Skip to main content
Log in

Constructive Logic with Strong Negation is a Substructural Logic. I

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL ew of the substructural logic FL ew . In this paper, it is shown that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFL ew (namely, a certain variety of FL ew -algebras) are term equivalent. This answers a longstanding question of Nelson [30]. Extensive use is made of the automated theorem-prover Prover9 in order to establish the result.

The main result of this paper is exploited in Part II of this series [40] to show that the deductive systems N and NFL ew are definitionally equivalent, and hence that constructive logic with strong negation is a substructural logic over FL ew .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balbes R., Dwinger P. (1974). Distributive Lattices. University of Missouri Press, Columbia

    Google Scholar 

  2. Bignall, R. J., and M. Spinks, ‘On binary discriminator varieties, I: Implicative BCS-algebras’, International Journal of Algebra and Computation, To appear.

  3. Blok,W. J., and D. Pigozzi, ‘Abstract Algebraic Logic and the Deduction Theorem’, Manuscript, 2001.

  4. Blok W.J., Raftery J.G. (1995). ‘On the quasivariety of BCK-algebras and its subvarieties’. Algebra Universalis 33, 68–90

    Article  Google Scholar 

  5. Blok W.J., Raftery J.G. (1997). ‘Varieties of commutative residuated integral pomonoids and their residuation subreducts’. Journal of Algebra 190, 280– 328

    Article  Google Scholar 

  6. Blount K., Tsinakis C. (2003). ‘The structure of residuated lattices’. International Journal of Algebra and Computation 13, 437–461

    Article  Google Scholar 

  7. Brignole D. (1963). ‘Axiomatización de un N-reticulado’. Revista de la Union Matemática Argentina XXI, 147–148

    Google Scholar 

  8. Brignole D. (1969). ‘Equational characterisation of Nelson algebra’. Notre Dame Journal of Formal Logic 10, 285–297

    Article  Google Scholar 

  9. Busaniche, M. and R. Cignoli, ‘Constructive logic with strong negation as a substructural logic’, Submitted, 2007.

  10. Burris, S., and H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, no. 78, Springer-Verlag, New York, 1981.

  11. Castiglioni, J. L., M. Menni, and M. Sagastume, ‘On some categories of involutive centered residuated lattices’, Submitted, 2007.

  12. Chajda I., Halaš R. (2002). ‘Algebraic properties of pre-logics’. Mathematica Slovaca 52, 157–175

    Google Scholar 

  13. Chajda I., Halaš R., Rosenberg I.G. (1999). ‘Ideals and the binary discriminator in universal algebra’. Algebra Universalis 42, 239–251

    Article  Google Scholar 

  14. Cignoli R. (1986). ‘The class of Kleene algebras satisfying an interpolation property and Nelson algebras’. Algebra Universalis 23, 262–292

    Article  Google Scholar 

  15. Cornish W.H. (1980). ‘Varieties generated by finite BCK-algebras’. Bulletin of the Australian Mathematical Society 22, 411–430

    Article  Google Scholar 

  16. Cornish, W. H., ‘On Iséki’s BCK-algebras’, in P. Schultz, C. E. Praeger, and R. P. Sullivan (eds.), Algebraic Structures and Applications: Proceedings of the First Western Australian Conference on Algebra, Lecture Notes in Pure and Applied Mathematics, no. 74, Marcel Dekker, New York, 1982, pp. 101–122.

  17. Czelakowski J., Pigozzi D. (2004). ‘Fregean logics’. Annals of Pure and Applied Logic 127, 17–76

    Article  Google Scholar 

  18. Figallo A. (1989). ‘Notes on generalized N-lattices’. Revista de la Union Matemática Argentina 35, 61–66

    Google Scholar 

  19. Galatos N., Ono H. (2006). ‘Algebraization, parameterized local deduction theorem and interpolation for substructural logics over FL’. Studia Logica 83, 279–308

    Article  Google Scholar 

  20. Gyuris, V., ‘Variations of Algebraizability’, Ph. D. thesis, The University of Illinois at Chicago, 1999.

  21. Hart J.B., Rafter L., Tsinakis C. (2002). ‘The structure of commutative residuated lattices’. International Journal of Algebra and Computation 12, 509–524

    Article  Google Scholar 

  22. Higgs D. (1984). ‘Residuated commutative monoids with identity element as least element do not form an equational class’. Mathematica Japonica 29, 69–75

    Google Scholar 

  23. Hong S.M., Jun Y.B., Öztürk M.A. (2003). ‘Generalisations of BCK-algebras’. Scientiae Mathematica Japonica 58, 603–611

    Google Scholar 

  24. Idziak P. (1984). ‘Lattice operations in BCK-algebras’. Mathematica Japonica 29, 839–846

    Google Scholar 

  25. Iséki K., Tanaka S. (1978). ‘An introduction to the theory of BCK-algebras’. Mathematica Japonica 23, 1–26

    Google Scholar 

  26. Kowalski, T., and H. Ono, ‘Residuated Lattices: An Algebraic Glimpse at Logics without Contraction’, Manuscript, 2000, 67 pp.

  27. McCune, W., Prover 9, http://www.cs.unm.edu/~mccune/prover9, 2007.

  28. McCune, W., and R. Padmanabhan, Automated Deduction in Equational Logic and Cubic Curves, Lecture Notes in Computer Science (AI subseries), Springer-Verlag, Berlin, 1996.

  29. Nelson, D., ‘Negation and the separation of concepts in constructive systems’, in Constructivity in Mathematics: Proceedings of a conference held at Amsterdam 1957, North-Holland, Amsterdam, 1959, pp. 208–225.

  30. Nelson, D., Review of ‘Caractérisation des algèbres de Nelson par des égalités’, Notas de lógica matematica, no. 20, Instituto de Mathematica, Universidad Nacional del Sur, Bahía Blanca (1964), in Journal of Symbolic Logic 34 (1969), 119.

  31. Ono H., Komori Y. (1985). ‘Logics without the contraction rule’. Journal of Symbolic Logic 50: 169–201

    Article  Google Scholar 

  32. Ono, H., ‘Logics without contraction rule and residuated lattices I’, To appear in Festschrift of Prof. R. K. Meyer.

  33. Ono, H., ‘Substructural logics and residuated lattices—an introduction’, in Trends in Logic: 50 Years of Studia Logica, Kluwer Academic Publishers, Dordrecht, 2003, pp. 193–228.

  34. Patterson, A., ‘A logical treatment of constructive duality’, Manuscript, 1998.

  35. Rasiowa, H., An Algebraic Approach to Non-Classical Logics, Studies in Logic and the Foundations of Mathematics, no. 78, North-Holland Publishing Company, Amsterdam, 1974.

  36. Schroeder-Heister, P., and Došen, K. (eds.), Substructural Logics, Oxford University Press, 1993.

  37. Sendlewski A. (1984). ‘Some investigations of varieties of \({\mathcal{N}}\) -lattices’. Studia Logica 43, 257–280

    Article  Google Scholar 

  38. Spinks M. (2004). ‘Ternary and quaternary deductive terms for Nelson algebras’. Algebra Universalis 51, 125–136

    Article  Google Scholar 

  39. Spinks, M., R. J. Bignall, and R. Veroff, ‘On the poset structure of n-potent right ideal commutative BCK-algebras’, In preparation, 2008.

  40. Spinks, M. and R. Veroff, ‘Constructive logic with strong negation is a substructural logic, II’, Studia Logica, To appear.

  41. Spinks, M. and R. Veroff, Constructive logic with strong negation is a substructural logic, I and II: Web support. http://www.cs.unm.edu/~veroff/CLSN, 2008.

  42. Spinks M., Veroff R. (2007). ‘Characterisations of Nelson algebras’. Revista de la Union Mathemática Argentina 48, 27–39

    Google Scholar 

  43. Thomason R.H. (1969). ‘A semantical study of constructible falsity’. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 15, 247–257

    Article  Google Scholar 

  44. Vakarelov D. (1977). ‘Notes on N-lattices and constructive logic with strong negation’. Studia Logica 36: 109–125

    Article  Google Scholar 

  45. van Alten, C. J., and J. G. Raftery, ‘On the lattice of varieties of residuation algebras’, Algebra Universalis (1999), 283–315.

  46. van Alten C.J., Raftery J.G. (2004). ‘Rule separation and embedding theorems for logics without weakening’. Studia Logica 76, 241–274

    Article  Google Scholar 

  47. Veroff R. (2001). ‘Solving open questions and other challenge problems using proof sketches’. Journal of Automated Reasoning 27, 157–174

    Article  Google Scholar 

  48. Viglizzo, I. D., ‘Algebras de Nelson’, Tesis de Magister en Matemática, Universidad Nacional del Sur, Bahía Blanca, 1999.

  49. Wójcicki, R., Theory of Logical Calculi, Synthese Library, no. 199, Kluwer Academic Publishers, Dordrecht, 1988.

  50. Wroński A. (1983). ‘BCK-algebras do not form a variety’. Mathematica Japonica 28, 211–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Spinks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spinks, M., Veroff, R. Constructive Logic with Strong Negation is a Substructural Logic. I. Stud Logica 88, 325–348 (2008). https://doi.org/10.1007/s11225-008-9113-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-008-9113-x

Keywords

Navigation