index” is a primary measurement for accessing portfolio
performance for passive strategies such as index-tracking
strategy. Hence, inspired by Sant’Anna et al (2020), we eval-
uate the tracking portfolio performance from the following
three perspectives. Our primary performance measurement
is tracking error (TE),

TE =

√

√

√

√

√

T
∑

t=1

(

(r pt − rbt ) − E[r pt − rbt ])2

T

for measuring the volatility of the excess return of a portfolio
to the corresponding benchmark.We also compute the annual
volatility of portfolio return (ARV),

ARV = √
252

√

√

√

√

√

T
∑

t=1

(

r pt − E[r pt ])2

T

to measure the annualized return volatility of a portfolio. In
addition, we also report the cumulative return

CR =
T
∏

t=1

(1 + r pt ) − 1

of the construction portfolios in our study. Here r pt denotes
the portfolio return at time t , rbt is the benchmark return at
time t , and T is the total number of periods.

Because there is no guarantee that the normalized ̂β is
still less than t , we introduce the following normalization
process, which constrains the way of choosing the lower and
upper limits of I. Recall that si and ti are the lower and upper
bounds of the coefficient βi . To guarantee that the portfolio
weight (i.e., normalized βi ), denoted by β̃i , for stock i satis-
fies 0 ≤ β̃i ≤ ti ≤ 1, we need si and ti satisfy the following:

ti +
∑

j∈{1,...,p}\{i}
s j ≥ 1,

because it yields

β̃i = βi
∑p

j=1 β j
≤ ti

ti + ∑

j∈{1,...,p}\{i} s j
≤ ti .

In the special case of si = s0 and ti = t0, we shall choose
the lower and upper bounds through

1 − t0
p − 1

≤ s0 ≤ t0 ≤ 1.

We use 5-year (from February 19, 2016 to February 18,
2020) historical daily prices (1259 data points) of S&P 5003

as our benchmark index and those of the constituent equities.4

Because the list of S&P 500 constituents is updated regularly
by S&P Dow Jones Indices LLC, we only include the daily
prices from 377 stocks that have not been changed during the
period of interest. In the linear model (1.2), Y is the vector
of the daily return of the S&P 500 index and columns of
X are the daily returns of the 391 stocks. To follow a buy-
and-hold investment strategy, we split the data into training,
validation, and testing sets. The training and validation sets
consist of the first 252 data points (12months), 20% ofwhich
are in the validation set. The remaining 1006 data points are

3 Retrieved from finance.yahoo.com.
4 Retrieved from quandl.com.
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referred to as the testing set. In addition, we construct a long-
only portfolio by ensuring the lower bound s assumes only
nonnegative values.

In the following, we outline our procedure of the index
tracking problem. First, we target selecting N individual
stocks to construct the tracking portfolio. The number N
is among the normal range of the number of stocks hold
to remove risk exposure and avoid unnecessary transaction
costs. In other words, we constrain the number of nonzero
elements in ̂β to N . Thus we use the bisection search (Wu
and Yang 2014) in Algorithm 2 to determine the optimal
λ

(1)
n that produce the right number of nonzero coefficients,

given N = 30, 50, 70, 90 respectively, λ
(2)
n = 0, wn has

equal elements, and I = [0,+∞), respectively. Hence we
obtain the 50 stocks selected by the model. This first process
proceeds on the training and validation sets.

Algorithm 2 Bisection search for λ
(1)
n

Input: λ(2)
n ,wn, �n, I, N .

Initialization:
λdown ←− 0; λup ←− 1; λ ←− (λup + λdown)/2;
̂β ←− argmin

β∈I

(

‖Y − Xβ‖22 + λw′
n |β| + λ

(2)
n β ′�nβ

)

;
while ‖̂β‖0 
= N do

if ‖̂β‖0 > N then
λdown ←− λ; λ ←− (λup + λdown)/2;

else
λup ←− λ; λ ←− (λup + λdown)/2;

end
̂β ←− argmin

β∈I

(

‖Y − Xβ‖22 + λw′
n |β| + λ

(2)
n β ′�nβ

)

;

end
Output: λ

Next,we considerI = [0.0082, 0.6] andI = [0.0041, 0.8],
respectively, and apply ARLS and ARGEN to the corre-
sponding data set of the selected 30, 50, 70, and 90 stocks to
experiment the ARGEN algorithm. The ARLS is viewed as
the baseline. ForARGEN,we searchλ

(1)
n randomly in a range

of (10−8, 5× 10−2), which is a smaller searching grid com-
pared with that in Sect. 4, since larger range results in over
50 vanishing coefficients. The λ

(2)
n is randomly searched in

a range of (10−8, 102). We take wup = 1, and dup = 1.
The hyper-parameter tuning process is conducted in Optuna
hyper-parameter optimization framework (Akiba et al 2019),
and selected the parameter set that has the lowest validation
score, measured by MSE, compared with that of ARLS, and
then apply it on testing data set to evaluate and compare the
out-of-sample performances between the portfolios obtained
using ARGEN and ARLS.

6.2 Experimental results

We follow the procedure as elaborated in the previous ses-
sion to constructmultiple ARGEN andARLS portfolios with
different numbers of stocks, and different numbers of hyper-

parameter tuning trails. The portfolios’ testing performance
is summarized in Table 4.

Particularly, Table 4 illustrates the performance of dif-
ferent ARGEN and ARLS portfolios constructed with dif-
ferent coefficient boundary and stock numbers. Across
different portfolio construction configurations, the ARGEN
portfolios tend to have lower tracking errors and annu-
alized return volatility than ARLS portfolios, while sat-
isfying the coefficient boundary conditions. Even though
ARGEN portfolios tend to have lower cumulative returns,
but they are comparable with the S&P 500 index cumulative
return during the same period, except for 30-stock ARGEN
portfolios. Portfolios with a wider range of constraints
([0.0041, 0.8]) trackbetter thanportfolioswith narrower con-
straints range ([0.0082, 0.6]), which is expected behavior.
Another expected behavior we can observe from the results
is that as we increase the number of stocks in portfolios, the
tracking errors decrease.

7 Conclusion and future perspectives

In this paper, we propose the ARGEN for variable selection
and regularization. ARGEN linearly combines generalized
lasso and ridge penalties, which are w′

nβ and β ′�nβ, and it
allows arbitrary lower and upper constraints on the coeffi-
cients. Many well-known methods including (nonnegative)
lasso, ridge, and (nonnegative) elastic net are particular cases
of ARGEN.We show that ARGENhas variable selection and
estimation consistencies subject to some conditions. We pro-
pose an algorithm to solve the ARGEN problem by applying
multiplicative updates to a quadratic programming problem
with a rectangle range and weighted l1 regularizer (MU-QP-
RR-W-l1). The algorithm is implemented as a Python library
through the PyPi server. The simulations and the application
in index-tracking present shreds of evidence that ARGEN
usually outperformsothermethods discussed in the paper due
to its flexibility and adaptability for problems with a small
to moderate amount of predictors. In problems with a huge
amount of predictors, although ARGEN should perform best
theoretically, the cost might be high. In this situationARLEN
and ARREN might be better choices. We refer readers to the
Github repository5 for full access to the code for the simula-
tion and application parts.

Although in the paper the ARGEN penalty is added to
linear models, there are possibilities that it is applied to other
loss functions to improve their performances as directions of
future research. Motivated by the index tracking problem, a
constraint that guarantees the sum of weights equals onemay
be considered as another direction. Asymptotic behavior in
law of theARGEN estimator remains unknown.Most impor-

5 https://github.com/songzhm/arbitraryElasticNet
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Table 4 ARGEN vs ARLS
tracking portfolio performance
in the testing period

I # of Stocks ARGEN ARLS
TE ARV CR TE ARV CR

[0.0082, 0.6] 30 2.20% 28.15% 56.70% 2.25% 29.14% 85.36%

50 2.01% 24.34% 97.70% 2.04% 24.93% 108.62%

70 2.03% 24.80% 94.86% 2.09% 25.96% 95.36%

90 2.03% 24.69% 83.34% 2.07% 25.59% 85.62%

[0.0041, 0.8] 30 2.24% 28.87% 54.14% 2.23% 28.80% 80.58%

50 1.82% 20.31% 66.69% 2.01% 24.30% 112.86%

70 1.93% 22.56% 114.65% 1.97% 23.49% 110.33%

90 1.93% 22.58% 98.33% 1.95% 23.00% 95.51%

All the parameter sets are achieved the best score in the validation period using a relatively large number
(30000) of hyper-parameter tuning tails. S&P 500 index realizes a cumulative return (CR) as 66.4697% and
an annualized return volatility (ARV) as 20.6233% in the testing period.

tantly, a more efficient tuning process is urgently required to
apply ARGEN to solve more complicated problems. All of
the above problems are open for future study.
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Appendix A Proof of theorem 2.1

Without loss of generality,we assume that
(

S(1−), S(1+), S(2),

. . . , S(6)
) = (1, . . . , p) to simplify the notations. In addition,

we follow the notations in Sect. 2.2. In order to show that
ARGEN admits variable selection consistency, we first need
to show that the following result holds.

Lemma A.1 For j ∈ {1−, 1+, 2, . . . , 6},

P

(

̂S( j)
(

λ(1)
n , λ(2)

n ,wn, 6n
) = S( j)

∣

∣

∣S( j) 
= ∅
)

≥ P
(E(V( j))

)

,
(A1)

for the events

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E(V(1−)) := {

ρ(t(1−) ∧ 0) < V(1−) < ρ(s(1−) ∧ 0)
}

,

E(V(1+)) := {

ρ(t(1+) ∨ 0) < V(1+) < ρ(s(1+) ∨ 0)
}

,

E(V(2)) := {

V(2) ≤ 0
}

, E(V(3)) := {

V(3) ≥ 0
}

,

E(V(4)) := {

V(4) ≤ 0
}

, E(V(5)) := {

V(5) ≥ 0
}

,

E(V(6)) := {−wn,(6) ≤ V(6) ≤ wn,(6)
}

,

(A2)

where

V := (V1 . . . Vp) = (V(1) . . . V(6)),

V(1) := 1

n

(

C11 + λ
(2)
n

n
�n,(11)

)−1

×
(

− X ′
(1)ε + λ

(1)
n

2

(−wn,(1−)

wn,(1+)

)

+λ(2)
n

(

�n,(12)s(2) + �n,(13)t(3)
)

)

, (A3)

V(1−) := (Vi )i∈S(1−)
, V(1+) := (Vi )i∈S(1+)

, (A4)

V( j) := T( j) − D( j)wn,( j), for j = 2, . . . , 6, (A5)
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with

T( j) :=2

n

(

X ′
( j)X(1) + λ(2)

n �n,( j1)

)

×
(

C11 + λ
(2)
n

n
�n,(11)

)−1

×
(λ

(2)
n

λ
(1)
n

�n,(11)β
∗
(1)−

X ′
(1)ε

λ
(1)
n

+ 1

2
diag(sign(β∗

(1)))wn,(1)

+ λ
(2)
n

λ
(1)
n

(

�n,(12)s(2) + �n,(13)t(3)
)

)

− 2λ(2)
n

λ
(1)
n

�n,( j1)β
∗
(1) + 2

λ
(1)
n

X ′
( j)ε

− 2λ(2)
n

λ
(1)
n

(�n,( j2)s(2) + �n,( j3)t(3)),

(A6)

(D(2) . . . D(6))

:= (diag(sign(s(2))) diag(sign(t(3))) 1 − 1 0),

ρ =
(

C11 + λ
(2)
n

n
�n,(11)

)−1
C11β

∗
(1) ∈ R

#S(1) ,

ρ(u) := (ρi )i∈S( j)
− u( j),

for u( j) = (ui )i∈S( j) and u ∈ R
p. (A7)

Proof Assume β∗
i = 0 for some i ∈ {1, . . . , p}. By the

Karush-Kuhn-Tucker (KKT) conditions, for given λ
(1)
n , λ(2)

n ,
wn , 6n , (2.1) is equivalent to solve ̂β from the following
constraint optimization problem

min
β∈[s,t], γ≥0, μ≥0

(‖Y − Xβ‖22 + λ(1)
n w′

n|β|
+ λ(2)

n β ′�nβ + γ ′(s − β) + μ′(β − t)
)

.

(A8)

Since the term |β| in (A8) is not differentiable but subdiffer-
entiable at 0, similar to the lasso problem (see Eqs. (2)-(9) in
Tibshirani (2013)), (A8) is equivalent to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−2X ′(Y − X̂β) + λ
(1)
n diag(θ)wn + 2λ(2)

n �n̂β

−γ + μ = 0,

θi ∈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{sign(̂βi )} if ̂βi 
= 0,

{1} if ̂βi = si = 0,

{−1} if ̂βi = ti = 0,

[ − 1, 1] if ̂βi = 0 ∈ (si , ti ),

for i = 1, . . . , p,

̂β ∈ [s, t], γ ≥ 0, μ ≥ 0, γ ′(s − ̂β) = 0, μ′(̂β − t) = 0,

(A9)

where θ ∈ R
p is called a subgradient of the function

(x1, . . . , xp) �→ |x1| + . . . + |xp| at x = ̂β. Let ̂β =
(̂β(1) . . . ̂β(6))

′ be the estimates of β∗ = (β∗
(1) . . . β∗

(6))
′

respectively. Recall that Y = Xβ∗ + ε with β∗
(2) = s(2),

β∗
(3) = t(3), β∗

(4) = s(4) = 0, β∗
(5) = t(5) = 0, β∗

(6) = 0 ∈
(s(6), t(6)). Plugging them into (A9) yields
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎪
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⎪

⎪

⎨

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−2

⎛

⎜

⎜

⎝

X ′
(1)
...

X ′
(6)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

X ′
(1)
...

X ′
(6)

⎞

⎟

⎟

⎠

′

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

β∗
(1) − ̂β(1)

s(2) − ̂β(2)

t(3) − ̂β(3)

−̂β(4)

−̂β(5)

−̂β(6)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ ε

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+λ
(1)
n diag(θ)

⎛

⎜

⎜

⎝

wn,(1)
...

wn,(6)

⎞

⎟

⎟

⎠

+2λ(2)
n

⎛

⎜

⎜

⎝

�n,(11) . . . �n,(16)
...

. . .
...

�n,(61) . . . �n,(66)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

̂β(1)
...

̂β(6)

⎞

⎟

⎟

⎠

−

⎛

⎜

⎜

⎝

γ(1)
...

γ(6)

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

μ(1)
...

μ(6)

⎞

⎟

⎟

⎠

= 0,

θi ∈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{sign(̂βi )} if ̂βi 
= 0,

{1} if ̂βi = si = 0,

{−1} if ̂βi = ti = 0,

[ − 1, 1] if ̂βi = 0 ∈ (si , ti ),

for i = 1, . . . , p,

̂β ∈ [s, t], γ ≥ 0, μ ≥ 0, γ ′(s − ̂β) = 0,

μ′(̂β − t) = 0, s(4) = 0, t(5) = 0, 0 ∈ (s(6), t(6)).

(A10)

If there exists ̂β that satisfies (A10) and

̂β(1−) ∈ (−∞, 0) ∩ (s(1−), t(1−)),

̂β(1+) ∈ (0,+∞) ∩ (s(1+), t(1+)),

̂β(2) = s(2) 
= 0, ̂β(3) = t(3) 
= 0,
̂β(4) = ̂β(5) = ̂β(6) = 0,

then S( j) = ̂S( j)(λ
(1)
n , λ

(2)
n ,wn, �n) for j ∈ {1−, 1+,

2, . . . , 6}. That makes (A10) equivalent to
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−2X ′
(1)

(

X(1)(β
∗
(1) − ̂β(1)) + ε

)

+ λ
(1)
n

(

−wn,(1−)

wn,(1+)

)

+2λ(2)
n

(

�n,(11)̂β(1) + �n,(12)s(2) + �n,(13)t(3)
)

= 0,

−2X ′
(2)

(

X(1)(β
∗
(1) − ̂β(1)) + ε

)

+λ
(1)
n diag(sign(s(2)))wn,(2)

+2λ(2)
n

(

�n,(21)̂β(1) + �n,(22)s(2) + �n,(23)t(3)
)

= γ(2),

−2X ′
(3)

(

X(1)(β
∗
(1) − ̂β(1)) + ε

)

+λ
(1)
n diag(sign(t(3)))wn,(3)

+2λ(2)
n

(

�n,(31)̂β(1) + �n,(32)s(2) + �n,(33)t(3)
)

= −μ(3),

−2X ′
(4)

(

X(1)(β
∗
(1) − ̂β(1)) + ε

)

+ λ
(1)
n wn,(4)

+2λ(2)
n

(

�n,(41)̂β(1) + �n,(42)s(2) + �n,(43)t(3)
)

= γ(4),

−2X ′
(5)

(

X(1)(β
∗
(1) − ̂β(1)) + ε

)

− λ
(1)
n wn,(5)

+2λ(2)
n

(

�n,(51)̂β(1) + �n,(52)s(2) + �n,(53)t(3)
)

= −μ(5),

−2X ′
(6)

(

X(1)(β
∗
(1) − ̂β(1)) + ε

)

+λ
(1)
n diag(θ(6))wn,(6)

+2λ(2)
n

(

�n,(61)̂β(1) + �n,(62)s(2) + �n,(63)t(3)
)

= 0,

θi ∈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{sign(̂βi )} if ̂βi 
= 0,

{1} if ̂βi = si = 0,

{−1} if ̂βi = ti = 0,

[ − 1, 1] if ̂βi = 0 ∈ (si , ti ),

for i = 1, . . . , p,

̂β ∈ [s, t], γ ≥ 0, μ ≥ 0.

(A11)

Solving ̂β(1) from the first equation in (A11), we obtain

̂β(1) =
(

C11 + λ
(2)
n �n,(11)

n

)−1

×
(

C11β
∗
(1) + X ′

(1)ε

n
−

λ
(1)
n

(−wn,(1−)

wn,(1+)

)

2n

− λ
(2)
n (�n,(12)s(2) + �n,(13)t(3))

n

)

,

(A12)

where C11 is defined in (2.3). Replacing ̂β(1) with (A12) in
the rest equations in (A11) yields

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T(2) = diag(sign(s(2)))wn,(2) − γ(2)

λ
(1)
n

,

T(3) = diag(sign(t(3)))wn,(3) + μ(3)

λ
(1)
n

,

T(4) = wn,(4) − γ(4)

λ
(1)
n

,

T(5) = −wn,(5) + μ(5)

λ
(1)
n

,

T(6) = diag(θ(6))wn,(6),

(A13)

where T(2), . . . , T(6) are defined in (A6). It follows from
(A13) that (A10) admits a solution ̂β which satisfies the vari-
able selection consistency if and only if

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

V(1−) ∈ (

ρ(0 ∧ t(1−)), ρ(0 ∧ s(1−))
)

,

V(1+) ∈ (

ρ(0 ∨ t(1+)), ρ(0 ∨ s(1+))
)

,

V(2) ≤ 0, V(3) ≥ 0, V(4) ≤ 0, V(5) ≥ 0,

V(6) = diag(θ(6))wn,(6) ∈ [−wn,(6),wn,(6)],
(A14)

whereV( j)’s are given in (A4) and (A5).Observing that (A14)
is nothing else but the events E(V( j))’s defined in (A2), there-
fore, (A1) holds if and only if (A2) occurs. Hence Lemma
A.1 is proved. ��

The lemma above provides a lower bound on the proba-
bility of ARGEN correctly selecting variables. To prove the
theorem, we also need the following well-known result on
the upper bound of the maximum of Gaussian random vec-
tor (see (3.6) in Ledoux and Talagrand (2011)).

Lemma A.2 Let (X1, . . . , Xn) be any Gaussian random vec-
tor. For n large enough, we have

E
[

max
1≤i≤n

|Xi |
] ≤ 8

√

log n max
1≤i≤n

√

E[Xi ]2.

With the results of Lemmas A.1 and A.2, we provide the
proof of Theorem 2.1 in the following.
By Lemma A.1, to prove the theorem it suffices to build

P
(E(V( j))

) −−−→
n→∞ 1, for j = 1, . . . , 6. (A15)

Below, we show (A15) holds for each j . In the case of
j = 1, we need to show both P

(E(V(1−))
) −−−→

n→∞ 1 and

P
(E(V(1+))

) −−−→
n→∞ 1 hold. To obtain the former, we denote

the i th element of V(1) in (A3) by Vi and split it into
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Vi = V (1)
i + V (2)

i . (A16)

Here

V (1)
i := e′

i

n

(

C11 + λ
(2)
n

n
�n,(11)

)−1 (−X ′
(1)ε

)

(A17)

is a Gaussian random variable with E(V (1)
i ) = 0 and

Var
(

V (1)
i

) = σ 2

n2
e′
i

(

C11 + λ
(2)
n

n
�n,(11)

)−2
C11ei

≤ σ 2#S(1) trace(C11)

n2
(

�min(C11 + λ
(2)
n �n,(11)/n)

)2 ,

where �min(·) denotes the minimal eigenvalue and trace(·)
denotes the trace of the matrix. The second term V (2)

i can be
bounded by:

V (2)
i := e′

i

n

(

C11 + λ
(2)
n �n,(11)

n

)−1(λ
(1)
n

2

(−wn,(1−)

wn,(1+)

)

+ λ(2)
n (�n,(12)s(2) + �n,(13)t(3))

)

∈
[

Cmin
n

n
,
Cmax
n

n

]

,

(A18)

where Cmin
n and Cmax

n are defined in (2.4), and ei is a vector
with the i th element be 1 and the others be 0. Elementary
probability calculus shows

P
(E(V(1−))

)

≥ P

(

{

min V(1−) > max ρ(t(1−) ∧ 0)
}

∩ {

max V(1−) < min ρ(s(1−) ∧ 0)
}

)

= 1 − P
(

min V(1−) ≤ max ρ(t(1−) ∧ 0)
)

− P
(

max V(1−) ≥ min ρ(s(1−) ∧ 0)
)

+ P

(

{

min V(1−) ≤ max ρ(t(1−) ∧ 0)
}

∩ {

max V(1−) ≥ min ρ(s(1−) ∧ 0)
}

)

.

(A19)

We observe that for large n, max ρ(t(1−) ∧ 0) < 0. It results
from (2.9), (A16), (A17), (A18), and Lemma A.2 that

P
(

min V(1−) ≤ max ρ(t(1−) ∧ 0)
)

= P

(

max
{ − V(1−)

} ≥ −max ρ(t(1−) ∧ 0)
)

≤ P

(

max
i∈S(1−)

{−V (1)
i

}−Cmin
n

n
≥−max ρ(t(1−) ∧ 0)

)

= P

( 1

|max ρ(t(1−) ∧ 0)|
(

max
i∈S(1−)

V (1)
i −Cmin

n

n

)≥1
)

≤ 1

|max ρ(t(1−) ∧ 0)|

×
(

8

√

√

√

√

√

σ 2#S(1) trace(C11) log(#S(1−))

n2
(

�min(C11 + λ
(2)
n �n,(11)/n)

)2+
|Cmin

n |
n

)

−−−→
n→∞ 0. (A20)

Similarly, because min ρ(s(1−) ∧ 0) > 0 holds for large n, it
follows from (2.10), (A16), (A17), (A18), and Lemma A.2
that

P
(

max V(1−) ≥ min ρ(s(1−) ∧ 0)
)

≤ P

(

max
i∈S(1−)

{

V (1)
i

} + Cmax
n

n
≥ min ρ(s(1−) ∧ 0)

)

= P

( 1

min ρ(s(1−) ∧ 0)

(

max
i∈S(1−)

V (1)
i + Cmax

n

n

) ≥ 1
)

≤ 1

min ρ(s(1−) ∧ 0)

×
(

8

√

√

√

√

√

σ 2#S(1) trace(C11) log(#S(1−))

n2
(

�min(C11 + λ
(2)
n �n,(11)/n)

)2+
|Cmax

n |
n

)

−−−→
n→∞ 0.

(A21)

Hence, (A15) with j = 1− results from (A19), (A20) and
(A21). The case of j = 1+ can be proved following quite a
similar way, so we omit the details.

To show P
(E(V(2))

) −−−→
n→∞ 1, we first define

V (1)
(2) :=

(

C21+λ
(2)
n

n
�n,(21)

)(

C11+λ
(2)
n

n
�n,(11)

)−1

×
(2λ(2)

n

λ
(1)
n

�n,(11)β
∗
(1) +

(−wn,(1−)

wn,(1+)

)

+2λ(2)
n

λ
(1)
n

(

�n,(12)s(2) + �n,(13)t(3)
)

)

−2λ(2)
n

λ
(1)
n

�n,(21)β
∗
(1)

−2
λ

(2)
n

λ
(1)
n

(�n,(22)s(2) + �n,(23)t(3)).

Setting η0 = min{η(2)}, by the AREIC (2.11) we know

V (1)
(2) ≤ diag(sign(s(2))) wn,(2) − η0. Accordingly, let

V (2)
(2) := V(2) + diag(sign(s(2)))wn,(2) − V (1)

(2)

=
{

(

C21 + λ
(2)
n

n
�n,(21)

)(

C11 + λ
(2)
n

n
�n,(11)

)−1
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×
(

− 2X ′
(1)

λ
(1)
n

)

+ 2X ′
(2)

λ
(1)
n

}

ε.

Observe that for each coordinate index j , e′
j V

(2)
(2) is a zero

mean Gaussian random variable and with n large enough, the
variance is bounded above by E

[

e′
j V

(2)
(2)

]2 ≤ 4nσ 2/(λ
(1)
n )2.

Then it follows that

1 − P
(E(V(2))

)=P
(

V(2) > 0
) ≤ P

(

max V (2)
(2) > η0

)

.

By Markov’s inequality and Lemma A.2, we obtain

P

(

max V (2)
(2) > η0

)

≤ P

(

max
∣

∣V (2)
(2)

∣

∣ > η0

)

≤
E

[

max
∣

∣V (2)
(2)

∣

∣

]

η0

≤ 8
√

log(#S(2))

η0
max
j∈S(2)

√

E

[

e′
j V

(2)
(2)

]2

≤ 16
√

log(#S(2))

η0

√
nσ

λ
(1)
n

.

Hence, P
(E(V(2))

) −−−→
n→∞ 1 follows from (2.6). The same

process with slight modifications will be followed for the
other cases of j = 3, 4, 5, 6. Therefore, (A15) holds and we
have completed the proof.

Appendix B Proof of theorem 3.1

First, (3.8) holds if for any u, v ∈ [0, l], the auxiliary function
G(·, ·) satisfies the following:

F(v) = G(v, v), (B1)

F(u) ≤ G(u, v). (B2)

This is because F(U (v)) ≤ G(U (v), v) ≤ G(v, v) = F(v).

In view of (3.3) and (3.7), Equation (B1) can be easily
obtained through plugging u = v into G(u, v). To prove
(B2), we need the following preliminary results of Lemmas
1 and 2 in Sha et al (2007a):

1

2
u′A+u ≤ 1

2

∑

1≤i, j≤p

A+
i j u

2
i v j

vi
, (B3)

−1

2
u′A−u ≤−1

2

∑

1≤i, j≤p

A−
i jviv j

(

1 + log
uiu j

viv j

)

. (B4)

Then by (B1), we have

F(u) = G(u, u)

= 1

2
u′A+u − 1

2
u′A−u +

p
∑

i=1

(biui + di |ui − v0i |),

which is bounded above by G(u, v) using (B3) and (B4).
Next, to show that (3.9) and (ii) hold, it suffices to prove

thatU (v) is the unique vector in [0, l] thatminimizesG(·, v),
and the mapping U (·) has the form as (3.4). Observe that
G(u, v) can be rewritten as

G(u, v) =
p

∑

i=1

Gi (ui ) − 1

2

∑

1≤i, j≤p

A−
i jviv j ,

where

Gi (ui ) :=1

2

(
p

∑

j=1

A+
i jv j

)u2i
vi

−
(

p
∑

j=1

A−
i jv j

)

vi log
ui
vi

+ biui + di |ui − v0i |.

Because the term (1/2)
∑

1≤i, j≤p A−
i jviv j is independent of

u, the minimization of G(u, v) over u can be accomplished
byminimizingGi (ui ) over the marginal variable ui , for each
i = 1, . . . , p. Fixing i ∈ {1, . . . , p}, below we minimize
Gi (ui ) over ui ∈ [0, li ] in two cases.

First we consider the case when ui ∈ [0, li ] ∩ [v0i ,+∞).
In this case Gi (ui ) becomes

Gi (ui ) =1

2

(
p

∑

j=1

A+
i jv j

)u2i
vi

−
(

p
∑

j=1

A−
i jv j

)

vi log
ui
vi

+ biui + di (ui − v0i )

and it is differentiable over R. Taking the first and second
derivatives of Gi (·), we obtain

G ′
i (ui ) =

(
p

∑

j=1

A+
i jv j

)ui
vi

−
(

p
∑

j=1

A−
i jv j

) vi

ui
+ bi + di

and

G ′′
i (ui ) =

(
p

∑

j=1

A+
i jv j

) 1

vi
+

(
p

∑

j=1

A−
i jv j

) vi

u2i
.

Here u, v ≥ 0 and A is strictly positive definite, so
∑p

j=1 A
+
i jv j and

∑p
j=1 A

−
i jv j cannot be simultaneously

equal to 0. Therefore G ′′
i (ui ) > 0 for all ui ∈ [0,+∞)

and hence Gi (·) is strictly convex over [0,+∞). Then the
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minimum of Gi (·) over [0,+∞) is obtained on the unique
critic point r1 such that G ′

i (r1) = 0, which yields

r1 = −(bi + di ) + √

(bi + di )2 + 4ai (v)ci (v)

2ai (v)
vi .

It follows that the minimum of Gi (·) over [0, li ] ∩ [v0i ,+∞)

is given below:

argmin
ui∈[0,li ]∩[v0i ,+∞)

Gi (ui ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v0i if r1 ≤ v0i ≤ li ,
r1 if v0i < r1 ≤ li ,
li if v0i ≤ li < r1,
∅ if v0i > li .

(B5)

Next, we discuss the other case. When ui ∈ [0, li ] ∩ [0, v0i ),
we have

Gi (ui ) =1

2

(
p

∑

j=1

A+
i jv j

)u2i
vi

−
(

p
∑

j=1

A−
i jv j

)

vi log
ui
vi

+ biui − di (ui − v0i ).

Taking the first and second derivatives of it yields

G ′
i (ui ) =

(
p

∑

j=1

A+
i jv j

)ui
vi

−
(

p
∑

j=1

A−
i jv j

) vi

ui
+ bi − di

and

G ′′
i (ui ) =

(
p

∑

j=1

A+
i jv j

) 1

vi
+

(
p

∑

j=1

A−
i jv j

) vi

u2i
> 0.

BecauseGi (·) is strictly convex over [0,+∞), the minimum
of Gi (·) over [0,+∞) is uniquely obtained at r2 such that
G ′

i (r2) = 0, that is,

r2 = −(bi − di ) + √

(bi − di )2 + 4ai (v)ci (v)

2ai (v)
vi .

It follows that the minimum of Gi (·) over [0, li ] ∩ [0, v0i ) is
given as:

argmin
ui∈[0,li ]∩[0,v0i )

Gi (ui ) = min
{

r2, li , v
0
i

}

. (B6)

Combining the two cases (B5) and (B6), we obtain

argmin
ui∈[0,li ]

Gi (ui ) =
⎧

⎨

⎩

min{r1, li } if r1 > v0i ,

min{r2, li } if r2 < v0i ,

min{v0i , li } otherwise.

Denote by ˜U : R
p �→ R

p such that for i = 1, . . . , p,

(

˜U (v)
)

i :=
⎧

⎨

⎩

min{r1, li } if r1 > v0i ,

min{r2, li } if r2 < v0i ,

min{v0i , li } otherwise.
(B7)

We conclude that for each v ∈ R
p
+, the vector given in (B7) is

unique on [0, l] satisfyingG(

˜U (v), v
) = minu∈[0,l] G(u, v).

This proves (3.9). In addition, by the uniqueness of the min-
imizer of G(·, v) over [0, l], the mapping U (·) should have
the same form as ˜U (·) given in (B7), which is exactly (3.4).
This proves (ii) in Theorem 3.1.
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