Skip to main content
Log in

Infinitary Action Logic: Complexity, Models and Grammars

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Action logic of Pratt [21] can be presented as Full Lambek Calculus FL [14, 17] enriched with Kleene star *; it is equivalent to the equational theory of residuated Kleene algebras (lattices). Some results on axiom systems, complexity and models of this logic were obtained in [4, 3, 18]. Here we prove a stronger form of *-elimination for the logic of *-continuous action lattices and the \({\Pi_{1}^{0}}\) –completeness of the equational theories of action lattices of subsets of a finite monoid and action lattices of binary relations on a finite universe. We also discuss possible applications in linguistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar-Hillel Y., Gaifman C. and Shamir E. (1960). ‘On categorial and phrase structure grammars’. Bull. Res. Council Israel F9: 155–166

    Google Scholar 

  2. Buszkowski W. (1997) ‘Mathematical Linguistics and Proof Theory’. In: van Benthem J., ter Meulen A. (eds). Handbook of Logic and Language. Elsevier, The MIT Press, Amsterdam, Cambridge MA., pp. 683–736

  3. Buszkowski, W., ‘On the complexity of the equational theory of relational action algebras’, in R. Schmidt (ed.), Relations and Kleene Algebra in Computer Science, LNCS 4136, 2006, pp. 106–119.

  4. Buszkowski W. (2007). ‘On action logic: Equational theories of action algebras’. Journal of Logic and Computation 17.1: 199–217

    Google Scholar 

  5. Dunn J.M. (1973). ‘A “Gentzen system” for positive relevant implication’ (abstract). Journal of Symbolic Logic 38: 356–357

    Google Scholar 

  6. Dunn, J.M., ‘Relevance Logic and Entailment’, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. III, D. Reidel, Dordrecht, 1986, pp. 117–224.

  7. Hardin, C., and D. Kozen, ‘On the complexity of the Horn theory of REL’, manuscript, Cornell University, 2003.

  8. Hoare C., Jifeng H. ‘The weakest prespecification’, Fundamenta Informaticae 9 (1986), 51–84, 217–252

  9. Jipsen P. (2004). ‘From semirings to residuated Kleene algebras’. Studia Logica 76: 291–303

    Article  Google Scholar 

  10. Kozen, D., ‘On Kleene algebras and closed semirings’, Proc. of MFCS 1990, LNCS 452, 1990, pp. 26–47.

  11. Kozen D. (1994). ‘A completeness theorem for Kleene algebras and the algebra of regular events’. Information and Computation 110(2): 366–390

    Article  Google Scholar 

  12. Kozen D. (2002). ‘On the complexity of reasoning in Kleene algebra’. Information and Computation 179: 152–162

    Article  Google Scholar 

  13. Kozen, D., and F. Smith, ‘Kleene algebra with tests: Completeness and decidability’, in D. van Dalen and M. Bezem (eds.), Proc. 10th Int. Workshop Computer Science Logic (CSL’96), LNCS 1258, Springer, 1996, pp. 244–259.

  14. Lambek J. (1958). ‘The mathematics of sentence structure’. American Mathematical Monthly 65: 154–170

    Article  Google Scholar 

  15. Mints G. (1976). ‘Cut Elimination Theorem in Relevant Logics’. Journal of Mathematical Sciences 6: 422–428

    Google Scholar 

  16. Moortgat, M., ‘Categorial Type Logics’, in J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier, The MIT Press, Amsterdam, Cambridge MA, 1997, pp. 93–177.

  17. Ono H. (1993) ‘Semantics of substructural logics’. In: Schroeder-Heister P., Dosen K. (eds). Substructural Logics. Clarendon Press, Oxford, pp. 259–291

  18. Palka E. (2007). ‘An infinitary sequent system for the equational theory of *-continuous action lattices’. Fundamenta Informaticae 78.2: 295–309

    Google Scholar 

  19. Palka, E., Logical systems for Kleene algebras and action algebras, PhD Thesis, 2007. In Polish, unpublished.

  20. Pentus M. (2006). ‘Lambek calculus is NP-complete’. Theoretical Computer Science 357: 186–201

    Article  Google Scholar 

  21. Pratt, V., ‘Action logic and pure induction’, in J. van Eijck (ed.), Logics in AI, LNAI 478, 1991, pp. 97–120.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Buszkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buszkowski, W., Palka, E. Infinitary Action Logic: Complexity, Models and Grammars. Stud Logica 89, 1–18 (2008). https://doi.org/10.1007/s11225-008-9116-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-008-9116-7

Keywords

Navigation