
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
9
2
9
7

|

d
o
w
n
l
o
a
d
e
d
:

1
9
.
4
.
2
0
2
4

Kai Brünnler Cut Elimination inside a Deep

Inference System for Classical

Predicate Logic

Abstract. Deep inference is a natural generalisation of the one-sided sequent calculus

where rules are allowed to apply deeply inside formulas, much like rewrite rules in term

rewriting. This freedom in applying inference rules allows to express logical systems that

are difficult or impossible to express in the cut-free sequent calculus and it also allows

for a more fine-grained analysis of derivations than the sequent calculus. However, the

same freedom also makes it harder to carry out this analysis, in particular it is harder to

design cut elimination procedures. In this paper we see a cut elimination procedure for a

deep inference system for classical predicate logic. As a consequence we derive Herbrand’s

Theorem, which we express as a factorisation of derivations.

Keywords: cut elimination, deep inference, first-order predicate logic

1. Introduction

This work is part of a broader research effort which aims to develop and
exploit a structural proof theory that is richer than the one provided by
traditional formalisms like the sequent calculus or natural deduction. It
is based on the formalism named calculus of structures, which is due to
Guglielmi [8] and has the distinguishing feature of deep inference, meaning
that inference rules apply deeply inside formulas. Deep inference systems
so far have been studied for linear logic [14], non-commutative variants of
linear logic [11, 7], classical logic [5] and several modal logics [12].

The need for a richer proof theory comes mainly from computer science.
It is well-known that the logical systems requested by computer scientists
stretch the limits of expressivity of the traditional proof theoretical for-
malisms. The absence of cut-free sequent systems for some modal logics
like S5, for many temporal and also for intermediate logics bears witness
to that. Numerous extensions of the sequent calculus have been proposed
in order to cope with some of these problems, such as the display calculus
[3], hypersequent systems [1] or labelled deduction [2], just to name three
approaches. The sequent calculus is also challenged by a very simple logical

Special Issue “Cut-elimination in Classical and Nonclassical Logic”
Edited by Alexander Leitsch

Studia Logica (2006) 82: 51–71
c©Springer 2006DOI: 10.1007/s11225-006-6605-4

52 K. Brünnler

system wich is called system BV [8] and which is of relevance to computer
science because its connectives resemble those of a process algebra. There
is evidence that it can not be expressed in an inference system that does
not employ deep inference [16] and thus the calculus of structures had to be
developed in order to express this logic. One of the aims of the calculus of
structures, namely expressing more logics than the cut-free sequent calcu-
lus, is shared with the extensions mentioned above. However, its approach
differs significantly from the approaches of these other formalisms. Rather
than enriching the set of structural connectives with respect to the sequent
calculus, the calculus of structures gets rid of them: by simply using the
logical connectives instead.

Deep inference systems for classical predicate logic were introduced in [5].
Cut admissibility for these systems is proved externally, namely by trans-
lating a proof into the sequent calculus, eliminating the cut in the sequent
calculus, and translating back the cut-free proof. So the question arises
whether there is a direct procedure for eliminating the cut, a procedure that
does not make the detour via the sequent calculus. For the propositional
fragment, there is such a direct cut elimination procedure, cf. [4]. However,
in contrast to the situation in the sequent calculus this procedure does not
trivially scale to predicate logic. Deep inference allows the cut rule to apply
inside the scope of an existential quantifier, which turns out to be problem-
atic for cut elimination. In the sequent calculus this situation does not occur,
which is the reason why first-order quantifiers do not make much of a differ-
ence with respect to the difficulty of proving cut admissibility. However, in
deep inference they constitute a problem, and a solution to this problem is
the main contribution of this paper: a direct cut-elimination procedure for
a deep inference system for classical predicate logic.

Since the sequent calculus is already very successful in the proof-theoretic
analysis of classical predicate logic a fair question is: why study it in a new
formalism? One motivation is that, in order to use deep inference to study
extensions of classical logic that are not expressible in the cut-free sequent
calculus, of course one should first understand the proof theory of deep
inference systems for classical logic. But the main motivation is that the
structural proof theory of deep inference systems for classical logic already
differs significantly from that of the sequent calculus and thus deserves study
as a new perspective on the important concept of cut elimination, or, more
generally, on the normalisation of proofs.

Some desirable features of deep inference systems for classical logic are
that they allow for shorter cut-free proofs than the sequent calculus [9], that
they allow to faithfully embed resolution derivations as cut-free proofs [10],

Cut Elimination inside a Deep Inference System. . . 53

that they allow to observe the symmetry between cut and identity axiom
and that they allow to decompose inference rules like cut and contraction
into more primitive rules [8, 5]. A less desirable feature is that proving
cut elimination becomes a significant challenge due to the loss of the main
connective, which plays a crucial role in the sequent calculus. And that is
the problem that I address in the present work.

The plan of the paper is as follows: I first introduce a deep inference
system for predicate logic, then give a cut elimination procedure for that
system and then derive Herbrand’s Theorem as a result.

2. Basic Definitions

Definition 2.1. Variables are denoted by x and y and terms are denoted
by τ , possibly subscripted. A finite sequence of terms such as τ1, . . . , τn is
denoted by
τ . Let p be a predicate symbol of arity n. Expressions of the
form p(
τ) and their negations p(
τ) are atoms. Atoms are denoted by a, b, c

and so on. Formulas are generated by

S ::= f | t | a | [S, S] | (S, S) | ∃xS | ∀xS ,

where f and t are the units false and true, [S1, S2] is a disjunction and
(S1, S2) is a conjunction. Note that units are not atoms. Formulas are
denoted by S, P , Q, R, T , U and V . A formula context, denoted by S{ },
is a formula in the language extended by the symbol { }, the empty context
or hole, with exactly one occurrence of the hole. S{R} denotes the formula
obtained by filling the hole in S{ } with R. We drop the curly braces
when they are redundant: for example, S [R, T] is short for S{[R, T]}. A
propositional context is a context in which the hole is not in the scope of a
quantifier.

The sequent calculus has two types of objects to deduce over, namely
formulas and sequents. The inference systems that we will see will have just
one type of objects, namely formulas. Since formulas have to play the role
of sequents it turns out that the chosen outfix notation for connectives is
more convenient than the standard infix notation.

Definition 2.2. We define S̄, the negation of the formula S, as follows:

f = t [R, T] = (R̄, T̄) ∃xR = ∀xR̄

t = f (R, T) = [R̄, T̄] ∀xR = ∃xR̄
p(
τ) = p(
τ) .

54 K. Brünnler

Definition 2.3. An inference rule is written

S{R}
ρ

S{T}
,

where ρ is the name of the rule, S{R} is its premise and S{T} is its conclu-
sion. R and T are formulas that may contain schematic formulas, schematic
atoms and schematic contexts. An instance of an inference rule is obtained
by replacing all schematic formulas, schematic atoms and schematic contexts
by formulas, atoms and contexts, respectively. In an instance of an inference
rule the formula taking the place of R is its redex, the formula taking the
place of T is its contractum and the context taking the place of S{ } is its
context. A (deductive) system S is a set of inference rules.

An inference rule is best thought of as a rewrite rule known from term
rewriting. For example, the rule ρ from the previous definition seen top-down
corresponds to a rewrite rule R → T .

Since formulas will have to play the role of sequents it will be convenient
to equip them with an equivalence that is usually implicit in the notion of
sequent:

Definition 2.4. The syntactic equivalence relation is the smallest congru-
ence relation on formulas induced by commutativity and associativity of
conjunction and disjunction, the capture-avoiding renaming of bound vari-
ables as well as the following equations:

[R, f] = R [t, t] = t ∃xf = f = ∀xf

(R, t) = R (f, f) = f ∀xt = t = ∃xt .

Definition 2.5. A derivation Δ in a certain deductive system is either a
pair of syntactically equivalent formulas or a finite nonempty sequence of
instances of inference rules in the system, where inference rules are applied
modulo the syntactic equivalence. They are written respectively as follows:

R
=

T
and

R
π

U
π′

...
ρ′

V
ρ

T

.

The topmost formula in a derivation is called the premise of the derivation,
and the formula at the bottom is called its conclusion. The length of the

Cut Elimination inside a Deep Inference System. . . 55

derivation is the number of instances of inference rules. A proof is a deriva-
tion whose premise is the unit t. A derivation Δ from R to T in S and a
proof Π of T in S are respectively denoted by

R

Δ
‖
‖ S

T

and

−
Π
‖
‖ S

T
.

Notation 2.6. We use [R, T, U] to abbreviate [R, [T, U]] and [[R, T], U],
and likewise for an arbitrary number of formulas in a disjunction. We do the
same for conjunction. Given an inference rule ρ and a natural number n, ρn

denotes n instances of ρ and ρ∗ denotes n instances of ρ for some n ≥ 0.

Given two derivations such that the conclusion of the first is the premise
of the second, we can compose these two derivations vertically in the obvious
way. In addition we will also compose derivations horizontally, as follows.

Definition 2.7. Given a derivation Δ and a context S{ }, the derivation
S{Δ} is obtained by replacing each formula U in Δ by S{U}. Given two
derivations, Δ1 from R1 to T1 and Δ2 from R2 to T2, we define (Δ1, Δ2) as
the vertical composition of (R1, Δ2) and (Δ1, T2), and likewise for [Δ1, Δ2].

Definition 2.8. A rule ρ is derivable for a system S if for every instance of
ρ with premise R and conclusion T there is a derivation from R to T in S.
A rule ρ is admissible for a system S if for every instance of ρ with premise
R and conclusion T the existence of a proof of R in S implies the existence
of a proof of T in S. Two systems S and S ′ are strongly equivalent if for
every derivation from R to T in S there is a derivation from R to T in S ′,
and vice versa. Two systems S and S ′ are (weakly) equivalent if for every
proof of S in S there is a proof of S in S ′, and vice versa.

Definition 2.9. Our inference system for classical predicate logic is named
system KSgr, and it is shown in Figure 1. The names of the rules from
upper-left to lower-right are identity, weakening, contraction, switch, retract
and instantiate. The substitution in n↓ is capture-avoiding (in the standard
sense, meaning that variables in τ may be captured by quantifiers in S{ }).
The context P{ } in r↓ is a propositional context in which x does not occur.
The propositional fragment of the system, namely the system without the
retract and instantiate rules, is named system KSg. The letter K in KSgr is
for klassisch, the letter S is for structures as in calculus of structures, the
letter g is for general, meaning that all rules are defined for general formulas,
and not restricted to atoms, and the letter r says that it contains a retract

56 K. Brünnler

rule. To maintain the same naming conventions with previous papers, the
system name should also contain a q for quantifiers, but since the presence
of the retract rule only makes sense in the presence of quantifiers, we drop
the letter q.

Definition 2.10. The dual of an inference rule is obtained by exchanging
premise and conclusion and replacing each connective by its De Morgan
dual. A system of inference rules is called symmetric if for each of its rules
it also contains the dual rule. The dual of a derivation is obtained by turning
it upside-down, replacing each atom by its negation and by replacing each
connective by its de Morgan dual and each rule name by the name of its
dual.

Example 2.11. The identity rule and its dual:

S{t}
i↓

S [R, R̄]

S(R, R̄)
i↑

S{f}
.

The duality between the two is well-known under the name contrapositive.

System SKSgr is the symmetric closure of KSgr, i.e. it contains each rule
from KSgr and the dual of each rule in KSgr. The collection of rules with an
up-arrow are called up-fragment, their names are the names of their duals
suffixed by “-up”. The rule i↑ is also called cut. Note that a symmetric
system that contains the identity rule by definition contains the cut rule as
well, so in general we can read “symmetric” as “contains cut”. The notion
of cut admissibility in deep inference is the admissibility of up-rules: in our
case the admissibility of the rules i↑, w↑, c↑, r↑ and n↑ for system KSgr.

S{t}
i↓

S [R, R̄]

S{f}
w↓

S{R}

S [R, R]
c↓

S{R}

S([R, T], U)
s

S [(R, U), T]

S{∀xP{R}}
r↓

S{P{∀xR}}

S{R[x/t]}
n↓

S{∃xR}

Figure 1. System KSgr

In the sequent calculus, the identity axiom usually can be replaced by
its atomic form without a change of derivability. The same is true for the

Cut Elimination inside a Deep Inference System. . . 57

identity rule and the weakening rule in our system, and by duality, also for
their duals. We define the following inference rules, atomic identity and
atomic weakening :

S{t}
ai↓

S [a, ā]
and

S{f}
aw↓

S{a}

The following proposition will allow us to conveniently assume that in-
stances of the rule i↓ and w↓ are atomic:

Proposition 2.12. The rules i↓ and w↓ are derivable for {ai↓, s, r↓, n↓}
and {aw↓, s}, respectively. Dually, the rules i↑ and w↑ are derivable for
{ai↑, s, r↑, n↑} and {aw↑, s}, respectively.

Similarly to the sequent calculus, the reduction to atomic form is achieved
by inductively replacing an instance of the rule by instances on smaller
formulas, details are in [5].

Soundness, completeness and cut admissibility for system KSgr can be
obtained by translating back-and-forth between its derivations and deriva-
tions in some one-sided sequent system. A detailed proof for system KSgq

can be found in [5] and can be easily adapted for KSgr:

Theorem 2.13 (Cut Elimination). The rules i↑, r↑, w↑, n↑ and c↑ are ad-
missible for system KSgr. Put differently, the systems SKSgr and KSgr are
equivalent.

Notice that they are not strongly equivalent, since the cut rule is clearly
not derivable in KSgr. Our main goal in the next section is now to prove
this theorem again, but this time without resorting to the sequent calculus.

3. Cut Elimination

The cut rule in the sequent calculus serves the purpose of composing proofs
(when seen top-down) and the purpose of splitting proof obligations (when
seen bottom-up). The cut rule in the calculus of structures is different. Here,
the familiar sequent calculus cut is broken into smaller pieces, as shown in
Figure 2.

Notice that the crux of the sequent calculus cut is isolated in the rule
i↑: when seen bottom-up it introduces a formula A out of thin air. Notice
also that the deep inference rules can be composed in a more flexible way
than rules in the sequent calculus. For example we know that A and Ā in
the sequent calculus proof will never interact because they are in different

58 K. Brünnler

Π1

� Γ, A

Π2

� Γ, Ā
Cut

� Γ

�

−
(Π1,Π2)

‖
‖

([Γ, A], [Γ, Ā])
s2

[Γ, Γ, (A, Ā)]
i↑

[Γ, Γ]
c↓

Γ

Figure 2. Dissecting a cut

branches. This is not true in the proof in the calculus of structures, because
the rule i↑ does not force a splitting of proof obligations. Also, the rule
i↑ can introduce the cut formula together with its negation anywhere deep
inside a formula, for example in such a way that an existential quantifier in
the context captures a variable in the cut formula. This also is impossible
in the sequent calculus.

This freedom in applying inference rules in the calculus of structures is
a significant challenge for cut elimination. While a proof in the sequent
calculus decomposes a formula starting from the main connective, a proof in
the calculus of structures is more like a myriad of interacting particles, atoms
and quantified formulas, swimming in a soup of propositional connectives.
During cut elimination, the sequent calculus allows to get into the crucial
situation where on one branch a logical rule applies to the main connective
of the cut formula and on the other branch the corresponding rule applies
to the dual connective of the dual cut formula. Since rules in the calculus
of structures are not restricted to main connectives, Gentzen’s technique of
permuting up the (generalised) cut does not apply. For example, one cannot
permute the cut over the switch rule.

A cut elimination procedure for the propositional fragment SKS of SKSgr

has been presented in [4]. It uses the fact that the cut rule trivially reduces
to atomic form, a standard feature of systems in the calculus of structures, in
order to give an especially simple cut elimination procedure. In particular,
it does not involve an induction on the cut rank. The problem of the greater
freedom in applying inference rules is dealt with by splitting the proof above
the cut into two separate proofs. Once this is done, the procedure is very
similar to normalisation in natural deduction. It works like Tait-style cut
elimination [15]: given a cut in the sequent calculus, as in the picture above,
the left proof Π1 says that Ā implies Γ and the right proof Π2 says that
A implies Γ. To obtain a proof of � Γ, Γ and thus of Γ we take Π1 and

Cut Elimination inside a Deep Inference System. . . 59

replace A by Γ everywhere inside it. This process of replacement will break
the proof at certain places, but wherever that happens we can fix the proof
by plugging in Π2. In Taits procedure, which works in the sequent calculus,
the proof breaks and has to be fixed in several cases, since rules apply to
the cut formula. The procedure in [4] is so simple because there is just one
place where the proof breaks: when the replacement reaches an identity.

The interesting question now is how this procedure for the propositional
system scales to predicate logic. This question is nontrivial, mainly because
existential quantifiers in the context of a cut prevent the splitting of the
proof above into two separate proofs. In a nutshell, the solution we adopt
here is to get rid of such existential quantifiers by trading them for bigger
cuts.

Definition 3.1. A context S{ } is splittable if the hole is not in the scope
of an existential quantifier. A splittable cut, denoted si↑, is a cut inside
of a splittable context. A cut is called solid if the main connective of its
cut formula is not propositional, i.e. if it is either a quantifier or if the cut
formula is atomic. The quantifier nesting of a formula is defined as follows:

qn(a) = qn(t) = qn(f) = 0
qn(∀xR) = qn(∃xR) = qn(R) + 1
qn([R, T]) = qn((R, T)) = max(qn(R), qn(T)) .

Given an instance of the cut rule with cut formula A, we define its cut rank
as qn(A)+1. The cut rank of a derivation is the supremum of the cut ranks
of its cuts. For r ≥ 0 the inference rule sir↑ is si↑ with the proviso that its
cut rank is at most r.

This transformation allows us to replace up-rules by splittable cuts:

S{T}
ρ↑

S{R}
�

S{T}
=

(S{T}, t)
i↓

(S{T}, [S{R}, S̄{R̄}])
s

[S{R}, (S{T}, S̄{R̄})]
ρ↓

[S{R}, (S{T}, S̄{T̄})]
si↑

S{R}

,

so we have

Lemma 3.2. For each proof

−‖
‖ SKSgr

T
there is a proof

−‖
‖ KSgr∪{si↑}

T
.

60 K. Brünnler

This transformation allows us to inductively replace splittable cuts by
solid splittable cuts:

S(R̄, T̄ , [R, T])
sir↑

S{f}
�

S(R̄, T̄ , [R, T])
s
S(R̄, [(T̄ , T), R])

s
S [(T̄ , T), (R̄, R)]

sir↑
S(R̄, R)

sir↑
S{f}

,

so we have

Lemma 3.3. The rule sir↑ is derivable for solid sir↑ and switch.

Definition 3.4. A rule ρ is length-preserving admissible for a system S if for
every instance of ρ with premise R and conclusion T for all n the existence
of a proof of length n of R in S implies the existence of a proof of length n of
T in S. Cut-rank-preserving admissible is defined in the same way, replacing
length by cut-rank.

3.1. Splitting

During cut elimination in the sequent calculus one has access to two proofs
above the cut such that the cut formula is in the conclusion of one proof
and the dual of the cut formula is in the conclusion of the other proof. In
the calculus of structures, we just have one proof above the cut and its
conclusion contains both, the cut formula and its dual. This subsection is
devoted to gaining access to two proofs as in the sequent calculus.

In a cut-free proof of a formula S(R, T) rules can apply in many different
chaotic ways. We now see a lemma, which tells us that for each such proof
there is one in which inference rules apply in a certain orderly fashion. In
fact, it can be split into two proofs, one containing R and one containing T :

−‖
‖

S(R, T)
�

∀
x(

−‖
‖

[U, R] ,

−‖
‖

[U, T])
s2; c↓

∀
x[U, (R, T)]
‖
‖

S(R, T)

.

During cut elimination, the splitting lemma will be applied to the proof
above the cut with R being the cut formula and T being the dual cut formula.

Cut Elimination inside a Deep Inference System. . . 61

This will make available a situation more comparable to the sequent calculus,
where a cut splits the proof.

The splitting lemma presented here is inspired by a similar one used by
Guglielmi for a substructural logic in [8]. However, the proof is very different.
Guglielmi not only splits the proof, but also the context. In the example
above this means that U is split into two formulas: one that goes into the
proof with R and another that goes into the proof with T . In classical logic
we have contraction at our disposal, which means that instead of having to
split U into two parts, which requires some work, we can simply duplicate
it. Before we state the splitting lemma, we need two more lemmas.

Lemma 3.5. The weakening-up rule w↑ is cut-rank-preserving admissible for
system KSgr ∪ {si↑}.

Proof. By Proposition 2.12 we it suffices to prove the lemma for atomic
weakening-up. Consider a proof

−
Π
‖
‖ KSgr∪{si↑}

T{a}
aw↑

T{t}

.

Starting with the conclusion of Π, going up in the proof, in each formula we
replace the atom a, and its copies that are produced by contractions, and
their instances that are produced by instantiations, by the unit t. Replace-
ments inside the context of any rule instance leave this rule instance intact.
Instances of all the rules in KSgr ∪ {si↑} remain intact also in the case that
atom occurrences are replaced by t inside redex and contractum, except for
ai↓. We replace them by weakenings:

S{t}
ai↓

S [a, ā]
�

S{t}
=

S [t, f]
aw↓ .

S [t, ā]

Lemma 3.6. The instantiation-up rule n↑ is length- and cut-rank-preserving
admissible for system KSgr ∪ {si↑}.

Proof. We proceed by induction on the length of the proof in KSgr ∪ {si↑}.
The base case is easy: if the premise of n↑ is syntactically equivalent to t

then so is its conclusion. To prove the induction step, consider a proof in
KSgr ∪ {si↑} above an instance of n↑. Let ρ be the inference rule above n↑.
We do a case analysis on the position of the redex of n↑ with respect to

62 K. Brünnler

the contractum of ρ. If the redex is inside the context of ρ then n↑ trivially
permutes up and the lemma follows from the induction hypothesis. Consider
the case that it is inside a schematic formula of the contractum of ρ. Then ρ

is one of s, c↓, r↓, n↓. In the case of c↓ we push up n↑ to obtain two instances
of n↑ and apply the induction hypothesis twice. The case of s is trivial and so
is r↓, where we possibly have to rename bound variables in order to respect
the proviso of r↓. The somewhat tedious case is permuting n↑ up over n↓,
where we have to check the variable conditions in the derivation on the right:

S{R{∀yT}[x/τ1]}
n↓

S{∃xR{∀yT}}
n↑

S{∃xR{T [y/τ2]}}

�

S{R{∀yT}[x/τ1]}
=

S{R[x/τ1]{∀yT [x/τ1]}}
n↑

S{R[x/τ1]{T [x/τ1] [y/τ2 [x/τ1]]}}
=

S{R{T [y/τ2]}[x/τ1]}
n↓

S{∃xR{T [y/τ2]}}

.

We can safely assume that differently bound variables have different names,
so in particular we have that no variable from τ1 occurs bound in R{∀yT}
and that no variable from τ2 occurs bound in T . From that we conclude the
validity of the equalities and the instances of n↑ and n↓: τ2 [x/τ1] is free for
y in T [x/τ1] and τ1 is free for x in R{T [y/τ2]}.

Consider now the case that the contractum of ρ is inside the redex of
n↑. Then it clearly has to be inside the schematic formula, so n↑ trivially
permutes up over ρ, except when ρ = r↓, when we possibly have to rename a
bound variable, and when ρ = n↓ when we have to check variable conditions,
but this case is dual to the one that we considered above.

The only remaining case is that the active universal quantifier in the
redex of n↑ matches an active universal quantifier in the contractum of ρ.
This can only happen when ρ is r↓ and we apply the following transformation
in order to apply the induction hypothesis:

S{∀xP{R}}
r↓

S{P{∀xR}}
n↑

S{P{R[x/τ]}}

�

S{∀xP{R}}
n↑

S{P{R[x/τ]}}
.

Lemma 3.7 (Splitting). Let S{ } be a splittable context and let ∀
x be the
sequence of all its universal quantifiers that have the hole in their scope.

Then for each proof

−
Π
‖
‖ KSgr∪{si↑}

S(R, T)
there are a formula U and proofs

Cut Elimination inside a Deep Inference System. . . 63

−‖
‖ KSgr∪{si↑}

[U, R]
and

−‖
‖ KSgr∪{si↑}

[U, T]
and a derivation

∀
xU

‖
‖ {r↓}

S{f}

such that the cut

ranks of both proofs are smaller than or equal to the cut rank of Π.

Proof. Let U = S′{f}, where S′{ } is obtained from S{ } by removing all
universal quantifiers that have the hole in their scope. We obtain the proofs
and the derivation as follows:

−‖
‖ KSgr∪{si↑}

S(R, T)
w↑

S{R}
n↑

S′{R}
s∗

[S′{f}, R]

,

−‖
‖ KSgr∪{si↑}

S(R, T)
w↑

S{T}
n↑

S′{T}
s∗

[S′{f}, T]

,

∀
xS′{f}
‖
‖ {r↓}

S{f}

,

where w↑ and n↑ are eliminated by Lemma 3.5 and Lemma 3.6.

3.2. Eliminating Atomic Cuts

The cut elimination procedure we are after will first reduce cuts to atomic
cuts and then eliminate the atomic cuts. However, I present cut reduction
after the elimination of atomic cuts. I find it interesting that quantifiers
behave like atoms and both of them behave differently from propositional
connectives. So the cut reduction for quantified formulas is the same as the
elimination of an atomic cut, with just one additional difficulty: rules can
apply inside the quantified formula, while rules cannot apply inside an atom.
Since elimination of an atomic cut is the simpler case, I present it first.

Lemma 3.8 (Atomic Cut Elimination).

For each proof

−
Π
‖
‖ KSgr

T (a, ā)
si↑

T{f}

there is a proof

−
‖
‖ KSgr

T{f}
.

Proof. We apply the splitting lemma to Π in order to obtain

−
Π1
‖
‖ KSgr

[U, a]
,

−
Π2
‖
‖ KSgr

[U, ā]
and

∀
xU

Δ
‖
‖ {r↓}

T{f}

.

Note that Π2 proves that a implies U . We thus replace a inside Π1 by
U in order to obtain a proof of [U, U] and thus of U . Starting with the

64 K. Brünnler

conclusion, going up in proof Π1, in each formula we replace the atom a,
and its copies that are produced by contractions, by the formula U .

Replacements inside the context of any rule instance leave the rule in-
stance intact. Instances of the rules s, c↓ and w↓ remain intact, also in the
case that atom occurrences are replaced inside the contractum and redex.
The same is true for r↓, where we possibly have to rename the universally
bound variable in order not to violate the proviso. No replacement happens
inside the contractum of a n↓ rule because in Π1 no copy of a is in the
scope of an existential quantifier. The interesting case is ai↓. We replace its
instances by S{Π2}:

S{t}
ai↓ �

S [a, ā]

S{t}

S{Π2}
‖
‖ KSgr

S [U, ā]

.

The result of this process of substituting Π2 into Π1 is a proof Π3, from
which we build −

∀�x Π3
‖
‖ KSgr

∀
x[U, U]
c↓

∀
xU

Δ
‖
‖ {r↓}

T{f}

.

3.3. Cut Reduction

Cut reduction is very similar to the elimination of an atomic cut, except that
replacing a compound cut formula of the form ∃xR is a bit more involved
than replacing an atom, because inference rules apply inside R. We will
accomplish this replacement by pushing up a special inference rule which
keeps track of these inference rules.

Definition 3.9. An n-context is a formula with n occurences of { }, and
a splittable n-context is an n-context in which no hole is in the scope of an
existential quantifier. Given a proof Π of [U,∀xR] in KSgr ∪ {si↑} and some
n ≥ 1 we define the inference rule plugΠ,n as

S{∃xR1} . . . {∃xRn}
plugΠ,n

S{U} . . . {U}
,

where S{ } . . . { } is a splittable n-context and for all i ≤ n there is a
derivation Δi in KSgr from Ri to R̄.

Cut Elimination inside a Deep Inference System. . . 65

Lemma 3.10 (Cut Reduction).

For each proof

−
Π
‖
‖ KSgr∪{sir↑}

T (∀xR,∃xR̄)
sir+1↑

T{f}

there is a proof

−‖
‖ KSgr∪{sir↑}

T{f}
.

Proof. Just like in the case of an atomic cut, we apply the splitting lemma
on Π to obtain

−
Π1
‖
‖ KSgr∪{sir↑}

[U,∃xR̄]
,

−
Π2
‖
‖ KSgr∪{sir↑}

[U,∀xR]
and

∀
xU

Δ
‖
‖ {r↓}

T{f}

.

Note that Π2 proves that ∃xR̄ implies U . The idea is thus to replace
∃xR̄ inside Π1 by U in order to obtain a proof of [U, U] and thus of T{f}.
More formally, we will obtain a proof of T{f} by eliminating plug from

−
∀�x Π1

‖
‖ KSgr∪{sir↑}

∀
x[U,∃xR̄]
plugΠ2,1

∀
x[U, U]
c↓

∀
xU

Δ
‖
‖ {r↓}

T{f}

.

We push plug to the top until it disappears. Pushing it up over the
propositional rules and over r↓ and si↑ is easy: they cannot affect the active
existential quantifiers in the premise of plug. So either plug trivially permutes
up or, if the rule above applies inside one of the Ri, it is added to Δi. The
interesting case is n↓. We push plug up as follows:

S′{Ri [x/τ]}
n↓

S′{∃xRi}
plugΠ2,n

S{U}

�

S′{Ri [x/τ]}
plugΠ2,n−1

S{Ri [x/τ]}

S(Δi [x/τ],Π′
2
)
‖
‖ KSgr∪{sir↑}

S(R̄[x/τ], [U, R[x/τ]])
s
S [U, (R̄[x/τ], R[x/τ])]

sir↑
S{U}

,

where we obtain a derivation Δi [x/τ] by applying the substitution [x/τ] to
each formula in Δi and a proof Π′

2 by applying n↑ to Π2 and eliminating it

66 K. Brünnler

by using Lemma 3.6. We can safely assume that all bound variables in Π2

and in Δi are distinct from variables in τ .
Once plug reaches the top, its premise S{∃xR1} . . . {∃xRn} is equivalent

to t. Since no atoms can occur in a formula that is equivalent to t, there are
two cases to distinguish: 1) all of the Ri are equivalent to f, or 2) at least
one of the Ri is equivalent to t. In the first case we can simply replace the
instance of plug by instances of weakening and and in the second case we
directly build a proof of T{f}, respectively as follows:

S{f} . . . {f}
w↓n

S{U} . . . {U}
and

−
∀�x (Π′′

2
,Δi)

‖
‖

∀
x([U, R], R̄)
s
∀
x[U, (R, R̄)]

sir↑
∀
xU

Δ
‖
‖

T{f}

,

where we obtain Π′′

2 by adding an instance of n↑ in the obvious way to Π2

and eliminating it by using Lemma 3.6.

Now we can give a proof of cut elimination, i.e. of Theorem 2.13, without
any reference to the sequent calculus:

Proof. By Lemma 3.2 we just need to show that for each proof

−‖
‖ KSgr∪{si↑}

T

there is a proof

−‖
‖ KSgr

T
. We eliminate instances of si↑ in two phases:

Phase 1 By induction on the cut rank of the proof. First replace all cuts
by solid cuts by Lemma 3.3. Then, by a subinduction on the number
of maximal-rank cuts, choose the topmost and apply the cut reduction
lemma. The result is a proof with a cut rank of at most one.

Phase 2 First reduce all cuts to atomic cuts by Lemma 3.3. Then, by
induction on the number of atomic cuts, choose the topmost and apply
the atomic cut elimination lemma.

4. Herbrand’s Theorem

A weak version of Herbrand’s theorem immediately follows from Gentzen’s
Mid-Sequent Theorem which in turn immediately follows from cut elimina-
tion. I will prove the strong version of Herbrand’s theorem cf. [6], which

Cut Elimination inside a Deep Inference System. . . 67

also can be proved without difficulties by using cut elimination in the se-
quent calculus. I will tune the deductive system a bit in order to present a
factorisation of proofs from which the strong version of Herbrand’s theorem
immediately follows, in the same sense as the weak version follows from the
Mid-sequent factorisation of proofs in the sequent calculus. This is of course
impossible in the sequent calculus, since the restriction of rules to the main
connective does not allow to represent the expansion and prenexification
phase of a Herbrand proof.

In order to prove Herbrand’s theorem one needs to keep track of exis-
tentially quantified formulas that are duplicated. In our setting we do so
by decomposing contraction, i.e. we inductively replace contraction by the
following rules:

S [a, a]
ac↓

S{a}

S [(R, U), (T, V)]
m

S([R, T], [U, V])

S [∃xR,∃xR]
qc↓

S{∃xR}

S [∀xR,∀xT]
m2↓

S{∀x[R, T]}
,

which are called atomic contraction, medial, contraction-quantified, and me-
dial two, respectively.

Proposition 4.1. The rule c↓ is derivable for {ac↓, m, qc↓, m2↓}. Each rule
in {ac↓, m, qc↓, m2↓} is derivable for {c↓, w↓}.

We define system KS as {ai↓, aw↓, ac↓, s, m}. It is easy to check that it is
strongly equivalent to system KSg, i.e. the propositional fragment of KSgr.
For details see [5].

In order to represent the prenexification phase in a Herbrand proof, we
define a generalised retract rule:

S{Q{P{R}}}
gr↓

S{P{Q{R}}}
,

where Q{ } is a sequence of quantifiers and P{ } is a propositional context
such that no variable in P{ } is bound by a quantifier in Q{ } in the premise.

Theorem 4.2 (Herbrand’s Theorem). For each proof of a formula S in
system SKSgr there is a is a substitution σ, a propositional formula P , a
context Q{ } consisting only of quantifiers and a proof given in Figure 3 at
the right.

68 K. Brünnler

−
‖
‖ KS∪

{
qc↓,m2↓,
n↓,r↓,ai↑

}

S

1
�

−‖
‖ KS∪

{
m2↓,

n↓,r↓,ai↑

}

S′

‖
‖ qc↓

S

2
�

−‖
‖ KS∪{n↓,ai↑}

Q{P}
‖
‖ gr↓

S′

‖
‖ qc↓

S

3
�

−‖
‖ KS∪{ai↑}

∀
x Pσ

‖
‖ n↓

Q{P}
‖
‖ gr↓

S′

‖
‖ qc↓

S

Figure 3. The proof of Herbrand’s Theorem

Proof. Given the proof in SKSgr, we apply Lemma 3.2 and cut elimination
to get a proof in KSgr ∪ {ai↑}. The first phase of the procedure is sufficient
since atomic cuts make no difference for Herbrand’s Theorem. By Proposi-
tion 4.1 we decompose contraction to get a proof in KS∪{qc↓, m2↓, n↓, r↓, ai↑}.
From here, we get the factorisation of the proof that we are after by three
phases that are shown in Figure 3.

Phase 1 We push all instances of qc↓ down to the bottom of the proof
starting with the bottommost instance, and proceeding by induction on the
number of instances of qc↓. To push down one instance of qc↓ we proceed
by induction on the number of rule instances below.

Consider an instance of qc↓ together with one rule instance ρ ∈ KS ∪
{m2↓, n↓, r↓, ai↑} below it. If the contractum of qc↓ is inside of a schema of ρ

(i.e. a subformula of the schematic context S{ } or of the schematic formulas
in the redex), then qc↓ trivially permutes down. Since the contractum of
qc↓ cannot overlap with the redex of ρ the only remaining case is that the
redex of ρ is inside of the schematic formula in the contractum of qc↓. We
apply the following transformation:

S [∃xT{R′},∃xT{R′}]
qc↓

S{∃xT{R′}}
ρ

S{∃xT{R}}

�

S [∃xT{R′},∃xT{R′}]
ρ2

S [∃xT{R},∃xT{R}]
qc↓

S{∃xT{R}}

.

Phase 2 We factor the upper proof into a derivation in {gr↓} trans-
forming a formula into prenex normal form and a proof in KS ∪ {n↓, ai↑}
which contains prenex formulas only. In the following the Q1,2,3{ } de-
note sequences of quantifiers. We assume that differently bound variables

Cut Elimination inside a Deep Inference System. . . 69

have different names and their names are different from the names of free
variables. Given a formula S, S

p
denotes the formula obtained from S by

removing all quantifiers.

We proceed by induction on the length of the given proof. The induction
base is trivial. The induction step is trivial for the propositional rules and
for r↓, which is a special case of gr↓. To prove it for the rules involving
quantifiers, apply the following transformations:

Q1{∀xQ2{∀yQ3{S [R, T [x/y]]
p
}}}

gr↓∗
S [∀xR,∀yT [x/y]]

m2↓
S{∀x[R, T]}

�

Q1{∀xQ2{∀yQ3{S [R, T [x/y]]
p
}}}

n↑
Q1{∀xQ2{Q3{S [R, T]

p
}}}

gr↓∗
S{∀x[R, T]}

as well as

Q1{Q2{S{R[x/τ]}
p
}}

gr↓∗
S{R[x/τ]}

n↓
S{∃xR}

�

Q1{Q2{S{R[x/τ]}
p
}}

n↓
Q1{∃xQ2{S{R}

p
}}

gr↓∗
S{∃xR}

.

We eliminate the instance of n↑ using the same procedure as in the proof of
Lemma 3.6.

Phase 3 To get the final result we now push down instances of n↓.
We proceed by induction on proof length. The base case is trivial, as is
the induction step since besides n↓ only propositional rules are left and
contraction is restricted to atoms.

5. Conclusion

We have seen a cut elimination procedure inside a deep inference system for
classical predicate logic. The calculus of structures for classical predicate
logic now stands on its own feet, so to speak, as a proof-theoretic formalism:
it does not rely on the sequent calculus to prove cut elimination. Since
a cut-free deep inference system does not technically have the subformula
property, it is a fair question whether it indeed deserves the name “cut-
free”. The fact that we have easily obtained Herbrand’s Theorem from our

70 K. Brünnler

cut elimination result provides some evidence for a positive answer. Also,
the techniques presented here can serve as a basis for native cut elimination
procedures in deep inference systems for modal logics like S5. Current cut
elimination results for these systems are based on hypersequents [13].

This work does not close the chapter on cut elimination in deep inference
for predicate logic. The lemma that turns cuts into splittable cuts makes
these cuts shallow at the cost of potentially increasing a lot the cut rank.
It is a somewhat unnatural operation in a deep inference system. It would
be interesting to make the cut elimination procedure work in the presence
of existential quantifiers in the context of a cut. This seems possible and is
likely to involve a factorisation as in Herbrand’s Theorem as a part of the cut
elimination procedure. It would also be interesting to see a cut elimination
procedure that works directly on SKSgq.

Proof complexity is a natural direction for future research. As already
happens in the propositional case [9], the ability of applying inference rules
deep inside of formulas allows for shorter proofs. The question is whether it
also leads to a hyperexponential speedup for proofs in predicate logic.

References

[1] Avron, A., ‘The method of hypersequents in the proof theory of propositional non-

classical logics’, in Wilfrid Hodges, Martin Hyland, Charles Steinhorn, and John

Truss, (eds.), Logic: from foundations to applications. Proc. Logic Colloquium, Keele,

UK, 1993. Oxford University Press, New York, 1996, pp. 1–32.

[2] Basin, D., M. D’Agostino, D. M. Gabbay, S. Matthews, and L. Viganò (eds.),

Labelled Deduction, volume 17 of Applied Logic Series. Kluwer Academic Publishers,

Dordrecht, 2000.

[3] Belnap, N. D., Jr., ‘Display logic’, Journal of Philosophical Logic, 11:375–417, 1982.

[4] Brünnler, K., ‘Atomic cut elimination for classical logic’, in M. Baaz and J. A.

Makowsky, (eds.), CSL 2003, volume 2803 of Lecture Notes in Computer Science.

Springer-Verlag, 2003, pp. 86–97.

[5] Brünnler, K., Deep Inference and Symmetry in Classical Proofs. PhD thesis, Tech-

nische Universität Dresden, September 2003.

[6] Buss, S. R., ‘On Herbrand’s theorem’, in Logic and Computational Complexity,

volume 960 of Lecture Notes in Computer Science. Springer-Verlag, 1995, pp. 195–

209.

[7] Di Gianantonio, P., ‘Structures for multiplicative cyclic linear logic: Deepness vs

cyclicity’, in J. Marcinkowski and A. Tarlecki, (eds.), CSL 2004, volume 3210 of

Lecture Notes in Computer Science. Springer-Verlag, 2004, pp. 130–144.

Cut Elimination inside a Deep Inference System. . . 71

[8] Guglielmi, A., ‘A system of interaction and structure’, Technical Report WV-

02-10, Technische Universität Dresden, 2002. To appear in ACM Transactions on

Computational Logic.

[9] Guglielmi, A., ‘Polynomial size deep-inference proofs instead of exponen-

tial size shallow-inference proofs’, Manuscript, 2003. http://www.ki.inf.tu-

dresden.de/˜guglielm/res/notes/AG12.pdf.

[10] Guglielmi, A., ‘Resolution in the calculus of structures’, Manuscript, 2003.

http://www.ki.inf.tu-dresden.de/˜guglielm/res/notes/AG10.pdf.

[11] Guglielmi, A., and L.Straßburger, ‘Non-commutativity and MELL in the calcu-

lus of structures’, in L. Fribourg, (ed.), CSL 2001, volume 2142 of Lecture Notes in

Computer Science. Springer-Verlag, 2001, pp. 54–68.

[12] Stewart, Ch., and Ph. Stouppa, ‘A systematic proof theory for several modal

logics’, Technical Report WV-03-08, Technische Universität Dresden, 2003. Accepted

at Advances in Modal Logic 2004, to appear in proceedings published by King’s

College Publications.

[13] Stouppa, P., The design of modal proof theories: The case of S5, Master’s thesis.

Technische Universität Dresden, 2004.

[14] Straßburger, L., Linear Logic and Noncommutativity in the Calculus of Structures,

PhD thesis. Technische Universität Dresden, 2003.

[15] Tait, W. W., ‘Normal derivability in classical logic’, in The Syntax and Semantics

of Infinitary Languages, volume 72 of Lecture Notes in Mathematics. Springer, 1968,

pp. 204–236.

[16] Tiu, A.F., ‘Properties of a Logical System in the Calculus of Structures’, Master’s

thesis. Technische Universität Dresden, 2001.

Kai Brünnler

Institut für angewandte Mathematik und Informatik
Neubrückstr. 10, CH – 3012 Bern, Switzerland
kai@iam.unibe.ch

	1

