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Introduction

A pioneering work on the algebraic treatment of many-valued logics was done
by Moisil, who in his 1941 paper [15] introduced the three-valued ÃLukasiewicz
algebras, as the algebraic counterpart of ÃLukasiewicz three-valued logic [14].
These algebras were deeply investigated by A. Monteiro in the early six-
ties, who related them with other algebras arising from logic, like monadic
Boolean algebras and Nelson algebras [17, 18, 19, 20, 21].

Among A. Monteiro’s personal files, the second author found a conjecture
on the structure of maximal subalgebras of three-valued ÃLukasiewicz algebras
in terms of prime (lattice) filters. The main aim of this paper is to prove
that conjecture (see Corollary 3.5).

On the other hand, Iturrioz [12], motivated by results of Sachs [25]
on maximal subalgebras of Boolean algebras, showed that the subalgebras
that we call of type I in this paper, are maximal subalgebras that contain
the Boolean elements of three-valued and four-valued ÃLukasiewicz algebras,
and asked whether all maximal subalgebras of these algebras containing the
boolean elements are of type I. We also give a positive answer for a class of
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algebras containing three-valued and four-valued ÃLukasiewicz algebras (see
Theorem 3.2).

In the late fifties, Chang [4, 5] introduced MV-algebras as the alge-
braic counterpart of ÃLukasiewicz infinite valued logic [14]. Later, Grigo-
lia [11] introduced MVn-algebras, the MV-algebras corresponding to the
n-valued ÃLukasiewicz logic, for n ≥ 2. Moisil three-valued and four-valued
ÃLukasiewicz algebras coincide with MV3-algebras and MV4 algebras, respec-
tively. For each n ≥ 2, MVn-algebras can be represented by continuous
functions on Boolean spaces taking values in finite chains equipped with
the discrete topology. We use this representation to characterize maximal
subalgebras of MVn-algebras. When n = 3 we obtain that the maximal
subalgebras are those conjectured by A. Monteiro. We also show that every
proper subalgebra of an MVn-algebra is an intersection of maximal subalge-
bras, generalizing a result of Sachs [25] for Boolean algebras (that coincide
with MV2-algebras).

Since MVn-algebras form a variety generated by a semiprimal algebra,
the mentioned representation by continuous functions can be derived from
general results of universal algebra [22, 13]. As it plays a fundamental role
in this paper, we give a direct elementary proof (Theorem 1.5).

For details on ÃLukasiewicz-Moisil algebras the reader can consult the
monograph [3], and [9] for MV-algebras.

1. MVn-algebras

In this section we collect some definitions, notations and results that we shall
use in the paper.

A De Morgan algebra is an algebra 〈A,∨,∧,¬, 0, 1〉 such that 〈A,∨,∧,
0, 1〉 is a bounded distributive lattice and ¬ is a unary operation satisfying:
¬¬x = x, and ¬(x ∧ y) = ¬x ∨ ¬y. We assume the reader familiar with
the basic properties of distributive lattices and De Morgan algebras that can
be found in [1, 3, 23] (in this last reference, De Morgan algebras are called
quasi-Boolean algebras).

An MV-algebra(also known as Wajsberg algebra) is a structure 〈A,⊕,
¬, 0〉 where 〈A,⊕, 0〉 is a commutative monoid with neutral element 0, sat-
isfying the following equations: ¬¬x = x, x⊕ ¬0 = ¬0, and

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x . (1.1)

The real unit interval [0, 1] equipped with negation ¬x = 1 − x and
truncated addition x⊕ y = min (1, x + y) is an MV-algebra, which is called
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the standard MV-algebra. The defining equations of MV-algebras express
simple properties of this concrete model. It was proved by Chang [5] (see
also [8] or [9]) the variety MV of MV-algebras is generated by the standard
MV-algebra.

If we add x ⊕ x = x to the equations of MV-algebras, then we obtain
the variety of boolean algebras. Thus MV-algebras may be regarded as
a non-idempotent equational generalization of boolean algebras. We shall
use the following abbreviations, where x, y denote arbitrary elements of an
MV-algebra:

1 = ¬ 0, x¯ y = ¬(¬x⊕ ¬y), xª y = x¯ ¬y,

x ∨ y = x⊕ ¬(x⊕ ¬y), x ∧ y = x¯ ¬(x¯ ¬y).1

Note that equation (1.1) states that the join operation over [0, 1] is commu-
tative. For every MV-algebra A, the reduct 〈A,∨,∧,¬, 0, 1〉 is a De Morgan
algebra. Notice that the underlying lattice order of the standard MV-algebra
coincides with the usual order of real numbers.

Given an MV-algebra A, we set

B(A) := {x ∈ A : x⊕ x = x}.

It follows that B(A) is a subalgebra of A, which is a Boolean algebra. Indeed,
it is the Boolean algebra of the complemented elements of the lattice reduct
of A. For each x ∈ B(A), the Boolean complement of x is ¬x. The elements
of B(A) are called the boolean elements of A.

For each integer n ≥ 2, we denote by Ln the subalgebra of the standard
MV-algebra formed by the n fractions of denominator n − 1: 0, 1

n−1 , . . .,
n−2
n−1 , 1. We shall denote by MVn the subvariety of MV generated by Ln.
The algebras in MVn are called MVn-algebras.

The following property, which is well known and easy to check, will play
an important role in what follows:

Lemma 1.1. Given integers m,n ≥ 2, we have:

(i) The only automorphism of Ln is the identity,

(ii) Lm is a subalgebra of Ln if and only if m− 1 is a divisor of n− 1. ¤

Since the equation x⊕x = x holds in Ln if and only if n = 2, we have that
MV2 is the variety of Boolean algebras, and that B(Ln) = L2 for each n ≥ 2.

1Unless otherwise specified, all MV-algebras in this paper shall be nontrivial, i.e., 0 6= 1.
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The varieties MVn, for each n ≥ 3 have been axiomatized by Grigolia
[11] (see also [10, 9]).

For every n ≥ 2, we can define one-variable terms σn
1 (x), . . . , σn

n−1(x) in
the language of MV-algebras such that evaluated on the algebras Ln give

σn
i

(
j

n− 1

)
=

{
1 if i + j ≥ n,
0 if i + j < n.

(1.2)

(see [6] or [24]). From this it follows that every MVn-algebra admits a
structure of an n-valued ÃLukasiewicz-Moisil algebra (see [16, 3]). For n = 3
and n = 4, the converse is also true: MV3-algebras and MV4-algebras are
termwise equivalent to Moisil’s three-valued and four-valued ÃLukasiewicz
algebras, respectively [6, 3].

In the next lemma we collect, for further reference, some well known
properties of the operations σn

i , i = 1, . . . , n− 1.

Lemma 1.2. Let following properties hold in every A ∈MVn for each integer
n ≥ 2, where x, y denote arbitrary elements of A:

(i) x ∈ B(A) if and only if x = σn
i x for some 1 ≤ i ≤ n− 1 if and only if

x = σn
i x for all 1 ≤ i ≤ n− 1,

(ii) σn
i is a lattice homomorphism from A onto B(A), for each 1 ≤ i ≤ n−1,

(iii) σn
i σn

j x = σn
j x for all 1 ≤ i, j ≤ n− 1,

(iv) σn
1 x ≤ σn

2 x ≤ · · · ≤ σn
n−1,

(v) if σn
i x = σn

i y for i = 1, . . . , n− 1, then x = y. ¤

By a Boolean space we understand a totally disconnected compact Haus-
dorff topological space. As usual, a set that is simultaneously open and
closed is called clopen. The Boolean algebra of clopen sets of a Boolean
space X will be denoted by Clop(X). The characteristic function of a set
S ⊂ X will be denoted by γS .

Given an integer n ≥ 1, Div(n) will denote the set of divisors of n, and
Div∗(n) the set of proper divisors of n, i. e., Div∗(n) = {d ∈ Div(n) : d < n}.
Both sets become distributive lattices under the divisibility order.

Given an integer n ≥ 2, an n-valued Boolean space is a pair 〈X, ρ〉, such
that X is a Boolean space and ρ is a meet-homomorphism from the lattice of
divisors of n−1 into the lattice of closed subsets of X, such that ρ(n−1) = X.

If the set Ln is equipped with the discrete topology, and (X, ρ) is an
n-valued Boolean space, then Cn(X, ρ) denotes the MVn-algebra formed by
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the continuous functions f from X into Ln such that f(ρ(d)) ⊆ Ld+1 for each
d ∈ Div∗(n − 1), with the algebraic operations defined pointwise. Clearly,
the correspondence U 7→ γU defines an isomorphism from Clop(X) onto
B(Cn(X, ρ)).

By a filter of an algebra A ∈MVn we understand a filter of the underlying
lattice of A.2

Lemma 1.3. The prime filters of A = Cn(X, ρ) are of the form

P i
x = {f ∈ A : f(x) ≥ i

n− 1
}

for each x ∈ X and i = 1, . . . , n− 1.

Proof. It is clear that P i
x is a prime filter for each x ∈ X and each 1 ≤ i ≤

n− 1, and that P i
x ⊆ P j

x for 1 ≤ j ≤ i ≤ n− 1. To prove that they are the
only prime filters of A, we shall prove first the following:
Claim: If F is a proper filter of A, then there is z ∈ X such that f(z) > 0
for all f ∈ F .

To prove the claim, we use a standard argument: suppose that for each
x ∈ X there is a function fx ∈ F such that fx(x) = 0. By continuity,
Ux = f−1

x ({0}) is clopen, and by compactness, there are x1, . . . , xn in X
such that X = Ux1 ∪ · · · ∪ Uxn . Hence 0 = fx1 ∧ · · · ∧ fxn ∈ F , and F is not
proper. This contradiction proves the claim.

Let F be a prime filter of A. By the claim, there is a nonempty set
S ⊆ X such that f(s) > 0 for all s ∈ S and all f ∈ F . If there were two
elements u, v ∈ S, u 6= v, then there would be a clopen U such that u ∈ U
and v ∈ V = X \ U . Then γU ∨ γV ∈ F , γU 6∈ F and γV 6∈ F , and F would
not be prime. Hence there is x ∈ X and 1 ≤ i ≤ n−1 such that F = P i

x.

Remark 1.4. Note that the filters of the form Pn−1
x are the minimal prime

filters of Cn(X, ρ), and those of the form P 1
x are the maximal filters. More-

over, P 1
x = ϕ(Pn−1

x ), where ϕ is the Bialinycki-Birula and Rasiowa transfor-
mation defined on prime filters of a De Morgan algebra by the prescription
ϕ(P ) = A \ ¬P (see [2] or [23]). Finally, observe that ρ(1) = {x ∈ X : P 1

x =
Pn−1

x }.
Since the varietyMVn is generated by the algebra Ln, which is a semipri-

mal algebra,3 the next theorem follows at once from [13, Theorem 6.5] (cf
[7, 22]). For the sake of completeness, we shall give a simple direct proof,

2Notice that the lattice filters we are considering in this paper are not congruence filters
of the corresponding MV-algebra.

3τ(x, y, z) = ((σn
1 ((x → y) ∧ (y → x)) ∧ z) ∨ (¬σn

1 ((x → y) ∧ (z → x)) ∧ x), where →
denotes ÃLukasiewicz implication, is a discriminator term for Ln.
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which gives an explicit description of the spaces X(A) and the meet homo-
morphism ρA in terms of the elements of A, as well as an explicit construction
of an isomorphism αA from A onto Cn(X(A), ρA)).

Theorem 1.5. For each A ∈ MVn , there is a Boolean space X(A) and a
meet homomorphism ρA from Div(n− 1) into the lattice of closed subsets of
X(A), satisfying ρA(n−1) = X(A), such that A ∼= Cn(X(A), ρA). Moreover,
X(A) is isomorphic to the Stone space of the Boolean algebra B(A).

Proof. Given A ∈ MVn, let X(A) be the set of all homomorphisms
χ : A → Ln. Accordingly, X(B(A)) denotes the set of all homomorphisms
χ : B(A) → L2. It is well known that the map χ 7→ χ−1({1}) ∩ B(A) is a
one-one correspondence between X(A) and the set of prime filters of B(A).
Therefore, if for each χ ∈ X(A), we let ϕA(χ) denote the restriction of χ to
B(A), then we obtain a bijective map ϕA from X(A) onto X(B(A)).

X(A) becomes a Boolean space with the topology inherited from the
product space (Ln)A, where Ln is equipped with the discrete topology. The
sets Wa,j = {χ ∈ X(A) : χ(a) = j

n−1}, for a ∈ A and 0 ≤ j ≤ n − 1 form
a subbasis for this topology. Notice that X(B(A)) coincides with the Stone
space of the Boolean algebra B(A). We have that ϕA : X(A) → X(B(A)) is
a homeomorphism. Indeed, since ϕA(χ)(b) = χ(b) for all χ ∈ X(A) and all
b ∈ B(A), the inverse image of a clopen subset X(B(A)) is clopen in X(A).
Therefore ϕA is continuous, and a continuous bijection between compact
Hausdorff spaces is a homeomorphism.

To each a ∈ A, associate the function â : X(A) → Ln defined by â(χ) =
χ(a) for all χ ∈ X(A). By the definition of the topologies in X(A) and in
Ln, â is continuous. For each d ∈ Div(n − 1), let ρA(d) = {χ ∈ X(A) :
χ(A) ⊆ Ld+1}. Since ρA(d) =

⋂
a∈A â−1(Ld+1), and Ld+1 is a clopen subset

of Ln, the continuity of the functions â for a ∈ A implies that ρA(d) is a
closed subset of X(A). Clearly ρA(n − 1) = X(A), and it easy to check
that ρA is a meet homomorphism from Div(n− 1) into the lattice of closed
subsets of X(A). Taking into account that the operations in Cn(X(A), ρA)
are defined pointwise, we have that the correspondence a 7→ â defines an
injective homomorphism αA : A → Cn(X(A), ρA).

To complete the proof we have to show that αA is surjective. We start
by showing that for each U ∈ Clop(X(A)), there is b ∈ B(A) such that
b̂ = γU . Indeed, since X(B(A)) is the Stone space of the Boolean algebra
B(A), there is b ∈ B(A) such that for each χ ∈ X(B(A)), γϕ−1

A (U)(χ) = χ(b).

Hence γU (ϕA(χ)) = b̂(ϕ(χ)) for all χ ∈ X(B(A)), and since ϕA is surjective,
we have that γU = b̂.
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Let f ∈ Cn(X(A), ρA), and suppose that the clopen set Uj =
f−1({ j

n−1}) 6= ∅. From the definition of the closed sets ρA(d), d ∈ Div(n−1),
we have that for each χ ∈ X(A), f(χ) ∈ χ(A) ⊆ Ln. Hence for each ξ ∈ Uj

there is aξ ∈ A such that âξ(ξ) = f(ξ) = j
n−1 . By continuity, there is a

clopen Vξ such that χ ∈ Vξ ⊆ Uj and âξ(χ) = f(χ) for all χ ∈ Vξ. Let
bξ ∈ B(A) be such that b̂ξ = γVξ

and let cξ = aξ ∧ bξ. Hence ĉξ(χ) = f(χ)
for χ ∈ Vξ and ĉξ(χ) = 0 for χ 6∈ Vξ. By compactness there are ξ1, . . . , ξn in
Uj such that Uj = Vξ1 ∪ · · · ∪ Vξn . Then cj = cξ1 ∨ · · · ∨ cξn ∈ A and ĉj = f
on Uj and ĉj is 0 outside Uj . Taking as c the join of the cj such that Uj 6= ∅,
we have that ĉ(χ) = f(χ) for all χ ∈ X(A). Therefore αA is surjective.

Corollary 1.6. For each A ∈ MVn, we have that A is a Boolean algebra
if and only if ρA(1) = X(A), and that A is a Post algebra of order n if and
only if ρA(d) = ∅ for each d ∈ Div∗(n− 1).

2. Subalgebras of Cn(X, ρ)

Unless otherwise specified, through this section, A will denote the MVn-
algebra Cn(X, ρ), where X is a Boolean space, and ρ is a meet-homomor-
phism from Div(n − 1) into the lattice of closed subsets of X, such that
ρ(n− 1) = X.

For each subalgebra S of A let ≡S be the equivalence relation defined on
X by the prescription x ≡S y if and only if f(x) = f(y) for all f ∈ S.

Let Π(S) be the partition of X determined by the equivalence classes
of ≡S , and for each d ∈ Div(n − 1), let Γd(S) = {α ∈ Π(S) : f(α) ⊆
Ld+1 for all f ∈ S}. It follows from the definition of ≡S that f is constant
on each block α ∈ Π(S), for every f ∈ S. Hence if α ∈ Π(S) and α∩ρ(d) 6= ∅,
then α ∈ Γd(S).

We say that a subset Z ⊆ X is S-saturated provided that whenever x ∈ Z
and y ≡S x imply y ∈ Z. In other words, Z is S-saturated if and only if Z
is a union of equivalence classes of ≡S .

For each subalgebra S of A, we have that B(S) = S ∩ B(A). Moreover
the set of all U ∈ Clop(X) such that γU ∈ S form a subalgebra ClopS(X) of
Clop(X), which is isomorphic to B(S).

Lemma 2.1. Let S be a subalgebra of A. A clopen U belongs to ClopS(X) if
and only if U is S-saturated.

Proof. It is obvious that γU ∈ S implies that U is S-saturated. To prove
the converse, suppose that γU 6∈ ClopS(X), and let F = {V ∈ ClopS(X) :
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U ⊂ V }. If V1, . . . , Vk are in F , then V1 ∩ · · · ∩ Vk ∩ X \ U 6= ∅, because
otherwise we should have U ⊆ V1∪· · ·∪Vk ⊆ U , contradicting the hypothesis
that U 6∈ ClopS(X). Hence F ∪ {X \ U}, being a family of clopen sets
with the finite intersection property, has a nonempty intersection. Let v ∈
(X \ U) ∩ ⋂

V ∈F V . Let J = {W ∈ ClopS(X) : v 6∈ W}. We have that
for W1, . . . , Wn ∈ F , U ∩ X \ (W1 ∪ . . . ∪ Wn) 6= ∅, because otherwise
W1 ∪ . . . ∪Wn ∈ F ∩ J , which is impossible because F ∩ J = ∅. Therefore
the family formed by the complements of the sets in J together with U has
the finite intersection property. Let u ∈ U ∩⋂

W∈J(X \W ). Since for each
V ∈ ClopS , u ∈ V if and only if v ∈ V , it follows that f(u) = f(v) for all
f ∈ B(S). Since for each f ∈ S, σn

i f ∈ B(S), we have that σn
i f(u) = σn

i f(v)
for i = 1, . . . , n − 1. Hence by (v) in Lemma 1.2, f(u) = f(v). Therefore
u ≡S v, u ∈ U and v 6∈ U , which shows that U is not S-saturated.

Theorem 2.2. Let S be a subalgebra of A. If a function f ∈ A satisfies the
conditions

(i) f is constant on each α ∈ Π(S), and

(ii) f(α) ⊆ Ld+1 for each α ∈ Γd(S),

then f ∈ S.

Proof. For each z ∈ X let αz be the only block of Π(S) such that z ∈ αz,
and let d be the smallest divisor of n− 1 such that f(z) ∈ Ld+1. Condition
(ii) implies that αz ∈ Γjd(S) for some 1 ≤ j ≤ n−1

d . Then there is fz ∈ S
such that fz(z) = f(z).

Suppose f(z) = fz(z) = r ∈ Ljd, and let Uz = f−1
z ({r}) ∩ f−1({r}).

Clearly Uz is clopen. We claim that it is saturated. By the definition of
Π(S) and condition (i), we have that αz ⊆ Uz and f(x) = fz(x) for all
x ∈ αz. Let s ∈ Uz \ αz. If t ∈ αs, then fz(t) = fz(s) = r = f(s), and by
(i), f(t) = f(s). This proves our claim, and we have that fz(x) = f(x) for
all x ∈ Uz.

Since {Uz}z∈X is an open covering of X, by compactness there are points
z1, . . . , zn such that X = Uz1 ∪ · · · ∪Uzn . By Lemma 2.1, gi = fzi ∧γUzi

∈ S,
therefore f = g1 ∨ · · · ∨ gn ∈ S.

Given d1, . . . , dk ∈ Div∗(n − 1) and subsets W1, . . . , Wk of X such that
Wi ∩ ρ(di) = ∅, let S(W1, d1, . . . , Wk, dk) = {f ∈ A : f(Wi) ⊆ Ldi+1, i =
1, . . . , k}. It is clear that S(W1, d1, . . . , Wk, dk) is a proper subalgebra of A
that contains B(A). When k = 1 and W1 = {w}, we write S(w, d) instead
of S({w}, d).



Maximal Subalgebras of MVn-algebras. . . . 423

Corollary 2.3. The following are equivalent conditions for each subalgebra
S of A:

(i) B(A) ⊆ S,

(ii) S is separating, i. e., given different elements x, y in X there is f ∈ S
such that f(x) 6= f(y),

(iii) all the blocks in Π(S) are singletons,

(iv) S = S(W1, d1, . . . , Wk, dk) for some d1, . . . , dk ∈ Div∗(n− 1) and some
subsets W1, . . . , Wk of X, k ≥ 1.

Proof. Given x 6= y in X, there is an U ∈ Clop(X) such that γU (x) 6=
γU (y). Hence (i) implies (ii). It is obvious that (ii) implies (iii). Suppose that
(iii) holds, and let d1, . . . , dk be the proper divisors of n−1 such that Γdi(S) 6=
∅, and let Wi be the union of all singletons {w} ∈ Γdi(S) such that w 6∈ ρ(di).
It follows from Theorem 2.2 that S = S(W1, d1, . . . , Wk, dk). Therefore (iii)
implies (iv), and we have already observed that (iv) implies (i).

If S, T are subalgebras of A such that S ⊆ T , then x ≡T y implies x ≡S y
for all x, y ∈ X, and consequently Π(T ) is a refinement of Π(S), that is, each
element of Π(S) is a union of elements of Π(T ). Moreover, if α ∈ Γd(T ) and
α ⊆ β ∈ Π(S), then β ∈ Γd(S). The next corollary is an easy consequence
of these remarks and Corollary 2.3.

Corollary 2.4. The maximal subalgebras of A containing B(A) are the
subalgebras S(w, d), for d a coatom of Div(n− 1) and z 6∈ ρ(d). ¤

Given a set W ⊆ X with card(W ) ≥ 2, where card(W ) denotes the
cardinal of W , define

SW = {f ∈ A : f(s) = f(t) for all (s, t) ∈ W ×W}.

Clearly, SW is a non-separating subalgebra of A, and if x, y are in W , x 6= y,
then SW ⊆ S{x,y}.

Theorem 2.5. The maximal subalgebras of A not containing B(A) are the
subalgebras S{s,t}, with {s, t} ⊆ ρ(d) or {s, t} ∩ ρ(d) = ∅, for each d ∈
Div∗(n− 1).

Proof. Let S be a maximal subalgebra of A = Cn(X, ρ) such that B(A) 6⊆
S. Since B(A) * S, by Corollary 2.3 S is not separating, hence there is
W ⊆ X with at least two elements x, y such that S ⊆ SW . The maximality
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of S implies that S = SW and that W = {x, y}. Suppose (absurdum
hypothesis) that x ∈ ρ(d) and y 6∈ ρ(d). Then we would have S = S(y, d) =
{f ∈ A : f(y) ∈ Ld+1}, and B(A) ⊆ S, a contradiction. Hence x and y are
both in ρ(d) or are both in X \ ρ(d). To prove the converse, let S = S{s,t},
with s, t both in ρ(d) or both in X \ ρ(d), for each d ∈ Div∗(n − 1). We
have that the only non-singleton block of Π(A) is {s, t}. Suppose that T is
a subalgebra of A such that S & T . Since Π(T ) is a refinement of Π(S), all
the blocks of Π(T ) are singletons. If f(x) ∈ Ld+1 for all f ∈ T , then we
also have that f(x) ∈ Ld+1 for all f ∈ S, and by the hypothesis on s, t, this
implies that x ∈ ρ(d). Hence Γd(T ) is the set of singletons {y}, for y ∈ ρ(d)
for all d ∈ Div∗(n − 1). Therefore, taking into account Theorem 2.2, we
conclude that T = A. Consequently, S = S{s,t} is maximal.

3. Subalgebras of MVn-algebras

The next theorem generalizes a result of Sachs [25] for Boolean algebras:

Theorem 3.1. Every proper subalgebra of an MVn-algebra A is an intersec-
tion of maximal subalgebras.

Proof. By Theorem 1.5 we can assume that A = Cn(X(A), ρA). Let S be
a proper subalgebra of A, and suppose that f ∈ A\S. Then by Theorem 2.2
we have two possible cases:
Case 1: f is non-constant on some α ∈ Π(S), or
Case 2: f is constant on all α ∈ Π(S), but there is d ∈ Div∗(n − 1) and
α ∈ Γ(S) so that f(α) * Ld+1.

In Case 1, there are x, y ∈ α such that f(x) 6= f(y). Hence f 6∈ S{x,y},
and S ⊆ S{x,y}.

In Case 2, there is z ∈ α such that f(z) 6∈ Ld+1. Since f ∈ A, this implies
that z 6∈ ρ(d). Therefore f 6∈ S(z, d), and S ⊆ S(z, d).

Since in all possible cases we have found a maximal subalgebra M such
that f 6∈ M and S ⊆ M , we conclude that S is an intersection of maximal
subalgebras of A.

For n = 3 and n = 4, the “if” part of the next theorem was proved in
[12] by quite different methods, and in that paper was also left open the
question of the validity of the “only if” part for these values of n.

With the notations of Remark 1.4, we have:

Theorem 3.2. Let A ∈ MVn, with n − 1 a prime. Then S ⊆ A is the
universe of a maximal subalgebra of A containing B(A) if and only if there
is a minimal prime filter P of A such that P & ϕ(P ) and S = P ∪ ¬P .
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Proof. Since n− 1 is a prime number, then the only proper subalgebra of
Ln is B(Ln) = L2. By Theorem 1.5, A ∼= Cn(X, ρ), with X = X(A) and
ρ = ρA. With the notation of Lemma 1.3, we have that for each x ∈ X \ρ(1),
Sx = Pn−1

x ∪¬Pn−1
x , where Pn−1

x & P 1
x = ϕ(Pn−1

x ) (see Remark 1.4). Hence
the result follows from Corollary 2.4.

From Theorems 3.1 and 3.2 we obtain:

Corollary 3.3. Let A ∈ MVn, with n − 1 a prime. Then S ⊆ A is the
universe of a proper subalgebra of A containing B(A) if and only if S is an
intersection of maximal subalgebras of the form P ∪ ¬P , for P a minimal
prime filter of A such that P & ϕ(P ) . ¤

Theorem 3.4. Let A ∈ MV3. Then S ⊆ A is the universe of a maximal
subalgebra of A such that B(A) " S, if and only if there are two prime filters
P1, P2 of A such that P1 6= P2, Pi ⊆ ϕ(Pi) for i = 1, 2, and

S = (P1 ∩ P2) ∪ ((ϕ(P1) \ P1) ∩ (ϕ(P2) \ P2)) ∪ (¬P1 ∩ ¬P2). (3.3)

Moreover P1 = ϕ(P1) if and only if P2 = ϕ(P2).

Proof. By Theorem 1.5, A ∼= C3(X, ρ), with X = X(A) and ρ = ρA. By
Theorem 2.5, S is the universe of a maximal subalgebra of A not containing
B(A) if and only if there are two points, x1, x2 in X such that x1 6= x2 and
S = S{x1,x2}. By Lemma 1.3, P 2

x1
and P 2

x2
are different minimal prime filters

of A. By Remark 1.4, ϕ(P 2
xi

) = P 1
xi

. Note that P 2
x1

= ϕ(P 2
x1

) if and only
if x1 ∈ ρA(1). But in the light of Theorem 2.5, this happens if and only if
x2 ∈ ρA(1), i. e., if and only if P 2

x2
= ϕ(P 2

x2
). Since f ∈ P 2

x1
∩ P 2

x2
if and

only if f(x1) = f(x2) = 1, f ∈ (ϕ(P 2
x1

) \ P 2
x1

) ∩ (ϕ(P 2
x2

) \ P 2
x2

) if and only if
f(x1) = f(x2) = 1

2 , f ∈ ¬P 2
x1
∩ ¬P 2

x2
if and only if f(x1) = f(x2) = 0, and

S = S{x1,x2}, we have the equality (3.3).

Let A ∈ MV3. Maximal subalgebras of A of the form P ∪ ¬P , with P
as in Theorem 3.2, are called of type I. Those of the form given by (3.3) in
Theorem 3.4 will be called of type II when Pi 6= ϕ(Pi), and of type III, when
Pi = ϕ(Pi), i = 1, 2.

The next corollary, which proves the conjecture of A. Monteiro mentioned
in the Introduction, is an immediate consequence of Theorems 3.2 and 3.4.

Corollary 3.5. The maximal subalgebras of a MV3-algebra are of type I,
II or III. ¤
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Since for each prime filter P of a Boolean algebra ϕ(P ) = P , we obtain
the following result of Sachs [25] for Boolean algebras:

Corollary 3.6. The maximal subalgebras of a Boolean algebra are of type
III. ¤

Taking into account Corollary 1.6 and the fact that all prime filters of a
Post algebra of order three satisfy that P & ϕ(P ) [1, 3], we have:

Corollary 3.7. The maximal subalgebras of a Post algebra of order three
are of type I or III. ¤

If A is a finite algebra inMV3, then X(A) is a finite set endowed with the
discrete topology, and ρA(1) is a subset of X(A). Hence A = Lm

2 × Ln−m
3 ,

where n = card(X(A)) and m = card(ρA(1)). This shows that isomorphism
classes of MV3-algebras are in one to one correspondence with the pairs of
integers (n,m) such that n ≥ 1 and 0 ≤ m ≤ n. The pairs (n, 0) correspond
to Post algebras, and the pairs (n, n) corresponds to Boolean algebras.

If p, q are nonnegative integers, we put
(
p
q

)
= p !

q!(p−q)! if p ≥ q, and
(
p
q

)
= 0

if p < q. With these notations we have:

Corollary 3.8. Let A be a finite MV3-algebra characterized, up to isomor-
phisms, by the pair (n,m). Then A has (n−m) maximal subalgebras of type
I,

(
n−m

2

)
of type II, and

(
m
2

)
of type III. ¤
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Sect. I, Math., 26:431–466, 1940. Reproduced in [16, pp. 195–219].

[16] Moisil, G., Essays sur les Logiques Nonchrysippiènnes, Editions de l’Academie de
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