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Abstract. The category-theoretic nature of general frames for modal logic is explored.

A new notion of “modal map” between frames is defined, generalizing the usual notion

of bounded morphism/p-morphism. The category Fm of all frames and modal maps has

reflective subcategories CHFm of compact Hausdorff frames, DFm of descriptive frames,

and UEFm of ultrafilter enlargements of frames. All three subcategories are equivalent,

and are dual to the category of modal algebras and their homomorphisms.

An important example of a modal map that is typically not a bounded morphism is

the natural insertion of a frame A into its ultrafilter enlargement EA. This map is used

to show that EA is the free compact Hausdorff frame generated by A relative to Fm.

The monad E of the resulting adjunction is examined and its Eilenberg-Moore category is

shown to be isomorphic to CHFm. A categorical equivalence between the Kleisli category

of E and UEFm is defined from a construction that assigns to each frame A a frame A∗

that is “image-closed” in the sense that every point-image {b : aRb} in A is topologically

closed. A∗ is the unique image-closed frame having the same ultrafilter enlargement as A.

These ideas are connected to a category W shown by S. K. Thomason to be dual to

the category of complete and atomic modal algebras and their homomorphisms. W is the

full subcategory of the Kleisli category of E based on the Kripke frames.

Keywords: modal map, bounded morphism, descriptive frame, equivalence of categories,

duality, reflective subcategory, monad, Kleisli category

Introduction and Summary

This paper seeks to clarify the category-theoretic nature of the relational
structures (frames) that are used in the semantics of propositional modal
logics. Previous work in this direction includes the author’s demonstration
[5] that the category MA of modal algebras and homomorphisms is dually
equivalent to the category DFm whose objects are the descriptive frames
and whose arrows are bounded morphisms (also called p-morphisms), these
being the class of modal-validity preserving functions that have become the
standard notion of “arrow” for frames. At about the same time, Thomason
[9] studied the subcategory of MA whose objects are the complete and
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2 Robert Goldblatt

atomic modal algebras, and showed that it is dual to a category W whose
objects are the Kripke frames and whose arrows are certain ultrafilter-valued
functions on frames. These unusual W-arrows do not appear to have been
the subject of further attention.

The focus of our work is the notion of the ultrafilter enlargement EA of
a frame A. Each frame has a dual algebra based on its collection of internal
subsets, while conversely each modal algebra has a dual frame based on its
collection of ultrafilters. Composing these constructions produces the frame
EA as the “double-dual” of A. Now the internal subsets of any frame form
a base for a topology, and in its topology EA is compact, Hausdorff and
image-closed, the latter meaning that each point-image, i.e. each subset of
A of the form {b : aRb}, is topologically closed. These three properties
together define the descriptive frames.

Another important operation assigns to each frame A an image-closed
frame A∗ having the same underlying set and internal subsets as A, and the
same ultrafilter enlargement, i.e. E(A∗) = EA. We will see that image-closed
frames with the same ultrafilter enlargement are identical. This implies that
if EA = EB then A∗ = B∗, for any frames A,B. In general A∗ is the only
image-closed frame having the same ultrafilter enlargement as A.

One of our main aims is to explain how EA is freely generated by A, in
the same sense in which each set freely generates an algebra of any given
equational type. We also wish to clarify the nature of Thomason’s category
W and place it into context. An immediate obstacle that must be addressed
here is that, although there is a natural insertion ηA : A → EA of each
frame into its ultrafilter enlargement, these insertion functions are typically
not bounded morphisms. In fact we will show that ηA is a bounded morphism
iff each point-image is a compact subset of A. This compels us to work with
a new notion of modal map f : A → B between frames, a notion that is
weaker than that of bounded morphism, but still strong enough to ensure
that f induces a homomorphism from the dual algebra of B to the dual
algebra of A. The frames and their modal maps form a category Fm in
which each ηA is present as an arrow from A to EA. Moreover, the identity
function on A is always an isomorphism in Fm from A to A∗, but is not
a bounded morphism from A to A∗ unless A is image-closed, in which case
A = A∗. If A is compact and Hausdorff, then ηA is an isomorphism from A
onto EA, but is only a bounded morphism when A is descriptive.

EA can now be characterized as the free compact Hausdorff frame gen-
erated by A, in the sense that any modal map f from A into a compact
Hausdorff frame B has a unique extension along ηA to a modal map f̃ from
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EA to B, i.e. f = f̃ ◦ ηA:

A
ηA //

f !!C
CC

CC
CC

C EA

f̃
���
�
�

B

Fm has three subcategories of interest to us. These are the categories
CHFm of compact Hausdorff frames, DFm of descriptive frames, and
UEFm of ultrafilter enlargements of frames. The arrows in all three cate-
gories are the modal maps between their relevant objects, but it turns out
that all arrows in DFm and its subcategory UEFm are bounded morphisms:
any modal map between descriptive frames is bounded. Although the three
subcategories are distinct, they are all equivalent in the category-theoretic
sense. Equivalence means that between any two of these categories there are
functors in both directions that compose to give natural isomorphisms with
the identity functors on the categories. This follows because each CHFm-
object A is isomorphic to the UEFm-object EA, a fact that depends on the
availability of modal maps and not just bounded morphisms.

The EA-construction provides a left adjoint to the inclusion functor from
CHFm to Fm, showing that CHFm is a reflective subcategory of Fm.
Associated with this adjunction is a categorical structure E known as a
monad. This in turn gives rise to two further categories connected with Fm,
the Eilenberg-Moore category FmE and the Kleisli category FmE. These
have comparison functors K : CHFm → FmE and L : FmE → CHFm.

Now the theory of monads tells us that whenever a monad arises from
a reflective subcategory, then its Eilenberg-Moore and Kleisli categories are
equivalent to each other and to the reflective subcategory. Thus FmE and
FmE are equivalent to CHFm on general grounds. It follows that all five
categories

CHFm, DFm, UEFm, FmE, FmE

are equivalent, and all are dual to the category MA of modal algebras.
But in this case of modal frames two stronger observations can be made.

First, CHFm is not just equivalent to FmE: the two categories are iso-
morphic, and the isomorphism is given by the comparison functor K. The
objects of FmE are the so-called E-algebras (A, ξ), comprising an Fm-object
A and an Fm-arrow ξ : EA → A satisfying certain conditions. In our frame
case the functor K has KA = (A, εA), where for compact Hausdorff A the
modal map εA : EA → A is the inverse of the isomorphism ηA : A → EA.
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We will show that the E-algebras are precisely the pairs (A, εA) with A com-
pact Hausdorff, and that K acts bijectively between the objects and arrows
of CHFm and FmE.

The general theory also tells us that the comparison functor L makes the
Kleisli category FmE equivalent to the image of the left adjoint E : Fm →
CHFm. In our case this image is the category UEFm of all ultrafilter
enlargements of frames. Demonstrating the equivalence in general may re-
quire the axiom of choice. The category FmE has the same objects as Fm,
with an FmE arrow from A to B being an Fm-arrow from A to EB. The
functor L takes an FmE-object A to EA. L acts bijectively on arrows, but
it may not be bijective on objects. We can see why in our frame case from
the fact that if a frame A is not image-closed, then we have EA = E(A∗)
but A 6= A∗. But given an object C in the image of E, we can choose some
A such that C = EA = LA and put JC = A. The bijective action of
L on arrows then inverts to extend this to a functor J : UEFm → FmE
establishing an equivalence with L.

However, and this is our second observation, in the case of modal frames
there is no need to use choice here. Instead we can make use of the “image-
closure” construction A∗. Since EA = EB implies A∗ = B∗ in general,
putting J(EA) = A∗ gives a well-defined function on UEFm-objects which
extends to a suitable functor J .

The details of all these claims are set out below, where the desired ex-
planation of the nature of Thomason’s cateogry W will also be provided. It
will be shown that W is precisely the subcategory of the Kleisli category
FmE based on the Kripke frames, i.e. the frames in which every subset is
internal.

We make use of elements of point-set topology, specifically the notions
of open and closed sets, base for a topology, continuous function, compact
set/space and Hausdorff separation. In the later parts of the paper it is
assumed that the reader has some familiarity with the basics of category
theory, including the notion of a natural transformation between functors.

Frames

To establish notation, we begin by reviewing the basic theory of “general”
frames for modal logic, much of which is well known.

If R is a binary relation on a set A, then the point-image of an element
a ∈ A is the set

Ra = {b ∈ A : aRb}.
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Associated with R are operators 〈R〉 and [R] on subsets X of A, defined by

〈R〉X = {a ∈ A : Ra ∩X 6= ∅},
[R]X = {a ∈ A : Ra ⊆ X}.

A frame is a structure (A,RA, βA) with RA a binary relation on A and βA

a collection of subsets of A that is closed under the Boolean set operations
and under the operator 〈RA〉. The members of βA are the internal sets of
the frame. We typically name a frame by referring to its underlying set A.

The operator 〈RA〉 is finitely additive on βA, so (βA,∩, − , ∅, A, 〈RA〉) is
a modal algebra. Note that βA is closed under [RA], as [RA]X = −〈RA〉−X.

Since βA is closed under finite intersections, it is the base of a topology
TA on A whose open sets are the unions of subsets of βA. Since βA is closed
under complementation, all internal sets are clopen (closed and open) in this
topology, but a clopen set need not be internal (see below). We will say that
the frame A has a certain topological property (e.g. Hausdorff, compact) if
the space (A, TA) has this property. A frame is image-finite if every point-
image RA

a is finite, and is image-compact if each RA
a is a compact subset of the

space (A, TA). An image-closed frame is one in which every point-image RA
a

is TA-closed. That means that each b 6∈ RA
a has a basic open neighbourhood

X ∈ βA that is disjoint from RA
a . Equivalently, image-closure means that

if ∀X ∈ βA(b ∈ X implies a ∈ 〈RA〉X), then aRAb.

Note that the converse of this implication is always true.
A descriptive frame is one that is compact, Hausdorff and image-closed.

Since a closed subset of a compact space is always compact, we see that a
descriptive frame is image-compact.

A frame is full when every subset of A is internal, i.e. when βA is equal to
the powerset PA of A. A Kripke frame is a structure of the form (A,RA),
identifiable with the full frame (A,RA,PA). A discrete frame is one in
which TA = PA, in which case every subset of A is clopen. This holds iff
each singleton {a} is open, and hence is equivalent to requiring that each
singleton belongs to βA (since an open singleton must be basic open). It
follows readily that a discrete frame is always Hausdorff and image-closed.

A discrete frame need not be full; for instance if βω is the set of finite
or cofinite subsets of ω = {0, 1, 2, . . . }, then (ω, >, βω) is a discrete frame
that is not full. By constructing a “one-point compactification” of it, we
obtain an example of a compact Hausdorff frame that is not descriptive.
This is the frame (ω + 1, >, βω+1), where ω + 1 is the ordinal ω ∪ {ω} and
βω+1 consists of all finite subsets of ω and their complements in ω + 1. The
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resulting topological space space is Hausdorff, and is also compact because
any open neighbourhood of the point ω in ω + 1 contains all but finitely
many members of ω, so any open cover of the space can be reduced to a
finite subcover. However the frame is not image-closed and therefore not
descriptive, since the >-image of the point ω is {0, 1, 2, . . . } which is not
closed, because its complement {ω} is not in βω+1 and is therefore not open.

Each frame (A,RA, βA) has an ultrafilter enlargement, which is a frame

(EA,REA, βEA),

based on the set EA of ultrafilters of the Boolean algebra βA. For all p, q ∈
EA, this has

pREAq iff X ∈ q implies 〈RA〉X ∈ p

iff [RA]X ∈ p implies X ∈ q, all X ∈ βA,

while βEA = {XEA : X ∈ βA}, where XEA = {p ∈ EA : X ∈ p}. These
definitions make EA into a descriptive frame [6, Section 1.10].

The assignment X 7→ XEA gives an isomorphism from the modal algebra
(βA, 〈RA〉) of A onto the modal algebra (βEA, 〈REA〉) of EA [6, 1.10.3]. In
particular, for each X ∈ βA we have

(〈RA〉X)EA = 〈REA〉(XEA).

The definition of EA is an instance of the general construction from any
modal algebra A of a descriptive frame A+ whose points are the ultrafilters
of A [6, 1.10.1]. Indeed EA is precisely (βA, 〈RA〉)+.

There is an evident insertion map ηA : A → EA, having

ηA(a) = {X ∈ βA : a ∈ X}.

Note that in general

ηA(a)REAηA(b) iff ∀X ∈ βA(b ∈ X implies a ∈ 〈RA〉X).

From this it follows that aRAb implies ηA(a)REAηA(b), and that

A is image-closed iff ηA(a)REAηA(b) implies aRAb.

If A is Hausdorff, then ηA is injective since distinct points a, b then have dis-
joint basic open neighbourhoods, so ηA(a) 6= ηA(b). Conversely, injectivity
of ηA implies that A is Hausdorff (this uses the closure of βA under comple-
ments). If A is compact, then ηA is surjective, since then each ultrafilter p of
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βA has nonempty intersection, and any a ∈
⋂

p has p = ηA(a). Conversely
it can be shown that surjectivity of ηA implies that A is compact.

Thus when A is compact and Hausdorff, ηA is a bijection. Its inverse
εA : EA → A assigns to each p ∈ EA the unique point in its intersection, so
that

⋂
p = {εAp}. Thus for any X ∈ βA, X ∈ p iff εA(p) ∈ X.

Later we will need to understand the nature of εA when A is itself some
ultrafilter enlargement EC. Then εEC(p) ∈ EC and for each internal set X
of the frame C, X ∈ εEC(p) iff εEC(p) ∈ XEC . Therefore from the given
description of εA,

εEC(p) = {X ∈ βC : XEC ∈ p}. (I)

Modal Maps

We will study the following properties of a function f : A → B between two
frames.

• f is internal if X ∈ βB implies f−1X ∈ βA, i.e. f−1 preserves internal
sets.

• f has the forth property if, for each X ∈ βB, 〈RA〉f−1X ⊆ f−1〈RB〉X,
which means that for each a ∈ A,

∃b(aRAb & f(b) ∈ X) implies f(a) ∈ 〈RB〉X.

• f has the strong forth property if, for all a, b ∈ A,

aRAb implies f(a)RBf(b).

• f has the back property if, for each X ∈ βB, f−1〈RB〉X ⊆ 〈RA〉f−1X,
which means that for each a ∈ A,

f(a) ∈ 〈RB〉X implies ∃b(aRAb & f(b) ∈ X).

• f has the strong back property if, for all a ∈ A and c ∈ B,

f(a)RBc implies ∃b(aRAb & f(b) = c).

• f is a modal map if it is internal and has the back and forth properties.

• f is a bounded morphism if it is internal and has the strong back and
strong forth properties.
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An internal function is topologically continuous, i.e. f−1X is TA-open for all
TB-open X. But a continuous function need not be internal. For example,
if (ω, >, βω) is the frame described above, while {0, 1} is regarded as a full
frame under any binary relation and f : ω → {0, 1} has f(n) = 1 iff n is
even, then f is continuous, since the topology on ω is discrete, but is not
internal, since f−1{1} 6∈ βω. Notice also that f−1{1} is clopen here but not
internal.

It is easy to see that the strong forth/strong back property implies the
corresponding forth/back property, so a bounded morphism is a modal map.
Here are some further relationships between these properties:

Theorem 1.

(1) If f : A → B has the forth property and B is image-closed, then f has
the strong forth property.

(2) If f : A → B has the back property, and B is discrete, then f has the
strong back property.

(3) If f : A → B is continuous and has the back property, then f has
the strong back property provided that B is Hausdorff and A is image-
compact.

(4) If B is discrete, then any modal map f : A → B is a bounded morphism.

(5) Any modal map from an image-compact frame to an image-closed Haus-
dorff frame is a bounded morphism. In particular, any modal map be-
tween descriptive frames is a bounded morphism.

Proof.

(1) Let aRAb. We want f(a)RBf(b). By image-closure it is enough to show
that if f(b) ∈ X ∈ βB, then f(a) ∈ 〈RB〉X. But that is immediate from
the forth property.

(2) Let f(a)RBc. Then f(a) ∈ 〈RB〉{c}. But if B is discrete, then {c} ∈ βB

and so by the back property there exists b ∈ A with aRAb and f(b) ∈ {c},
i.e. f(b) = c as required.

(3) Suppose f is continuous with the back property, B is Hausdorff and A
is image-compact. Let f(a)RBc. Suppose, for the sake of contradiction,
that there is no b ∈ A with aRAb and f(b) = c. Then for each b ∈ RA

a ,
since B is Hausdorff there are disjoint sets Xb, Yb ∈ βB with c ∈ Xb
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and f(b) ∈ Yb. Since f is continuous, {f−1Yb : b ∈ RAa} is then a cover
of RA

a by open sets. But RA
a is compact by assumption, so for some n

there exist b1, . . . , bn such that {f−1Yb1 , . . . , f
−1Ybn} is a cover of RA

a .
Now let X = Xb1 ∩ · · · ∩Xbn ∈ βB. Then c ∈ X, and so as f(a)RBc we
get f(a) ∈ 〈RB〉X. But now if aRAb, then f(b) ∈ Ybi

for some i, hence
f(b) 6∈ Xbi

and so f(b) 6∈ X. Thus X contradicts the back property.

(4) From (1) and (2), since any discrete frame is image-closed.

(5) From (1) and (3), and the fact that descriptive frames are image-closed,
Hausdorff and image-compact.

An internal function f : A → B induces the Boolean algebra homo-
morphism f+ : βB → βA where f+(X) = f−1X. Thus a modal map has
f+(〈RB〉X) = 〈RA〉f+(X), which is precisely the condition for f+ to be a
modal algebra homomorphism from (βB, 〈RB〉) to (βA, 〈RA〉). But such a
homomorphism induces a map EA → EB that is a bounded morphism and
which acts by pulling ultrafilters of βA back along f+ to ultrafilters of βB [6,
1.10.9]. The upshot is that any modal map f : A → B induces a bounded
morphism Ef : EA → EB given by

Ef(p) = {X ∈ βB : f−1X ∈ p}.

It is readily checked that the back and forth properties are preserved by
composition of functions, and that the composition of modal maps is a modal
map. Hence there is a category Fm whose objects are the frames and whose
arrows are the modal maps, with identity arrows being the identity functions
and composition of arrows being their functional composition. Let DFm be
the full subcategory of Fm whose objects are the descriptive frames. The
term “full” here means that the arrows in the subcategory comprise all the
arrows in the larger category whose domain and codomain are objects in
the subcategory. By Theorem 1(5), the arrows of DFm are all the bounded
morphisms between descriptive frames. The assignments A 7→ EA and
f 7→ Ef define a functor E : Fm → Fm that maps Fm into Dfm.

A modal map f : A → B is an isomorphism when it has an inverse in
Fm, i.e. a modal map g : B → A having g ◦ f = 1A and f ◦ g = 1B, where
“1” denotes an identity arrow. This implies that f is bijective and g is its
set-theoretic inverse. We write A ∼= B as usual to indicate that there is an
isomorphism from A to B. In general, a modal map is an isomorphism in
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Fm precisely when it is bijective as a set function and its inverse function
is also a modal map.

An isomorphism is a homeomorphism and so preserves any purely topo-
logical properties. Thus a frame isomorphic to a Hausdorff/compact frame
is also Hausdorff/compact. But frame isomorphism does not preserve the
property of being image-closed. Instead each frame has an “image-closure”
in the following sense.

Theorem 2.

(1) For each frame A there is an an image-closed frame A∗ and an isomor-
phism σA : A → A∗ in Fm such that A and A∗ have the same underlying
set and internal subsets, with A∗ = A iff A is image-closed. Moreover,
A and A∗ have the same ultrafilter enlargement, i.e. EA = E(A∗), and
ηA = ηA∗ ◦ σA:

A
σA //

ηA %%LLLLLLLLLLL A∗

ηA∗

��
EA = E(A∗)

(2) If EA = EB, then A∗ = B∗. Hence A∗ is the only image-closed frame
having the same ultrafilter enlargement as A.

(3) For each modal map f : A → B there is a modal map f∗ : A∗ → B∗ that
is the unique such map making the following diagram commute.

A
σA //

f

��

A∗

f∗

��
B

σB // B∗

Moreover, (ηA)∗ = ηA∗.

(4) Any compact Hausdorff frame is isomorphic to a descriptive frame with
the same underlying set and internal subsets.

Proof.

(1) Given frame (A,RA, βA), let (A∗, RA∗
, βA∗

) have A∗ = A, βA∗
= βA,

and

aRA∗
b iff ∀X ∈ βA(b ∈ X implies a ∈ 〈RA〉X).
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Then RA ⊆ RA∗
, and so 〈RA〉X ⊆ 〈RA∗〉X. But if aRA∗

b ∈ X ∈ βA,
then a ∈ 〈RA〉X, showing that 〈RA∗〉X ⊆ 〈RA〉X and hence 〈RA∗〉X =
〈RA〉X, for all X ∈ βA. Thus A∗ is indeed a frame as defined, and is
image-closed by the definition of RA∗

. If A itself is image-closed then
aRA∗

b implies aRAb, so A∗ = A.

The identity function on A is a bijective modal map σA : A → A∗, whose
inverse is a modal map σ−1

A : A∗ → A. Hence σA is an isomorphism
A ∼= A∗. In fact σA has the strong forth property as RA ⊆ RA∗

, but has
the strong back property iff RA = RA∗

iff A is image-closed. Likewise
σ−1

A has the strong back property but has the strong forth property iff
A = A∗.

Since the modal algebras (βA, 〈RA〉) and (βA∗
, 〈RA∗〉) are identical, so

too are the frames EA and E(A∗). That ηA = ηA∗ ◦ σA follows because
ηA and ηA∗ are the same functions.

(2) Let C and D be any image-closed frames that have the same ultrafilter
enlargement. We show that C and D are identical. Firstly, their under-
lying sets must be equal, for if a ∈ C − D, say, then D 6∈ ηC(a) ∈ EC,
hence ηC(a) 6∈ ED, contradicting the assumption EC = ED. Next
their collections of internal subsets must be equal, for if X ∈ βC − βD,
say, then X 6= ∅ and any a ∈ X gives X ∈ ηC(a), so ηC(a) * βD

and hence ηC(a) 6∈ ED, again contradicting EC = ED. Now we have
(C, βC) = (D,βD), so the insertion maps ηC and ηD are identical. But
since C and D are image-closed, we have [aRCb iff ηC(a)RECηC(b)] and
[aRDb iff ηD(a)REDηD(b)] in general, so as REC = RED and ηC = ηD,
it follows that RC = RD. Hence C and D are indeed identical.

Now applying this result: if A and B are any frames with EA = EB,
then by (1), E(A∗) = E(B∗), and so A∗ = B∗ as both are image closed.
If further B is image closed, then B∗ = B so A∗ = B.

(3) Given f : A → B, let f∗ be the same function as f but with domain and
codomain being A∗ and B∗ instead of A and B respectively. Since σA

and σB are identity functions, this is the only way to define f∗ to make
the diagram in (3) commute.

But 〈RA〉f−1X = f−1〈RB〉X iff 〈RA∗〉f−1X = f−1〈RB∗〉X because
〈RA∗〉 = 〈RA〉 and 〈RB∗〉 = 〈RB〉, so f is a modal map iff f∗ is.

When B = EA then σB is just the identity arrow on EA, as EA = (EA)∗

because EA is image-closed. Hence when f is ηA, the square of (3) is
just the triangle of (1), showing that (ηA)∗ = ηA∗ .
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(4) If A is compact and Hausdorff, then A∗ is compact and Hausdorff and
image-closed.

Note that since A∗ is image-closed, (A∗)∗ = A∗ with σA∗ = 1A∗ . Also, as
noted in the proofs, since EA is image-closed for any A we have (EA)∗ =
EA = E(A∗), so we could write EA∗ for that structure with impunity.

If A is the compact Hausdorff frame (ω + 1, >, βω+1) discussed above,
then A ∼= A∗ but A and A∗ are distinct as A is not image-closed while A∗

is, and so A∗ is descriptive. This is a delicate example: the only difference
between A and A∗ here is that the point ω has ωRA∗

ω but not ωRAω.

Some Equivalent Categories

Let CHFm be the full subcategory of Fm whose objects are the compact
Hausdorff frames. DFm is in turn a full subcategory of CHFm but unlike
in DFm, not all arrows in CHFm are bounded morphisms. This is shown
by the example just considered: the identity function on ω + 1 is a CHFm-
arrow ω + 1 → (ω + 1)∗ that is does not have the strong back property.

The categories CHFm and DFm are equivalent. In general, an equiva-
lence between categories C and D is given by a pair of functors F : C → D
and G : D → C such that G◦F is naturally isomorphic to the identity func-
tor 1C on C and F ◦G is naturally isomorphic to 1D. This implies that each
C-object A is isomorphic to G(F (A)) and each D-object B is isomorphic to
F (G(B)). This notion of equivalence gives an equivalence relation between
categories. If more strongly G ◦ F = 1C and F ◦ G = 1D, then F and G
make C and D isomorphic.

If C is a full subcategory of D and every D-object is isomorphic to a
C-object, then C and D are equivalent [8, IV.4]. In the case of CHFm
and DFm we can see this explicitly. Let F : CHFm → DFm be given
by the constructions of Theorem 2, i.e. FA = A∗ and Ff = f∗, while
G : DFm → CHFm is the inclusion functor: GA = A and Gf = f . For
any modal map f : A → B the commuting of the diagram

A
σA //

f

��

A∗

f∗

��
B

σB // B∗
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of Theorem 2(3) means that the isomorphisms σA are natural in A and shows
that this F and G give an equivalence between CHFm and DFm. Since
A = A∗ when A is descriptive, we in fact have F ◦G = 1DFm.

Our view of this equivalence can be refined by considering the category
of all ultrafilter enlargements of frames. This is the full subcategory UEFm
of CHFm based on the collection of objects {EA : A in Fm}. It is shown
in the next theorem that each compact Hausdorff A is isomorphic to EA,
implying that UEFm is equivalent to CHFm. But UEFm is a full sub-
category of DFm and hence equivalent to DFm for the same reason. Since
E(A∗) = EA in general, the equivalences between the three categories com-
mute appropriately.

The distinction between CHFm and DFm is more significant than that
between DFm and UEFm. For any compact Hausdorff A we have isomor-
phisms

A ∼= A∗ ∼= EA = E(A∗).

If A is not image-closed, hence not in DFm, then the first isomorphism is not
a bounded morphism. But the second isomorphism, between the descriptive
frames A∗ and EA, is always a bounded morphism, as Theorem 3 will show.
In general, if B is descriptive, then B and EB are indistinguishable frame-
theoretically as well as categorically, and may be thought of a relabellings of
each other. Another perspective is that DFm is the closure of UEFm under
isomorphism in the category of frames and bounded morphisms, whereas
CHFm is the closure of UEFm under isomorphism in the category of frames
and modal maps. Note that the frame (ω + 1)∗ is in DFm but not UEFm,
since its points are not ultrafilters of some frame.

Category C is called dual to category D if it is equivalent to the opposite
category Dop of D. Dop has the same objects as D, while the Dop-arrows
A → B are the D-arrows B → A. A duality can alternatively be described
as a pair of functors between C and D that are contravariant (i.e. reverse
the direction of arrows) and whose composites are naturally isomorphic to
the identity functors on C and D. It was shown in [5] that the category
MA of modal algebras and homomorphisms is dual to DFm. Hence MA
is dual to CHFm and UEFm as well.

Insertions Are Modal

If we were to focus on categories of frames whose arrows were all bounded
morphisms, then many insertion maps ηA : A → EA would be missing as
they are not bounded. This is the ultimate reason why we need to consider
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the more general notion of a modal map in order to understand the cate-
gorical nature of these structures properly. Here are the main properties of
insertions.

Theorem 3. For any frame A:

(1) ηA is a modal map with the strong forth property.

(2) ηA is a bounded morphism iff A is image-compact.

(3) If A is image-finite, then ηA is a bounded morphism.

(4) If A is discrete, then ηA is a bounded morphism iff A is image-finite.

(5) If A is compact and Hausdorff, then ηA is an isomorphism A ∼= EA
in CHFm with inverse εA : EA ∼= A. In this case εA is a bounded
morphism iff ηA is a bounded morphism iff A is descriptive.

Proof.

(1) First, ηA is internal, since if XEA ∈ βEA, then η−1
A XEA = X ∈ βA.

For the strong forth property, we have already noted that if aRAb then
ηA(a)REAηA(b). Finally, ηA has the back property, since for all XEA ∈
βEA, if ηA(a) ∈ 〈REA〉(XEA) = (〈RA〉X)EA, then a ∈ 〈RA〉X, so there
exists b with aRAb and b ∈ X, hence ηA(b) ∈ XEA.

(2) If A is image-compact, then it follows by (1) and Theorem 1(5) that ηA

is a bounded morphism since EA is image-closed and Hausdorff.

For the converse, suppose that A is not image-compact. Then there is
some point-image RA

a that has an open cover C with no finite subcover.
We can assume that the members of C are basic open, so C ⊆ βA. Put

q0 = {X ∈ βA : [RA]X ∈ ηA(a)} ∪ {−X : X ∈ C} ⊆ βA.

Now for any X1, . . . , Xn ∈ C there exists some b ∈ RA
a − (X1 ∪ · · ·Xn),

so then

b ∈
⋂
{X ∈ βA : [RA]X ∈ ηA(a)} ∩ −X1 ∩ · · · ∩ −Xn.

This shows that q0 has the finite intersection property and hence extends
to a βA-ultrafilter q ∈ EA. Then ηA(a)REAq by definition of q0. But
for any b ∈ RA

a we have ηA(b) 6= q because there is some X ∈ C with
b ∈ X, hence X ∈ ηA(b), while −X ∈ q. Thus ηA does not have the
strong back property.
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(3) From (2), as image-finiteness implies image-compactness.

(4) From (2), as in a discrete space a set is compact iff it is finite.

(5) Let A be compact and Hausdorff. We noted already that in this case
ηA is a bijection with set inverse εA. Then εA is also internal, since
ε−1
A X = XEA ∈ βEA for X ∈ βA. Since by (1) ηA has the strong forth

property, it follows that εA has the strong back property. Also εA has
the forth property, since if pREAq and εA(q) ∈ X ∈ βA, then X ∈ q and
hence 〈RA〉X ∈ p, implying εA(p) ∈ 〈RA〉X. Thus εA is a modal map
providing an inverse for ηA in CHFm.

Finally, the strong forth property holds for εA iff the strong back prop-
erty holds for ηA iff [ηA(a)REAηA(b) implies aRAb] iff A is image-closed.

Illustrating with our running example once more, in the diagram

ω + 1
σω+1 //

ηω+1 %%KKKKKKKKKK (ω + 1)∗

η∗ω+1

��
E(ω + 1)

all three arrows are isomorphisms in CHFm, but only η∗ω+1 is a bounded
morphism.

Freeness of Ultrafilter Enlargements

Each modal frame freely generates its ultrafilter enlargement in the following
sense.

Theorem 4. If A is any frame and B any compact Hausdorff frame, then
for each modal map f : A → B there is a unique modal map f̃ : EA → B
that extends f along ηA, i.e. f = f̃ ◦ ηA:

A
ηA //

f !!C
CC

CC
CC

C EA

f̃
���
�
�

B

This construction has f̃∗ = σ̃B ◦ f and η̃A = 1EA. If A is compact Hausdorff,
then εA = 1̃A.
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Proof. For the existence of f̃ , given f we define f̃ = Ef ◦ εB:

A
ηA //

f !!C
CC

CC
CC

C EA

f̃
��

Ef

""F
FFFFFFF

B EBεB

oo

Thus f̃ is the composition of two modal maps, and therefore a modal map
itself. (If B is descriptive, then f̃ is a bounded morphism by Theorem 1(5).)
f̃(p) is the unique point in the intersection of Ef(p), i.e. the unique member
of ⋂

{X ∈ βB : f−1X ∈ p}.

But f(a) ∈
⋂
{X ∈ βB : f−1X ∈ ηA(a)}, so f(a) = f̃(ηA(a)) as required.

The uniqueness of f̃ is topologically determined, and does not depend
on the back and forth properties: f̃ is the only continuous extension of f
along ηA. To see this, suppose g : EA → B is continuous with f = g ◦ ηA.
Then for any p ∈ EA, if g(p) ∈ X ∈ βB, then g−1X contains p and is open
in EA, so p ∈ Y EA ⊆ g−1X for some Y ∈ βA. Hence

f−1X = η−1
A (g−1X) ⊇ η−1

A (Y EA) = Y ∈ p,

so f−1X ∈ p (since f−1X ∈ βA), and therefore f̃(p) ∈ X. This shows
that every basic open neighbourhood of g(p) in B contains f̃(p). Since B is
Hausdorff, it follows that g(p) = f̃(p).

That f̃∗ = σ̃B ◦ f follows from the commuting diagram

A
σA //

f

  A
AA

AA
AA

A A∗ ηA∗ //

f∗

""F
FF

FF
FF

F EA∗

ff∗
���
�
�

B
σB // B∗

which shows that f̃∗ is the unique extension of σB ◦ f along ηA = ηA∗ ◦ σA.
Finally, the diagrams

A
ηA //

ηA !!C
CC

CC
CC

C EA

1EA

��
EA

A

1A !!C
CC

CC
CC

C
ηA // EA

εA

��
A

show that η̃A = 1EA and, if A is compact Hausdorff, then εA = 1̃A.
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Corollary 5. If B is descriptive, then f̃∗ = f̃ for any modal map f with
codomain B.

Proof. In this case, B = B∗ and σB = 1B.

The construction of Theorem 4 will be applied later to a map of the form
g : B → EC. Then g̃ is the composition of

EB
Eg // EEC

εEC // EC,

so by the earlier description of εEC in equation (I),

g̃(q) = εEC(Eg(q)) = {X ∈ βC : XEC ∈ Eg(q)},

and therefore by the definition of Eg,

g̃(q) = {X ∈ βC : g−1(XEC) ∈ q}. (II)

Reflective Subcategories

In categorical parlance [8, III.1], Theorem 4 states that (EA, ηA) is a univer-
sal arrow from the Fm-object A to the inclusion functor G : CHFm → Fm
defined by GA = A and Gf = f . This implies [8, IV.1] that the functor
E : Fm → CHFm is left adjoint to G (and G is right adjoint to E). The
arrows ηA for all Fm-objects A are the components of a natural transforma-
tion η : 1Fm → E from the identity functor on Fm to E that is called the
unit of the adjunction. The counit is a natural transformation E → 1CHFm

whose components are the arrows 1̃A. We saw that these are just the modal
maps εA for all compact Hausdorff A.

If a category C is a subcategory of a category D, and the inclusion functor
C → D has a left adjoint D → C, then C is called a reflective subcategory of
D, and the left adjoint is the reflector. So we have established that CHFm
is a reflective subcategory of Fm with reflector E. In general, if C is a full
reflective subcategory of D, then the components of the associated counit
are always isomorphisms in D, and their inverses are the components of
the unit [2, 3.4.1]. In our case, we showed in Theorem 3(5) that εA is an
isomorphism with inverse ηA, on the way to establishing in Theorem 4 that
E : Fm → CHFm is a reflector.

Note that since the values of the functor E actually lie in the subcategory
UEFm of DFm, E can also serve as a left adjoint to the inclusion UEFm →
Fm or the inclusion DFm → Fm, so UEFm and DFm are reflective
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subcategories of Fm, and indeed all inclusions between these categories are
reflective.

From the very existence of a reflective subcategory a great deal of struc-
ture flows on general categorical grounds, as will now be explained.

Monads

Any pair of adjoint functors defines a structure called a monad on the domain
of the functor that is the left adjoint. Then the monad gives rise to two
special categories that are related to the domain of the right adjoint, one due
to Eilenberg and Moore [4] and the other to Kleisli [7]. This general theory
is available in several references, including [8, Chapter VI], [1, Chapter 3]
and [3, Chapter 4].

In our frame-theoretic case of the adjoint pair (E,G), description of the
monad is simplified because G is an inclusion functor that can be notation-
ally suppressed. The monad then is the triple E = (E, η, µ), where the
functor E : Fm → Fm and the natural transformation η : 1Fm → E have
already been defined, and µ is the natural transformation from E ◦ E to E
whose components µA : EEA → EA are the bounded morphisms εEA for all
frames A. The definition of “monad” stipulates that for each A the following
diagrams commute:

EEEA
EµA //

µEA

��

EEA

µA

��
EEA µA

// EA

EA

1EA ##H
HH

HH
HH

HH
ηEA // EEA

µA

��

EA
EηAoo

1EA{{vvv
vv

vv
vv

EA

(mon)

An E-algebra is, by definition, a pair (A, ξ) comprising an Fm-object A and
an Fm-arrow ξ : EA → A, called the structure map of the algebra, such
that the following commute:

EEA
Eξ //

µA

��

EA

ξ
��

EA
ξ

// A

A

1A !!C
CC

CC
CC

C
ηA // EA

ξ
��

A

(alg)

For example, by the square and the left triangle in (mon), the pair (EA,µA)
is an E-algebra, known as the free E-algebra on A.
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A morphism f : (A, ξ) → (A′, ξ′) of E-algebras is a Fm-arrow f : A → A′

for which the following square commutes:

EA
Ef //

ξ

��

EA′

ξ′

��
A

f
// A′

For example, by the square in (alg), the structure map ξ is itself a morphism
from the free algebra (EA,µA) to (A, ξ).

For any monad E on Fm, the E-algebras and their morphisms form
the Eilenberg-Moore category FmE of E. There is a “forgetful” functor
GE : FmE → Fm taking the algebra (A, ξ) to its underlying object A, and a
morphism f to itself as an Fm-arrow. GE has a left adjoint F E : Fm → FmE

that on objects has F EA = (EA,µA) = the free E-algebra on A, and on
arrows has F Ef = Ef . The adjoint pair (F E, GE) defines a monad on Fm
which is just the original monad E – this was the motivating purpose of
the Eilenberg-Moore construction: to show that any monad is defined by an
adjoint pair.

Given E as the monad defined by an adjoint pair (E,G), the connection
between FmE and the domain of the right adjoint G : CHFm → Fm is
provided by a comparison functor K : CHFm → FmE that in our frame
case has KA = (A, εA) and for a CHFm-arrow f : A → B has Kf = f :
(A, εA) → (B, εB). That every CHFm-arrow f becomes a morphism of
E-algebras in this way is seen from the diagram

A
ηA //

1A !!C
CC

CC
CC

C EA
Ef //

εA

��

EB

εB

��
A

f
// B

This indicates that f ◦εA extends f along ηA, so is equal to f̃ = εB ◦Ef , and
hence the square commutes as desired. K is the unique functor for which
GE ◦K = G and K ◦ E = F E:

CHFm
G

��

K // FmE
GE

��
Fm

E

]]

F E

BB

It is evident that K acts injectively on objects and bijectively on arrows. In
fact it is bijective on objects too, and so
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K is an isomorphism between CHFm and FmE.

This is because for every E-algebra (A, ξ), the structure map ξ is an isomor-
phism with inverse ηA (cf. [3, 4.2.3, 4.2.4 ]). To see why, observe that since
ξ ◦ ηA = 1A by (alg), we get ηA ◦ ξ ◦ ηA = ηA, so the diagram

A

ηA !!C
CC

CC
CC

C
ηA // EA

ηA◦ξ
��

EA

commutes, showing that ηA ◦ ξ = η̃A = 1EA. Thus ξ and ηA are indeed
mutually inverse in Fm. Hence EA is isomorphic to A, and therefore A
is compact Hausdorff because EA is. But when A is compact Hausdorff,
the inverse of ηA is εA, so ξ = εA. This establishes that the FmE-objects
are precisely the pairs (A, εA) with A compact Hausdorff. Therefore K is a
bijection between the objects of CHFm and FmE as claimed.

What we have been discussing is a manifestation of a general situation.
If C is a reflective subcategory of D with associated monad E, then the
comparison functor K : C → DE is an isomorphism provided C is replete
in D, which means that it contains any D-object that is isomorphic to a
C-object. We just used the fact that CHFm is replete in Fm.

Without repleteness it can still be shown that C is equivalent to DE. The
equivalence is provided by the functors K and E ◦GE. This follows because
the above conclusion that ηA and ξ are mutually inverse can be lifted to
show that ηA is a morphism (A, ξ) → (EA,µA) of E-algebras with inverse
ξ : (EA,µA) → (A, ξ), and so (A, ξ) ∼= (EA,µA) in DE. The details are left
to the interested reader.

The Kleisli Category

Let C(A,B) denote the “hom-set” of all arrows from object A to object B
in category C. The Kleisli category FmE has the same objects as Fm, with
FmE(A,B) = Fm(A,EB). In other words, an arrow from A to B in FmE
is given by an arrow from A to EB in Fm. To clarify this we will use the
symbol ◦→ for an FmE-arrow, and follow [8] by writing f [ for the Fm-arrow
A ◦→B given by the Fm-arrow f : A → EB. Particular care is needed in
specifying the codomain of an FmE-arrow because, for example, we know
that EB = E(B∗), so the same f : A → E(B∗) also determines an arrow
A ◦→B∗ which will be different to the A ◦→B one when B 6= B∗. This is
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analogous to the way that the identity function on the underlying set of a
frame A may generate two distinct arrows in Fm, the identity arrow A → A
and the isomorphism σA : A → A∗.

Given f [ : A ◦→B and g[ : B ◦→C, composition in FmE is defined by
g[ ◦ f [ = (µC ◦ Eg ◦ f)[ : A ◦→C, as in

A
f // EB

Eg // EEC
µC // EC.

The identity arrow on an FmE-object A is (ηA)[ : A ◦→A, given by ηA :
A → EA.

There is a functor GE : FmE → Fm having GEA = EA, and taking an
arrow f [ : A ◦→B to µB ◦ Ef :

EA
Ef // EEB

µB // EB.

This has a left adjoint FE : Fm → FmE with FEA = A, and taking f : A →
B to (ηB ◦ f)[ : A ◦→B:

A
f // B

ηB // EB.

The adjoint pair (FE, GE) also defines the monad E on Fm.
Now let E be the monad defined by our adjoint pair (E,G) connecting

Fm and CHFm. In the definition of g[ ◦ f [ we have µC ◦ Eg = g̃ in the
notation of Theorem 4, since µC = εEC . Thus

g[ ◦ f [ = (g̃ ◦ f)[. (III)

A comparison functor L : FmE → CHFm is defined by LA = EA on
objects and L(f [) = εEB ◦ Ef on arrows f [ : A ◦→B:

EA
Ef // EEB

εEB // EB.

This L is the unique functor for which G ◦ L = GE and L ◦ FE = E:

FmE
GE

��

L // CHFm
G

��
Fm

FE

\\

E

AA

Again in the notation of Theorem 4, L(f [) = f̃ = the unique extension
of f : A → EB along ηA. The existence and uniqueness of these arrows
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f̃ ensure that L is full and faithful, which means that it acts bijectively in
mapping any hom-set FmE(A,B) to CHFm(LA,LB). For if L(f [) = L(g[),
then f = f̃ ◦ ηA = g̃ ◦ ηA = g, and for any h : LA → LB, if f = h ◦ ηA, then
we get h = f̃ = L(f [).

The surjectivity of L on hom-sets implies that the image of L is the full
subcategory of CHFm with collection of objects {EA : A is a frame}. This
is the category UEFm of all ultrafilter enlargements of frames, which was
identified earlier as being equivalent to CHFm and to DFm. L is not an
isomorphism of categories, since it is not injective on objects. For instance
we know from Theorem 2(1) that LA = L(A∗) for any frame A. But any
full and faithful functor gives an equivalence between its domain and image
categories [8, p. 91], so FmE and UEFm are equivalent. Since CHFm is
isomorphic to the Eilenberg-Moore category FmE, we see then that the five
categories

CHFm, DFm, UEFm, FmE, FmE

are all equivalent, and are all dual to the category MA of modal algebras.

What has been described here for CHFm and Fm is again quite general.
Whenever C is a reflective subcategory of D with reflector E determining
monad E, then the Kleisli category DE is equivalent to the Eilenberg-Moore
category DE. This is because DE is equivalent under L to the image of E
in C, which is itself equivalent C because each C-object A is isomorphic to
EA, and C is in turn equivalent to DE under K. But for the frame case a
stronger conclusion about K was shown: K is an isomorphism. We can also
say something stronger about L in this case: the image-closure operation
A 7→ A∗ can be used to show that L is an equivalence.

The interest in this is that typically the construction of an equivalence
out of a full and faithful functor may involve the axiom of choice (see [8,
p. 94] or [2, p. 116]). Given an object C in the image of L, choose some A
such that C = LA and put JC = A. The bijective action of L on hom-sets
then inverts to allow J to be defined on arrows to give a functor establishing
an equivalence with L.

But there is no need to appeal to choice here, since we know from
Theorem 2(2) that for any frames A and B we have EA = EB only if
A∗ = B∗. Putting J(EA) = A∗ thus gives a well-defined function on
UEFm-objects making L(J(EA)) = E(A∗) = EA. J can be extended
to arrows by noting that any UEFm-arrow EA → EB is equal to f̃ for a
unique f : A → EB = EB∗, so we can define J(f̃) = (f∗)[ : A∗ ◦→B∗. Since
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EB is descriptive, Corollary 5 tells us that f̃∗ = f̃ , so then

L(J(f̃)) = L(f∗[) = f̃∗ = f̃ ,

and hence L ◦ J = 1UEFm.
From the other side, for each frame A we have J(LA) = A∗. Now the

functor FE preserves isomorphisms (any functor does this), so the isomor-
phism σA : A → A∗ in Fm is sent by FE to an isomorphism

(ηA∗ ◦ σA)[ = (ηA)[ : A ◦→A∗

making A ∼= J(LA) in FmE. (N.B: this is different to (ηA)[ : A ◦→A when
A is not image-closed.)

On arrows, J(L(f [)) = J(f̃) = (f∗)[. But the diagram

A◦
(ηA)[

//
◦
f[

��

A∗
◦
(f∗)[

��
B ◦

(ηB)[
// B∗

commutes in FmE, because (using equation (III)):

(f∗)[ ◦ (ηA)[ = (f̃∗ ◦ ηA)[ = (f̃ ◦ ηA)[ = f [,

and
(ηB)[ ◦ f [ = (η̃B ◦ f)[ = (1EB ◦ f)[.

Thus the isomorphisms (ηA)[ are natural in A, showing that J◦L is naturally
isomorphic to the identity functor on FmE, and therefore that J and L form
an equivalence between the categories FmE and UEFm.

The Thomason Category

Let CAMA be the full subcategory of MA whose objects are the complete
and atomic modal algebras. It was shown in [9] that CAMA is dual to a
category W whose objects are the Kripke frames (A,RA), with a W-arrow
f from (A,RA) to (B,RB) being a function from the set A to the set of all
ultrafilters on the set B such that

〈RB〉X ∈ f(a) iff ∃b(aRAb and X ∈ f(b))
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for all X ⊆ B. Regarding a Kripke frame as a full frame in which every
subset is internal, this condition equivalently states that

f(a) ∈ 〈REB〉XEB iff ∃b(aRAb and f(b) ∈ XEA).

But this asserts that f is a modal map (Fm-arrow) from A to EB. Thus
f can be identified with the Kleisli arrow f [ : A ◦→B. (Note that EB itself
will generally not be a full frame even when B is.)

The identity W-arrow on full frame A is given by f(a) = {X ⊆ A : a ∈
X}, which is ηA(a), and so can be identified with the FmE-identity A ◦→A.
The composition of a W-arrow f from A to B and a W-arrow g from B to
C, i.e. two functions f : A → EB and g : B → EC, is given by the function
g • f : A → EC having

(g • f)(a) = {X ⊆ C : {b ∈ B : X ∈ g(b)} ∈ f(a)}.

Now {b ∈ B : X ∈ g(b)} = {b ∈ B : g(b) ∈ XEC)} = g−1(XEC), so equation
(II) tells us that (g • f)(a) = g̃(f(a)). Therefore g • f = g̃ ◦ f and the Kleisli
arrow A ◦→C determined by g • f is (g̃ ◦ f)[, which is g[ ◦ f [ by equation
(III). Conclusion:

the Thomason category W is the full subcategory of the Kleisli
category FmE based on the Kripke frames.

Hence CAMA is dual to this subcategory of the Kleisli category.
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