Skip to main content
Log in

General Jackknife empirical likelihood and its applications

  • Original Paper
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This paper is to give a novel Jackknife Empirical Likelihood for both smooth and unsmooth statistical functionals. Specifically, we consider the estimation of unknown statistical functionals under the framework of general delete-d jackknife and a usage of the subsampling method which can reduce the computational burden. Moreover, the corresponding statistical inference issues and asymptotic properties of the proposed method are also investigated. Several related application examples are carefully conducted to check the superiority of our new proposed method. Finally, the finite sample simulation studies are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcones, M. A., Gine, E.: On the bootstrap of u and v statistics. Ann. Stat. 655–674 (1992)

  • Belloni, A., Winkler, R.L.: On multivariate quantiles under partial orders. Ann. Stat. 39(2), 1125–1179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhuri, P.: On a geometric notion of quantiles for multivariate data. J. Am. Stat. Assoc. 91(434), 862–872 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Daouia, A., Simar, L.: Nonparametric efficiency analysis: a multivariate conditional quantile approach. J. Econom. 140(2), 375–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • de Jong, P.: A central limit theorem for generalized quadratic forms. Probab. Theory Relat. Fields 75(2), 261–277 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B.: The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadelphia (1982)

    Book  MATH  Google Scholar 

  • Ehm, W., Ovcharov, E.: Bias-corrected score decomposition for generalized quantiles. Biometrika 104(2), 473–480 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Einmahl, J.H., Kiriliouk, A., Krajina, A., Segers, J.: An m-estimator of spatial tail dependence. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 78(1), 275–298 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Fernandes, M., Guerre, E., Horta, E.: Smoothing quantile regressions. J. Bus. Econ. Stat. 39(1), 338–357 (2021)

    Article  MathSciNet  Google Scholar 

  • Ghosh, J.K.: A new proof of the bahadur representation of quantiles and an application. Ann. Math. Stat. 1957–1961 (1971)

  • Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  • Hallin, M., Paindaveine, D., Šiman, M., Wei, Y., Serfling, R., Zuo, Y., Kong, L., Mizera, I.: Multivariate quantiles and multiple-output regression quantiles: from \(l_1\) optimization to halfspace depth [with discussion and rejoinder]. Ann. Stat. 635–703 (2010)

  • Hampel, F.R.: The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 69(346), 383–393 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • He, X., Pan, X., Tan, K.M., Zhou, W.-X.: Smoothed quantile regression with large-scale inference. J. Econom. (2021)

  • Hoeffding, W.: A class of statistics with asymptotically normal distribution. In: Breakthroughs in Statistics, pp. 308–334. Springer (1992)

  • Huber, P.J.: Robust estimation of a location parameter. In: Breakthroughs in Statistics, pp. 492–518. Springer (1992)

  • Jing, B.-Y., Yuan, J., Zhou, W.: Jackknife empirical likelihood. J. Am. Stat. Assoc. 104(487), 1224–1232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • John, P.W.: Statistical Design and Analysis of Experiments. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  • Koenker, R., Bassett Jr, G.: Regression quantiles. Econom. J. Econom. Soc. 33–50 (1978)

  • Li, D., Wang, H.J.: Extreme quantile estimation for autoregressive models. J. Bus. Econ. Stat. 37(4), 661–670 (2019)

  • Ma, X., Wang, S., Zhou, W.: Testing multivariate quantile by empirical likelihood. J. Multivar. Anal. 182, 104705 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Nordhausen, K., Oja, H.: Multivariate l1 statistical methods: the package MNM. J. Stat. Softw. 43, 1–28 (2011)

    Article  Google Scholar 

  • Owen, A.B.: Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2), 237–249 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A.: Empirical likelihood ratio confidence regions. Ann. Stat. 18(1), 90–120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Racine, J.S., Li, K.: Nonparametric conditional quantile estimation: a locally weighted quantile kernel approach. J. Econom. 201(1), 72–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Reeds, J.A.: Jackknifing maximum likelihood estimates. Ann. Stat. 727–739 (1978)

  • Serfling, R.J.: Approximation Theorems of Mathematical Statistics, vol. 162. Wiley, New York (2009)

    MATH  Google Scholar 

  • Shao, J., Wu, C.J.: A general theory for jackknife variance estimation. Ann. Stat. 1176–1197 (1989)

  • Van der Vaart, A.W.: Asymptotic Statistics, vol. 3. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Wu, C.F.: On the asymptotic properties of the Jackknife histogram. Ann. Stat. 1438–1452 (1990)

  • Zeng, Y., Pang, D., Zhao, H., Wang, T.: A zero-inflated logistic normal multinomial model for extracting microbial compositions. J. Am. Stat. Assoc. 1–14 (2022)

  • Zhang, X., Yao, S., Shao, X.: Conditional mean and quantile dependence testing in high dimension. Ann. Stat. 46(1), 219–246 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the editor, Prof. Jeremie Houssineau and two anonymous referees for their careful reading and useful comments which led to an improved presentation of the paper. Yiming Liu’s research was partially supported by the China Postdoctoral Science Foundations under Grant 2022M711342. Shaochen Wang’s research was partially supported by Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515012125). Wang Zhou’s research was partially supported by a Grant A-8000440-00-00 at the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaochen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

(Burkholder’s inequality, Theorem 2.10 in Hall and Heyde 2014) If \(\left\{ X_i, 1 \leqslant i \leqslant n\right\} \) is a martingale difference sequence and \(1<p<\infty \), then there exist constants \(C_{1}\) and \(C_{2}\) depending only on p such that

$$\begin{aligned} C_{1} \textrm{E}\left| \sum _{i=1}^{n} X_{i}^{2}\right| ^{p / 2} \leqslant \textrm{E}\left| \sum _{i=1}^nX_i\right| ^{p} \leqslant C_{2} \textrm{E}\left| \sum _{i=1}^{n} X_{i}^{2}\right| ^{p / 2}. \end{aligned}$$

Lemma 2

Under conditions of Theorem 1, we have

$$\begin{aligned} \frac{d}{\sqrt{n}f}\sum _{i{=}1}^N(\tilde{\theta }_{{\mathcal {S}}_i}{-}\theta _0){\rightarrow } N(0,\sigma ^2). \end{aligned}$$

Proof

From (4), we have \(\sum _{i{=}1}^N(\tilde{\theta }_{{\mathcal {S}}_i}{-}\theta ){=}\frac{N{-}f}{d}\sum _{i{=}1}^n\phi _F(X_i)\)\({+}o_P(n^{1/2})\). Then, by the Central Limit Theorem, the conclusion follows. \(\square \)

Lemma 3

Under conditions of Theorem 1, we have

$$\begin{aligned} S= & {} \frac{1}{N}\sum _{i=1}^N(\tilde{\theta }_{{\mathcal {S}}_i}-\theta )^2\\= & {} \frac{1}{Nd^2}\left[ (N-2f+\eta )\left( \sum _{k=1}^n\phi _F(X_k)\right) ^2\right. \\{} & {} \left. +(f-\eta )\sum _{k=1}^n\phi _F^2(X_k)\right] +o_P(n^{-1}). \end{aligned}$$

Proof

Recalling (1), write

$$\begin{aligned}{} & {} \frac{1}{N}\sum _{i=1}^N({\tilde{\theta }}_{{\mathcal {S}}_i}-\theta )^2\\{} & {} \quad =\frac{1}{Nd^2}\sum _{i=1}^N\left[ \sum _{k=1}^n\phi _F(X_k)-\sum _{j\in {\mathcal {S}}_i}\phi _F(X_j)+(nR_n-rR_1)\right] ^2\\{} & {} \quad :=\frac{1}{Nd^2}\sum _{i=1}^N\left( \sum _{k=1}^n\phi _F(X_k)-\sum _{j\in {\mathcal {S}}_i}\phi _F(X_j)\right) ^2+R, \end{aligned}$$

where \(R=o(n^{-1})\). Consider the above first sum,

$$\begin{aligned}{} & {} \sum _{i=1}^N\left( \sum _{k=1}^n\phi _F(X_k)-\sum _{j\in {\mathcal {S}}_i}\phi _F(X_j)\right) ^2\\{} & {} \quad =N\left( \sum _{k=1}^n\phi _F(X_k)\right) ^2 -2\sum _{i=1}^N\left( \sum _{k=1}^n\phi _F(X_k)\right) \\{} & {} \qquad \times \left( \sum _{j\in {\mathcal {S}}_i}\phi _F(X_j)\right) +\sum _{i=1}^N\left( \sum _{j\in {\mathcal {S}}_i}\phi _F(X_j)\right) ^2\\{} & {} \quad =(N-2f)\left( \sum _{k=1}^n\phi _F(X_k)\right) ^2 +f\sum _{k=1}^n\phi _F^2(X_k)\\{} & {} \qquad +2\eta \sum _{1\le k<i\le n}\phi _F(X_i)\phi _F(X_k)+O_P(1)\\{} & {} \quad =(N-2f+\eta )\left( \sum _{k=1}^n\phi _F(X_k)\right) ^2\\{} & {} \qquad +(f-\eta )\sum _{k=1}^n\phi _F^2(X_k)+O_P(1), \end{aligned}$$

where in the third equality one applies (5). Hence the conclusion follows. \(\square \)

Proof of Theorem 1

By the law of large numbers, it is easy to obtain \(\frac{1}{n}\sum _{i=1}^n\phi _F^2(X_i)=\sigma ^2+o(1)\). Then combined with the results in Lemma 2 and 3, the conclusion follows. \(\square \)

Below are the lemmas required for Theorem 2:

Lemma 4

Suppose Y is a random variable with mean zero and nonconstant probability density function \(p(\cdot )\) almost everywhere. For \(Z=\max (0,Y)\), we have (1). \(\textrm{E}[Z]>0\), (2). \(\textrm{Var}(Z)\le \textrm{Var}(Y)\).

Proof

For (1), since \(p(\cdot )\) is a nonconstant probability density function almost everywhere, \(\textrm{Var}(Y)>0\). By \(\textrm{E}[Y]=0\), we have \({\textbf{P}}(Y>0)>0\), which in turn implies that \(\textrm{E}[Z]>0\). For (2), we observe that

$$\begin{aligned} \textrm{E}[Z^2]= & {} \int _{-\infty }^{\infty }\max (0,y)^2p(y)dy=\int _{0}^{\infty }y^2p(y)dy\\= & {} \int _{0}^{\infty }(y-\textrm{E}[Y])^2p(y)dy<\textrm{Var}(Y), \end{aligned}$$

due to the assumption that \({\mathcal {E}}[Y]=0\) and hence the conclusion follows. \(\square \)

Lemma 5

Under the conditions of Theorem 2, for the given (9), we have

$$\begin{aligned} {\textbf{P}}\left( \min \limits _{1\le i\le \delta _n,~1\le j\le m_n}(\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0)<0<\max \limits _{1\le i\le \delta _n,~1\le j\le m_n}(\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0)\right) \rightarrow 1 \end{aligned}$$

Proof

Let \(\psi (x)=\max (0,x)\). Without loss of generality, we assume that \(\theta _0=0\), and hence

$$\begin{aligned} {\tilde{\theta }}_{{\mathcal {S}}_1}=\underbrace{\frac{1}{d}\sum _{i\in {\mathcal {S}}_1^c}\phi _F(X_i)}_{:=\Delta }+\underbrace{\frac{1}{d}(nR_n-rR_1)}_{:={\tilde{R}}_1}. \end{aligned}$$

We next aim to show that \({\textbf{P}}(\max _{1\le i\le N}{\tilde{\theta }}_{{\mathcal {S}}_i}\le 0)\rightarrow 0\) as \(n\rightarrow \infty \). Similarly to Jing et al. (2009), write

$$\begin{aligned}{} & {} {\textbf{P}}(\max _{1\le i\le N}{\tilde{\theta }}_{{\mathcal {S}}_i}\le 0)={\textbf{P}}(\psi ({\tilde{\theta }}_{{\mathcal {S}}_i})=0 \text { for all } 1\le i\le N )\\{} & {} \quad ={\textbf{P}}(\sum _{i=1}^N\psi ({\tilde{\theta }}_{{\mathcal {S}}_i})=0)\\{} & {} \quad \le {\textbf{P}}\left( \left| \sum _{i=1}^N\psi ({\tilde{\theta }}_{{\mathcal {S}}_i})-\textrm{E}\psi ({\tilde{\theta }}_{{\mathcal {S}}_i})\right| \ge N\textrm{E}\psi ({\tilde{\theta }}_{{\mathcal {S}}_1})\right) \\{} & {} \quad \le \frac{N\textrm{Var}(\psi ({\tilde{\theta }}_{{\mathcal {S}}_i}))+N(N-1)\text{ cov }(\psi ({\tilde{\theta }}_{{\mathcal {S}}_1}),\psi ({\tilde{\theta }}_{{\mathcal {S}}_2}))}{N^2(\textrm{E}\psi ({\tilde{\theta }}_{{\mathcal {S}}_i}))^2}. \end{aligned}$$

For \(\textrm{Var}(\psi ({\tilde{\theta }}_{{\mathcal {S}}_i}))\), by (2) in Lemma 4, we have \(\textrm{Var}(\psi ({\tilde{\theta }}_{{\mathcal {S}}_i}))\le \textrm{Var}(\Delta )+\textrm{Var}({\tilde{R}}_1)+\text{ cov }(\Delta ,{\tilde{R}}_1)\le K/d\). For \(\text{ cov }(\psi ({\tilde{\theta }}_{{\mathcal {S}}_1}),\psi ({\tilde{\theta }}_{{\mathcal {S}}_2}))\), by Holder’s inequality, \(|\text{ cov }(\psi ({\tilde{\theta }}_{{\mathcal {S}}_1}),\psi ({\tilde{\theta }}_{{\mathcal {S}}_2}))|\le K/d\). From (1) in Lemma 4, \(\textrm{E}\psi ({\tilde{\theta }}_{{\mathcal {S}}_1})\ge \frac{1}{d}\sum _{i\in {\mathcal {S}}_1}\textrm{E}\max \{\phi _F(X_i),0\}-o(1)>0\). Therefore, we have \({\textbf{P}}(\max _{1\le i\le N}{\tilde{\theta }}_{{\mathcal {S}}_i}\le 0)\rightarrow 0\) as \(n\rightarrow \infty \). Similarly, one can obtain that \({\textbf{P}}(\min _{1\le i\le N}{\tilde{\theta }}_{{\mathcal {S}}_i}\ge 0)\rightarrow 0\) as \(n\rightarrow \infty \), and thus the conclusion follows. \(\square \)

Lemma 6

For the \(\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}\) as defined in (8), we have

$$\begin{aligned} \max \limits _{1\le i\le \delta _n,~1\le j\le m}\left| (\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0)\right| =O_P((\log n/n)^{1/4}) \end{aligned}$$

Proof

Recall that \(\{X_k\}_{k\in {\mathcal {B}}_i}=\{X_k^{(i)}\}_{k=1}^{m_n}\) and (8). Write \(\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0=\frac{2}{m_n}\sum _{k\in {\mathcal {S}}_j^c}\phi _F(X_k^{(i)})+R'\), where \(R'=o_P(n^{-1/2})\). Note that

$$\begin{aligned}{} & {} {\textbf{P}}\left( \max \limits _{1\le i\le \delta _n,~1\le j\le m}\frac{2}{m_n}\left| \sum _{k\in {\mathcal {S}}_j^c}\phi _F(X_k^{(i)})\right| \ge t\right) \\{} & {} \quad \le n {\textbf{P}}\left( \frac{2}{m_n}\left| \sum _{k\in {\mathcal {S}}_j^c}\phi _F(X_k^{(i)})\right| \ge t\right) . \end{aligned}$$

Using Lemma 1 and Chebyshev’s inequality, and choosing \(t=(\log n/n)^{1/4}\), one can conclude the result. \(\square \)

Lemma 7

\(\sum _{i{=}1}^{\delta _n}\!\!\sum _{j{=}1}^{m_n}({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}{-}\theta _0){=}\!\!\sum _{k{=}1}^n\phi _F(X_k){+}o_P(n^{1/2}\!).\)

Proof

Following Lemma 2, we have \(\sum _{j=1}^{m_n}({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)=\sum _{k\in {\mathcal {B}}_i}\phi _F(X_k)+o_P(m_n^{1/2})\). By the construction of \({\mathcal {B}}_i\)’s, we thus have \(\sum _{i=1}^{\delta _n}\sum _{j=1}^{m_n}({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)=\sum _{k=1}^n\phi _F(X_k)+o_P(m_n^{1/2}\delta _n^{1/2})\). The conclusion follows. \(\square \)

Lemma 8

\({\tilde{S}}=\frac{1}{n}\sum _{i=1}^{\delta _n}\sum _{j=1}^{m_n}({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)^2=2\sigma ^2/m_n+o_P(1/m_n)\).

Proof

Following Lemma 3, we have

$$\begin{aligned} \frac{1}{m_n}\sum _{j=1}^{m_n}({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)^2= & {} \left( \frac{1}{m_n}\sum _{k\in {\mathcal {B}}_i}\phi _F(X_k)\right) ^2\\{} & {} +\frac{1}{{m_n}^2}\sum _{k\in {\mathcal {B}}_i}\phi _F^2(X_k)+o_P(1/{m_n})\\:= & {} A_j+B_j+o_P(1/{m_n}). \end{aligned}$$

Hence, \({\tilde{S}}=\frac{1}{\delta _n}\sum _{j=1}^{\delta _n}(A_j+B_j)+o_P(1/{m_n})\). Since \(A_{j_1}\) and \(A_{j_2}\) are constructed from two disjoint sets when \(j_1\ne j_2\), by the strong law of large numbers, we have \(\frac{1}{\delta _n}\sum _{j=1}^{\delta _n}A_j=\sigma ^2/{m_n}+o(1/{m_n})\) as \(\delta _n,m_n\rightarrow \infty \). Moreover, also by the strong law of large numbers, \(B_j=\sigma ^2/{m_n}+o_P(1/{m_n})\). We thus obtain the conclusion. \(\square \)

Proof of Theorem 2.

Proof

From Lemma 5, it follows that with probability tending to one the true \(\theta _0\) satisfies \(\min \limits _{1\le i\le \delta _n,~1\le j\le m}\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}<\theta _0<\max \limits _{1\le i\le \delta _n,~1\le j\le m}\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}\), and the solution to (12) exists and is unique. By (12) and Lemma 7, we have

$$\begin{aligned} 0= & {} |g(\lambda )|\\= & {} \frac{1}{n}\left| \sum _{i=1}^{\delta _n}\sum _{j=1}^{m_n}({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)} -\theta _0)-\lambda \sum _{i=1}^{\delta _n}\sum _{j=1}^{m_n}\frac{({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)^2}{1+\lambda ({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)}\right| \\\ge & {} \frac{|\lambda |}{n}\sum _{i=1}^{\delta _n}\sum _{j=1}^{m_n}\frac{({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)}{1+\lambda ({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)}-\left| \frac{1}{n}\sum _{i=1}^{\delta _n}\sum _{j=1}^{m_n}({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)\right| \\\ge & {} \frac{|\lambda |{\tilde{S}}}{1+|\lambda |W_n}-O_P(n^{-1/2}), \end{aligned}$$

where \(W_n=\max \limits _{1\le i\le \delta _n,~1\le j\le m}\left| (\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0)\right| \). From Lemma 8, \({\tilde{S}}=O_P(1/{m_n})\), which combined with Lemma 6 shows that \(\lambda =O_P(m_n/n^{1/2})\). Let \(\gamma _{ij}=\lambda (\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0)\). Applying \(\frac{1}{1+x}=1-x+\frac{x^2}{1+x}\) to (12), one can obtain that

$$\begin{aligned} 0=\frac{1}{n}\sum _{i=1}^{\delta _n}\sum _{j=1}^{m_n}({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)\left[ 1-\gamma _{ij}+\frac{\gamma _{ij}^2}{1+\gamma _{ij}}\right] . \end{aligned}$$

By using Lemmas 68 and the fact that \(\lambda =O_P(m_n/n^{1/2})\), we have

$$\begin{aligned} \frac{1}{n} \sum _{i=1}^{\delta _n}\sum _{j=1}^{m_n}\lambda ^2(\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0)^3=\frac{1}{\delta _n}\left( \frac{\log n}{n}\right) ^{1/4}, \end{aligned}$$

and hence, \(\lambda {=}{\tilde{S}}^{{-}1}(\frac{1}{n}\sum _{i{=}1}^{\delta _n}\sum _{j{=}1}^m({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}{-}\theta _0)){+}o_P(m_n/n^{1/2})\). Applying Taylor’s expansion and plugging the expression of \(\lambda \) into \(-4\log R(\theta _0)/m\), we have

$$\begin{aligned} {-}4\log R(\theta _0)/m&{=}&\frac{4}{m}\left[ \sum _{i{=}1}^{\delta _n}\sum _{j{=}1}^m\gamma _{ij}{-}\frac{1}{2} \sum _{i{=}1}^{\delta _n}\sum _{j{=}1}^m\gamma _{ij}^2\right] {+}o_P(1)\\= & {} \frac{4}{m}\left[ \frac{mn(\frac{1}{n}\sum _{k=1}^n\phi _F(X_k))^2}{4\sigma ^2}\right] \\{} & {} +o_P(1)\overset{d}{\rightarrow }\chi ^2_1. \end{aligned}$$

The conclusion follows.\(\square \)

Now we consider the estimators satisfying (3). To derive the asymptotic distribution of the proposed statistic, some more lemmas are required. Let \(\sigma _h^2=\textrm{E}h^2(X_1,X_2)\).

Lemma 9

Under Condition C1, we have

$$\begin{aligned} \sqrt{\frac{2}{n(n-1)}}\sum _{i<j}h(X_i,X_j)\overset{d}{\rightarrow }N(0,\sigma _h^2). \end{aligned}$$

Proof

Write

$$\begin{aligned} \sum _{1\le i<j\le n}h(X_i,X_j)=\sum _{j=2}^n\sum _{i=1}^jh(X_i,X_j)\equiv \sum _{j=2}^nH_j. \end{aligned}$$

Let

$$\begin{aligned} M_r=\sum _{j=2}^r\sum _{i=1}^{j-1}h(X_i,X_j), \end{aligned}$$

and define the filtration \({\mathcal {F}}_r=\sigma \{Z_1,\ldots ,Z_r\}\). Note that from the condition that

$$\begin{aligned} \textrm{Var}(\textrm{E}[h(X_i,X_j)|X_j])=0, \end{aligned}$$

we have \(\textrm{E}[h(X_i,X_j)|X_j]=0\) with probability one. So \(\textrm{E}[M_r]=0\) and

$$\begin{aligned} \textrm{E}[M_{r'}|{\mathcal {F}}_r]= & {} M_r+\textrm{E}\left[ \sum _{j=r+1}^{r'}\sum _{i=1}^{j-1} h(X_i,X_j)\Big |{\mathcal {F}}_r\right] \\= & {} M_r\text { for }r'>r, \end{aligned}$$

and hence \(\{M_r\}_{r=2}^n\) forms a mean-zero martingale sequence. Define \(V_j=\sum _{i=1}^{j-1}h(X_i,X_j)\). Following Corollary 3.1 in Hall and Heyde (2014), we will prove that

$$\begin{aligned} \sum _{j=1}^nB^{-2}\textrm{E}[V_j^2{\textbf{1}}\{|V_j|>\epsilon B\}|{\mathcal {F}}_{j-1}]\overset{p}{\rightarrow }0 \end{aligned}$$
(23)

for B such that

$$\begin{aligned} \sum _{j=1}^n\textrm{E}[V_j^2|{\mathcal {F}}_{j-1}]/B^2 \overset{p}{\rightarrow }C>0. \end{aligned}$$
(24)

Note that

$$\begin{aligned} \sum _{j=1}^n\textrm{E}[V_j^2|{\mathcal {F}}_{j-1}]= & {} \sum _{i,k=1}^{j-1}\textrm{E}\left[ h(X_i,X_j)h(X_k,X_j)\Big |{\mathcal {F}}_{j-1}\right] \\\equiv & {} \sum _{i,k=1}^{j-1}H(X_i,X_k) \end{aligned}$$

and

$$\begin{aligned} \sum _{j=1}^n\textrm{E}[V_j^2]= & {} \sum _{j=1}^n\sum _{i,k=1}^{j-1}\textrm{E}\left[ h(X_i,X_j)h(X_k,X_j)\right] \\= & {} \frac{n(n-1)}{2}\textrm{E}[h(X_1,X_2)^2]\equiv \frac{n(n-1)}{2}\sigma _h^2. \end{aligned}$$

To prove (24), by setting \(C{=}1\) and \(B{=}\frac{q(q{-}1)}{2}\textrm{E}[h(X_1,X_2)^2]\), we consider \(\textrm{Var}\left( \sum _{j{=}1}^q\textrm{E}[V_j^2|{\mathcal {F}}_{j-1}]\right) \). For \(j_1\ge j_2\), write

$$\begin{aligned}{} & {} \text{ cov }\left( \textrm{E}[V_{j_1}^2|{\mathcal {F}}_{{j_1}-1}],\textrm{E}[V_{j_2}^2|{\mathcal {F}}_{{j_2}-1}]\right) \\{} & {} \quad =\sum _{i_1,k_1=1}^{j_1-1}\sum _{i_2,k_2=1}^{j_2-1}\text{ cov }\left( H(X_{i_1},X_{k_1}),H(X_{i_2},X_{k_2})\right) \\{} & {} \quad =(j_2-1)\textrm{Var}(H(X_1,X_1))\\{} & {} \qquad +2(j_2-1)(j_2-2)\textrm{E}[H(X_1,X_2)^2]. \end{aligned}$$

Notice that

$$\begin{aligned}{} & {} \sum _{j_1,j_2=1}^q\text{ cov }\left( \textrm{E}[V_{j_1}^2|{\mathcal {F}}_{{j_1}-1}],\textrm{E}[V_{j_2}^2|{\mathcal {F}}_{{j_2}-1}]\right) \\{} & {} \quad =C_1q^3 \textrm{Var}(H(X_1,X_1)) +C_2q^4\textrm{E}[H(X_1,X_2)^2]. \end{aligned}$$

Hence, under Condition C1, combining Chebyshev’s inequality, one can obtain (24). To show (23), it suffices to prove that

$$\begin{aligned} B^{-4}\sum _{j=1}^q\textrm{E}[|V_j|^4]\rightarrow 0. \end{aligned}$$

Note that

$$\begin{aligned} \sum _{j=1}^q\textrm{E}[|V_j|^4]= & {} \sum _{j=1}^q\sum _{i_1,i_2,i_3,i_4=1}^{j-1}\textrm{E}\left[ h(X_{i_1},X_j)h(X_{i_2},X_j)\right. \\{} & {} \left. h(X_{i_3},X_j)h(X_{i_4},X_j)\right] \\= & {} \frac{q(q-1)}{2}\textrm{E}[h(X_1,X_2)^4]\\{} & {} +3\sum _{j=2}^q\sum _{i_1\ne i_2}\textrm{E}\left[ h(X_{i_1},X_j)^2h(X_{i_2},X_j)^2\right] \\= & {} \frac{q(q-1)}{2}\textrm{E}[h(X_1,X_2)^4]\\{} & {} +6\sum _{j=2}^q(j-1)(j-2)\textrm{E}\\{} & {} \left[ h(X_1,X_3)^2h(X_2,X_3)^2\right] \\= & {} o(B^{-4}), \end{aligned}$$

which implies (23). Therefore we have

$$\begin{aligned} \frac{1}{\sqrt{n}} \sum _{k=1}^nh(Z_k)= & {} \sqrt{\frac{2}{q(q-1)}}\sum _{1\le i<j\le q}h(X_i,X_j)\nonumber \\{} & {} \overset{d}{\rightarrow }N(0,\sigma ^2_h). \end{aligned}$$
(25)

\(\square \)

Lemma 10

Consider \(\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}\) defined in (13). Then

$$\begin{aligned} \frac{1}{n}\sum _{k=1}^{\delta _n}\sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) \overset{d}{=}\frac{3}{4q_m}\sqrt{\frac{m_n(m_n-1)}{2\delta _n}}{\mathcal {Z}}+o_P(1), \end{aligned}$$

where \({\mathcal {Z}}\sim N(0,\sigma _h^2).\)

Proof

Write

$$\begin{aligned} \frac{1}{n}\sum _{k=1}^{\delta _n}\sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) =\frac{1}{\delta _n}\sum _{k=1}^{\delta _n}\frac{1}{m_n}\sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) . \end{aligned}$$

Using (5) we have \(\eta =m_n/4+O(1)\). Consider

$$\begin{aligned}{} & {} \frac{1}{m_n}\sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) \\{} & {} \quad = \frac{1}{q_m\cdot m_n}\sum _{\ell =1}^{m_n}\left[ {m_n\atopwithdelims ()2}{\hat{\theta }}_{{\mathcal {B}}_k}-{r\atopwithdelims ()2}{\hat{\theta }}_{{\mathcal {S}}_\ell }^{(k)}-\theta _0\right] \\{} & {} \quad = \frac{1}{q_m\cdot m_n}\sum _{\ell =1}^{m_n}\left[ \sum _{(i,j)\in {\mathcal {V}}_{{\mathcal {B}}_k}}h(X_i,X_j)\right. \\{} & {} \qquad \left. - \sum _{(i.j)\in {\mathcal {V}}_{S_\ell }}h(X_i^{(k)},X_j^{(k)})\right] +R'\\{} & {} \quad =\frac{3m_n}{4q_m\cdot m_n}\sum _{(i,j)\in {\mathcal {V}}_{{\mathcal {B}}_k}}h(X_i,X_j)+R'\\{} & {} \quad =\frac{3}{4q_m}\sum _{1\le i<j\le m_n}h(X_i^{(k)},X_j^{(k)})+R', \end{aligned}$$

where \(R'=o_P(n^{-1})\). From Lemma 9, it is easy to see that

$$\begin{aligned} \frac{3}{4q_m}\sum _{1\le i<j\le m_n}h(X_i^{(k)},X_j^{(k)})\overset{d}{=} \frac{3}{4q_m}\sqrt{\frac{m_n(m_n-1)}{2}}{\mathcal {Z}}_k, \end{aligned}$$

where \({\mathcal {Z}}_k\sim N(0,\sigma _h^2).\) Therefore, by the Central Limit Theorem,

$$\begin{aligned}{} & {} \frac{1}{n}\sum _{k=1}^{\delta _n}\sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) \\{} & {} \quad = \frac{1}{\delta _n}\sum _{k=1}^{\delta _n}\left[ \frac{3}{4q_m}\sum _{1\le i<j\le m_n}h(X_i^{(k)},X_j^{(k)})+R_k'\right] \\{} & {} \quad \overset{d}{=}\frac{3}{4q_m}\sqrt{\frac{m_n(m_n-1)}{2\delta _n}}\frac{1}{\sqrt{\delta _n}}\sum _{k=1}^{\delta _n}{\mathcal {Z}}_k\\{} & {} \qquad +R''\overset{d}{=}\frac{3}{4q_m}\sqrt{\frac{m_n(m_n-1)}{2\delta _n}}{\mathcal {Z}}. \end{aligned}$$

Thus the conclusion follows. \(\square \)

Lemma 11

For \(\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}\) defined in (13), we have

$$\begin{aligned} \frac{1}{n}\sum _{k=1}^{\delta _n}\sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) ^2\overset{p}{\rightarrow }\frac{3m_n(m_n-1)}{8q_m^2}(\sigma _h^2+o_P(1)). \end{aligned}$$

Proof

We first consider

$$\begin{aligned} \sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) ^2= & {} \frac{1}{q_m^2}\sum _{\ell =1}^{m_n}\left[ \sum _{1\le i<j\le m_n}h\left( X_i^{(k)},X_j^{(k)}\right) \right. \\{} & {} \left. - \sum _{(i.j)\in {\mathcal {V}}_{S_\ell }}h\left( X_i^{(k)},X_j^{(k)}\right) \right] ^2+R, \end{aligned}$$

where R is a small order term compared to the leading term. By simple calculations, it is easy to find that the term R plays a negligible role in the proof. For simplicity, in the sequel, we omit the term R. We first look at

$$\begin{aligned}{} & {} \left[ \sum _{1\le i<j\le m_n}h\left( X_i^{(k)},X_j^{(k)}\right) \right] ^2\\{} & {} \quad {=} \sum _{ i<j}h^2(X_i^{(k)},X_j^{(k)}){+}2\!\!\sum _{ i<j<\ell }h(X_i^{(k)},X_j^{(k)})h(X_i^{(k)},X_\ell ^{(k)})\\{} & {} \qquad +2\sum _{ i<j<\ell }h(X_i^{(k)},X_j^{(k)})h(X_j^{(k)},X_\ell ^{(k)})\\{} & {} \qquad +2\sum _{ i<j<\ell }h(X_i^{(k)},X_\ell ^{(k)})h(X_j^{(k)},X_\ell ^{(k)})\\{} & {} \qquad +2\sum _{i<j<\ell <t}\Big [h(X_i^{(k)},X_j^{(k)})h(X_\ell ^{(k)},X_t^{(k)})\\{} & {} \qquad +h(X_i^{(k)},X_\ell ^{(k)})h(X_j^{(k)},X_t^{(k)})\\{} & {} \qquad +h(X_i^{(k)},X_t^{(k)})h(X_j^{(k)},X_\ell ^{(k)})\Big ] \end{aligned}$$

We respectively consider the terms above. For the first term, by Hoeffding (1992), it is easy to obtain that

$$\begin{aligned} {m_n\atopwithdelims ()2}^{-1}\sum _{ i<j}h^2(X_i^{(k)},X_j^{(k)})\overset{p}{\rightarrow }\sigma _h^2. \end{aligned}$$
(26)

For the second to the fourth terms, we take \(\sum _{i<j}^{\ell -1}h(X_i^{(k)},X_\ell ^{(k)})h(X_j^{(k)},X_\ell ^{(k)})\) as an example for illustration. The others are handled similarly. So we omit them. Let

$$\begin{aligned} U_{\ell }^{(k)}=\sum _{i<j}^{\ell -1}h(X_i^{(k)},X_\ell ^{(k)})h(X_j^{(k)},X_\ell ^{(k)}), \end{aligned}$$

and hence

$$\begin{aligned} \sum _{ i<j<\ell }h(X_i^{(k)},X_\ell ^{(k)})h(X_j^{(k)},X_\ell ^{(k)})=\sum _{\ell =3}^{m_n}U_{\ell }^{(k)}. \end{aligned}$$

For simplicity, we remove the superscript “(k)” when there is no confusion. Note that from the condition that \(\textrm{Var}(\textrm{E}[h(X_i,X_j)|X_j])=0\), we have \(\textrm{E}[h(X_i,X_j)|X_j]=0\) with probability one. Thus, we have \(\textrm{E}U_\ell =0\). Now we consider \(\textrm{E}(\sum _{\ell =3}^{m_n}U_{\ell })^2\), i.e.,

$$\begin{aligned} \textrm{E}(\sum _{\ell =3}^{m_n}U_{\ell })^2=\sum _{\ell =3}^{m_n}\textrm{E}U_{\ell }^2+\sum _{\ell _1\ne \ell _2\ge 3}\textrm{E}U_{\ell _1}U_{\ell _2}. \end{aligned}$$

Here

$$\begin{aligned} \textrm{E}U_{\ell }^2= & {} \sum _{i_1<j_1}^{\ell -1}\sum _{i_2<j_2}^{\ell -1}\textrm{E}\left[ h(X_{i_1},X_{\ell })h(X_{j_1},X_\ell )h(X_{i_2},X_{\ell })\right. \\{} & {} \left. h(X_{j_2},X_\ell )\right] \\= & {} \sum _{i<j}\textrm{E}\left[ h^2(X_{i},X_{\ell })h^2(X_{j},X_\ell )\right] . \end{aligned}$$

If \(\ell _1<\ell _2\), when \(j_1\ne j_2\), we have

$$\begin{aligned}{} & {} \textrm{E}\left[ h(X_{i_1},X_{\ell _1})h(X_{j_1},X_{\ell _1})h(X_{i_1},X_{\ell _2})h(X_{j_2},X_{\ell _2})\right] \\{} & {} \quad =\textrm{E}\left( \textrm{E}\left[ h(X_{i_1},X_{\ell _1})h(X_{j_1},X_{\ell _1})h(X_{i_1},X_{\ell _2})\right. \right. \\{} & {} \quad \quad \left. \left. h(X_{j_2},X_{\ell _2}) \Big |X_{i_1},X_{\ell _1},X_{\ell _2}\right] \right) \\{} & {} \quad =\textrm{E}\left( h(X_{i_1},X_{\ell _1})h(X_{i_1},X_{\ell _2})\textrm{E}\left[ h(X_{j_1},X_{\ell _1})\Big |X_{\ell _1}\right] \right. \\{} & {} \quad \quad \left. \quad \textrm{E}\left[ h(X_{j_2},X_{\ell _2})\Big |X_{\ell _2}\right] \right) =0, \end{aligned}$$

and similarly \(\textrm{E}\left[ h(X_{i_1},X_{\ell _1})h(X_{j_1},X_{\ell _1})h(X_{i_2},X_{\ell _2})\right. \left. h(X_{j_2},X_{\ell _2})\right] =0\) for \(i_1\ne j_1\ne i_2\ne j_2\). Thus,

$$\begin{aligned} \textrm{E}U_{\ell _1}U_{\ell _2}= & {} \sum _{i_1<j_1}^{\ell _1-1}\sum _{i_2<j_2}^{\ell _2-1}\textrm{E}\left[ h(X_{i_1},X_{\ell _1})h(X_{j_1},X_{\ell _1})\right. \\{} & {} \left. h(X_{i_2},X_{\ell _2})h(X_{j_2},X_{\ell _2})\right] \\= & {} \sum _{i_1<j_1}^{\ell _1-1}\textrm{E}\left[ h(X_{i_1},X_{\ell _1})h(X_{j_1},X_{\ell _1})h(X_{i_1},X_{\ell _2})\right. \\{} & {} \left. h(X_{j_1},X_{\ell _2})\right] \\= & {} \sum _{i_1<j_1}^{\ell _1-1}\textrm{E}H^2(X_{i_1},X_{j_1}). \end{aligned}$$

Consequently, one has

$$\begin{aligned} \textrm{E}\left( \sum _{\ell =3}^{m_n}U_{\ell }\right) ^2= & {} C_1m_n^3\textrm{E}\left[ h^2(X_{i},X_{\ell })h^2(X_{j},X_\ell )\right] \\{} & {} +C_2m_n^4\textrm{E}H^2(X_{i_1},X_{j_1}). \end{aligned}$$

Combining Condition C1, we thus have

$$\begin{aligned} \frac{\sum _{ i<j<\ell }h(X_i^{(k)},X_\ell ^{(k)})h(X_j^{(k)},X_\ell ^{(k)})}{\frac{m_n(m_n-1)}{2}\sigma _h^2}=o_P(1). \end{aligned}$$
(27)

Next we consider the remaining terms, and also take \(\sum _{i<j<\ell <t}h(X_i^{(k)},X_j^{(k)})h(X_\ell ^{(k)},X_t^{(k)})\) as an exmple, which can be viewed as a U statistic of degree 4 with mean zero. Following Hoeffding (1992), it is easy to verify that such a U statistic is stationary of order 3. Hence, by (5.13) in Hoeffding (1992),

$$\begin{aligned}{} & {} \textrm{Var}\Big (\sum _{i<j<\ell <t}h(X_i^{(k)},X_j^{(k)})h(X_\ell ^{(k)},X_t^{(k)})\Big )\\{} & {} \quad ={m_n\atopwithdelims ()4}\{\textrm{E}[h(X_1,X_2)^2]\}^2. \end{aligned}$$

Hence, by the law of large numbers for U-statistics, one has

$$\begin{aligned} \frac{1}{\delta _n}\sum _{k=1}^{\delta _n}\sum _{i<j<\ell <t}{m_n\atopwithdelims ()2}^{-1}h(X_i^{(k)},X_j^{(k)})h(X_\ell ^{(k)},X_t^{(k)})\overset{p}{\rightarrow }0.\nonumber \\ \end{aligned}$$
(28)

Note that

$$\begin{aligned}{} & {} \sum _{\ell =1}^{m_n}\left[ \sum _{1\le i<j\le m_n}h(X_i^{(k)},X_j^{(k)})\right] \cdot \left[ \sum _{(i.j)\in {\mathcal {V}}_{S_\ell }}h(X_i^{(k)},X_j^{(k)})\right] \\{} & {} \quad =\eta \left[ \sum _{1\le i<j\le m_n}h(X_i^{(k)},X_j^{(k)})\right] ^2 \end{aligned}$$

Now, write

$$\begin{aligned}{} & {} \frac{1}{n}\sum _{k=1}^{\delta _n}\sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) ^2=\frac{1}{\delta _n}\sum _{k=1}^{\delta _n}\frac{1}{m_n}\sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) ^2\\{} & {} \quad =\frac{1}{\delta _n}\sum _{k=1}^{\delta _n}\frac{m_n-2\eta }{m_nq_m^2}\left[ \sum _{1\le i<j\le m_n}h(X_i^{(k)},X_j^{(k)})\right] ^2\\{} & {} \qquad + \frac{1}{\delta _n}\sum _{k=1}^{\delta _n}\frac{1}{m_nq_m^2}\sum _{\ell =1}^{m_n} \left[ \sum _{(i.j)\in {\mathcal {V}}_{S_\ell }}h(X_i^{(k)},X_j^{(k)})\right] ^2. \end{aligned}$$

By (26), (27) (28) and the law of large numbers for U-statistics, we have

$$\begin{aligned} \frac{1}{\delta _n}\sum _{k=1}^{\delta _n}\frac{m_n-2\eta }{m_nq_m^2}\left[ \sum _{1\le i<j\le m_n}h(X_i^{(k)},X_j^{(k)})\right] ^2\overset{p}{\rightarrow }\frac{{m_n\atopwithdelims ()2}}{2q_m^2}\sigma _h^2.\end{aligned}$$

Similarly, one can also prove that

$$\begin{aligned} \frac{1}{\delta _n}\sum _{k=1}^{\delta _n}\frac{1}{m_nq_m^2}\sum _{\ell =1}^{m_n}\left[ \sum _{(i.j)\in {\mathcal {V}}_{S_\ell }}h(X_i^{(k)},X_j^{(k)})\right] ^2\overset{p}{\rightarrow }\frac{{m_n\atopwithdelims ()2}}{4q_m^2}\sigma _h^2. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \frac{1}{n}\sum _{k=1}^{\delta _n}\sum _{\ell =1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }-\theta _0\right) ^2 \overset{p}{\rightarrow }\frac{3m_n(m_n-1)}{8q_m^2}\sigma _h^2, \end{aligned}$$

and the conclusion follows. \(\square \)

Lemma 12

For the \(\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}\) as defined in (13), we have

$$\begin{aligned} \max \limits _{1\le i\le \delta _n,~1\le j\le m}\left| (\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0)\right| =O_P((\log n\cdot \delta _n/m^3_n)^{1/4}). \end{aligned}$$

Proof

From the proof of Lemma 11, by tedious computations, it is easy to verify that

$$\begin{aligned} \textrm{E}\left| \sum _{1\le i< j\le m_n}h(X_i,X_j)\right| ^4=O(m_n^4). \end{aligned}$$
(29)

Write

$$\begin{aligned}{} & {} \max \limits _{1\le i\le \delta _n,~1\le j\le m_n}\left| (\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0)\right| \\{} & {} \quad =\max \limits _{1\le k\le \delta _n,~1\le \ell \le m_n}\frac{1}{q_m}\left| \sum _{1\le i<j\le m_n}h(X_i^{(k)},X_j^{(k)})\right. \\{} & {} \qquad \left. - \sum _{(i.j)\in {\mathcal {V}}_{S_\ell }}h(X_i^{(k)},X_j^{(k)})\right| \\{} & {} \quad \le \max \limits _{1\le k\le \delta _n}\frac{1}{q_m}\left| \sum _{1\le i<j\le m_n}h(X_i^{(k)},X_j^{(k)})\right| \\{} & {} \qquad +\max \limits _{1\le k\le \delta _n,~1\le \ell \le m_n}\frac{1}{q_m}\left| \sum _{(i.j)\in {\mathcal {V}}_{S_\ell }}h(X_i^{(k)},X_j^{(k)})\right| . \end{aligned}$$

Then combining Chebyshev’s inequality and (29), one can obtain the conclusion. \(\square \)

Proof of Theorem 3.

Proof

The proof of Theorem 3 is similar to that of Theorem 2. We only provide different parts. Note that Lemma 5 guarantees that the solution to (12) exists and is unique. From Lemma 11, we have \({\tilde{S}}=[\sigma _h^2+o_P(1)]/q_m\). Moreover, by Lemma 10, \(\frac{1}{n}\sum _{k{=}1}^{\delta _n}\sum _{\ell {=}1}^{m_n}\left( \tilde{\theta }^{(k)}_{{\mathcal {S}}_\ell }{-}\theta _0\right) \overset{d}{=}\frac{3}{4q_m}\sqrt{\frac{m_n(m_n{-}1)}{2\delta _n}}{\mathcal {Z}}{+}o_P(1)\), where \({\mathcal {Z}}\sim N(0,\sigma _h^2).\) We thus have \(\lambda =O_P(\sqrt{m_n^3/n})\). Let \(\gamma _{ij}=\lambda (\tilde{\theta }_{{\mathcal {S}}_j}^{(i)}-\theta _0)\). Applying \(\frac{1}{1+x}=1-x+\frac{x^2}{1+x}\) to (12), one can obtain that

$$\begin{aligned} 0=\frac{1}{n}\sum _{i=1}^{\delta _n}\sum _{j=1}^m({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0)\left[ 1-\gamma _{ij}+\frac{\gamma _{ij}^2}{1+\gamma _{ij}}\right] . \end{aligned}$$

By Lemma 12, we have

$$\begin{aligned} \frac{1}{N} \sum _{i=1}^N\lambda ^2({\tilde{\theta }}_{{\mathcal {S}}_i}-\theta _0)^3=\left( \frac{\log n}{n^3}\right) ^{1/4}, \end{aligned}$$

and thus \(\lambda ={\tilde{S}}^{-1}(\frac{1}{n}\sum _{i=1}^{\delta _n}\sum _{j=1}^m({\tilde{\theta }}_{{\mathcal {S}}_j}^{(i)}-\theta _0))+o_P(\sqrt{m_n^3/n})\). Applying Taylor’s expansion and plugging the expression of \(\lambda \) into \(-\log R(\theta _0)\), we have

$$\begin{aligned} -\log R(\theta _0)/m_n= & {} \left[ \sum _{i=1}^{\delta _n}\sum _{j=1}^m\gamma _{ij}-\frac{1}{2} \sum _{i=1}^{\delta _n}\sum _{j=1}^m\gamma _{ij}^2\right] /m_n\\{} & {} +o_P(1) \overset{d}{\rightarrow }\frac{3}{8}{\mathcal {Z}}^2/\sigma _h^2. \end{aligned}$$

Hence, \(-8\log R(\theta _0)/(3m_n)\overset{d}{\rightarrow }\chi ^2_1\), and the conclusion follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, S. & Zhou, W. General Jackknife empirical likelihood and its applications. Stat Comput 33, 74 (2023). https://doi.org/10.1007/s11222-023-10245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-023-10245-z

Keywords

Navigation