
A Nondeterministic View on Nonclassical NegationsArnon AvronSchool of Computer ScienceTel-Aviv Universityemail: aa@math.tau.ac.ilAbstractWe investigate two large families of logics, di�ering from each other by the treatment of nega-tion. The logics in one of them are obtained from the positive fragment of classical logic (withor without a propositional constant � for \the false") by adding various standard Gentzen-typerules for negation. The logics in the other family are similarly obtained from LJ+, the positivefragment of intuitionistic logic (again, with or without �). For all the systems, we providesimple semantics which is based on non-deterministic four-valued or three-valued structures,and prove soundness and completeness for all of them. We show that the role of each rule is toreduce the degree of nondeterminism in the corresponding systems. We also show that all thesystems considered are decidable, and our semantics can be used for the corresponding decisionprocedures. Most of the extensions of LJ+ (with or without �) are shown to be conservativeover the underlying logic, and it is determined which of them are not.1 IntroductionFrom both classical and constructive points of view, the question whether we accept or reject agiven sentence ' depends on the data (or information) we have concerning it. The data might bepositive (in which case we might say that ' is supported), or negative (in which case we might saythat ' is questioned). This intuition may be formally re
ected by the use of four truth values: t,>, f and ?, where we expect a valuation v in ft; f;>: ?g to satisfy:� v(') = t if ' is supported but not questioned.� v(') = f if ' is questioned but not supported.� v(') = > if ' is both supported and questioned.� v(') =? if ' is neither supported nor questioned.Driven by considerations of this sort, and following previous works by Dunn, Belnap suggested (in[Bel77b, Bel77a]) the use for computers of logics based on these four truth-values. He went onto propose a speci�c four-valued matrix for this task (see 2.2 below). By this Belnap (implicitly)1



accepted the classical extensionality principle, according to which the truth-value of a compoundformula is completely determined by the truth-values of its immediate subformulas. In particular:negation has a fully deterministic interpretation in Dunn-Belnap's matrix. But is this interpretationthe only plausible one? The answer depends, of course, on the intuitive meaning of : in the contextof the four values. The most natural such interpretation is perhaps that : represents, withinthe language, the idea of negative data: :' should mean: \' is questioned". This implies thatsupporting :' and questioning ' should amount to the same thing. Hence we get:� v(') = t if ' is supported and :' is not.� v(') = f if :' is supported and ' is not.� v(') = > if both ' and :' are supported.� v(') =? if neither ' nor :' are supported.Given the truth value of ', what do these principles tell us about the truth-value of its negation?Well, it is easy to see that they dictate the following derived principles (and nothing stronger, aslong as we do not introduce additional assumptions concerning supporting or questioning):� If v(') = t then v(:') 2 ff;?g.� If v(') = f then v(:') 2 ft;>g.� If v(') = > then v(:') 2 ft;>g.� If v(') =? then v(:') 2 ff;?g.It follows that the truth-value of ' does not fully determine the truth-value of :'. Hence nonde-terministic semantics seems to be appropriate here. A similar conclusion may be obtained if weexamine the expected behavior of disjunction and conjunction. Thus in Dunn-Belnap's matrix wehave >_ ?= t, which might seems strange (and perhaps unintuitive). Again, such peculiarities canbe overcome if one uses nondeterministic semantics.In this paper we explore the application of these ideas for large families of logics. We concentrateon logics which are easily and naturally de�ned by using Gentzen-type systems with various stan-dard, very common, rules for negation. The di�erences between the di�erent logics we investigateconcern: 2



The underlying logic : We consider two main possibilities: positive classical logic, and positiveintuitionistic logic (also called minimal logic). In both cases we consider a pure subcase,in which the falsehood constant � is not included, and subcases in which it is added (withappropriate rules) to the language (it turns out that such an addition has practically no e�ectson our results).The rules for negation : In all the logics we consider, these are taken from a list of rules,given below, which includes the two standard classical rules for negation, as well as the mostcommon standard rules for combining negation with other connectives.Below we provide simple non-deterministic semantics for all the 24�210 di�erent nonclassical systemswe consider, and prove their soundness and completeness with respect to these semantics. Themain insight we get is that the role of each rule is to reduce the degree of nondeterminism of someconnective by restricting the allowed outputs of its application in some cases. We also show that allthe systems we consider are decidable, and that our semantics can be used for the correspondingdecision procedures. In the case of the extensions of LJ+ (with or without �) we show that mostof them are conservative over the underlying logic, and determine which of them are not.2 PreliminariesFrom now on (unless otherwise stated), all formulas are assumed to be (depending on the context)either in the propositional language based in f_;^;�;:g, or on that based on f_;^;�;:;�g. Weuse p; q; r to denote atomic formulas, A;B;C;  ; '; � to denote arbitrary formulas, and �;� todenote �nite sets of formulas. A sequent has the form � ) �, where � and � are �nite sets offormulas. Following tradition, we write �; ' and �;� for � [ f'g and � [ �, respectively. By a(propositional) logic we shall mean a pair hL;`i, in which L is a propositional language, and ` isa consequence relation on the set of formulas of L.2.1 The Logics and the Associated Proof Systems2.1.1 The Standard Positive LogicsWe start by presenting Gentzen-type systems for the four logics which we use as bases. To see whatis the essence of the di�erences between those logics, we use (cut-free) multiple-conclusion versionsfor all of them, including the constructive ones.
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THE SYSTEM LK+Axioms: A) AStructural Rules: Cut, WeakeningLogical Rules:(�)) �) �; A B;�) �A � B;�) � �; A) B;��) A � B;� ()�)(^ )) �; A;B ) ��; A ^B ) � �) �; A �) �; B�) �; A ^B () ^)(_ )) �; A) � �; B ) ��; A _B ) � �) �; A;B�) �; A _B () _)THE SYSTEM LK: This is the system obtained from LK+ by adding the following axiom:� )THE SYSTEMS LJ+ and LJ : These are the systems obtained from LK+ and LK (respectively)by weakening their ()�) rule to: ()�) �; A) B�) A � BNotes:1. LK is a standard Gentzen-type calculus for the classical propositional logic (taken in thelanguage of f_;^;�;�g), while LK+ is its purely positive fragment. The system LJ is asequent calculus for the propositional intuitionistic logic, while LJ+ is its purely positivefragment. The four systems are sound and complete for the corresponding logics, and admitcut-elimination (see [Tak75]).2. In both LK and LJ it is possible to de�ne the usual negation connective of the correspondinglogics by letting �' =Df ' � � (for intuitionistic logic, this is in fact the common procedure).4



We shall nevertheless take all four systems as \positive" logics, since our principal goal is toinvestigate the systems obtained from them by adding an independent negation connective :to their languages.2.1.2 Standard Rules for Negation and Corresponding SystemsThe two standard Gentzen-type rules for classical negation are:(: )) �) �; A:A;�) � A;�) ��) �;:A () :)Instead of these rules, many systems for classical or nonclassical logics employ rules for intro-ducing combinations of negation with other connectives. The most common rules used for this taskare the following:(:: )) A;�) �::A;�) � �) �; A�) �;::A () ::)(: �)) A;:B;�) �:(A � B);�) � �) �; A �) �;:B�) �;:(A � B) () : �)(:_ )) �;:A;:B ) ��;:(A _B)) � �) �;:A �) �;:B�) �;:(A _B) () :_)(:^ )) �;:A) � �;:B ) ��;:(A ^B)) � �) �;:A;:B�) �;:(A ^B) () :^)Now, in Gentzen's original formulation ([Gen69]) the rules (^ )) and () _) were split into tworules, each with one side formula only. To make our investigation �ner, we do the same here for(:_ )), () :^) and (: �)). Thus instead of these three rules, we consider the following six:(: �))1 A;�) �:(A � B);�) � :B;�) �:(A � B);�) � (: �))2(:_ ))1 �;:A) ��;:(A _B)) � �;:B ) ��;:(A _B)) � (:_ ))2() :^)1 �) �;:A�) �;:(A ^B) �) �;:B�) �;:(A ^B) () :^)2De�nition 2.1 1. The set NR is the union of the following sets of rules:NR1 = f(: )); () :)g5



NR2 = f(:: )); () ::); () : �); () :_); (:^ ))gNR3 = f(: �))1; (: �))2; (:_ ))1; (:_ ))2; () :^)1; () :^)2g2. For L 2 fLK;LK+; LJ; LJ+g and S � NR, we denote by L(S) the system obtained from Lby adding the rules in S.3. For L 2 fLK;LJg and S � NR, we denote by Lf (S) the system obtained from L(S) byadding the axiom: ) :�Historical Notes: Some of the logics introduced in De�nition 2.1 have already been studiedin the literature. Thus LJ+(NR1 [ NR2) and LJ+(NR � f() :)g) are respectively identicalwith the logics N� and N of Nelson ([AN84]) and Kutschera ([vK69]) | see [Wan93] for furtherdetails and references. LK+(NR � f() :)g) is equivalent to the logic LPF of the VDM project([Jon86]). LK+(NR1 [ NR2) is the logic of the bilattice FOUR (see subsection 2.2). The logicsLK(f() :)g) and LK(NR � f(: )g) were introduced in [Bat80], where they were called PIand PIs, respectively. Later Batens changed their names to CLuN and CLuNs, respectively (seee.g. [Bat00]). LK+(NR � f(: )g) was independently introduced (together with the 3-valueddeterministic semantics described in subsection 2.2) in [Avr86, Avr91, Roz89]. In [Avr91] it wascalled PAC (this name was adopted in [CM02]). LK(NR� f(: )g) was originally introduced in[Sch60]. Later it was reintroduced (together with its 3-valued deterministic semantics) in [DdC70,D'O85], where it was called J3 (see also [Eps90]), while in [CM02] it was called LFI1. The systemLK+(f() :); (:: ))g) is the logic Cmin studied in [CM99]. LK+(f() :); () ::); () :_)g) wasagain introduced in [Bat80], under the name PI�. LJ+(f() :); (:: ))g) is Raggio's formulation(in [Rag68]) of da Costa's famous logic C! (see [dC74]).2.1.3 Corresponding Hilbert-type SystemsSome of the logics mentioned above have been originally introduced using Hilbert-type systems.Such systems can be easily given for every system L(S) or Lf (S). We start with some standardHilbert-type system HL for L (having MP as the only rule of inference), and add to it the axiomsfrom the list below, which correspond to the negation rules in S. In the case of Lf (S) we add alsothe axiom A() :�). Here is the list of axioms that correspond to our 13 rules and to ) :� :A(: )): :' � (' �  ) 6



A() :): ' _ :'A(:: )): ::' � 'A() ::): ' � ::'A(: �))1: :(' �  ) � 'A(: �))2: :(' �  ) � : A() : �): (' ^ : ) � :(' �  )A(:_ ))1: :(' _  ) � :'A(:_ ))2: :(' _  ) � : A() :_): (:' ^ : ) � :(' _  )A(:^ )): :(' ^  ) � (:' _ : )A() :^)1: :' � :(' ^  )A() :^)2: : � :(' ^  )A() :�): :�De�nition 2.2 For S � NR, letHL(S) be the system obtained fromHL (where L is in fLK;LK+; LJ; LJ+g)by adding to it the axioms which correspond to the rules in S, and letHLf (S) beHL(S)+A() :�).Theorem 2.3 HL(S) and L(S) are strongly equivalent for every L 2 fLK;LK+; LJ; LJ+g andS � NR: If T is a set of sentences, � a �nite set of sentences, and  � is a disjunction of allthe sentences in �, then T `HL(S)  � i� there is a �nite subset � of T such that `L(S) � ) �.Similar relations hold between HLf (S) and Lf (S).Proof: Standard.2.2 The Bilattice FOURThe Logic LK+(NR2 [ NR3) has a well-known characteristic matrix, based on the four valuest; f;?; and >. In its best known presentation, this matrix was described and motivated by Belnapin [Bel77b, Bel77a], following works and ideas of Dunn (see e.g. [Dun76]). To motivate the designof this structure, Dunn and Belnap employ two natural orderings of the truth values: the \truth"7



partial order �t, and the \knowledge" partial order �k. According to �t, f is the minimal element,t is the maximal one, and ?;> are two intermediate values, which are incomparable. Accordingto �k (originally due to Scott), ? is the minimal element, > { the maximal one, and t, f are theintermediate values (see Figure 1). 6k
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Figure 1: FOURBoth (ft; f;>;?g;�t) and (ft; f;>;?g;�k) are lattices, and the lattice operations of the �rst areused to provide the semantics of _ and ^. In addition, there is a negation operation which is aninvolution w.r.t. �t and is monotone w.r.t. �k (there is exactly one such operation: its detailsare given below).1 Dunn-Belnap's structure is nowadays known also as the basic (distributive)bilattice, and its logic | as the basic logic of (distributive) bilattices (see [Gin87, Gin88, Fit90b,Fit90a, Fit91, Fit94, AA96, AA98]). In [AA96] Belnap's matrix was extended with an appropriateimplication connective. The resulting structure is described in the next de�nition.De�nition 2.4 The matrix FOUR = hT ;D;Oi is given by:� T = ft;>;?; fg� D = ft;>g� The operations in O are de�ned by:1. :t = f; :f = t; :> = >; :? = ?2. a _ b = sup�t(a; b); a ^ b = inf�t(a; b)1Belnap allowed only the use of operations which are monotone with respect to �k. The implication � we usebelow does not have this property, and so �k has little role in the semantics of our extensions of LK+. Surprisingly,it has great importance for the semantics of our extensions of LJ+ (see section 4).8



3. a � b = � b if a 2 Dt if a 62 DTheorem 2.51. ([AA96]) LK+(NR2 [NR3) is sound and complete w.r.t to FOUR.2. ([Avr91])2 LK+(NR2 [ NR3 [ f(: ))g) is sound and complete w.r.t to the three-valuedft; f;?g-submatrix of FOUR, while LK+(NR2 [ NR3 [ f() :)g) is sound and completew.r.t to its ft; f;>g-submatrix.3 Semantics in the Classical Case3.1 Nondeterministic MatricesOur main semantic tool in what follows will be the following generalization of the concept of amatrix from [AL04, AL01]:De�nition 3.11. A non-deterministic matrix (Nmatrix for short) for a propositional language L is a tupleM = hT ;D;Oi, where:(a) T is a non-empty set of truth values.(b) D is a non-empty proper subset of T .(c) For every n-ary connective � of L, O includes a corresponding n-ary function e� from T nto 2T � f;g.We say that M is (in)�nite if so is T .2. Let F be the set of formulas of L. A (legal) valuation in an NmatrixM is a function v : F ! Tthat satis�es the following condition for every n-ary connective � of L and  1; : : : ;  n 2 F :v(�( 1; : : : ;  n)) 2 e�(v( 1); : : : ; v( n))3. A valuation v in an Nmatrix M is a model of (or satis�es) a formula  in M (notation:v j=M  ) if v( ) 2 D. v is a model of a set � of formulas in M (notation: v j=M �) if itsatis�es every formula in �.2The two parts of this item are proved together in [Avr91]. However, each of them alone has been discovered andproved in many other papers. See the historical notes at the end of subsection 2.1.2 for relevant references.9



4. `M, the consequence relation induced by the Nmatrix M, is de�ned as follows:� `M � if for every v such that v j=M � there exists ' 2 � such that v j=M '5. A logic L = hL;`i is sound for an NmatrixM (where L is the language of M) if ` � `M. Lis complete for M if ` � `M. M is characteristic for L if L is both sound and complete forit (i.e.: if ` = `M).Note: We shall identify an ordinary (deterministic) matrix with an Nmatrix M = hT ;D;Oi suchthat the functions in O always return singletons.The following De�nition is a re�nement of the notion of \re�nement" used in [Avr03]:De�nition 3.2 Let M1 = hT1;D1;O1i and M2 = hT2;D2;O2i be Nmatrices for a language L.M2 is called a re�nement of M1 if T2 � T1, D2 = D1 \ T2, and e�M2(~x) � e�M1(~x) for every n-aryconnective � of L and every ~x 2 T n2 .Proposition 3.3 If M2 is a re�nement of M1 then `M1�`M2. Hence if L is sound for M1 thenL is also sound for M2.Proof: Suppose � `M1 �. We show that � `M2 �. So assume that v is a model of � inM2. SinceT2 � T1, and e�M2(~x) � e�M1(~x) for every n-ary connective � of L and every ~x 2 T n2 , v is a legalvaluation inM1. Since D2 � D1, v is actually a model of � inM1. This and the fact that � `M1 �imply that v(') 2 D1 for some ' 2 �. But v(') is also in T2, and so v(') 2 D1 \ T2 = D2. Hencev is a model in M2 of some element of �.3.2 Nondeterministic Four-Valued SemanticsClassical Logic has, of course, the semantics of the usual two-valued deterministic matrix. Thissemantics can, however, be easily generalized as follows.De�nition 3.4 1. Let M = hT ;D;Oi be an Nmatrix for a language which includes that ofLK+. We say that M is suitable for LK+ if the following conditions are satis�ed:� If a 2 D and b 2 D then aêb � D� If a 62 D then aêb � T �D� If b 62 D then aêb � T �D 10



� If a 2 D then ae_b � D� If b 2 D then ae_b � D� If a 62 D and b 62 D then ae_b � T �D� If a 62 D then ae�b � D� If b 2 D then ae�b � D� If a 2 D and b 62 D then ae�b � T �D2. LetM = hT ;D;Oi be an Nmatrix for a language which includes the language of LK. We saythat M is suitable for LK if it is suitable for LK+, and the following condition is satis�ed:� e� � T �DTheorem 3.5 LK (LK+) is sound for any Nmatrix M which is suitable for it. Moreover: it iscomplete for the relevant fragment of M.Proof: We leave the easy proof for the reader.Convention: For convenience, we henceforth usually employ the same symbol for a connective andfor the corresponding nondeterministic operation in a given Nmatrix. We also denote by the samesymbol (usually O) the set of connectives of a language L and the corresponding set of operationsof an Nmatrix for L.We turn now to Nmatrices for logics with negation which are based on the basic four truthvalues described in the introduction.De�nition 3.6 Let MP (M�P ) be the following Nmatrix hT ;D;Oi:� T = ft;>; f;?g� D = ft;>g� a � b = � D b 2 D or a 2 T � DT �D otherwisea _ b = � D a 2 D or b 2 DT �D otherwise 11



a ^ b = � D a 2 D; b 2 DT �D otherwise:t = : ?= T � D :f = :> = D(� = T �D)Proposition 3.7 LK+ (LK) is sound for any re�nement of MP (M�P ).Proof: This follows from Theorem 3.5.Note: Since the ordinary two-valued matrix is a re�nement ofMP (M�P ) and is complete for LK+and LK, so are MP and M�P (and this is obviously true for every re�nement of them).3.3 E�ects of the Negation RulesWe turn now to the e�ects of the various negation rules. We shall show that to each of themcorresponds a condition which leads to a certain re�nement of MP (or M�P ). These conditionsare independent of each other, but never contradict each other. To see how these conditions areobtained, take (: �))1 as an example. This rule is equivalent to the validity of :(' �  ) ` '.It means therefore that v(:(' �  )) 62 D if v(') 62 D. Since v(' �  ) itself should be in D ifv(') 62 D, it follows by MP 's truth tables for negation that v(' �  ) should be t if v(') 62 D.This is therefore the condition that corresponds to this rule, and it turns 8 (out of the many more)possible nondeterministic choices in MP (or M�P ) to deterministic ones. Similar analysis can bedone for the other rules. The resulting list of conditions is listed in the next De�nition.De�nition 3.8 1. The re�ning conditions induced by the negation rules are:C(: )): Use only t; f and ?C() :): Use only t; f and >C(:: )): :f = ftg, : ?= f?gC() ::): :t = ffg, :> = f>gC(:_ ))1: x _ y = fsupt(x; y)g if x 2 ft;?gC(:_ ))2: x _ y = fsupt(x; y)g if y 2 ft;?gC() :_): x _ y = fsupt(x; y)g if x 2 ff;>g, y 2 ff;>gC(:^ )): x ^ y = finft(x; y)g if x 2 ft;?g, y 2 ft;?g12



C() :^)1: x ^ y = finft(x; y)g if x 2 ff;>gC() :^)2: x ^ y = finft(x; y)g if y 2 ff;>gC(: �))1: x � y = ftg if x 62 DC(: �))2: x � y = ftg if y = t or x 62 D and y =?x � y = fyg if y = t or x 2 D and y =?C() : �): x � y = fyg if x 2 D and y 2 ff;>g2. For S � NR, let C(S) = fCr j r 2 SgFrom now until the end of this subsection, we shall concentrate on the language without � .De�nition 3.9 For S � NR, letMP [S] be the weakest re�nement ofMP in which the conditionsin C(S) are all satis�ed.3Proposition 3.10 If S � NR then LK+(S) is sound for MP [S].Proof: We show, by way of example, that (:_ ))1 is valid in any re�nement M of MP in whichthe condition C(:_ ))1 is satis�ed. So assume that v is a valuation in M such that v(:A) 62 D.Then v(A) 2 ft;?g. Condition C(:_ ))1 entails that in this case also v(A _ B) 2 ft;?g, and sov(:(A _B)) 62 D. Hence :(A _B) `M :A.Theorem 3.11 If S � NR then LK+(S) is strongly complete for MP [S].Proof: Using Theorem 2.3, it suÆces to show that if T is a theory and '0 is a sentence such thatT 6`HLK+(S) '0, then there exists a model of T in MP [S] which is not a model of '0. For thisextend T to a maximal theory T� such that T� 6`HLK+(S) '0. Since HLK+(S) is an extension ofHLK+ having only MP as a rule of inference, T� has the following properties:1.  62 T� i�  � '0 2 T�.2. If  62 T� then  � ' 2 T� for every sentence '.3. ' _  2 T� i� either ' 2 T� or  2 T�.4. ' ^  2 T� i� both ' 2 T� and  2 T�.5. ' �  2 T� i� either ' 62 T� or  2 T�.3It is easy to see that the conditions in NR cannot cause any con
ict, so MP [S] is well-de�ned.13



(The proofs of 1{5 are all standard: Property 1 follows from the maximality property of T� andthe deduction theorem. Property 2 is proved �rst for  = '0 using Property 1 and the tautology(('0 � ') � '0) � '0, and then deduced for all  62 T� using Property 1. Properties 3{5 are easycorollaries of Properties 1, 2, and the fact that T� 6`HLK+(S) '0).De�ne a valuation v in MP [S] as follows:v( ) = 8>><>>: ?  62 T�;: 62 T�f  62 T�;: 2 T�t  2 T�;: 62 T�>  2 T�;: 2 T�We shall now show that v is a legal valuation, i.e. it respects the interpretations of the connectivesin MP [S]. Properties 3{5 of T� easily imply that v respects the basic constraints concerning thepositive connectives. As for the basic constraints concerning negation, we have:� Assume v( ) 2 ft;?g. By de�nition, this implies : 62 T�, and so v(: ) 2 ff;?g.� Assume v( ) 2 ff;>g. By de�nition, this implies : 2 T�, and so v(: ) 2 ft;>g.It remains to show that v respects the conditions induced by the rules in S:C() :): Assume () :) 2 S. Then ' _ :' 2 T�, and so Property 3 above entails that for every', either ' 2 T�, or :' 2 T�. Hence there is no ' such that v(') =?.C(: )): Assume (: )) 2 S. Then, by the corresponding axiom and the fact that '0 62 T�, thereis no ' such that both ' 2 T� and :' 2 T�. Hence there is no ' such that v(') = >.C() ::): Assume () ::) 2 S. Then ::' 2 T� whenever ' 2 T�. This easily implies (by thede�nition of v) that if v(') = t then v(:') = f , while v(') = > then v(:') = >.C(:: )): Assume (:: )) 2 S. Then ::' 62 T� whenever ' 62 T�. This easily entails (by thede�nition of v) that v(') = f implies v(:') = t, while v(') =? implies v(:') =?.C(:_ ))1: Assume (:_ ))1 2 S. Then :(' _  ) 62 T� if :' 62 T�. Hence if v(') 2 ft;?g thenv(:(' _  )) 2 ft;?g. Now if v(') = t then ' 2 T�, and so ' _  2 T�. Hence in this casev('_ ) = t. If v(') =? then ' 62 T�, and so '_ 2 T� i�  2 T� (i� v( ) 2 D). It followsthat in this case v(' _  ) = t if v( ) 2 D, and v(' _  ) =? otherwise. In all cases we �ndthat v(' _  ) = supt(v('); v( )) if v(') 2 ft;?g.C(:_ ))2: Similar. 14



C() :_): Assume () :_) 2 S. Then :('_ ) 2 T� if :' 2 T� and : 2 T�. Thus :('_ ) 2 T�if v(') 2 ff;>g and v( ) 2 ff;>g. Hence v(' _  ) is either f or >, depending whether' _  2 T� or not. Since ' _  2 T� i� either ' 2 T� or  2 T�, we obviously havev(' _  ) = supt(v('); v( )) in the case under discussion.We leave the proofs of the conditions corresponding to the remaining rules to the reader.Now v( ) 2 D i�  2 T�. Hence v( ) 2 D for every  2 T, while v('0) 62 D. It follows that vis indeed a model of T which is not a model of v('0).We next apply our soundness and completeness results to derive three important properties ofthe systems considered above.Theorem 3.12 LK+(S) admits cut-elimination for any S � NR.Proof: If S \ NR1 = ; then the proof is a straightforward adaption of Gentzen's original prooffor LK ([Gen69, Tak75]) 4. The case when S \ NR1 = f() :)g was proved (using our 3-valuednon-deterministic semantics) in [Avr03]. A completely analogous semantic proof can be given inthe dual case where S \NR1 = f(: ))g.Our main tool for the next two theorems is the following De�nition (from [Avr03]) and thecorresponding simple Lemma, the trivial proof of which we leave to the reader:De�nition 3.13 Let L be a propositional language, and let M = hT ;D;Oi be an Nmatrix forL. A semivaluation in M is any function v0 : F 0 ! T such that F 0 is a set of formulas of Lwhich is closed under subformulas, and v0 respectsM (in the sense that �( 1; : : : ;  n) 2 F 0 impliesv0(�( 1; : : : ;  n)) 2 ~�(v( 1); : : : ; v( n))).Lemma 3.14 Any semivaluation in M can be extended to a valuation v in M.Theorem 3.15 LK+(S) is decidable for every S � NR.Proof: Let � ) � be a sequent of the language of LK+(S). Let F 0 be the set of all subformulasof formulas in �) �. To decide whether �) � is provable in LK+(S), check whether for everyv0 : F 0 ! ft; f;>;?g which is a semivaluation in MP [S], either v0(') 62 D for some ' 2 �, orv0(') 2 D for some ' 2 �. By Lemma 3.14 (together with the soundness and completeness of4Such an adaption is not so easy if S \NR1 is a singleton since the case in which the cut formula is of the form:' causes then diÆculties. 15



LK+(S) with respect toMP [S]), this is indeed suÆcient. Since the number of such semivaluationsis �nite, this is a decision procedure.We turn to the question: Which of the various logics we have considered are actually di�erentfrom each other? Well, if NR1 � S then LK+(S) is just classical logic, and so all the other rulesare derivable in it. It is also easy to see that (: �))1 is derivable from (: )) in the context ofLK+. The next theorem shows that these are the only dependencies in NR (and so there are 5 �210di�erent nonclassical logics of the form LK+(S), where S � NR).Theorem 3.16 Let S0 = S1 [ S2 [ S3, where:S1 = fS j S � NR; S \NR1 = ;gS2 = fS j S � NR; S \NR1 = f() :)ggS3 = fS j S � NR; S \NR1 = f(: ))g; (: �))1 62 SgThen if S 2 S0 then LK+(S) is strictly weaker than classical logic. Moreover: if S1; S2 2 S0 andS1 6= S2, then LK+(S1) 6= LK+(S2)Proof: It is easy to see that A(: )) is not valid in MP [(NR � f(: ))g)], and A() :) isnot valid in MP [(NR � f() :)g)]. 5 Hence LK+(S) is strictly weaker than classical logic ifS 2 S0, and A(: )) is not derivable in LK+(NR � f(: ))g), while A() :) is not derivable inLK+(NR � f() :)g). To show that LK+(S1) 6= LK+(S2) if S1; S2 2 S0 and S1 6= S2, it suÆcestherefore to show the following: If r 2 NR2 [ NR3, and A(r) is the corresponding Hilbert-typeaxiom, then A(r) is not valid in MP [S1r ], where S1r = NR� fr; (: ))g, and if r 6= (: �))1 thenA(r) is not valid in MP [S2r ] either, where S2r = NR � fr; () :)g. For this it suÆces (by Lemma3.14) to provide appropriate semivaluations v1 and v2 which refute A(r) in S1r and S2r , respectively.Here is a list of such refuting semivaluations in each case:r = (:: )): v1(p) = f v1(:p) = > v1(::p) = >v2(p) =? v2(:p) = f v2(::p) = tr = () ::): v1(p) = > v1(:p) = t v1(::p) = fv2(p) = t v2(:p) =? v2(::p) =?5These two Nmatrices are actually famous ordinary matrices, and are respectively the ft; f;>g-submatrix ofFOUR and the ft; f;?g-submatrix of FOUR mentioned in Theorem 2.5.16



r = (:_ ))1: v1(p) = t v1(q) = > v1(p _ q) = > v1(:(p _ q)) = > v1(:p) = fv2(p) =? v2(q) = f v2(p _ q) = f v2(:(p _ q)) = t v2(:p) =?r = (:_ ))2: v1(p) = > v1(q) = t v1(p _ q) = > v1(:(p _ q)) = > v1(:q) = fv2(p) = f v2(q) =? v2(p _ q) = f v2(:(p _ q)) = t v2(:q) =?r = () :_):v1(p) = v1(q) = > v1(p _ q) = t v1(:p) = v1(:q) = > v1(:p ^ :q) = > v1(:(p _ q)) = fv2(p) = v2(q) = f v2(p _ q) =? v2(:p) = v2(:q) = t v2(:p ^ :q) = t v2(:(p _ q)) =?r = (:^ )):v1(p) = v1(q) = t v1(:p) = v1(:q) = f v1(p ^ q) = > v1(:(p ^ q)) = > v1(:p _ :q) = fv2(p) = v2(q) =? v2(:p) = v2(:q) =? v2(p ^ q) = f v2(:(p ^ q)) = t v2(:p _ :q) =?r = () :^)1: v1(p) = > v1(q) = t v1(p ^ q) = t v1(:p) = > v1(:(p ^ q)) = fv2(p) = f v2(q) =? v2(p ^ q) =? v2(:p) = t v2(:(p ^ q)) =?r = () :^)2: v1(p) = t v1(q) = > v1(p ^ q) = t v1(:q) = > v1(:(p ^ q)) = fv2(p) =? v2(q) = f v2(p ^ q) =? v2(:q) = t v2(:(p ^ q)) =?r = () : �)1: v1(p) = f v1(q) = > v1(p � q) = > v1(:(p � q)) = >r = () : �)2: v1(p) = t v1(q) = t v1(p � q) = > v1(:(p � q)) = > v1(:q) = fv2(p) = t v2(q) =? v2(p � q) = f v2(:(p � q)) = t v2(:q) =?r = () : �):v1(p) = > v1(q) = > v1(:q) = > v1(p ^ :q) = > v1(p � q) = t v1(:(p � q)) = fv2(p) = t v2(q) = f v2(:q) = t v2(p ^ :q) = t v2(p � q) =? v2(:(p � q)) =?It is easy to check that each of these semivaluations indeed satis�es all the constraints whichcorrespond to the rules in NR2 [NR3 except for the relevant one, as well as C() :) (in the caseof v1), or C(: )) (in the case of v2) 17



3.4 Adding The Propositional Constant �For S � NR, let M�P [S] be the weakest re�nement of M�P in which the conditions in C(S) are allsatis�ed. All the theorems of the previous subsection concerning the systems LK+(S) and theirrelations with the Nmatrices MP [S] are true (with practically the same proofs) for the systemsLK(S) and for their relations with the Nmatrices M�P [S]. Note also that if (: )) 62 S then thevaluation that assigns > to every sentence is legal in MP [S], but not in M�P [S]. Hence in thiscase no counterpart of � is de�nable in LK+(S), and LK(S) is a proper extension of LK+(S). Incontrast, if (: )) 2 S then � can be interpreted as ' ^ :' (for some '), and so there is no realdi�erence between LK+(S) and LK(S) in this case.Turning our attentions to the systems LKf (S) (S � NR), letMFP [S] be the weakest re�nementof M�P which satis�es the conditions in C(S) together with the condition:� e� = ffgAgain, all the theorems of the previous subsection concerning the systems LK+(S) and theirrelations with the Nmatrices MP [S] are true for the systems LKf (S) and for their relations withthe Nmatrices MFP [S]. However, this time ) :� is derivable in LK(S) if () :) 2 S, but not if() :) 62 S (take v(�) = v(:�) =?). Hence if () :) 62 S then LKf (S) is a new logic (and all thelogics of the form LKf (S), where () :) 62 S, are di�erent from each other and from all the logicswe have considered above).4 Semantics in the Intuitionistic Case4.1 General SemanticsThe previous section was devoted to extensions of positive classical logics. However, LJ+ might be abetter starting point for investigating negations (and it is certainly the natural basis for investigatingconstructive negations). One reason is that the valid sentences of LJ+ are all intuitively correct.LK+, in contrast, includes counterintuitive tautologies like (A ^ B � C) � (A � C) _ (B � C)or A _ (A � B). Moreover: the classical natural deduction rules for the positive connectives (^;_and �) de�ne the intuitionistic positive logic LJ+, not the classical one. It is only with the aidof the classical rules for (the classical) negation that one can prove the counterintuitive positivetautologies mentioned above. 18



Now, it is well known that it is impossible to conservatively add to the intuitionistic positivelogic a negation which is both explosive (i.e.: :A;A ` B for all A;B) and satis�es the law ofexcluded middle LEM. With such an addition we get classical logic. The intuitionists indeed rejectLEM, retaining the explosive nature of negation (which is usually de�ned using the constant �and implication). In this section we shall see that this is not the only possible choice. The mainproblem we shall solve in it is: Which of the logics LJ+(S) (S � NR) is conservative over LJ+?(and similarly for LJ). We believe that each such logic is entitled to be called \a (constructive)logic with a constructive negation".As in the case of LK+ (or LK) , we start with generalizing the standard, two-valued semanticsof LJ+ (or LJ). Recall that this semantics is usually provided by the class of all Kripke framesof the form W = hW;�; vi 6, where hW;�i is a nonempty partially ordered set (of \worlds"), andv :W �F ! T (where F is the set of formulas of the language) satis�es the following conditions:1. If y � x and v(x; ') = t then v(y; ') = t.72. � v(x; ' ^  ) = t i� v(x; ') = t and v(x;  ) = t� v(x; ' _  ) = t i� v(x; ') = t or v(x;  ) = t� v(x;� ) = f (if � is in the language).3. v(x; ' �  ) = t i� v(y;  ) = t for every y � x such that v(y; ') = tObviously, if W = hW;�; vi is a frame, then for every x 2 W the function �':v(x; ') behaves likean ordinary classical valuation with respect to all the connectives except �. The treatment of �is indeed what distinguishes between classical logic and intuitionistic logic. This observation leadsto the following nondeterministic generalization of Kripke frames for intuitionistic logic:De�nition 4.1 Let � be one of the connectives of a propositional language L, and let M =hT ;D;Oi be an Nmatrix for L� f�g. Denote by F be the set of formulas of L. An M-frame forL is a triple W = hW;�; vi such that:1. hW;�i is a nonempty partially ordered set2. v :W �F ! T satis�es the following conditions:6In the literature by a \frame" one usually means just the pair hW;�i. Here we have found it convenient to usethis technical term di�erently, so that the valuation v is an integral part of it.7For the language of LJ it suÆces to demand this condition for atomic formulas only; then one can prove thatevery formula has this property. This is not the case for the nondeterministic generalizations we present below.19



� The persistence condition: if y � x and v(x; ') 2 D then v(y; ') 2 D� For every x 2W , �':v(x; ') is a legal M-valuation.� v(x; ' �  ) 2 D i� v(y;  ) 2 D for every y � x such that v(y; ') 2 DWe say that a formula ' is true in a world x 2W of a frame W if v(x; ') 2 D. A sequent �) �is valid in W if for every x 2 W there is either ' 2 � such that ' is not true in x, or  2 � suchthat  is true in x.Note: Obviously, ifM1 is a re�nement ofM2, then anyM1-frame is also anM2-frame, and everysequent valid in M2 is also valid in M1.De�nition 4.2 1. Let M = hT ;D;Oi be an Nmatrix for a language which includes the lan-guage of LJ+. We say that M is suitable for LJ+ if the following conditions are satis�ed:� If a 2 D and b 2 D then a ^ b � D� If a 62 D then a ^ b � T �D� If b 62 D then a ^ b � T �D� If a 2 D then a _ b � D� If b 2 D then a _ b � D� If a 62 D and b 62 D then a _ b � T �D� If b 2 D then a � b � D� If a 2 D and b 62 D then a � b � T �D2. LetM = hT ;D;Oi be an Nmatrix for a language which includes the language of LJ . We saythat M is suitable for LJ if it is suitable for LJ+, and the following condition is satis�ed:� � � T �DNote: An Nmatrix which is suitable for LJ+ (LJ) is also suitable for LK+ (LK) i� it satis�esjust one more condition: If a 62 D then a � b � D.Theorem 4.3 Assume W is an M-frame, where M is suitable for LJ+ (LJ). Then any sequentprovable in LJ+ (LJ) is valid in W. 20



Proof: Again, we leave the easy proof to the reader.From now on we shall concentrate on the systems LJ+(S) (S � NR). Like in the classical case(see Subsection 3.4), obtaining similar results for LJ(S) and LJf (S) causes no further diÆculties.De�nition 4.4 Let MIP be the following Nmatrix hT ;D;Oi for the language f:;^;_;�g:� T = ft;>; f;?g� D = ft;>g� a � b = 8<: D b 2 DT �D b 62 D; a 2 DT a; b 2 T � Da _ b = � D a 2 D or b 2 DT �D otherwisea ^ b = � D a; b 2 DT �D otherwise:t = : ?= T � D :f = :> = DNote: The only di�erence between MIP and MP is that in MIP we have a � b = T in casea; b 2 T � D, while in MP a � b = D in this case.Proposition 4.5 Let M be a re�nement of MIP . Then LJ+ is sound for every M-frameProof: This follows from Theorem 4.3.Proposition 4.6 Let M be a re�nement of MIP . Then the persistence condition in the de�nitionof an M-frame (see De�nition 4.1) can be replaced by the following monotonicity condition:� If x � y then v(x; ') �k v(y; ')Proof: Assume the persistence condition, and let x � y. We show that v(x; ') �k v(y; '). Thereare 4 cases to consider:v(x; ') =?: This case is trivial.v(x; ') = t: In this case v(y; ') 2 ft;>g by persistence, whence v(x; ') �k v(y; ').21



v(x; ') = f : In this case v(x;:') 2 D, whence v(y;:') 2 D by persistence. This is possible onlyif v(y; ') 2 ff;>), and so again v(x; ') �k v(y; ').v(x; ') = >: In this case both v(x; ') and v(x;:') are in D. Hence both v(y; ') and v(y;:') arein D by persistence. This is possible only if v(y; ') = > as well.The converse | that the monotonicity condition implies the persistence condition | is trivial.Proposition 4.6 implies that if M is a re�nement of MIP then an M-frame can be de�ned asa triple W = hW;�; vi such that:1. hW;�i is a nonempty partially ordered set.2. v :W �F ! T satis�es:� For every ' the function �x:v(x; ') is �k- monotonic.� For every x 2W , �':v(x; ') is a legal M-valuation.� v(x; ' �  ) 2 D i� v(y;  ) 2 D for every y � x such that v(y; ') 2 D.4.2 E�ects of the Negation RulesWe now turn to the e�ects of the various negation rules in the context of our semantics for LJ+ andits extensions. We shall see that again each of them has a corresponding a condition leading to acertain re�nement ofMIP on which the corresponding frames are based. With only two exceptions,the conditions are identical to those we have in the classical case (and are again independent ofeach other, and never contradict each other).De�nition 4.7 For r 2 NR, de�ne CIr as follows:� CI(: �))1: If x 62 D then x � y � ft;?g� CI(: �))2: If y 2 ft;?g then x � y � ft;?g� CIr = Cr otherwise.De�nition 4.81. For S � NR, let CI(S) = fCIr j r 2 Sg.2. For S � NR, letMIP [S] be the weakest re�nement ofMIP in which the conditions in CI(S)are satis�ed. 22



Theorem 4.9 If S � NR then LJ+(S) is sound and strongly complete for MPI [S]-frames:T `LJ+(S)  i� for every MPI [S]-frame W = hW;�; vi, and every x 2 W , if v(x; ') 2 D forevery ' 2 T then also v(x;  ) 2 D.Proof: The easy proof of soundness is left to the reader.To prove completeness of LJ+(S), de�ne (as usual) a prime theory of LJ+(S) to be a set ofsentences T closed under `HLJ+(S) and such that if ' _  2 T then either ' 2 T or  2 T. SinceHLJ+(S) is an extension by axioms of LJ+(S), it has the property that if T 6`HLJ+(S)  thenthere is a prime extension T� of T such that  62 T�. De�ne a canonical frame W = hW;�; vi asfollows:� W is the set of prime theories of LJ+(S).� �=�� v(T;  ) = 8>><>>: ?  62 T;: 62 Tf  62 T;: 2 Tt  2 T;: 62 T>  2 T;: 2 TObviously, v(T;  ) 2 D i�  2 T. With this fact, the proof that v satis�es the persistence condition,as well as the basic conditions concerning the positive connectives, is like in the standard proofs ofthe completeness of HLJ+ (using its canonical model). The de�nition of v immediately implies thatv satis�es the basic conditions concerning :. Finally, the proof that for every T 2 W , �':v(T; ')respects the constraints imposed by the conditions in CI(S) is like in the proof of the completenessof HLK+(S) (Theorem 3.11). Hence W is an MPI [S]-frame.Assume now that T 6`HLJ+(S)  0. Then there exists T� 2 W such that T � T� and  0 62 T�.Hence v(T�; ') 2 D for every ' 2 T, while v(T�;  0) 62 D.4.3 What Combinations of Rules are Admissible?Proposition 4.9 does not have much value in itself. Indeed, it does not guarantee that LJ+(S) isconservative over LJ+, and neither does it provide a decision procedure for LJ+(S). The reasonis that a valuation is an in�nite object. Now, to provide a countermodel v for a formula  , all oneneeds to do in the case of valuations in �nite matrices or Nmatrices is to give the truth-values thatv assigns to subformulas of  . However, here it is not clear that such a partial description wouldsuÆce. Indeed, in the proof of the next theorem we give an example in which this is not the case.23



Semantics based on the idea of valuations might be called e�ective if such a phenomenon does notoccur. Below we de�ne this intuitive idea in exact terms:De�nition 4.10 LetM =MIP [S] for some S � NR. AnM-semiframe is a tripleW = hW;�; v0isuch that:1. hW;�i is a nonempty partially ordered set.2. v0 : W �F 0 ! T is a partial valuation such that:� F 0 is a subset of F which is closed under subformulas.� v0 satis�es the monotonicity condition: if y � x and ' 2 F 0, then v0(x; ') �k v0(y; ').� v0 respectsM: If �( 1; : : : ;  n) 2 F 0, then v0(x; �( 1; : : : ;  n)) 2 ~�(v0(x;  1); : : : ; v0(x;  n)).� If ' �  2 F 0 then v0(x; ' �  ) 2 D i� v0(y;  ) 2 D for every y � x such thatv0(y; ') 2 D.De�nition 4.11 MIP [S] is called e�ective if for any MIP [S]- semiframe hW;�; v0i there existsan MIP [S]-frame hW;�; vi such that v extends v0.The two crucial problems we are going to solve now are:1. For which S is LJ+(S) conservative over LJ+?2. For which S is MIP [S] e�ective?We start with the second problem.Theorem 4.12 Let S � NR. Then MIP [S] is e�ective i� either f() :); (: �))1g 6� S orf() :); (: ))g � S.Proof: If f() :); (: ))g � S then neither ? nor > are available, and so the monotonicity conditionfor v means that v(x; ') = v(y; ') if x � y, and that for every x, �':v(x; ') is a classical valuation(in practical terms, this means that W can be taken to be a singleton, and the semantics reducesto the classical one). Hence the theorem is trivial in this case (and follows from lemma 3.14).To show that if f() :); (: ))g 6� S then the condition that f() :); (: �))1g 6� S is necessaryfor e�ectiveness, take for example W = fa; bg with a < b, and de�ne v0(a; p) = v0(a; q) = v0(b; q) =f; v0(b; p) = >. Then v0 respects the monotonicity condition, but if f() :); (: �))1g � S then24



there is no extension v of v0 such that hW;� vi is an MIP [S]-frame: v(a; p � q) should on the onehand be f according to the de�nition of an MIP -frame (because the presence of () :) impliesthat ? is not available), while according to CI(: �))1 it should be t (again, because ? is notavailable).Assume next that neither f() :); (: ))g � S nor f() :); (: �))1g � S. We show thatMIP [S] is e�ective. So let hW;�; v0i (where v0 : W � F 0 ! T ) be a semiframe. We extend it to aframe hW;�; vi by de�ning v inductively as follows:� v(x;  ) = v0(x;  ) if  2 F 0� v(x; p) = t if p is atomic, p 62 F 0� v(x;: ) = :FOURv(x;  ) if  62 F 0, where :FOUR is FOUR's negation (see De�nition 2.4)� v(x;  1 _  2) = supt(v(x;  1); v(x;  2)) if  1 _  2 62 F 0� v(x;  1 ^  2) = inft(v(x;  1); v(x;  2)) if  1 ^  2 62 F 0� If  1 �  2 62 F 0 then there are two cases:{ If () :) 62 S thenv(x;  1 �  2) = 8<: v(x;  2) if v(x;  1) 2 D? if v(x;  1) 62 D; 9y � x:v(y;  1) 2 D ^ v(y;  2) 62 Dt otherwise{ If () :) 2 S but (: )) 62 S and (: �))1 62 S thenv(x;  1 �  2) = 8<: t if v(x;  2) = tf if 9y � x:v(y;  1) 2 D ^ v(y;  2) 62 D> otherwise(note that if () :) 62 S then ? is available, while if () :) 2 S then (: )) 62 S, and so > isavailable. These facts justify their use in the de�nition of v(x;  1 �  2))We prove now by induction on the complexity of  that v(x;  ) is well-de�ned for every x 2 W ,and that �x:v(x;  ) is monotonic. This follows from our assumption on v0 if  2 F 0, and is trivialif  is atomic. The cases where  is of one of the forms : 1,  1 _ 2, or  1 ^ 2 follow easily fromthe induction hypothesis concerning  1;  2, and the monotonicity of the operations :;_ and ^ inFOUR. It remains to prove the case where  =  1 �  2, and  62 F 0. Now, a problem with the25



coherence of the de�nition of v(x;  ) may occur in this case only if () :) 2 S, and v(x;  2) = t.However, by induction hypothesis for  2, if v(x;  2) = t then v(z;  2) 2 D for all z � x, and so onlythe �rst clause in the de�nition of v(x;  1 �  2) is applicable, implying that v(x;  ) is well-de�nedin this case too. We show now that under the same assumptions concerning  , v(x;  ) �k v(y;  )if y � x. There are two cases to consider:� Assume that () :) 62 S. If v(x;  1) 2 D then by the induction hypothesis also v(y;  1) 2 Dand v(x;  2) �k v(y;  2). Hence in this case v(x;  ) = v(x;  2) �k v(y;  2) = v(y;  ). Ifv(x;  1) 62 D and v(x;  ) =? then trivially v(x;  ) �k v(y;  ). Finally, if v(x;  1) 62 D andv(x;  ) = t then the de�nition of v and the fact that y � x imply that v(y;  ) 2 D, and soagain v(x;  ) �k v(y;  ).� Assume that () :) 2 S. Then v0(z; ') 6=? for every z 2 W and every ' 2 F 0, and so fromthe de�nition of v it follows that v(z; ') 6=? for every z 2W and every '. Hence v(z; ') 62 Di� v(z; ') = f , and v(z; ') 6= t i� v(z; ') 2 ff;>g. Therefore, the induction hypothesisimplies that if v(z;  2) 6= t for some z then v(w; 2) 6= t for every w � z. Hence if v(x;  ) = fthen v(y;  ) 6= t, and so v(x;  ) �k v(y;  ). If v(x;  ) = t then v(x;  2) = t, and so bythe induction hypothesis v(y;  2) 2 D, and also v(z;  2) 2 D for every z � y. Thus by thede�nition of v v(y;  ) 2 D in this case, and so v(x;  ) = t �k v(y;  ). Finally, assume thatv(x;  ) = >. Therefore v(x;  2) 6= t and 8z � x:v(z;  1) = f _ v(z;  2) 2 D. Since y � x, the�rst fact implies that also v(y;  2) 6= t, whence v(y;  ) 6= t. The second fact implies that also8z � y:v(z;  1) = f _ v(z;  2) 2 D, whence v(y;  ) 6= f . In consequence v(y;  ) = >, and sov(x;  ) �k v(y;  ).The monotonicity of v, together with its de�nition and our assumption about v0, easily imply thatv(x;  1 �  2) 62 D i� 9y � x:v(y;  1) 2 D^v(y;  2) 62 D, and thatW = hW;�; vi is anMIP -frame.The assumption about v0 and the de�nition of v also easily imply that every condition in CI(S)concerning the operations :;_;^ is satis�ed in W. We show that this is the case also with respectto the other conditions:� Assume that () :) 2 S. Then v0(z; ') 6=? for every z 2 W and every ' 2 F 0. Hence byinduction on the structure of ' we have v(z; ') 6=? for every z 2W and every '.� Assume that (: )) 2 S. Then v0(z; ') 6= > for every z 2 W and every ' 2 F 0. Hence byinduction on the structure of ' we have v(z; ') 6= > for every z 2W and every '.26



� Assume that () : �)1 2 S. Then () :) 62 S. Hence our assumption concerning v0, and thede�nition of v trivially implies in this case that if v( 1) 62 D then v(x;  1 �  2) 2 ft;?g.� Assume that () : �)2 2 S. We show that if v( 2) 2 ft;?g then v(x;  1 �  2) 2 ft;?g.This is trivial from our assumption concerning v0 if  1 �  2 2 F 0, and from the de�nition ofv(x;  1 �  2) if  1 �  2 62 F 0 (note that if () :) 2 S then the condition just means thatv(x;  1 �  2) = t if v( 2) = t).� Assume that (: �)) 2 S. We show that if v(x;  1) 2 D and v(x;  2) 2 ff;>g thenv(x;  1 �  2) = v(x;  2). This is obvious if  1 �  2 2 F 0, or if () :) 62 S. If () :) 2 Sand  1 �  2 62 F 0 then the de�nition of v implies �rst of all that v(x;  1 �  2) 2 ff;>g ifv(x;  2) 2 ff;>g. If in addition v(x;  1) 2 D then this fact, together with the de�nition of vand its monotonicity, implies that indeed v(x;  1 �  2) = v(x;  2).It follows that W is an MIP [S]-frame as required.Notes:1. The de�nition of a semiframe includes the monotonicity condition rather than the persistencecondition. This is important, since Theorem 4.12 is not true if the monotonicity conditionis replaced by the persistence condition. Thus if we take W = fa; bg with a < b, andde�ne v0(a; p) = f; v0(b; p) = t then the persistence condition is met, but there is no wayto extend v0 to an appropriate v, because we should have v(a;:p) 2 D while v(b;:p) 62 D,contradicting the persistence condition. The two conditions are equivalent for full valuations(by Proposition 4.6), but not for partial ones!2. The problem with the combination f() :); (: �))1g is that the condition imposed by(: �))1 is not consistent with the condition of k-monotonicity in case ? is not available.We can at last turn to the problem: for which S is LJ+(S) conservative over LJ+?De�nition 4.13 SN = NR� f() :)g SP = NR� f(: )); (: �))1g.Theorem 4.14 Assume that S � NR. Then LJ+(S) is a conservative extension of LJ+ i� neitherf() :); (: ))g � S nor f() :); (: �))1g � S (i.e., i� either S � SN or S � SP ).
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Proof: The two conditions are necessary, since 6`LJ+ p _ (p � q), but for every '; :' _ :'; :' � (' �  ) `LJ+ ' _ (' �  )(' �  ) _ :(' �  ); :(' �  ) � ' `LJ+ ' _ (' �  )To show that the two conditions together are also suÆcient, it suÆces to show that both LJ+(SN)and LJ+(SP ) are conservative over LJ+. So let  be a sentence in the language of LJ+ which isnot provable in LJ+. We show that  is provable in neither LJ+(SN) nor LJ+(SP ). Since 6`LJ+  ,there is an ordinary two-valued Kripke frame hW;�; ui (where u : W � F ! ft; fg) in which  isnot valid (i.e. u(x0;  ) = f for some x0 2 W ). Now we de�ne the corresponding semiframes forLJ+(SN) and LJ+(SP ). Let F 0 be the set of formulas in the language of LJ+.LJ+(SN): De�ne v0N on W �F 0 by:v0N (x; ') = � t if u(x; ') = t? if u(x; ') = fIt is straightforward to check that hW;�; v0N i is an MIP [SN ]-semiframe (note that any con-dition concerning : is vacuously satis�ed, since there is no sentence of the form :' in F 0).LJ+(SP ): De�ne v0P on W �F 0 by:v0P (x; ') = � > if u(x; ') = tf if u(x; ') = fAgain, it is straightforward to check that hW;�; v0P i is an MIP [SP ]-semiframe.By Theorem 4.12, hW;�; v0N i and hW;�; v0P i can respectively be extended to an MIP [SN ]-framehW;�; vN i and an MIP [SP ]-frame hW;�; vP i. Since vN (x0;  ) = v0N (x0;  ) =?,  is not valid inhW;�; v0N i, and so it is not provable in LJ+(SN). Similarly, vP (x0;  ) = v0P (x0;  ) = f . Hence  is not valid in hW;�; v0P i, and so is not provable in LJ+(SP ).Corollary 4.15 Suppose S1 � NR, and f() :); (: ))g 6� S1. Then:1. If also f() :); (: �))1g 6� S1 then LJ+(S1) 6= LK+(S1).2. If f() :); (: �))1g � S1 (or f() :); (: ))g � S1) then LJ+(S1) = LK+(S1).3. If S2 � NR, S1 6= S2 then LJ+(S1) 6= LK+(S2).4. If S2 � NR, S1 6= S2 then LJ+(S1) 6= LJ+(S2).28



Proof:1. Immediate from Theorem 4.142. This follows from the fact (shown in the proof of Theorem 4.14) that if f() :); (: �))1g � Sthen '_ (' �  ) is provable in LJ+(S). Indeed, it is well-known that by adding '_ (' �  )to LJ+ we get LK+.3. If f() :); (: ))g � S2 then LJ+(S2) = LK+(S2) = classical logic, while LK+(S1) (andso also LJ+(S1)) is strictly weaker than classical logic (by Theorem 3.16). Hence the claimis trivial in this case, and we may assume that also f() :); (: ))g 6� S2. Now if f():); (: �))1g 6� S then the claim is again immediate from Theorem 4.14. Otherwise itfollows from part 2 of this Theorem, and (the proof of) Theorem 3.16.4. Again, we may assume that also f() :); (: ))g 6� S2. Hence it suÆces to show that ifr 2 NR, S � NR, r 62 S, and f() :); (: ))g 6� S, Then A(r) is not provable in LJ+(S). Inthe proof of Theorem 3.16 this was shown even for LK+(S) in the case where r 6= (: �))1or (: )) 62 S. For the remaining cases, it suÆces to show that :(p � q) � p is not atheorem of NR � f() :); (: �))1g. For this, we construct a countermodel as follows. LetF 0 = fp; q; p � q;:(p � q);:(p � q) � pg, W = f0; 1g, and let � be the usual partial orderon W . De�ne a semivaluation v0 on W �F 0 by:v0(0; p) =? v0(0; q) = f v0(0; p � q) = f v0(0;:(p � q)) = t v0(0;:(p � q) � p) =?v0(1; p) = t v0(1; q) = f v0(1; p � q) = f v0(1;:(p � q)) = t v0(1;:(p � q) � p) = tIt is straightforward to show that hW;�; v0i is anMIP [NR�f() :); (: �))1g]-semiframe,and obviously :(p � q) � p is not valid in this semiframe. Hence :(p � q) � p is not atheorem of NR� f() :); (: �))1g by Theorems 4.9 and 4.12.Consequently, there are 5 � 210 new di�erent logics of the form LJ+(S), where S � NR, all of themconservative over LJ+ (while the others belong to the family fLK+(S) j S � NRg).Discussion: It follows from Theorem 4.14 that LJ+(SN) and LJ+(SP ) are the two maximallogics in the family fLJ+(S) j S � NRg which are conservative extensions of constructive positivelogic. Now the �rst is the well-known system N of Nelson ([AN84]) and Kutschera ([vK69]). Thesystem LJ+(SP ), in contrast, has not been investigated before (to the best of our knowledge).However, it is a very attractive system for constructive negation. First: it is paraconsistent (i.e.: asingle contradiction does not imply everything in it). Second: LEM is valid in it. In fact, LJ+(SP )29



is obtained from N by replacing two of its axioms by LEM. Now, while ELM is very intuitive,the two axioms it replaces are not. Indeed, one of them, :' � (' �  ), intuitively means that if' is false then it implies everything. The second, :(' �  ) � ', intuitively means that if thereis something that ' does not imply, then ' should be true (i.e.: it cannot be false). Obviously,these two principles are very similar to each other (and are both counterintuitive). It is no wonderthat from a constructive point of view, each of them is inconsistent with LEM, and is rejected inLJ+(SP ). It is worth noting that in contrast, and despite the paraconsistent nature of LJ+(SP ),the basic (and very intuitive) law of contradiction :(' ^ :') is valid in it.4.4 Decidability of the SystemsAs noted above, Theorem 4.9 alone does not guarantee the decidability of the logics it deals with,since the countermodel it provides for unprovable sentences may be in�nite (in fact, its proofconstructs only an in�nite countermodel). Still, it is possible to derive decidability results from itby using �ltration techniques and Theorem 4.12. We prefer instead to present a more direct proof,which involves a weak form of the cut-elimination theorem for our logics.Now it was shown in [Avr03] that in general the cut-elimination theorem does not hold forour Gentzen-type systems. Moreover: examples have been given there of a subset S of NR and asequent which is provable in LJ+(S), but any proof of it there should contain a non-analytic cut (i.e.a cut in which the cut-formula is not a subformula of the sequent being proved). This is perhapsnot surprising, since our logical rules themselves do not have the strict subformula property: someof them involve negations of subformulas of their conclusion which are not subformulas themselves.Therefore, it is reasonable to expect the same from cuts. This leads to the following theorem:Theorem 4.16 Assume that S � NR, and f() :); (: �))1g 6� S. Then for every sequent s inthe language of LJ+ there is either a �nite MPI [S]-frame in which s is not valid, or a proof inLJ+(S) in which every cut is either on a subformula of s or on a negation of such a subformula.Proof: Assume that s is a sequent which has no such proof in LJ+(S). By Theorem 4.12, it suÆcesto construct a �niteMPI [S]-semiframe in which s is not valid. Let F 0 be the set of subformulas ofs, and let F 00 = F 0 [ f: j  2 F 0g. Call a proof in LJ+(S) an s-proof if every cut in it is on someformula in F 00. Let W be the set of all sequents which do not have s-proofs in LJ+(S), and theunion of their two sides is F 00. W is of course �nite. Obviously, if �) � does not have an s-proofin a LJ+(S), and  2 F 00, then either  ;�) � or �) �;  does not have an s-proof in LJ+(S).It follows that any sequent which consists of elements of F 00 and has no s-proof in LJ+(S) can be30



extended to an element of W . In particular, s itself is a subsequent of some sequent �0 ) �0 2W .De�ne now a partial order � on W as follows: �1 ) �1 � �2 ) �2 if �1 � �2 (i� �2 � �1, since�1 [�1 = �2 [�2 = F 00). Finally, de�ne v0 :W �F 0 ! T by:v(�) �;  ) = 8>><>>: ?  2 �;: 2 �f  2 �;: 2 �t  2 �;: 2 �>  2 �;: 2 �It is not diÆcult to see that v is well-de�ned (note that if �) � 2W and  2 F 0 then f ;: g �� [�), and that hW;�; vi is an MPI [S]-semiframe. We prove here the conditions concerning �:� Suppose ' �  2 F 0, and v(� ) �; ' �  ) 2 D. Then ' �  2 �. Let � ) � � �0 ) �0,and suppose v(�0 ) �0; ') 2 D. Then ' 2 �0. Since also ' �  2 �0 (as � � �0), it isnot possible that  2 �0 (because otherwise �0 ) �0 would have a cut-free proof, and so ans-proof). Hence  2 �0, and so v(�0 ) �0;  ) 2 D as well.� Suppose ' �  2 F 0, and let w = �) �. Assume that v(w;' �  ) 62 D. Then ' �  2 �.Thus � ) ' �  does not have an s-proof, whence �; ' )  does not have an s-proofeither. Since � [ f'; g � F 00, by this virtue there is w0 = �0 ) �0 2 W such that� [ f'g � �0;  2 �0. Hence w � w0, and v(w0; ') 2 D, while v(w0;  ) 62 D.� Suppose () : �) 2 S. We prove that C() : �) is satis�ed. Thus assume that ' �  2 F 0,and that v(� ) �; ') 2 D, v(� ) �;  ) 2 ff;>g. Then ' 2 � and : 2 �. Since() : �) 2 S, :(' �  ) cannot be in � (otherwise �) � would have a cut-free proof). As:(' �  ) 2 F 00, we get :(' �  ) 2 �, and so v(� ) �; ' �  ) 2 ff;>g. Given the globalconditions concerning v and � proved above, this implies C() : �).� Suppose (: �))1 2 S. We prove that CI(: �))1 is satis�ed. Thus assume that ' �  2 F 0,and that v(� ) �; ') 62 D. Then ' 2 � (by the de�nition of v). Since (: �))1 2 S, thisyields :(' �  ) 62 �, whence v(�) �; ' �  ) 2 ft;?g.� We prove similarly that if (: �))2 2 S then CI(: �))2 is satis�ed.Now by de�nition of v and �0 ) �0, v refutes s in the world �0 ) �0 of W . Hence hW;�; vi is a�nite countermodel of s as required.Corollary 4.17 LJ+(S) is decidable for every S � NR.31
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