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Abstract

We investigate two large families of logics, differing from each other by the treatment of nega-
tion. The logics in one of them are obtained from the positive fragment of classical logic (with
or without a propositional constant ff for “the false”) by adding various standard Gentzen-type
rules for negation. The logics in the other family are similarly obtained from LJ7T, the positive
fragment of intuitionistic logic (again, with or without ff). For all the systems, we provide
simple semantics which is based on non-deterministic four-valued or three-valued structures,
and prove soundness and completeness for all of them. We show that the role of each rule is to
reduce the degree of nondeterminism in the corresponding systems. We also show that all the
systems considered are decidable, and our semantics can be used for the corresponding decision
procedures. Most of the extensions of LJ* (with or without ff) are shown to be conservative
over the underlying logic, and it is determined which of them are not.

1 Introduction

From both classical and constructive points of view, the question whether we accept or reject a
given sentence ¢ depends on the data (or information) we have concerning it. The data might be
positive (in which case we might say that ¢ is supported), or negative (in which case we might say
that ¢ is questioned). This intuition may be formally reflected by the use of four truth values: ¢,

T, f and L, where we expect a valuation v in {¢, f, T. L} to satisfy:

e v(p) =t if ¢ is supported but not questioned.
e v(p) = f if ¥ is questioned but not supported.
e v(p) =T if ¢ is both supported and questioned.

e v(p) =L if ¢ is neither supported nor questioned.

Driven by considerations of this sort, and following previous works by Dunn, Belnap suggested (in
[Bel77b, Bel77a]) the use for computers of logics based on these four truth-values. He went on

to propose a specific four-valued matriz for this task (see 2.2 below). By this Belnap (implicitly)



accepted the classical extensionality principle, according to which the truth-value of a compound
formula is completely determined by the truth-values of its immediate subformulas. In particular:
negation has a fully deterministic interpretation in Dunn-Belnap’s matrix. But is this interpretation
the only plausible one? The answer depends, of course, on the intuitive meaning of — in the context
of the four values. The most natural such interpretation is perhaps that — represents, within
the language, the idea of negative data: —¢ should mean: “¢ is questioned”. This implies that

supporting —¢ and questioning ¢ should amount to the same thing. Hence we get:
e v(p) =t if ¢ is supported and —¢ is not.
e v(p) = f if = is supported and ¢ is not.
e v(p) =T if both ¥ and = are supported.
e v(p) =L if neither ¥ nor =@ are supported.

Given the truth value of ¢, what do these principles tell us about the truth-value of its negation?
Well, it is easy to see that they dictate the following derived principles (and nothing stronger, as

long as we do not introduce additional assumptions concerning supporting or questioning):

e If v(p) =t then v(—p) € {f, L}.

If v(p) = f then v(—y) € {t, T}.

If v(p) =T then v(—¢) € {t, T}.

If v(p) =L then v(—¢) € {f, L}.

It follows that the truth-value of ¢ does not fully determine the truth-value of —¢. Hence nonde-
terministic semantics seems to be appropriate here. A similar conclusion may be obtained if we
examine the expected behavior of disjunction and conjunction. Thus in Dunn-Belnap’s matrix we
have TV L= t, which might seems strange (and perhaps unintuitive). Again, such peculiarities can

be overcome if one uses nondeterministic semantics.

In this paper we explore the application of these ideas for large families of logics. We concentrate
on logics which are easily and naturally defined by using Gentzen-type systems with various stan-
dard, very common, rules for negation. The differences between the different logics we investigate

concern:



The underlying logic : We consider two main possibilities: positive classical logic, and positive
intuitionistic logic (also called minimal logic). In both cases we consider a pure subcase,
in which the falsehood constant ff is not included, and subcases in which it is added (with
appropriate rules) to the language (it turns out that such an addition has practically no effects

on our results).

The rules for negation : In all the logics we consider, these are taken from a list of rules,
given below, which includes the two standard classical rules for negation, as well as the most

common standard rules for combining negation with other connectives.

Below we provide simple non-deterministic semantics for all the 24-210 different nonclassical systems
we consider, and prove their soundness and completeness with respect to these semantics. The
main insight we get is that the role of each rule is to reduce the degree of nondeterminism of some
connective by restricting the allowed outputs of its application in some cases. We also show that all
the systems we consider are decidable, and that our semantics can be used for the corresponding
decision procedures. In the case of the extensions of LJT (with or without ff) we show that most

of them are conservative over the underlying logic, and determine which of them are not.

2 Preliminaries

From now on (unless otherwise stated), all formulas are assumed to be (depending on the context)
either in the propositional language based in {V, A, D, =}, or on that based on {V,A, D, -, ff}. We
use p,q,r to denote atomic formulas, A, B,C, vy, ¥, ¢ to denote arbitrary formulas, and I', A to
denote finite sets of formulas. A sequent has the form I' = A, where I" and A are finite sets of
formulas. Following tradition, we write ', v and ', A for I' U {¢} and ' U A, respectively. By a
(propositional) logic we shall mean a pair (£,F), in which £ is a propositional language, and F is

a consequence relation on the set of formulas of L.

2.1 The Logics and the Associated Proof Systems
2.1.1 The Standard Positive Logics

We start by presenting Gentzen-type systems for the four logics which we use as bases. To see what
is the essence of the differences between those logics, we use (cut-free) multiple-conclusion versions

for all of them, including the constructive ones.



THE SYSTEM LK™

Axioms: A=A

Structural Rules: Cut, Weakening

Logical Rules:

(=) 's=AA BT=A I'A= B,A (=5)
ADB,I'=A I'=AD>BA

(A=) INA,B= A r=AA '=AB (= A)
NNAAB= A I'=AAAB

v =) A=A IB=A I'=AAB (= V)
NNAvB=A '=AAVB

THE SYSTEM LK: This is the system obtained from LK™ by adding the following axiom:

ff =

THE SYSTEMS LJ* and LJ: These are the systems obtained from LK™ and LK (respectively)

by weakening their (=D) rule to:

Notes:

1. LK is a standard Gentzen-type calculus for the classical propositional logic (taken in the
language of {V, A, D, ff}), while LK™ is its purely positive fragment. The system L.J is a
sequent calculus for the propositional intuitionistic logic, while LJ7T is its purely positive
fragment. The four systems are sound and complete for the corresponding logics, and admit

cut-elimination (see [Tak75]).

2. In both LK and L. it is possible to define the usual negation connective of the corresponding

logics by letting ~¢ =p ¢ ¢ D ff (for intuitionistic logic, this is in fact the common procedure).



We shall nevertheless take all four systems as “positive” logics, since our principal goal is to
investigate the systems obtained from them by adding an independent negation connective —

to their languages.

2.1.2 Standard Rules for Negation and Corresponding Systems

The two standard Gentzen-type rules for classical negation are:

(- =) I'=AA AT = A (= )
B —AT = A = A,-A B

Instead of these rules, many systems for classical or nonclassical logics employ rules for intro-
ducing combinations of negation with other connectives. The most common rules used for this task

are the following:

(e =) AT = A I'=AA (= )
o —A T = A = A, A o

(= 5=) A -B,T'= A '=AA I'=A,-B (= o)
B ~(AD>B),T = A = A,~(AD B) B

(- =) I-A,-B= A = A-A I'=A,-B (= V)
B I,~(AVB)= A I'= A, ~(AVB) B

(-A =) r-A= A r-B=A I'=A,-A,-B (= —A)
B [,~(AAB)= A I = A, ~(AAB) B

Now, in Gentzen’s original formulation ([Gen69]) the rules (A =) and (= V) were split into two
rules, each with one side formula only. To make our investigation finer, we do the same here for

(=V =), (= —A) and (- D=). Thus instead of these three rules, we consider the following six:

(= 55) AT = A -B,T = A (= 5)
TOTN Ao B TS A SA5B),l=A 272
(v =) I, -A= A I,-B=A (v =)
VEh T SAVB =S A I-(AVB) = A /77
( A) '=A-A I'=A,-B ( A)

Y T = A ~(AAB) I'= A, ~(AAB) 2

Definition 2.1 1. The set NR is the union of the following sets of rules:

NR; ={(==),(= )}



NRy = {(_'_‘ :>)a (:> _'_')7 (:> - D)a (:> —|\/), (_'/\ :>)}

NR3 = {(=2=)1, (7 2=)2, (=V =), (2V =)2, (= ~A)1, (= ~A)2}

2. For Le {LK,LK",LJ,LJ"} and S C NR, we denote by L(S) the system obtained from L

by adding the rules in S.

3. For L € {LK,LJ} and S C NR, we denote by L/(S) the system obtained from L(S) by
adding the axiom:

= —ff

Historical Notes: Some of the logics introduced in Definition 2.1 have already been studied
in the literature. Thus LJT(NR; U NRy) and LJT(NR — {(= —)}) are respectively identical
with the logics N~ and N of Nelson ([AN84]) and Kutschera ([vK69])  see [Wan93] for further
details and references. LKT(NR — {(= —)}) is equivalent to the logic LPF of the VDM project
([Jon86]). LK*(NR; U N Ry) is the logic of the bilattice FOUR (see subsection 2.2). The logics
LK({(= —)}) and LK(NR — {(— =1}) were introduced in [Bat80], where they were called PI
and PI°, respectively. Later Batens changed their names to CLuN and CLuN s, respectively (see
e.g. [Bat00]). LKT(NR — {(— =}) was independently introduced (together with the 3-valued
deterministic semantics described in subsection 2.2) in [Avr86, Avr91l, Roz89]. In [Avr91] it was
called PAC (this name was adopted in [CM02]). LK(NR — {(— =}) was originally introduced in
[Sch60]. Later it was reintroduced (together with its 3-valued deterministic semantics) in [DdC70,
D’085], where it was called J3 (see also [Eps90]), while in [CMO02] it was called LFI1. The system
LK*({(= ), (== =)}) is the logic Cy,i, studied in [CM99]. LKt ({(= —), (= =), (= —V)}) was
again introduced in [Bat80], under the name PI*. LJT({(= —), (== =)}) is Raggio’s formulation

(in [Rag68]) of da Costa’s famous logic C,, (see [dCT4]).

2.1.3 Corresponding Hilbert-type Systems

Some of the logics mentioned above have been originally introduced using Hilbert-type systems.
Such systems can be easily given for every system L(S) or L/(S). We start with some standard
Hilbert-type system HL for L (having M P as the only rule of inference), and add to it the axioms
from the list below, which correspond to the negation rules in S. In the case of L/ (S) we add also

the axiom A(= —ff). Here is the list of axioms that correspond to our 13 rules and to = —fF:

A==): —pD (¢ DY)



A=) oV-yp

A= =) —mpDy

A=) 9Dy

A(=D=)1: —(@DY) D¢
A(=D=)2 —(0D9) D

A(= =) (p A=) D (9 D)
A=V =) —(eVeY) D

A(=V =) —(eVY) D
A(==V): (9 A=) D (e V)
AN =) (e AY) D (mp V)
A(= =Nz 29 D (e AY)

A(= =A)2: ) D =(p A1)

A(= —ff):  —ff

Definition 2.2 For S C NR, let HL(S) be the system obtained from HL (where Lisin {LK, LK*, LJ,LJ"})
by adding to it the axioms which correspond to the rules in S, and let HL/(S) be HL(S)+A(= —ff).

Theorem 2.3 HL(S) and L(S) are strongly equivalent for every L € {LK, LK+ ,LJ,LJ"} and
S C NR: If T is a set of sentences, A a finite set of sentences, and YA is a disjunction of all
the sentences in A, then T py(s) A iff there is a finite subset I' of T' such that Fys) I' = A.
Similar relations hold between HLS(S) and LY(S).

Proof: Standard. n

2.2 The Bilattice FOUR

The Logic LK*(NRy U NR3) has a well-known characteristic matrix, based on the four values
t, f, 1, and T. In its best known presentation, this matrix was described and motivated by Belnap
in [Bel77b, Bel77a], following works and ideas of Dunn (see e.g. [Dun76]). To motivate the design

of this structure, Dunn and Belnap employ two natural orderings of the truth values: the “truth”



partial order <;, and the “knowledge” partial order <. According to <, f is the minimal element,
t is the maximal one, and 1, T are two intermediate values, which are incomparable. According
to < (originally due to Scott), L is the minimal element, T  the maximal one, and ¢, f are the

intermediate values (see Figure 1).

Figure 1: FOUR

Both ({t, f, T, L}, <) and ({#, f, T, L}, <x) are lattices, and the lattice operations of the first are
used to provide the semantics of V and A. In addition, there is a negation operation which is an

involution w.r.t. <; and is monotone w.r.t. <, (there is exactly one such operation: its details

1

are given below)." Dunn-Belnap’s structure is nowadays known also as the basic (distributive)

bilattice, and its logic  as the basic logic of (distributive) bilattices (see [Gin87, Gin88, Fit90b,
Fit90a, Fit91, Fit94, AA96, AA98]). In [AA96] Belnap’s matrix was extended with an appropriate

implication connective. The resulting structure is described in the next definition.

Definition 2.4 The matrix FOUR = (T, D, O) is given by:
o« T={t,T,L,f}
e D={t,T}
e The operations in O are defined by:

1_ _|t:'.f17 _If:t’ _IT:T’ ﬁL:L

2. aVb=sup<,(a,b), aNb=1inf< (a,b)

!Belnap allowed only the use of operations which are monotone with respect to <;. The implication D we use
below does not have this property, and so <; has little role in the semantics of our extensions of LK ™. Surprisingly,
it has great importance for the semantics of our extensions of LJ* (see section 4).



5 Sp = b ifaeD
A2 TNt ifagD

Theorem 2.5
1. ([AA96]) LK+t (NRy U NR3) is sound and complete w.r.t to FOUR.

2. ([Avr91))2 LK*(NRy U NR3 U {(=~ =)}) is sound and complete w.r.t to the three-valued
{t, f, L}-submatriz of FOUR, while LK™ (NRy U NR3 U {(= —)}) is sound and complete
w.r.t to its {t, f, T }-submatriz.

3 Semantics in the Classical Case

3.1 Nondeterministic Matrices

Our main semantic tool in what follows will be the following generalization of the concept of a

matrix from [ALO4, ALO1]:

Definition 3.1

1. A non-deterministic matriz (Nmatriz for short) for a propositional language L is a tuple
M = (T,D,O), where:
(a) T is a non-empty set of truth values.
(b) D is a non-empty proper subset of T .
(c¢) For every n-ary connective ¢ of £, O includes a corresponding n-ary function ¢ from 7"
to 27 — {0}.

We say that M is (in)finite if so is T.

2. Let F be the set of formulas of L. A (legal) valuation in an Nmatrix M is a functionv : F — T

that satisfies the following condition for every n-ary connective ¢ of £ and v1,...,9, € F:
v(o(@r, ... ¢n)) € 3(v(th), .., v(¢n))

3. A valuation v in an Nmatrix M is a model of (or satisfies) a formula 1 in M (notation:
v EM ) if w(y) € D. v is a model of a set T' of formulas in M (notation: v =M T) if it

satisfies every formula in I.

“The two parts of this item are proved together in [Avr91]. However, each of them alone has been discovered and
proved in many other papers. See the historical notes at the end of subsection 2.1.2 for relevant references.



4. 4, the consequence relation induced by the Nmatrix M, is defined as follows:
I' g A if for every v such that v =" T there exists ¢ € A such that v =" ¢
5. A logic L = (£,F) is sound for an Nmatrix M (where £ is the language of M) if - C k4. L

is complete for M if - D Fq. M is characteristic for L if L is both sound and complete for
it (i.e.: if F = F ).

Note: We shall identify an ordinary (deterministic) matrix with an Nmatrix M = (T, D, O) such

that the functions in O always return singletons.
The following Definition is a refinement of the notion of “refinement” used in [Avr03]:

Definition 3.2 Let M; = (7T1,D1,01) and My = (T3, D,O9) be Nmatrices for a language L.
My is called a refinement of My if Ty C Ty, Dy = D1 N T, and Spq, (%) C Sy, (%) for every n-ary

connective ¢ of £ and every Z € 7"

Proposition 3.3 If My is a refinement of My then Faq, Chaq,. Hence if L is sound for My then
L s also sound for May.

Proof: Suppose I' Fxq, A. We show that I' -4, A. So assume that v is a model of I" in M. Since
T2 C T1, and o1, (%) C Suq, (£) for every m-ary connective ¢ of £ and every Z € T, v is a legal
valuation in M. Since Dy C Dy, v is actually a model of I' in M. This and the fact that I' -, A
imply that v(p) € D; for some p € A. But v(yp) is also in T3, and so v(p) € Dy N T, = Dy. Hence

v is a model in M5 of some element of A. [ ]

3.2 Nondeterministic Four-Valued Semantics

Classical Logic has, of course, the semantics of the usual two-valued deterministic matrix. This

semantics can, however, be easily generalized as follows.

Definition 3.4 1. Let M = (7,D,O) be an Nmatrix for a language which includes that of
LK™. We say that M is suitable for LK™ if the following conditions are satisfied:

e IfacDandbe D then aAb C D
e Ifa g DthenaAbC T —D

o Ifb¢ D then aAbC T —D

10



If @ € D then aVb C D

If b € D then aVb C D

IfagDand b¢g D thenaVbC T —D

If a ¢ D then aDb C D

If b€ D then aDb C D

Ifa e Dand b¢g D thenadbC T — D

2. Let M = (T, D, O) be an Nmatrix for a language which includes the language of LK. We say
that M is suitable for LK if it is suitable for LK™, and the following condition is satisfied:

o ffCT-D

Theorem 3.5 LK (LK) is sound for any Nmatriz M which is suitable for it. Moreover: it is

complete for the relevant fragment of M.

Proof: We leave the easy proof for the reader. [ |

Convention: For convenience, we henceforth usually employ the same symbol for a connective and
for the corresponding nondeterministic operation in a given Nmatrix. We also denote by the same
symbol (usually O) the set of connectives of a language £ and the corresponding set of operations

of an Nmatrix for L.

We turn now to Nmatrices for logics with negation which are based on the basic four truth

values described in the introduction.
Definition 3.6 Let Mp (M) be the following Nmatrix (7, D, O):
o T={t,T,f L}

° 'D:{t,T}

«aoh— D beDoracT—-D
‘ " | T —D otherwise

Vh— D a€DorbeD
@ | T —D otherwise

11



aAb— D aeD,beD
‘ "1 T —D otherwise

b= l=T-D ~f=-T=D

(f=T-D)
Proposition 3.7 LK+ (LK) is sound for any refinement of Mp (MT).

Proof: This follows from Theorem 3.5. [ |

Note: Since the ordinary two-valued matrix is a refinement of Mp (M) and is complete for LK+

and LK, so are Mp and Mg (and this is obviously true for every refinement of them).

3.3 Effects of the Negation Rules

We turn now to the effects of the various negation rules. We shall show that to each of them
corresponds a condition which leads to a certain refinement of Mp (or M), These conditions
are independent of each other, but never contradict each other. To see how these conditions are
obtained, take (= D=-); as an example. This rule is equivalent to the validity of =(¢ D ) F .
It means therefore that v(=(¢ D v)) &€ D if v(p) € D. Since v(¥ D 1) itself should be in D if
v(p) € D, it follows by Mp’s truth tables for negation that v(¥ D 1) should be t if v(p) & D.
This is therefore the condition that corresponds to this rule, and it turns 8 (out of the many more)
possible nondeterministic choices in Mp (or M) to deterministic ones. Similar analysis can be

done for the other rules. The resulting list of conditions is listed in the next Definition.
Definition 3.8 1. The refining conditions induced by the negation rules are:

C(—==): Useonly ¢, f and L

C(= —): Useonly t,f and T

Clom=): ~f ={t}, - L={1}

Cl= —): ot ={f}, -T ={T}

C(=V =)1: zVy={supi(z,y)} ifx e {t, L}

C(=V =)ot zVy={sup(z,y)} ify e {t, L}

C(= =V): aVy = {supi(z,y)} ifz € {f, T}y e{f, T}

C(-A =) oAy = {infi(z,y)} it € {t, L}, y € {t. 1}

12



C(= At z ANy ={infi(z,y)} ifx e {f, T}
C(= N z ANy ={infi(z,y)} ifye{f, T}
C(=D=)i:zDy={t}ifa ¢D

C(—-D=)ezDy={t}ify=torz¢gDandy =1L
xrDy={ytify=torzeDandy=1

C(=-D);rzDy={ylifzreDandy e {f T}
2. For S C NR,let C(S) ={Cr|r € S}
From now until the end of this subsection, we shall concentrate on the language without fF.

Definition 3.9 For S C NR, let Mp|[S] be the weakest refinement of M p in which the conditions
in C(S) are all satisfied.?

Proposition 3.10 If S C NR then LK™ (S) is sound for Mp[S].

Proof: We show, by way of example, that (=V =); is valid in any refinement M of Mp in which
the condition C(—V =) is satisfied. So assume that v is a valuation in M such that v(=A) &€ D.
Then v(A) € {t, L}. Condition C(—V =); entails that in this case also v(AV B) € {¢, L}, and so
v(=(AV B)) ¢ D. Hence ~(AV B) Fq —A. ]

Theorem 3.11 If S C NR then LK™ (S) is strongly complete for MplS].

Proof: Using Theorem 2.3, it suffices to show that if T is a theory and ¢ is a sentence such that
T Vrrx+(s) Po, then there exists a model of T in Mp[S] which is not a model of ¢g. For this
extend T to a maximal theory T* such that T* i/ x+(s5) ¢o. Since HLK™(S) is an extension of

HLK™ having only M P as a rule of inference, T* has the following properties:
1. g T iff ¢ D g € T".
2. If ¢ € T* then ¢ D ¢ € T* for every sentence .
3. oV € T* iff either ¢ € T* or ¢ € T*.
4. o N1 € T* iff both ¢ € T* and ¢ € T*.

5. ¢ D € T* iff either ¢ ¢ T* or ¢y € T*.

®1t is easy to see that the conditions in NR cannot cause any conflict, so Mp[S] is well-defined.

13



(The proofs of 1-5 are all standard: Property 1 follows from the maximality property of T* and
the deduction theorem. Property 2 is proved first for ¢ = ¢ using Property 1 and the tautology
((po D @) D wo) D po, and then deduced for all 9 ¢ T* using Property 1. Properties 3 5 are easy
corollaries of Properties 1, 2, and the fact that T I/ 7 g+ () ©0)-
Define a valuation v in Mp[S] as follows:
L yd g*, ) ¢ g*
* _ap € T
=] | VETbeT
T ¢YeT —peT*
We shall now show that v is a legal valuation, i.e. it respects the interpretations of the connectives
in Mp[S]. Properties 3-5 of T* easily imply that v respects the basic constraints concerning the

positive connectives. As for the basic constraints concerning negation, we have:
e Assume v(1)) € {t, L}. By definition, this implies =t ¢ T*, and so v(—)) € {f, L}.
e Assume v(1)) € {f, T}. By definition, this implies =) € T*, and so v(—)) € {¢, T}.

It remains to show that v respects the conditions induced by the rules in S:

C(= —): Assume (= =) € S. Then ¢ V ¢ € T* and so Property 3 above entails that for every

p, either ¢ € T*, or —p € T*. Hence there is no ¢ such that v(p) =1.

C(— =): Assume (= =) € S. Then, by the corresponding axiom and the fact that ¢y ¢ T*, there
is no ¢ such that both ¢ € T* and —¢p € T*. Hence there is no ¢ such that v(y) = T.

C(= ——): Assume (= ——) € S. Then =—¢ € T* whenever ¢ € T*. This easily implies (by the
definition of v) that if v(p) = ¢ then v(—y) = f, while v(¢) = T then v(—p) = T.

C(——=): Assume (-— =) € S. Then =—¢p ¢ T* whenever ¢ ¢ T*. This easily entails (by the
definition of v) that v(¢) = f implies v(—p) = ¢, while v(¢) =L implies v(—p) =L.

C(=V =)1: Assume (—V =); € S. Then —(p V¢p) ¢ T* if -p ¢ T*. Hence if v(yp) € {t, L} then
v(=(e V1)) € {t,L}. Now if v(p) =t then ¢ € T*, and so ¢ V¢ € T*. Hence in this case
v(pVp) =t. If v(p) =L then ¢ ¢ T*, and so oV € T*iff p € T* (iff v(¢p) € D). It follows
that in this case v(p V 9) =t if v(¢)) € D, and v(p V 1)) =L otherwise. In all cases we find

that v(p V 9) = supi(v(p), v(¥)) if v(p) € {t, L}.

C(=V =)y: Similar.

14



C(= —V): Assume (= —V) € S. Then (V) € T*if =p € T* and =9 € T*. Thus ~(pVe) € T*
if v(p) € {f, T} and v(¢p) € {f, T}. Hence v(p V 9) is either f or T, depending whether
oV € T* or not. Since ¢ Vip € T* iff either ¢ € T* or v € T*, we obviously have

v(p V1) = supi(v(p),v(1))) in the case under discussion.

We leave the proofs of the conditions corresponding to the remaining rules to the reader.

Now v(1)) € D iff 4p € T*. Hence v(1)) € D for every 9 € T, while v(pg) ¢ D. It follows that v

is indeed a model of T which is not a model of v(yp). ]

We next apply our soundness and completeness results to derive three important properties of

the systems considered above.

Theorem 3.12 LK (S) admits cut-elimination for any S C NR.

Proof: 1f SN NRy = () then the proof is a straightforward adaption of Gentzen’s original proof
for LK ([Gen69, Tak75]) 4. The case when SN NR; = {(= =)} was proved (using our 3-valued
non-deterministic semantics) in [Avr03]. A completely analogous semantic proof can be given in

the dual case where SN NR; = {(—=)}. ]

Our main tool for the next two theorems is the following Definition (from [Avr03]) and the

corresponding simple Lemma, the trivial proof of which we leave to the reader:

Definition 3.13 Let £ be a propositional language, and let M = (7,D,O) be an Nmatrix for
L. A semivaluation in M is any function v’ : ' — T such that F' is a set of formulas of L

which is closed under subformulas, and v’ respects M (in the sense that o(11,...,1,) € F' implies

7)1(0(";01’ s awn)) € 5(7)(";01)’ cee a“(wn)))'

Lemma 3.14 Any semivaluation in M can be extended to a valuation v in M.

Theorem 3.15 LK (S) is decidable for every S C NR.

Proof: Let T' = A be a sequent of the language of LK1 (S). Let F' be the set of all subformulas
of formulas in I' == A. To decide whether I' = A is provable in LK1 (S), check whether for every
o' F'— {t, f, T, L} which is a semivaluation in Mp[S], either v'(p) & D for some ¢ € T, or

v'(¢) € D for some ¢ € A. By Lemma 3.14 (together with the soundness and completeness of

“Such an adaption is not so easy if SN NR; is a singleton since the case in which the cut formula is of the form
- causes then difficulties.
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LK™ (S) with respect to M p[S]), this is indeed sufficient. Since the number of such semivaluations

is finite, this is a decision procedure. [ |

We turn to the question: Which of the various logics we have considered are actually different
from each other? Well, if NR; C S then LK™ (S) is just classical logic, and so all the other rules
are derivable in it. It is also easy to see that (= D=); is derivable from (= =) in the context of
LK™. The next theorem shows that these are the only dependencies in NR (and so there are 5-2'°

different nonclassical logics of the form LK™ (S), where S C NR).
Theorem 3.16 Let Sy = S1 U Sy U S3, where:
S ={S|SCNR, SNNR;=0}

Sy ={S[SCNR, SNNR;={(=-)}}
S3={S|SCNR, SONR ={(==)}, (->=)¢5)}

Then if S € Sy then LK™ (S) is strictly weaker than classical logic. Moreover: if S1,Ss € Sy and
Sl ;é SQ, then LK+(51) ;é LK+(SQ)

Proof: Tt is easy to see that A(— =) is not valid in Mp[(NR — {(= =)})], and A(= —) is
not valid in Mp[(NR — {(= =)})]. ® Hence LK*(S) is strictly weaker than classical logic if
S € Sy, and A(= =) is not derivable in LK™ (NR — {(= =)}), while A(= =) is not derivable in
LKY(NR — {(= —)}). To show that LK*(S;) # LK™ (S) if S1,S53 € Sy and Sy # So, it suffices
therefore to show the following: If r € NRy U NRj3, and A(r) is the corresponding Hilbert-type
axiom, then A(r) is not valid in Mp[S}], where S! = NR — {r, (= =)}, and if r # (= D=); then
A(r) is not valid in M p[S?] either, where S? = NR — {r,(= —)}. For this it suffices (by Lemma
3.14) to provide appropriate semivaluations v; and vy which refute A(r) in S! and S2, respectively.

Here is a list of such refuting semivaluations in each case:

r=(-m=):
vi(p) =f vil=p)=T wvi(=-p)=
vo(p) =L wa(=p)=f wa(——p)=t

r=(=-):
vi(p) =T wi(=p) =t vi(=-p) =f
va(p) =t  wo(—p) =L wo(——p) =L

®These two Nmatrices are actually famous ordinary matrices, and are respectively the {t, f, T }-submatrix of
FOUR and the {t, f, L}-submatrix of FOUR mentioned in Theorem 2.5.
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r= (_l\/ :>)]:

r = (—|\/ :>)2:

va(p) =
r = (:> —|/\)1
r = (:> _l/\)g:
r=(= -2
r=(=-D2)
r=(=-D2)
v1(p)
va(p)

vip) =t wvilg) =T wvi(pVeg) =T wvi(=(pVaq)=T vi(-p) =f
va(p) =L wa(q) =f wvalpVg)=f wva(=(pVq) =t wva(-p) =1
vilp) =T wvilg) =t vi(pVe) =T vi(=(pVe) =T wvi(-q) =f
va(p) = f walq) =L walpVae)=f wva-(pVag)=t wo(-q)=1

va(-p A—q) =t

=f vilpAg =T vi(=(pAq))

va(q) =L va(=p) =v2(=q) =L w(pAq)=f wva=(pAq)
vilp) =T wilg) =t vilpAg)=t vi(-p)=T wvi(=(pAq)=f
va(p) = f walq) =L walpAgq) =L wa(-p)=1t wa(=(pAgq)) =1

vi(mq) =T vipA—-q¢) =T mpDdg) =t vi(~(pD
va(=q) =t wa(pA=q) =1t wa(pDq)=L wva(=(pD

q
q

)
)

)
)

T vilpVeg) =t vi(-p)=vi(=q) =T wvi(-pA—-q)=T wvi(=(pVa))
va(=(p V q)

~—

f
i

f
i

T vi(-pV-q) =f
t wva(-pV—q)=L

It is easy to check that each of these semivaluations indeed satisfies all the constraints which

correspond to the rules in NRy U N Rj3 except for the relevant one, as well as C(= —) (in the case

of v1), or C(—= =) (in the case of vy)
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3.4 Adding The Propositional Constant ff

For S C NR, let MI[S] be the weakest refinement of M in which the conditions in C(S) are all
satisfied. All the theorems of the previous subsection concerning the systems LK™ (S) and their
relations with the Nmatrices Mp[S] are true (with practically the same proofs) for the systems
LK(S) and for their relations with the Nmatrices ME[S]. Note also that if (= =) ¢ S then the
valuation that assigns T to every sentence is legal in Mp[S], but not in ME[S]. Hence in this
case no counterpart of ff is definable in LK (S), and LK (S) is a proper extension of LK (S). In
contrast, if (- =) € S then ff can be interpreted as ¢ A —¢ (for some @), and so there is no real

difference between LK (S) and LK (S) in this case.

Turning our attentions to the systems LK/ (S) (S C NR), let ME[S] be the weakest refinement
of M which satisfies the conditions in C(S) together with the condition:

o £ ={/}

Again, all the theorems of the previous subsection concerning the systems LK™T(S) and their
relations with the Nmatrices Mp[S] are true for the systems LK/ (S) and for their relations with
the Nmatrices M5[S]. However, this time = —fF is derivable in LK (S) if (= —) € S, but not if
(= ) ¢ S (take v(ff) = v(—~fFf) =L). Hence if (= —) ¢ S then LK7(S) is a new logic (and all the
logics of the form LK/ (S), where (= =) ¢ S, are different from each other and from all the logics

we have considered above).

4 Semantics in the Intuitionistic Case

4.1 General Semantics

The previous section was devoted to extensions of positive classical logics. However, L.J™ might be a
better starting point for investigating negations (and it is certainly the natural basis for investigating
constructive negations). One reason is that the valid sentences of L.JT are all intuitively correct.
LK™, in contrast, includes counterintuitive tautologies like (AA B D C) D (A D C)V (B D CO)
or AV (A D B). Moreover: the classical natural deduction rules for the positive connectives (A, V
and D) define the intuitionistic positive logic L.JT, not the classical one. It is only with the aid
of the classical rules for (the classical) negation that one can prove the counterintuitive positive

tautologies mentioned above.

18



Now, it is well known that it is impossible to conservatively add to the intuitionistic positive
logic a negation which is both explosive (i.e.: —=A, A = B for all A, B) and satisfies the law of
excluded middle LEM. With such an addition we get classical logic. The intuitionists indeed reject
LEM, retaining the explosive nature of negation (which is usually defined using the constant ff
and implication). In this section we shall see that this is not the only possible choice. The main
problem we shall solve in it is: Which of the logics LJ*(S) (S C NR) is conservative over LJT?
(and similarly for L.J). We believe that each such logic is entitled to be called “a (constructive)
logic with a constructive negation”.

As in the case of LK™ (or LK) , we start with generalizing the standard, two-valued semantics
of LJ* (or LJ). Recall that this semantics is usually provided by the class of all Kripke frames
of the form W = (W, <,v) b, where (W, <) is a nonempty partially ordered set (of “worlds”), and

v: W xF — T (where F is the set of formulas of the language) satisfies the following conditions:

1. If y > x and v(z, ) = t then v(y, ) =t.7

2. euv(mpAyY)=tiff v(z,p)=1tand v(z,¢) =t
o v(z,p V) =tiff v(z,p) =1torv(z,P) =1

e v(z,ff) = f (if ff is in the language).
3. v(z,p DY) =tiff v(y,) =t for every y > x such that v(y, @) =t

Obviously, if W = (W, <,v) is a frame, then for every z € W the function Ap.v(z, ) behaves like
an ordinary classical valuation with respect to all the connectives except D. The treatment of D
is indeed what distinguishes between classical logic and intuitionistic logic. This observation leads

to the following nondeterministic generalization of Kripke frames for intuitionistic logic:

Definition 4.1 Let D be one of the connectives of a propositional language £, and let M =
(T,D,0O) be an Nmatrix for £ — {D}. Denote by F be the set of formulas of £. An M-frame for
L is a triple W = (W, <,v) such that:

1. (W, <) is a nonempty partially ordered set

2. v: W x F — T satisfies the following conditions:

SIn the literature by a “frame” one usually means just the pair (W, <). Here we have found it convenient to use
this technical term differently, so that the valuation v is an integral part of it.

"For the language of L.J it suffices to demand this condition for atomic formulas only; then one can prove that
every formula has this property. This is not the case for the nondeterministic generalizations we present below.
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e The persistence condition: if y > 2 and v(z, @) € D then v(y, ) € D
e For every z € W, Ap.v(z, ¢) is a legal M-valuation.

e v(z,0 D) € Diff v(y,) € D for every y > x such that v(y, ¢) € D

We say that a formula ¢ is true in a world z € W of a frame W if v(x,¢) € D. A sequent I' = A
is walid in W if for every x € W there is either ¢ € I' such that ¢ is not true in z, or ¢ € A such

that 1) is true in z.

Note: Obviously, if M; is a refinement of Ms, then any M-frame is also an Ms-frame, and every

sequent valid in My is also valid in M.

Definition 4.2 1. Let M = (7,D,O) be an Nmatrix for a language which includes the lan-

guage of LJ*. We say that M is suitable for LJ™" if the following conditions are satisfied:

e facDandbe D thenaNnbCD

IfagDthenaAbC T —D

e Ifb¢DthenaANbC T —D

e Ifae DthenaVvVbCD
e IfbeDthenaVvbCD

e IfagDandbg Dthenavbl T —D
e fbeDthenaDbCD
e facDandbgDthenaDbC T —D

2. Let M = (T,D, ) be an Nmatrix for a language which includes the language of LJ. We say
that M is suitable for LJ if it is suitable for LJ*, and the following condition is satisfied:

o ffCT-D

Note: An Nmatrix which is suitable for LJT (L.J) is also suitable for LK+ (LK) iff it satisfies

just one more condition: If @ € D then a D b C D.

Theorem 4.3 Assume W is an M-frame, where M is suitable for LJT (LJ). Then any sequent
provable in LJV (L.J) is valid in W.
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Proof: Again, we leave the easy proof to the reader. [ |

From now on we shall concentrate on the systems LJ*(S) (S C NR). Like in the classical case

(see Subsection 3.4), obtaining similar results for L.J(S) and L.J/(S) causes no further difficulties.

Definition 4.4 Let M;p be the following Nmatrix (7, D, O) for the language {—, A, V, D}:
o T = {taTafal}

e D={t,T}

D beD
e aD>b=S T-D b&D,aeD
T a,beT -D

Vh— D a€DorbeD
@ | T —D otherwise

Ab— D a,beD
@ | T —D otherwise

Note: The only difference between M;p and Mp is that in M;p we have ¢ D b = T in case

a,b € T — D, while in Mp a Db =D in this case.

Proposition 4.5 Let M be a refinement of Mrp. Then LJT is sound for every M-frame

Proof: This follows from Theorem 4.3. [ |

Proposition 4.6 Let M be a refinement of Mip. Then the persistence condition in the definition

of an M-frame (see Definition 4.1) can be replaced by the following monotonicity condition:
o If x <y then v(z,¢) <k v(y,p)

Proof: Assume the persistence condition, and let z < y. We show that v(z,¢) <x v(y, ). There

are 4 cases to consider:
v(z,p) =L1: This case is trivial.
v(x, ) = t: In this case v(y, ¢) € {t, T} by persistence, whence v(z, p) <g v(y, ).
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v(z,p) = f: In this case v(x,~¢) € D, whence v(y, ~¢) € D by persistence. This is possible only

if v(y, @) € {f, T), and so again v(z, ¢) <; v(y, p).

v(x,p) = T: In this case both v(z, @) and v(x, —p) are in D. Hence both v(y, ¢) and v(y, ) are
in D by persistence. This is possible only if v(y, ) = T as well.

The converse — that the monotonicity condition implies the persistence condition — is trivial. m

Proposition 4.6 implies that if M is a refinement of M;p then an M-frame can be defined as

a triple W = (W, <,v) such that:
1. (W, <) is a nonempty partially ordered set.
2. v: W x F — T satisfies:
e For every ¢ the function A\z.v(z, @) is <x- monotonic.

e For every z € W, Ap.v(z, ¢) is a legal M-valuation.

e v(z,p D) € Diff v(y,) € D for every y > z such that v(y, ¢) € D.

4.2 Effects of the Negation Rules

We now turn to the effects of the various negation rules in the context of our semantics for LJT and
its extensions. We shall see that again each of them has a corresponding a condition leading to a
certain refinement of M;p on which the corresponding frames are based. With only two exceptions,
the conditions are identical to those we have in the classical case (and are again independent of

each other, and never contradict each other).

Definition 4.7 For r € NR, define C!r as follows:
e Cl(=D=): fz gDthenz Dy C{t, L}
o Cl(=D=): Ifye{t, L} thenz Dy C {t, 1}
e Clr = Cr otherwise.

Definition 4.8
1. For S C NR, let C1(S) ={C'r |r e S}.

2. For S C NR, let M;p[S] be the weakest refinement of M;p in which the conditions in C!(S)

are satisfied.
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Theorem 4.9 If S C NR then LJT(S) is sound and strongly complete for Mpy[S]-frames:
T Fry+s) ¥ iff for every Mp([S]-frame W = (W, <,v), and every x € W, if v(z,p) € D for
every ¢ € T then also v(x,) € D.

Proof: The easy proof of soundness is left to the reader.

To prove completeness of L.J1(S), define (as usual) a prime theory of LJT(S) to be a set of
sentences T closed under 7 ;+(g) and such that if ¢ V¢ € T then either ¢ € T or ¢ € T. Since
HLJ*(S) is an extension by axioms of LJ*(S), it has the property that if T /5 +(g) % then
there is a prime extension T* of T such that ¢ ¢ T*. Define a canonical frame W = (W, <,v) as

follows:

e W is the set of prime theories of LJT(S5).

o <=C
1L €T, p¢T

_ f ¢¢Ta_‘¢€T

° 1)(T,1,b)— b e, )T
T peT,xpeT

Obviously, v(T, ) € D iff¢p € T. With this fact, the proof that v satisfies the persistence condition,
as well as the basic conditions concerning the positive connectives, is like in the standard proofs of
the completeness of HL.J' (using its canonical model). The definition of v immediately implies that
v satisfies the basic conditions concerning —. Finally, the proof that for every T € W, Ap.v(T, p)
respects the constraints imposed by the conditions in C7(S) is like in the proof of the completeness
of HLK*(S) (Theorem 3.11). Hence W is an M p;[S]-frame.

Assume now that T Vg s+(s) %o. Then there exists T* € W such that T C T* and v ¢ T™.
Hence v(T*, ) € D for every ¢ € T, while v(T*, 1) ¢ D. [

4.3 What Combinations of Rules are Admissible?

Proposition 4.9 does not have much value in itself. Indeed, it does not guarantee that LJT(S) is
conservative over LJT, and neither does it provide a decision procedure for LJ"(S). The reason
is that a valuation is an infinite object. Now, to provide a countermodel v for a formula 1), all one
needs to do in the case of valuations in finite matrices or Nmatrices is to give the truth-values that
v assigns to subformulas of ¥. However, here it is not clear that such a partial description would

suffice. Indeed, in the proof of the next theorem we give an example in which this is not the case.

23



Semantics based on the idea of valuations might be called effective if such a phenomenon does not

occur. Below we define this intuitive idea in exact terms:

Definition 4.10 Let M = M;p[S] for some S C NR. An M-semiframe is a triple W = (W, <, v')
such that:

1. (W, <) is a nonempty partially ordered set.

2. v/ : W x F' — T is a partial valuation such that:

e F'is a subset of F which is closed under subformulas.
e ¢’ satisfies the monotonicity condition: if y > x and ¢ € F', then v'(z, ) <x v'(y, ).
e o' respects M: Ifo(1hy,...,9,) € F', thenv'(z,0(¢1,...,%n)) € (W' (z,41), ..., 0" (x,9n)).

o If o D2 € F' then v'(z,o D ) € D iff v'(y,9) € D for every y > x such that
v'(y, @) € D.

Definition 4.11 M;p[S] is called effective if for any M;p[S]- semiframe (W, < v') there exists
an Mp[S]-frame (W, <, v) such that v extends v'.

The two crucial problems we are going to solve now are:

1. For which S is L.J*(S) conservative over L.J*?

2. For which S is M;p[S] effective?
We start with the second problem.

Theorem 4.12 Let S C NR. Then M;p[S] is effective iff either {(= —),(= D=} € S or
{(=-)(==)}cs.

Proof: If {(= =), (- =)} C S then neither L nor T are available, and so the monotonicity condition
for v means that v(z, ¢) = v(y, ¢) if z <y, and that for every z, Ap.v(z, ¢) is a classical valuation
(in practical terms, this means that W can be taken to be a singleton, and the semantics reduces
to the classical one). Hence the theorem is trivial in this case (and follows from lemma 3.14).

To show that if {(= —), (= =)} € S then the condition that {(= =), (- D=1} € S is necessary
for effectiveness, take for example W = {a, b} with a < b, and define v'(a,p) = v'(a,q) = v'(b,q) =
fy v'(b,p) = T. Then v' respects the monotonicity condition, but if {(= =), (= D=)1} C S then
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there is no extension v of v’ such that (W, < v) is an Myp[S]-frame: v(a,p D ¢) should on the one
hand be f according to the definition of an Mjp-frame (because the presence of (= —) implies
that L is not available), while according to C'(= D=); it should be # (again, because L is not

available).

Assume next that neither {(= =),(= =)} C S nor {(= —),(- D=)1} € S. We show that
M p[S] is effective. So let (W, < v') (where o' : W x F' — T) be a semiframe. We extend it to a

frame (W, <,v) by defining v inductively as follows:
o v(z,9) =0 (x,9) ifp € F
e v(z,p) =t if pis atomic, p ¢ F'
o v(z, ) = —Fourv(z, ) if ¢ F', where —royr is FOUR’s negation (see Definition 2.4)
o v(z,P1 V P2) = sup(v(@, 1), v(z,2)) if o1 Vpo & F'
o v(z,P1 Apo) = infi(v(z, 1), v(z,2)) i 1 Apo & F'
o If 91 D 1)y & F' then there are two cases:

— If (= —) € S then

v(x,1)9) if v(z,91) € D

'U(:Ij,'[/}] D ¢2) = 1 ifv($7¢]) ¢ Da Eiy > x-v(yﬂﬁ]) €D /\,U(ya'l,bQ) ¢ D
t otherwise

~If (= -)eSbut (-=)¢S8 and (- D=); € S then

t if v(z,1he) =1

o(z, 1 Dapo) =< f if 3y > z.u(y,¥1) € DAv(y,v2) € D
T otherwise

(note that if (= —) ¢ S then L is available, while if (= =) € S then (= =) ¢ S, and so T is

available. These facts justify their use in the definition of v(x, 11 D 1))

We prove now by induction on the complexity of ¢ that v(z,) is well-defined for every z € W,
and that Az.v(z,1)) is monotonic. This follows from our assumption on v’ if ¢ € F', and is trivial
if 4 is atomic. The cases where 1) is of one of the forms —)1, ¥1 V 19, or 11 A 1)y follow easily from
the induction hypothesis concerning 11,12, and the monotonicity of the operations =,V and A in

FOUR. Tt remains to prove the case where 1 = 1)1 D )9, and ¢ ¢ F'. Now, a problem with the
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coherence of the definition of v(z,%) may occur in this case only if (= =) € S, and v(z,1,) = t.
However, by induction hypothesis for 1, if v(z,19) = ¢ then v(z,1)9) € D for all z > x, and so only
the first clause in the definition of v(z, 11 D 1)9) is applicable, implying that v(z,)) is well-defined
in this case too. We show now that under the same assumptions concerning 9, v(z, ) < v(y, )

if y > x. There are two cases to consider:

e Assume that (= =) ¢ S. If v(z,91) € D then by the induction hypothesis also v(y, 1) € D
and v(z, 1) <g v(y,12). Hence in this case v(x,v9) = v(z,12) <p v(y,¥2) = v(y,v). If
v(z,¢1) € D and v(z,v) =L then trivially v(x,1) <k v(y,+). Finally, if v(x,11) ¢ D and
v(z,1) =t then the definition of v and the fact that y > x imply that v(y,+) € D, and so

again ’U(.’E,’l,b) <k ,U(ya'l:b)

e Assume that (= =) € S. Then v'(z,p) #1 for every z € W and every ¢ € F’', and so from
the definition of v it follows that v(z, @) #L for every z € W and every p. Hence v(z,¢) & D
iff v(z,¢) = f, and v(z,p) # ¢t iff v(z,¢) € {f, T}. Therefore, the induction hypothesis
implies that if v(z,1)9) # t for some z then v(w,1)9) # t for every w > z. Hence if v(z,)) = f
then v(y,v) # t, and so v(z,9) <p v(y,®). If v(z,9) = t then v(x,13) = ¢, and so by
the induction hypothesis v(y,12) € D, and also v(z,19) € D for every z > y. Thus by the
definition of v v(y, 1) € D in this case, and so v(z, 1) =t <j v(y,1). Finally, assume that
v(xz,1) = T. Therefore v(x,19) # t and Vz > x.v(z,91) = f Vv(z,19) € D. Since y > x, the
first fact implies that also v(y,12) # ¢, whence v(y, 1) # t. The second fact implies that also
Vz > yw(z,y1) = fVo(z,e) € D, whence v(y,1) # f. In consequence v(y,1) = T, and so

’U(.’E, 1/}) <k ,U(ya'l:b)

The monotonicity of v, together with its definition and our assumption about v, easily imply that
v(z, 1 Do) & Diff Jy > z.v(y, 1) € DAv(y, 1) € D, and that W = (W, <, v) is an Mp-frame.
The assumption about v’ and the definition of v also easily imply that every condition in C'(S)
concerning the operations =, V, A is satisfied in YW. We show that this is the case also with respect

to the other conditions:

e Assume that (= —) € S. Then v'(z,p) #1 for every z € W and every ¢ € F'. Hence by

induction on the structure of ¢ we have v(z,¢) #L for every z € W and every ¢.

e Assume that (= =) € S. Then v'(z,p) # T for every z € W and every ¢ € F'. Hence by

induction on the structure of ¢ we have v(z,¢) # T for every z € W and every ¢.
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e Assume that (= — D); € S. Then (= —) ¢ S. Hence our assumption concerning v, and the

definition of v trivially implies in this case that if v(11) € D then v(z, 91 D 19) € {t, L}.

e Assume that (= — D)9 € S. We show that if v(¢9) € {t, L} then v(z,91 D 99) € {¢, L}.
This is trivial from our assumption concerning v’ if 9y D 19 € F', and from the definition of

v(z, 1 D hg) if 1 D 1po & F' (note that if (= =) € S then the condition just means that
v(z, 1 D po) =t if v(hg) = 1t).

e Assume that (- D=) € S. We show that if v(z,¢1) € D and v(z,¢2) € {f, T} then
v(z, 91 D 1g) = v(x,12). This is obvious if 1 D ipy € FLorif (= ) ¢ S. If (=) € S
and 11 D 19 ¢ F' then the definition of v implies first of all that v(z, v D o) € {f, T} if
v(z, 1) € {f, T}. If in addition v(z, 1) € D then this fact, together with the definition of v

and its monotonicity, implies that indeed v(z, 11 D 19) = v(z, 19).

It follows that W is an Mp[S]-frame as required. ]

Notes:

1. The definition of a semiframe includes the monotonicity condition rather than the persistence
condition. This is important, since Theorem 4.12 is not true if the monotonicity condition
is replaced by the persistence condition. Thus if we take W = {a,b} with a < b, and
define v'(a,p) = f,v'(b,p) = t then the persistence condition is met, but there is no way
to extend v’ to an appropriate v, because we should have v(a, —p) € D while v(b, —p) & D,
contradicting the persistence condition. The two conditions are equivalent for full valuations

(by Proposition 4.6), but not for partial ones!

2. The problem with the combination {(= —),(— D=)1} is that the condition imposed by

(= D=); is not consistent with the condition of k-monotonicity in case L is not available.

We can at last turn to the problem: for which S is LJ*(S) conservative over L.J*?
Definition 4.13 SN = NR — {(= -)} SP=NR  {(==), (= >=)}.

Theorem 4.14 Assume that S C NR. Then LJT(S) is a conservative extension of LJT iff neither
{(="),==)} CS nor{(= ), (=D=)1} CS (ie., iff either ST SN or SC SP).
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Proof: The two conditions are necessary, since /7, 7+ p V (p D q), but for every ¢, 1:
eV =p, D (e DY) i+ @ V(e DY)

(e DP)V (DY), ~(¢DY) Do+ oV (pDY)

To show that the two conditions together are also sufficient, it suffices to show that both LJ*(SN)
and L.J*(SP) are conservative over LJ'. So let ) be a sentence in the language of L.J* which is
not provable in L.J*. We show that 1) is provable in neither LJ ™ (SN) nor L.J*(SP). Since t/ j+ v,
there is an ordinary two-valued Kripke frame (W, <, u) (where u : W x F — {t, f}) in which 9 is

not valid (i.e. u(zg,?) = f for some xyg € W). Now we define the corresponding semiframes for
LJT(SN) and LJ*(SP). Let F' be the set of formulas in the language of L.JT.
LJT(SN): Define vy on W x F' by:

7)N(ma(70) - { 1 if 7l‘('II’a’(‘O) - f

It is straightforward to check that (W, <,v'y) is an M;p[SN]-semiframe (note that any con-

dition concerning — is vacuously satisfied, since there is no sentence of the form —p in F').

LJ*(SP): Define v}, on W x F' by:

, (T if u(z,p) =1t
vp (T, ) = { f if u(z,p) = f

Again, it is straightforward to check that (W, <,v,) is an M;p[SP]-semiframe.

By Theorem 4.12, (W, <,v!) and (W, <,v),) can respectively be extended to an M;p[SN]-frame
(W,<,vy) and an M;p[SP]-frame (W, <,vp). Since vy(zg,v) = v'y(z0,%) =L, 9 is not valid in
(W, <,v'\), and so it is not provable in LJ*(SN). Similarly, vp(zo, %) = v/ (20,%) = f. Hence 1

is not valid in (W, <,v',), and so is not provable in LJ*(SP). [ |

Corollary 4.15 Suppose S; C NR, and {(= ), (= =)} € Si. Then:
1. If also {(= =), (= D=)1} € Sy then LJ*(S1) # LK+ (S)).
2. i {(= =), (= 2=} C S (or {(= —), (= =)} C S1) then LT (S1) = LK (51).
3.1t S, C NR, S # S5 then LJ*(S1) % LK*(Sy).

4. If SQ g NR, Sl 75 SQ then LJ+(51) 7'5 LJ+(SQ)
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Proof:
1. Immediate from Theorem 4.14

2. This follows from the fact (shown in the proof of Theorem 4.14) that if {(= =), (- D=)1} C S

then ¢V (¢ D 1) is provable in LJT(S). Indeed, it is well-known that by adding ¢ V (¢ D )
to LJ* we get LK.

3. If {(= —), (= =)} C Sy then LJ*(S9) = LK*(S;) = classical logic, while LK*(S;) (and
so also LJT(S7)) is strictly weaker than classical logic (by Theorem 3.16). Hence the claim
is trivial in this case, and we may assume that also {(= —),(—= =)} € S2. Now if {(=
=), (= D=)1} € S then the claim is again immediate from Theorem 4.14. Otherwise it

follows from part 2 of this Theorem, and (the proof of) Theorem 3.16.

4. Again, we may assume that also {(= —),(— =)} € S2. Hence it suffices to show that if
re NR,SCNR,r ¢S, and {(= —),(= =)} € S, Then A(r) is not provable in LJ*(S). In
the proof of Theorem 3.16 this was shown even for LK (S) in the case where r # (= D=);
or (- =) ¢ S. For the remaining cases, it suffices to show that —(p D ¢) D p is not a
theorem of NR — {(= —), (= D=)1}. For this, we construct a countermodel as follows. Let
F' ={p,q,p D q,~(p D q),~(p D q) Dp}, W=1{0,1}, and let < be the usual partial order

on W. Define a semivaluation v’ on W x F' by:

v'(0,p) =L 0'(0,q) =f v (0,pDq)=f t
o' (Lp) =t W' (l,q)=f o' (Lpdg =f v (1,-(pDq) =t '(1,-(pDq) Dp) =

It is straightforward to show that (W, <,v') is an M;p[NR — {(= —), (= D=)1}|-semiframe,
and obviously —=(p D ¢) D p is not valid in this semiframe. Hence =(p D ¢) D p is not a
theorem of NR — {(= —), (= D=)1} by Theorems 4.9 and 4.12.

Consequently, there are 5-2'0 new different logics of the form L.J*(S), where S C NR, all of them
conservative over LJT (while the others belong to the family {LK*(S) | S C NR}). |

Discussion: It follows from Theorem 4.14 that LJT(SN) and LJ'(SP) are the two maximal
logics in the family {LJ*(S) | S C NR} which are conservative extensions of constructive positive
logic. Now the first is the well-known system N of Nelson ([AN84]) and Kutschera ([vK69]). The
system LJT(SP), in contrast, has not been investigated before (to the best of our knowledge).
However, it is a very attractive system for constructive negation. First: it is paraconsistent (i.e.: a

single contradiction does not imply everything in it). Second: LEM is valid in it. In fact, LJ*(SP)
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is obtained from N by replacing two of its axioms by LEM. Now, while ELM is very intuitive,
the two axioms it replaces are not. Indeed, one of them, —¢ D (¢ D %), intuitively means that if
¢ is false then it implies everything. The second, =(p D 1) D ¢, intuitively means that if there
is something that ¢ does not imply, then ¢ should be true (i.e.: it cannot be false). Obviously,
these two principles are very similar to each other (and are both counterintuitive). It is no wonder
that from a constructive point of view, each of them is inconsistent with LEM, and is rejected in
LJT(SP). Tt is worth noting that in contrast, and despite the paraconsistent nature of LJT(SP),

the basic (and very intuitive) law of contradiction —(¢ A —¢) is valid in it.

4.4 Decidability of the Systems

As noted above, Theorem 4.9 alone does not guarantee the decidability of the logics it deals with,
since the countermodel it provides for unprovable sentences may be infinite (in fact, its proof
constructs only an infinite countermodel). Still, it is possible to derive decidability results from it
by using filtration techniques and Theorem 4.12. We prefer instead to present a more direct proof,
which involves a weak form of the cut-elimination theorem for our logics.

Now it was shown in [Avr03] that in general the cut-elimination theorem does not hold for
our Gentzen-type systems. Moreover: examples have been given there of a subset S of NR and a
sequent which is provable in L.J T (S), but any proof of it there should contain a non-analytic cut (i.e.
a cut in which the cut-formula is not a subformula of the sequent being proved). This is perhaps
not surprising, since our logical rules themselves do not have the strict subformula property: some
of them involve negations of subformulas of their conclusion which are not subformulas themselves.

Therefore, it is reasonable to expect the same from cuts. This leads to the following theorem:

Theorem 4.16 Assume that S C NR, and {(= —),(= D=)1} € S. Then for every sequent s in
the language of LJ™ there is either a finite Mp[S]-frame in which s is not valid, or a proof in

LJT(S) in which every cut is either on a subformula of s or on a negation of such a subformula.

Proof: Assume that s is a sequent which has no such proof in LJ*(S). By Theorem 4.12, it suffices
to construct a finite M p;[S]-semiframe in which s is not valid. Let F' be the set of subformulas of
s, and let F" = F'U{= | ¢ € F'}. Call a proof in LJT(S) an s-proof if every cut in it is on some
formula in F”. Let W be the set of all sequents which do not have s-proofs in LJ'(S), and the
union of their two sides is F”. W is of course finite. Obviously, if I' = A does not have an s-proof
ina LJ'(S), and ¢ € F”, then either ¢, = A or I' = A, 1) does not have an s-proof in LJ'(S).

It follows that any sequent which consists of elements of F” and has no s-proof in LJT(S) can be
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extended to an element of W. In particular, s itself is a subsequent of some sequent I'y = Ay € W.
Define now a partial order < on W as follows: 'y = Ay <T'y = Ay if I'y C T’y (iff Ay C Ay, since
I'MUA) =Ty U Ay =F"). Finally, define o' : W x F' — T by:

L YyeAypeA

f el ¢el

t Ypel,-peA
T pel,yel

(I’ = Ay) =

It is not difficult to see that v is well-defined (note that if ' = A € W and ¢ € F' then {9, -9} C

'UA), and that (W, <,v) is an M pr[S]-semiframe. We prove here the conditions concerning O:

e Suppose ¢ Dp € F'yand v(I' = A, 9o D) € D. Then p Dp €. Let ' = A <TI" = A,
and suppose v(I" = A’ ) € D. Then ¢ € T'. Since also ¢ D ¢ € T’ (as T C T), it is
not possible that 9 € A’ (because otherwise I" = A’ would have a cut-free proof, and so an

s-proof). Hence ¢ € I, and so v(I" = A’,¢) € D as well.

e Suppose ¢ D € F', and let w =T = A. Assume that v(w,p D 1)) ¢ D. Then ¢ D 1) € A.
Thus I' = ¢ D 9 does not have an s-proof, whence I', o = 1 does not have an s-proof
either. Since T' U {p,9y} C F”, by this virtue there is w' = I = A’ € W such that
Fu{e} CTI' ¢ € A'. Hence w < w', and v(w', p) € D, while v(w',9) ¢ D.

e Suppose (= — D) € S. We prove that C(= — D) is satisfied. Thus assume that ¢ D ¢ € F',
and that v(I' = A,p) € D, v(I' = A,¢) € {f,T}. Then ¢ € I' and —¢p € I'. Since
(= —=D2) €S, =(¢ D) cannot be in A (otherwise I' == A would have a cut-free proof). As
—(p D) € F' weget =(¢ D) €T, and so v(I' = A, D ) € {f, T}. Given the global

conditions concerning v and D proved above, this implies C(= — D).

e Suppose (- D=); € S. We prove that /(- D=); is satisfied. Thus assume that ¢ D 9 € F’,
and that v(I' = A, ¢) € D. Then ¢ € A (by the definition of v). Since (= D=-); € S, this
yields =(p D ) ¢ T', whence v(I' = A, ¢ D) € {¢, L}.

e We prove similarly that if (= D=)s € S then C'(= D=), is satisfied.

Now by definition of v and T'g = Ay, v refutes s in the world T'y = Ay of W. Hence (W, <,v) is a

finite countermodel of s as required. [ |

Corollary 4.17 LJ*(S) is decidable for every S C NR.
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Proof: If {(= —),(= D=)1} C S then LJ*(S) = LK™*(S) (Corollary 4.15), and so LJ*(S) is
decidable in this case by Corollary 3.15. Otherwise Theorem 4.16 and its proof imply that in order
to determine whether a given sequent s is provable in LJ*(S), one has to check at most 22" finite
M p[S]-semiframes, where n is the cardinality of F’, the set of the subformulas of s, and the

relevant semiframes are based on F'. []
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