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Abstract

The classical propositional logic is known to be sound and com-

plete with respect to the set semantics that interprets connectives as

set operations. The paper extends propositional language by a new

binary modality that corresponds to partial recursive function type

constructor under the above interpretation. The cases of determin-

istic and non-deterministic functions are considered and for both of

them semantically complete modal logics are described and decidabil-

ity of these logics is established.

Keywords: modal logic, recursive function, Curry-Howard isomor-

phism

1 Introduction

We are interested in the use of logical connectives to describe properties of
the set and type operations. Historically, there have been two major ways to
interpret logical connectives as such operations: Curry-Howard isomorphism
and set semantics.
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Under Curry-Howard isomorphism (Curry [1934, 1942], Curry and Feys
[1958], Howard [1980]), propositional formulas are interpreted as types and
connectives ∧,∨, and → are interpreted as Cartesian product, disjoint union,
and constructive function type constructors. It can be shown that a formula
is provable in intuitionistic propositional logic if and only if it is always
evaluated to an inhabited type. Thus, intuitionistic logic could be viewed as
a calculus that describes properties of Cartesian product, disjoint union, and
function type constructors.

Since the list of possible type constructors is not limited to just the trio
of product, disjoint union, and function, one can raise a question about log-
ical principles describing behavior of other type constructors. For example,
list, partial object [Smith, 1995] and squash [Constable et al., 1986] types
can be viewed as modalities while inductive and co-inductive constructors
(Mendler [1991] and Coquand and Paulin [1990]) may be considered as quasi-
quantifiers. In fact, Kopylov and Nogin [2001] established that modal logic
of squash operator is Lax Logic [Fairtlough and Mendler, 1997].

According to the set semantics, every propositional formula is evaluated
to a subset of a given universe U and propositional connectives conjunction ∧,
disjunction ∨, and negation ¬ are identified with set operations intersection
∩, union ∪, and complement ∁U , correspondingly. It is easy to see that a
formula is provable in the classical propositional logic if and only if it is
evaluated to the entire universe U under any interpretation of propositional
variables.

Several possible extensions of the classical logic by modal operators cor-
responding, under the above set semantics, to additional set operations have
been considered. McKinsey and Tarski [1944] established that if the universe
U is a topological space, then modal logic S4 describes properties of the inte-
rior operator. If the universe U is the set of all words in some alphabet, then
properties of the logical connectives corresponding to product and star oper-
ations are axiomatized by Interval Temporal Logic [Moszkowski and Manna,
1984]. In [Naumov, 2003, 2004], the author describes an extension of the
classical propositional logic by binary modalities, corresponding to the oper-
ations disjoint union and Cartesian product.

This paper considers an extension of the classical propositional logic by a
binary modality ⊲, corresponding to computable function type constructor.
Namely, if U is the universe of all words in some alphabet, then (φ ⊲ ψ)∗ is
the set of all Turing machine descriptions of partial recursive functions from
φ∗ into ψ∗. We consider cases of deterministic and nondeterministic Turing
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machines. For both of them complete Hilbert-style axiomatizations of the
appropriate modal logics is given. It turns out that modal logic of deter-
ministic functions ℜd is an extension of the modal logic of nondeterministic
functions ℜ by just one additional axiom.

The modality φ ⊲ ψ of the logics of partial recursive functions is, essen-
tially, a form of Hoare triple φ{α}ψ with a fixed program variable α. Thus,
there is some similarity between modal logics of recursive functions and the
dynamic logic [Harel et al., 2000]. For example, introduced below axiom of
logic ℜ: φ ⊲ ψ → (χ⊲ ψ → (φ ∨ χ) ⊲ ψ) could be related to dynamic logic
theorem φ{α}ψ → (χ{α}ψ → (φ ∨ χ){α}ψ). This similarity, however, ends
once iterative applications of the modality are considered. For example, for-
mula (⊤{α}φ){α}φ is also a theorem of the dynamic logic but modal formula
(⊤⊲ φ)⊲ φ is valid neither in ℜ nor in ℜd.

This paper focuses on soundness and completeness of logics ℜ and ℜd with
respect to the class of partial recursive functions. As one can expect, the re-
sults can be easily relativized by an oracle. It is worth mentioning, although,
that presented in the paper soundness and completeness proofs could also be
adopted for some subclasses of the class of partial recursive functions such as,
for example, polynomial functions and finite-domain functions. Hence, both
of these logics capture very general properties of “complete”, in some infor-
mal sense, classes of enumerable functions. The downside of this, of course,
is that more specific properties of recursive functions are not reflected in
these logics. For example, many of the properties of recursive functions cap-
tured by the intuitionistic logic under Curry-Howard isomorphism, such as
closure under composition, could not be expressed in logics ℜ and ℜd. One
should think of these logics more as an attempt to reason about functions in
(a modal extension of) the classical propositional logic rather than a modal
axiomatization of recursiveness. Similarly defined logics of total recursive
functions, as will be mentioned in the conclusion, would provide a signifi-
cantly more expressive language. Our investigation of logics ℜ and ℜd could
be viewed as a first step towards study of such more expressive logics.

The results for logics ℜ and ℜd will be presented together. In the next
section we discuss the definition of the recursive functions and the Kleene
recursion theorem on which our completeness results are based. In Section 3,
a formal semantics of the modal logics of recursive functions is given. Section
4 lists axioms and inference rules for both logics and verifies their soundness.
The rest of the paper is dedicated to the completeness proof. In Section 5,
Kripke-style models for ℜ and ℜd are introduced and completeness of these

3



logics with respect to appropriate classes of the Kripke models is proven. In
Section 6, in order to finish the proof of the completeness theorem, we show
how Kripke models could be converted into sets of partial recursive functions.
Decidability of the logics follows from finiteness of the corresponding Kripke
models. Section 7 concludes with the discussion of an alternative definition
of the logic of nondeterministic partial recursive functions and the logics of
total recursive functions.

2 Recursive functions

We study modal logic descriptions of partial recursive functions. The two
classes of recursive functions – deterministic and nondeterministic – will be
considered. Nondeterministic partial recursive functions could be described,
for example, as nondeterministic Turing machines. Value f(x) of a nondeter-
ministic function f on an argument x is defined as the set of all values that
a nondeterministic machine representing f can return on input x. Determin-
istic partial recursive function is a special case of nondeterministic function
whose value is a set that has no more than one element.

We consider an enumeration {ξu}u∈U of partial recursive functions from
a universe U into U by the elements of the same universe U . The two major
cases that will be considered are: a) {ξu}u∈U is an enumeration of all nonde-
terministic partial recursive functions and b) {ξu}u∈U is an enumeration of
all deterministic partial recursive functions. The exact choice of the universe
and the enumeration will not be important as long as the following version
of Kleene’s recursion theorem is satisfied:

Theorem 1 For any finite set f1, . . . , fn of total recursive functions from
Un to U there are elements u1, . . . , un ∈ U such that ξui

≡ ξfi(u1,...,un) for any
0 ≤ i ≤ n.

Note that reproduced below standard (see, for example, Rogers [1987]) proof
of the recursion theorem for enumeration {ξu}u∈U of deterministic partial
recursive functions is also valid for enumerations of nondeterministic partial
recursive functions.
Proof. Let {δnx}x∈U be an enumeration of deterministic partial recursive func-
tions of arity n by elements of the universe U . Consider recursive functions
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gi : U
n 7→ U such that for any x1, . . . , xn ∈ U ,

ξgi(x1,...,xn)(y) =

{

ξδnxi(x1,...,xk)(y) if δnxi
(x1, . . . , xk) convergent

divergent otherwise

Note that hi(x1, . . . , xn) = fi(g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)) is a total re-
cursive function Un 7→ U for any i. Let wi be such that δnwi

≡ hi. Thus,

ξgi(w1,...,wn) ≡ ξδnwi
(w1,...,wn) ≡ ξhi(w1,...,wn) ≡ ξfi(g1(w1,...,wn),...,gn(w1,...,wn)).

Take ui to be gi(w1, . . . , wn). �

3 Semantics

Definition 1 The formulas of the modal language L are built from propo-
sitional variables p, q, r . . . and false constant ⊥ using implication → and
binary modality ⊲.

As usual, boolean connectives conjunction ∧, disjunction ∨, negation ¬, and
constant true ⊤ are assumed to be defined through implication and false.
Let ∧∧Γ be the conjunction of all formulas from a finite set Γ. By definition,
∧∧∅ is ⊤.

Definition 2 Valuation ∗ is an arbitrary mapping of propositional variables
into subsets of the universe. We define mapping (·)∗ that extends ∗ to a
mapping from modal propositional formulas into subsets of U :

1. ⊥∗ = ∅,

2. (φ→ ψ)∗ = ∁U(φ
∗) ∪ ψ∗,

3. (φ⊲ ψ)∗ = {w ∈ U | ∀u ∈ φ∗ (ξw(u) 6= ∅ → ξw(u) ∩ ψ
∗ 6= ∅)}.

If φ∗ = U for any valuation ∗, then we say that propositional modal formula
φ is a tautology of enumeration {ξu}u∈U . Notation: {ξu}u∈U � φ.

Part three of the above definition stipulates that a nondeterministic function
belongs to (φ⊲ψ)∗ if for any argument from φ∗, on which this function is de-
fined, at least one of its values belongs to ψ∗. An alternative definition, when
all such values are required to belong to ψ∗, is discussed in the conclusion.
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4 Axioms

Definition 3 The modal logic ℜ of nondeterministic partial recursive func-
tions is an extension of the classical propositional logic, formulated in the
language L, by the following axioms

A1. φ⊲ ψ → (χ⊲ ψ → (φ ∨ χ)⊲ ψ),

A2. ⊥⊲ φ,

A3. φ⊲⊤,

and, in addition to Modus Ponens, the following monotonicity inference rule:

M.
φ1 → φ2, ψ1 → ψ2

φ2 ⊲ ψ1 → φ1 ⊲ ψ2

Definition 4 The modal logic ℜd of deterministic partial recursive func-
tions, in addition to the axioms and the inference rules of ℜ, contains the
following additional axiom:

A4. φ⊲ ψ → (φ⊲ χ→ φ⊲ (ψ ∧ χ)).

Let ∆ ⊢L φ mean that formula φ is provable from a set of formulas ∆ and
the theorems of modal logic L using only Modes Ponens inference rule.

Lemma 1

(a ∧ c)⊲ b, (a ∧ ¬c)⊲ b ⊢ℜ a⊲ b

Proof. Assume (a ∧ c)⊲ b and (a ∧ ¬c)⊲ b. By axiom A1,

((a ∧ c) ∨ (a ∧ ¬c))⊲ b. (1)

On the other hand, since a→ (a∧ c) ∨ (a∧ ¬c) is a propositional tautology,
by rule M,

⊢ℜ ((a ∧ c) ∨ (a ∧ ¬c))⊲ b→ a⊲ b.

This, in combination with formula (1), implies a⊲ b. �

Lemma 2

a⊲ ¬(b ∧ c), a⊲ ¬(b ∧ ¬c) ⊢ℜd
a⊲ ¬b
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Proof. Assume a⊲ ¬(b ∧ c) and a⊲ ¬(b ∧ ¬c). By axiom A4,

a⊲ (¬(b ∧ c) ∧ ¬(b ∧ ¬c)) (2)

On the other hand, since ¬(b∧c)∧¬(b∧¬c) → ¬b is a propositional tautology,
by rule M,

⊢ℜd
a⊲ (¬(b ∧ c) ∧ ¬(b ∧ ¬c)) → a⊲ ¬b.

This, in combination with formula (2), implies a⊲ ¬b. �

Theorem 2 For any propositional modal formula φ,

1. If ⊢ℜ φ, then {ξu}u∈U � φ for any enumeration {ξu}u∈U of nondeter-
ministic recursive functions,

2. If ⊢ℜd
φ, then {ξu}u∈U � φ for any enumeration {ξu}u∈U of determin-

istic recursive functions.

Proof. Both parts of the theorem will be proven simulteniously by the in-
duction on the size of the derivation of formula φ. Cases of classical logic
axioms and Modes Ponens inference rule are trivial. Let us consider axioms
A1-A4 and the monotonicity rule M:

A1. Suppose that w ∈ (φ ⊲ ψ)∗ and w ∈ (χ ⊲ ψ)∗. We will show that
w ∈ ((φ∨χ)⊲ψ)∗. Indeed, assume that there is u ∈ (φ∨χ)∗ such that
ξw(u) 6= ∅. Note that (φ∨χ)∗ = φ∗∪χ∗. Thus, u ∈ φ∗ or u ∈ χ∗. In the
first case, because w ∈ (φ⊲ψ)∗, we can conclude that ξw(u)∩ψ

∗ 6= ∅.
Therefore, w ∈ ((φ ∨ χ)⊲ ψ)∗. The second case is similar.

A2. For any w ∈ U and any valuation ∗, statement

∀u ∈ ⊥∗ (ξw(u) 6= ∅ → ξw(u) ∩ ψ
∗ 6= ∅)

is true because ⊥∗ = ∅.

A3. For any w ∈ U and any valuation ∗, statement

∀u ∈ φ∗ (ξw(u) 6= ∅ → ξw(u) ∩ ⊤∗ 6= ∅)

is true because ⊤∗ = U .
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A4. Applicable only to the second part of the theorem. Suppose that w ∈
(φ ⊲ ψ)∗ and w ∈ (ψ ⊲ χ)∗. We will show that w ∈ (φ ⊲ (ψ ∧ χ))∗.
Indeed, assume that there is u ∈ φ∗ such that ξw(u) 6= ∅. Note that
w ∈ (φ ⊲ ψ)∗ and w ∈ (ψ ⊲ χ)∗ imply that ξw(u) ∩ ψ∗ 6= ∅ and
ξw(u) ∩ χ∗ 6= ∅. Since ξw(u) cannot contain more than one element,
ξw(u) ∩ (ψ∗ ∩ χ∗) 6= ∅. Therefore, w ∈ (φ⊲ (ψ ∧ χ))∗.

M. If φ∗
1 ⊆ φ∗

2 and ψ∗
1 ⊆ ψ∗

2, then any function from φ∗
2 into ψ∗

1 is also a
function from φ∗

1 into ψ∗
2.

�

5 Kripke Models

Definition 5 Kripke model is a triple 〈W,→,〉, where W is a finite set
of “worlds”, → is a ternary “computability” relation on worlds, and  is a
binary “forcing” relation between worlds and propositional formulas.

Informally, worlds should be viewed as program codes and u →w v as a
statement that program w on input v might terminate with output v.

Definition 6 Kripke model is called deterministic if for any worlds w, u ∈
W there is no more than one v ∈ W such that u →w v.

Definition 7 For any Kripke model the forcing relation is extended to rela-
tions  between worlds and modal formulas as follows:

1. w 1 ⊥,

2. w  φ → ψ if and only if either w 1 φ or w  ψ,

3. w  φ⊲ψ iff for any worlds u and v such that u →w v and u  φ there
is world v′ such that u →w v

′ and v′  ψ.

Note that in the case of a deterministic Kripke model, worlds v and v′ in the
above definition are the same.

Theorem 3 For any propositional modal formula φ0,
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1. If 0ℜ φ0, then there is a world w of a Kripke model 〈W,→,〉 such
that w 1 φ0.

2. If 0ℜd
φ0, then there is a world w of a deterministic Kripke model

〈W,→,〉 such that w 1 φ0.

Proof. Justifications of the two parts of this theorem are similar. We will
present them in one proof. Let symbol ⊢ below stand for ⊢ℜ or ⊢ℜd

, de-
pending on whether we prove the first or the second part of the theorem.

Definition 8 Let us define operation ∼ on modal propositional formulas as
follows: ∼ (¬φ) is φ for any propositional modal formula φ and ∼ φ is ¬φ if
φ is not, syntactically, a negation of some formula.

One can easily see that ∼ φ is equivalent to ¬φ in the classical propositional
logic. Since logics ℜ and ℜd are extensions of the classical logic, the same
equality holds there too.

Definition 9 Let Φ0 be a finite extension of {φ0} closed with respect to sub-
formulas and operation ∼.

Definition 10 For any subsets u, v, and w of Φ0, pair (u, v) is w-consistent
if w 0 ∧∧u⊲ ¬∧∧v.

Lemma 3 If pair (u, v) is w-consistent, then sets u and v are consistent.

Proof. Assume that u is not consistent: ⊢ ∧∧u → ⊥. Thus, by rule M, we
have ⊢ ⊥ ⊲ ¬∧∧v → ∧∧u ⊲ ¬∧∧v. Hence, by axiom A2, ⊢ ∧∧u ⊲ ¬∧∧v. This
contradicts to w-consistency of pair (u, v).

Next, suppose that v is inconsistent: ⊢ ⊤ → ¬∧∧v. Thus, by rule M, one
can conclude that ⊢ ∧∧u⊲⊤ →∧∧u⊲ ¬∧∧v. Taking into account axiom A3,
⊢ ∧∧u⊲ ¬∧∧v. Again contradiction with w-consistency of pair (u, v). �

Lemma 4 For any w-consistent pair (u, v) of subsets of Φ0, subset u can be
extended to a complete consistent subset u′ of Φ0 such that pair (u′, v) is still
w-consistent.
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Proof. We only need to prove that for any formula φ either φ or ¬φ could be
added to u to keep pair (u, v) consistent. Assume that w ⊢ (∧∧u ∧ φ)⊲ ¬∧∧v
and w ⊢ (∧∧u ∧ ¬φ)⊲ ¬∧∧v. By Lemma 1, w ⊢ ∧∧u⊲ ¬∧∧v. Therefore, (u, v)
is not w-consistent. Contradiction. �

Lemma 5 For any w-consistent in logic ℜd pair (u, v) of subsets of Φ0,
subset v can be extended to a complete and consistent in ℜd subset v′ of Φ0

such that pair (u, v′) is still w-consistent in logic ℜd.

Proof. Similarly to the proof of Lemma 4, assume that w ⊢ℜd
∧∧u⊲¬(∧∧v∧φ)

and w ⊢ℜd
∧∧u ⊲ ¬(∧∧v ∧ ¬φ). By Lemma 2, w ⊢ℜd

∧∧u ⊲ ¬∧∧v. Therefore,
(u, v) is not w-consistent. �

Definition 11 Let Kripke model K = 〈W,→,〉 be defined as follows: W
is the set of all pairs (w, φ) where w is a maximal consistent in ℜ subset of
Φ0 and φ is a formula from Φ0, (u, ψ) →(w,φ) (v, χ) is true if (u, {ψ}) is a
w-consistent in ℜ pair and ψ ∈ v, and (w, φ)  p is true if p ∈ w.

Lemma 6 For any formula φ ∈ Φ0 and any world (w, ψ) of model K,

φ ∈ w ⇐⇒ (w, φ)  φ.

Proof. Induction on the complexity of formula φ. The only non-trivial case
is when φ ≡ φ1 ⊲ φ2.

⇒ Suppose that φ1⊲φ2 ∈ w. Consider any world (u, ψ) such that (u, ψ) 
φ1. Case 1: (u, ψ) is not w-consistent. Thus, by Definition 11, there is
no (v, χ) such that (u, ψ) →(w,φ) (v, χ). Therefore, w  φ1 ⊲ φ2. Case
2: (u, ψ) is w-consistent. By the induction hypothesis, φ1 ∈ u. Thus,
⊢ℜ ∧∧u → φ1. We will show that set {φ2, ψ} is consistent. Indeed,
if φ2 ⊢ℜ ¬ψ, then, by rule M, we have ⊢ℜ φ1 ⊲ φ2 → ∧∧u ⊲ ¬ψ.
Hence, w ⊢ℜ ∧∧u⊲¬ψ. This means that pair (u, ψ) is not w-consistent.
Contradiction. Thus, {φ2, ψ} is a consistent set. Let v be its any
consistent extension and χ be any formula of Φ0. By the induction
hypothesis, (v, χ)  φ2. By Definition 11, (u, ψ) →(w,φ) (u, χ).
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⇐ Suppose that φ1 ⊲ φ2 /∈ w. By rule M, w 0ℜ φ1 ⊲ ¬¬φ2. Thus,
pair ({φ1}, {¬φ2}) is w-consistent. By Lemma 4, there is a complete
consistent extension u of {φ1} such that (u, {¬φ2}) is w-consistent. By
the induction hypothesis, (u,¬φ2)  φ1. By Lemma 3, set {¬φ2} is
consistent. Consider an arbitrary complete and consistent extension v
of this set and an arbitrary formula χ of Φ0. Trivially, (u,¬φ2) →(w,φ)

(u, χ). At the same time, for any (v′, χ′) such that (u,¬φ2) →(w,φ)

(v′, χ) we will have ¬φ2 ∈ v′ and, thus, by the induction hypothesis,
(v′, χ′) 1 φ2. Therefore, (w, φ) 1 φ.

�

Definition 12 Let deterministic Kripke model Kd = 〈W,→,〉 be defined
as follows: W is the set of all pairs of maximal consistent in ℜd subset of
Φ0, (u1, u2) →(w1,w2) (v1, v2) is true if (u1, v1) is a w1-consistent in ℜd pair
and u2 = v1 = v2, and (w1, w2)  p is true if p ∈ w1.

Lemma 7 For any formula φ ∈ Φ0 and any world (w1, w2) of model Kd,

φ ∈ w1 ⇐⇒ (w1, w2)  φ.

Proof. Induction on complexity of formula φ. The only non-trivial case is
when φ is φ1 ⊲ φ2 for some modal formulas φ1 and φ2.

⇒ Assume that φ1 ⊲ φ2 ∈ w1. Consider an arbitrary w1-consistent pair
(u, v) of maximal consistent subsets of Φ0. It will be sufficient to show
that if (u, v)  φ1, then (v, v)  φ2. Indeed, assume that (u, v)  φ1

and (v, v) 1 φ2. By the induction hypothesis, φ1 ∈ u and φ2 /∈ v. Thus,
by maximality of v, we have ∼ φ2 ∈ v. Hence formulas ∧∧u → φ1 and
φ2 → ¬∧∧v are provable in the classical propositional logic. By rule M,
⊢ℜd

φ1 ⊲ φ2 →∧∧u⊲ ¬∧∧v. Given that φ1 ⊲ φ2 ∈ w1, we can conclude
that w1 ⊢ℜd

∧∧u ⊲ ¬∧∧v. Therefore, (u, v) is not a w1-consistent pair.
Contradiction.

⇐ Suppose φ1 ⊲ φ2 /∈ w1. By maximality of w1, we have w1 0ℜd
φ1 ⊲ φ2.

Thus, ({φ1}, {¬φ2}) is a w1-consistent pair of sets. By Lemma 4 and
Lemma 5, it can be extended to a pair (u, v) of maximal consistent sets
which is also w1-consistent. By Definition 12, (u, v) →(w1,w2) (v, v).
By the induction hypothesis, (u, v)  φ1 and (v, v) 1 φ2. Therefore,
(w1, w2) 1 φ1 ⊲ φ2.

11



�
Let us finish the proof of the completeness theorem. If 0ℜ φ0, then consis-
tent subset {∼ φ0} of Φ0 could be extended to a maximal consistent subset
w of Φ0. By Lemma 6, (w, φ0) 1 φ0. Similarly, if 0ℜd

φ0, then {∼ φ0} is
consistent subset of Φ0. It can be extended to a maximal consistent subset
w of Φ. By Lemma 7, (w,w) 1 φ0. �

6 Computational Completeness

Theorem 4 For any propositional modal formula φ0,

1. If w 1 φ0 for some world w of a Kripke model K, then {ξu}u∈U 2

φ0 for any enumeration {ξu}u∈U of nondeterministic partial recursive
functions.

2. If w 1 φ0 for some world w of a deterministic Kripke model K, then
{ξu}u∈U 2 φ0 for any enumeration {ξu}u∈U of deterministic partial
recursive functions.

Proof. The two parts of this theorem will be proven simulteniously. Suppose
w1 1 φ0 for some world w1 of the Kripke model K. Let {w1, . . . , wn} be all
worlds of this Kripke model. Consider functions fi(x1, . . . , xn) such that

ξfi(x1,...,xn)(u) = {xk | ∃j (u = xj ∧ wj →wi
wk)}.

Note that if Kripke model K is deterministic, then wk, mentioned in the
above definition, is unique. Thus, partial recursive function ξfi(x1,...,xn) is
deterministic. No matter if model K is deterministic or nondeterministic,
let us consider fixed points u1, . . . , un of functions f1, . . . , fn whose existence
follows from Theorem 1. Also, let valuation ∗ be defined on propositional
variables as follows: ∗(p) = {ui | wi  p}.

Lemma 8 For any propositional modal formula φ and any 1 ≤ i ≤ n,

ui ∈ φ∗ ⇐⇒ wi  φ.

Proof. Induction on the complexity of formula φ. By the definition of ∗,
the lemma is true for propositional variables. We will consider the only
non-trivial inductive case: φ = φ1 ⊲ φ2.

12



⇒ Suppose wi 1 φ1 ⊲ φ2. Thus, by Definition 7, there are j and k such
that wj  φ1, wj →wi

wk, and for any k′ such that wj →wi
wk′, we have

wk′ 1 φ2 . Thus, uk ∈ ξfi(u1,...,un)(uj) and, at the same time, wk′ 1 φ2

for any k′ such that uk′ ∈ ξfi(u1,...,un)(uj). Hence ξfi(u1,...,un)(uj) is not
empty and, by the induction hypothesis,

ξfi(u1,...,un)(uj) ∩ φ
∗

2 = ∅

By the choice of elements u1, . . . , un, they are fixed points of functions
f1, . . . , fn. Hence, ξui

(uj) is not empty and ξui
(uj) ∩ φ

∗
2 = ∅. At the

same time, by the induction hypothesis, uj ∈ φ∗
1. Thus,

¬∀u ∈ φ∗

1(ξui
(u) 6= ∅ → ξui

(u) ∩ φ∗

2 6= ∅).

Therefore, by Definition 2, ui /∈ (φ1 ⊲ φ2)
∗.

⇐ Assume that ui /∈ (φ1⊲φ2)
∗. Thus, by Definition 2, there is an element

y ∈ U such that y ∈ φ∗
1, ξui

(y) 6= ∅, and ξui
(y)∩φ∗

2 = ∅. Note that since
ξui

≡ ξfi(u1,...,un), we can conclude that ξfi(u1,...,un)(y) is also non-empty.
This, by the definition of fi can happen only if y = uj for some 0 ≤
j ≤ n. In this case, by the same definition, ξui

(uj) = ξfi(u1,...,un)(uj) =
{uk | wj →wi

wk}. Given that y ∈ φ∗
1 and ξui

(y) ∩ φ∗
2 = ∅, we can

conclude, by the induction hypothesis, that wj  φ1 and wk 1 φ2 for
any k such that wj →wi

wk. Therefore, by Definition 7, wi 1 φ1 ⊲ φ2.

�
To finish the proof of Theorem 4, note that w1 1 φ0 implies, by Lemma 8,
that u1 /∈ φ∗

0. Therefore, {ξu}u∈U 2 φ0. �

Theorem 5 For any propositional modal formula φ and any enumeration
{ξu}u∈U of nondeterministic partial recursive functions, the following state-
ments are equivalent:

1. {ξu}u∈U � φ,

2. w  φ for every world w of any Kripke model,

3. ⊢ℜ φ.
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Proof. Statement 1 implies statement 2 by Theorem 4. Statement 2 implies
statement 3 by Theorem 3. Statement 3 implies statement 1 by Theorem 2. �

Corollary 1 Modal logic ℜ is decidable.

Theorem 6 For any propositional modal formula φ and any enumeration
{ξu}u∈U of deterministic partial recursive functions, the following statements
are equivalent:

1. {ξu}u∈U � φ,

2. w  φ for every world w of any deterministic Kripke model,

3. ⊢ℜd
φ.

Proof. The same as the proof of Theorem 5. �

Corollary 2 Modal logic ℜd is decidable.

7 Conclusions

In this paper we have introduced two modal logics of partial recursive func-
tions, gave their complete axiomatizations, and proved decidability of both
logics. These results, of course, depend on the exact interpretation of con-
nective ⊲ as given in Definition 2. Let us consider two natural alternatives
to this interpretation.

First of all, there are at least two different ways to define partial nonde-
terministic functions from set A to set B. One approach is to require that all
computational paths that start with an element in A either do not terminate
or terminate in B. The second approach is to say that if the terminating
paths exist, then at least one of them ends in B. The second approach is
normally used to define computation of a nondeterministic finite automaton
and it is the approach adopted in Definition 2 of this paper. It is also pos-
sible to consider the logic of nondeterministic partial computable functions
under the first approach. One can easily see that not only are all axioms
of logic ℜ valid in this situation, but the axiom A4 of logic ℜd is valid too.
Simple review of the given above completeness proof for logic ℜd shows that
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the same proof establishes completeness of ℜd as a logic of nondeterministic
partial functions under the second approach.

Secondly, one can define (φ ⊲ ψ)∗ to be the set of all total recursive
functions from φ∗ to ψ∗. This definition seems to be especially appropriate
given that under Curry-Howard isomorphism implication in the intuitionistic
logic corresponds to the type of total recursive functions. In the case of modal
logics of recursive functions, transition from partial to total functions is not
trivial. Indeed, if (φ⊲ψ)∗ is interpreted as the set of all total (deterministic
or nondeterministic) recursive functions from φ∗ into ψ∗, then let’s consider
unary modality ♦φ ≡ ¬(φ ⊲ ⊥). Note that a function from φ∗ to ∅ exists
only if φ∗ is empty. Thus, set (♦φ)∗ is equal to the entire universe U if
set φ∗ contains at least one element and set (♦φ)∗ is empty if φ∗ is empty.
The ability to define ♦ in the logics of total recursive functions makes it
possible to express many properties that can not be expressed in the logics
of partial functions. For example, formula ♦(φ⊲ ψ) ∧♦(ψ ⊲ χ) → ♦(φ⊲ ψ)
states, essentially, that the set of total functions is closed with respect to
composition. A complete description of logics of total functions remains an
open question.
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