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Abstract. The goal of this two-part series of papers is to show that constructive

logic with strong negation N is definitionally equivalent to a certain axiomatic extension

NFLew of the substructural logic FLew. The main result of Part I of this series [41] shows

that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and

the equivalent variety semantics of NFLew (namely, a certain variety of FLew-algebras)

are term equivalent. In this paper, the term equivalence result of Part I [41] is lifted to

the setting of deductive systems to establish the definitional equivalence of the logics N

and NFLew . It follows from the definitional equivalence of these systems that constructive

logic with strong negation is a substructural logic.
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1. Introduction

Let Σ[IPC] denote the Hilbert-style presentation of Blok and Pigozzi [6,
Example 2.2.2] of the intuitionistic propositional calculus IPC over the lan-
guage type Λ[IPC] := {∧,∨,→,¬,0,1}, where ∧,∨,→ are binary logical
connectives, ¬ is a unary logical connective, and 0 and 1 are nullary logical
connectives respectively. Constructive logic with strong negation, denoted N,
is the deductive system over the language type Λ[N] := Λ[IPC] ∪ {∼},
where ∼ is a unary logical connective (called the strong negation), deter-
mined by the axioms and inference rules of Σ[IPC] together with the axioms
[42]:

∼ p → (p → q) ∼(p ∨ q) ↔ (∼ p ∧∼ q)
∼(p → q) ↔ (p ∧∼ q) ∼(¬p) ↔ p
∼(p ∧ q) ↔ (∼ p ∨ ∼ q) ∼(∼ p) ↔ p.

(Here we are abbreviating (p → q)∧(q → p) by p ↔ q.) By [34, Chapter XII],
N is strongly and regularly algebraisable in the sense of [15]. The study of
constructive logic with strong negation has been pursued extensively in the
literature [34, 42, 37]; for a brief discussion and overview, see Wójcicki [47,
Section 5.3.0].
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Let FL denote the sequent system of Galatos et al. [19, Section 2.1.3],
over the language Λ[FL] := 〈∧,∨, ∗, \, /,0,1〉 of type 〈2, 2, 2, 2, 2, 0, 0〉, ob-
tained from the Gentzen sequent calculus LJ by deleting all the structural
rules together with the logical rules for implication, and then adding rules for
the division connectives \ and / and the fusion connective ∗.1 The full Lam-

bek calculus, also denoted FL, is the deductive system determined by the se-
quent system FL in the sense that for any set of formulas Γ∪{ϕ} ⊆ FmΛ[FL],

Γ �FL ϕ if and only if
{
(�ψ) : ψ ∈ Γ

}
�FL (�ϕ). (Here S′ �FL s if there is

a proof in FL of the sequent s from the set of sequents S′, while the auxil-
iary symbol � denotes the separator of an arbitrary sequent ψ1, . . . , ψn �ϕ.)
By [18, Theorem 3.2], FL is strongly algebraisable in the sense of [15]. For
studies of FL, see [30, 18, 19].

Let (e), (c), (i), and (o) denote the structural rules of exchange, con-
traction, left weakening, and right weakening respectively, as given in [19,
Section 2.1.1]. For S ⊆ {e, c, i, o}, let FLS denote the extension of FL ob-
tained by adjoining the structural rules {(s) : s ∈ S} to FL. (Following
the practice of [19], we abbreviate the combination {i, o} ⊆ S by w.) Recall
that, in the presence of the exchange rule, the formulas ϕ\ψ and ψ/ϕ are
provably equivalent (in the sense of [19, Section 2.1.2]) for all ϕ,ψ ∈ FmΛ[FL]

[19, Lemma 2.3]. When e ∈ S, therefore, we fix the language type of FLS as
{∧,∨, ∗,⇒,0,1}, where ⇒ is a binary logical connective. Thus the full Lam-

bek calculus with exchange and weakening, in symbols FLew, is the deductive
system over the language Λ[FLew] := 〈∧,∨, ∗,⇒,0,1〉 of type 〈2, 2, 2, 2, 0, 0〉
determined by the sequent system FLew (= FLeio).

2 By [18, Theorem 3.3,
Theorem 3.4] FLew is strongly and regularly algebraisable in the sense of [15].
For studies of FLew, see in particular [28, 23, 29, 30, 18, 19].

The aim of this two-part series of papers is to show that constructive logic
with strong negation is definitionally equivalent to the axiomatic extension
NFLew of the deductive system FLew by the axioms

∼∼ p ⇒ p (Double Negation)(
p ∧ (q ∨ r)

)
⇒

(
(p ∧ q) ∨ (p ∧ r)

)
(Distributivity)(

p ⇒ (p ⇒ (p ⇒ q))
)
⇒

(
p ⇒ (p ⇒ q)

)
(3-potency)(

(p ⇒ (p ⇒ q)) ∧ (∼ q ⇒ (∼ q ⇒ ∼ p))
)
⇒ (p ⇒ q) (Nelson).

1Following Girard [20], throughout this paper the structural rules comprise the ex-
change, (left, right) weakening, and contraction rules. In particular, neither identity nor
cut count as a structural rule.

2For a sequent system for FLew over the language type Λ[FLew] see Kowalski and Ono
[23, Section 1, p. 9].
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(Here we are abbreviating p ⇒ 0 by ∼ p.)
The proof of this result is in two parts, with one part per paper. In

Part I of this series [41] it was shown that the equivalent variety semantics
of N (namely, the variety N of Nelson algebras [34, Chapter V]) and the
equivalent variety semantics of NFLew (namely, a certain variety NFLew of
FLew-algebras) are term equivalent. For a précis of Part I [41], see Section 2.2
below. In this paper, we lift the term equivalence result of Part I [41] to the
setting of deductive systems to establish the definitional equivalence of the
logics N and NFLew. From the definitional equivalence of these systems we
obtain the desired corollary that constructive logic with strong negation is
a substructural logic.

The main result of this paper is

Theorem 1.1.

1. The map δ : Λ[FLew] → FmΛ[N] defined by

p ∧ q �→ p ∧ q

p ∨ q �→ p ∨ q

p ∗ q �→ ∼(p → ∼ q) ∨ ∼(q → ∼ p) (∗def)

p ⇒ q �→ (p → q) ∧ (∼ q → ∼ p) (⇒def)

0 �→ 0

1 �→ 1

is an interpretation of NFLew in N.

2. The map ε : Λ[N] → FmΛ[FLew] defined by

p ∧ q �→ p ∧ q

p ∨ q �→ p ∨ q

p → q �→ p ⇒ (p ⇒ q) (→def)

¬p �→ p ⇒ (p ⇒ 0) (¬def)

∼ p �→ p ⇒ 0 (∼def)

0 �→ 0

1 �→ 1

is an interpretation of N in NFLew.

3. The interpretations δ and ε are mutually inverse.

Hence the deductive systems N and NFLew are definitionally equivalent.
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A deductive system S over a language type Λ is said to be Fregean if the
relativised interderivability relation ��T

S (T a theory of S) is a congruence
relation on the formula algebra FmΛ. A logic S is said to be non-Fregean if it
is not Fregean. A substructural logic over FLS , S ⊆ {e, c, i, o}, is a deductive
system S that is definitionally equivalent to a non-Fregean extension of FLS.
For a justification of this definition, see Section 3 below.

The main result of this series of papers is

Theorem 1.2. Constructive logic with strong negation is a substructural

logic over FLew.

The following example illustrates Theorems 1.1 and 1.2.

Example 1.3. Classical constructive logic with strong negation, in symbols
Nc, is the axiomatic extension of N by the Peirce law

(
(p → q) → p

)
→ p.

Let Nc := {0, a, 1} and consider the operations ∧,∨,→,¬, and ∼ defined
on Nc by means of the following tables:

∧ 0 a 1

0 0 0 0
a 0 a a
1 0 a 1

∨ 0 a 1

0 0 a 1
a a a 1
1 1 1 1

→ 0 a 1

0 1 1 1
a 1 1 1
1 0 a 1

¬

0 1
a 1
1 0

∼

0 1
a a
1 0

By Rasiowa [34, Chapter V§3] the algebra Nc := 〈Nc;∧,∨,→,¬,∼, 0, 1〉
is, to within isomorphism, the unique 3-element Nelson algebra, and by a
well known observation of Vakarelov [42, Theorem 10], Nc is the deductive
system determined by the logical matrix

〈
Nc; {1

Nc}
〉
.

Let Nδ
c denote the {∧,∨, ∗,⇒, 0, 1}-term reduct of Nc, where δ is the

map of Theorem 1.1(1) above (more precisely, of Theorem 2.1(1) below). It
is readily verified that the operations of Nδ

c have tables:

∧ 0 a 1

0 0 0 0
a 0 a a
1 0 a 1

∨ 0 a 1

0 0 a 1
a a a 1
1 1 1 1

∗ 0 a 1

0 0 0 0
a 0 0 a
1 0 a 1

⇒ 0 a 1

0 1 1 1
a a 1 1
1 0 a 1

From direct inspection of these tables, it is easy to see that Nδ
c is term

equivalent to the unique (to within isomorphism) 3-element Wajsberg alge-
bra WA2 :=

〈
{0, a, 1};⇒,∼, 1

〉
. (For information about Wajsberg algebras,

see [5, Section 1, pp. 562–564].) It follows that Nc is definitionally equivalent
to the deductive system determined by the logical matrix 〈WA2; {1

WA2}〉,
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viz., the three-valued logic �L3 of �Lukasiewicz [24].3 This explains the well
known result of Vakarelov [42, Theorem 11] asserting that the axiomatic
expansion of classical propositional logic by strong negation is definitionally
equivalent to �L3.

4

The remainder of this paper is devoted to establishing Theorem 1.1. Af-
ter attending to numerous preliminaries in Section 2, we give necessary and
sufficient conditions in Section 3 for a deductive system to be a substruc-
tural logic over FLS (in the sense of this paper). Section 4 is devoted to
establishing a sufficient condition for two regularly algebraisable deductive
systems to be definitionally equivalent. This condition allows us to lift the
term equivalence result of Part I [41] directly to the setting of deductive sys-
tems in this paper. In Section 5 we present a Hilbert-style axiomatisation of
NFLew and combine the technical results of Section 4 with the main result
of Part I [41] to conclude that the deductive systems N and NFLew are def-
initionally equivalent. From the definitional equivalence of N and NFLew,
we finally obtain the desired corollary that constructive logic with strong
negation is a substructural logic.

All the proofs of Part I of this series [41], together with the proofs of two
lemmas of this paper (Lemmas 5.1 and 5.5), were obtained with the assis-
tance of the automated reasoning program Prover9 [26], using the method
of proof sketches [46]. Prover9 is a resolution-based theorem prover for
first-order logic with equality that has been shown to be particularly useful
in the investigation of (quasi-) equational theories where standard seman-
tic methods cannot readily be applied. For examples of the application of
automated reasoning to a wide range of problems in equational logic, see in
particular [25].

For the sake of completeness, the automated proofs for Lemmas 5.1
and 5.5 of this paper are included in Appendix A. The website accom-
panying this series [40] contains the full set of automated proofs supporting
both this work and Part I of this series [41].

2. Preliminaries

In this section we fix some terminology and notation that will be used
throughout this paper (Section 2.1); recapitulate the main result of Part I of

3By Blok and Pigozzi [5, Corollary 3.9], the variety generated by WA2 is a discriminator
variety. Hence, this example also clarifies the characterisation of discriminator varieties of
Nelson algebras given in [38, Corollary 5.3].

4This situation is called ‘strange’ by Vakarelov in [43, Section 1, p. 394].
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this series [41] (Section 2.2); describe the notion of definitional equivalence
exploited in this paper (Sections 2.3–2.4); and summarise some elements of
the theory of regularly algebraisable logics (Sections 2.5–2.6).

2.1. Terminology and notation

We adhere to the terminology and notation introduced in Part I of this series
[41]. In particular, X := {vi : i ∈ ω} is a countably infinite set of variables.
Generally we find it convenient to write p, q, r [resp. x, y, z] etc., possibly
with subscripts, as metavariables ranging over X in a logical [resp. algebraic]
context. As in Part I [41], for typographical convenience we often denote
the application of the function f to a by af . Given a set A, ℘(A) denotes
the power set of A.

Let Λ be a language type. A Λ-formula, or formula for short, is an
element of the universe FmΛ(X) of the absolutely free algebra FmΛ(X) of
type Λ generated by X. Occasionally we write formulas using Polish prefix
notation. We identify the n-ary logical connective c ∈ Λ with the formula
cFmΛ(v0, . . . , vn−1) [21, Section 1.1.3, p. 8]. A Λ-substitution, or more briefly
substitution, is an endomorphism of the formula algebra FmΛ(X). By the
freeness of FmΛ(X), we identify any substitution with its restriction to X.

Let K be a quasivariety and let A ∈ K. A K-congruence on A is any
congruence θ on A such that A/θ ∈ K. The set of all K-congruences on A is
denoted ConK A. For a, b ∈ A, ΘA

K
(a, b) denotes the principal K-congruence

on A generated by a, b. We drop all instances of the subscript when K is a
variety.

A constant term of a quasivariety K is a term t(x0, . . . , xn−1) in the lan-
guage of K having the property that K |= t(x0, . . . , xn−1) ≈ t(y0, . . . , yn−1),
where the y0, . . . , yn−1 are new variables distinct from x0, . . . , xn−1. K is
said to be pointed if it has a constant term. By [15, Section 1.5, p. 39] every
pointed quasivariety is term equivalent to a quasivariety over a language
type with a distinguished constant (i.e., nullary operation) symbol 1. In the
sequel we always distinguish a constant term in every pointed quasivariety
and assume that 1 denotes this distinguished constant term.

2.2. Nelson algebras and Nelson FLew-algebras

A Nelson algebra is an algebra 〈A;∧,∨,→,¬,∼, 0, 1〉 of type 〈2, 2, 2, 1, 1, 0, 0〉
where 〈A;∧,∨,∼, 0, 1〉 is a De Morgan algebra [2, Chapter XI] and the fol-
lowing identities are satisfied [10]:

(x ∧ ∼x) ∧ (y ∨ ∼ y) ≈ x ∧ ∼x (N1)
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x → x ≈ 1 (N2)

(x → y) ∧ (∼x ∨ y) ≈ ∼x ∨ y (N3)

x ∧ (∼x ∨ y) ≈ x ∧ (x → y) (N4)

(x → y) ∧ (x → z) ≈ x → (y ∧ z) (N5)

(x ∧ y) → z ≈ x → (y → z) (N6)

¬x ≈ x → 0. (N7)

Clearly the class N of all Nelson algebras is equationally definable. In-
formally, a Nelson algebra may be understood as a De Morgan algebra
〈A;∧,∨,∼, 0, 1〉 structurally enriched with a certain weak implication op-
eration → generalising relative pseudocomplementation [13, Section 3]. For
studies of Nelson algebras, see [34, 42, 37, 13].

A residuated lattice is an algebra 〈A;∧,∨, ∗, \, /, 1〉 of type 〈2, 2, 2, 2, 2, 0〉
where 〈A;∧,∨〉 is a lattice (with lattice ordering ≤), 〈A; ∗, 1〉 is a monoid,
and the equivalences a∗b ≤ c if and only if b ≤ a\c if and only if a ≤ c/b are
identically satisfied. A residuated lattice A is said to be commutative if its
satisfies the identity x ∗ y ≈ y ∗ x, contractive if a ≤ a ∗ a for all a ∈ A, and
integral if a ≤ 1 for all a ∈ A. By [8, Proposition 4.1] the class of residuated
lattices is a variety.

An FL-algebra 〈A;∧,∨, ∗, \, /, 0, 1〉 is a residuated lattice with distin-
guished element 0 ∈ A. It is easy to see an FL-algebra is commutative if
and only if it satisfies the identity x/y ≈ y\x [18, Section 2, p. 282]. For this
reason we fix the language type of the variety of commutative FL-algebras
(and its subvarieties) as {∧,∨, ∗,⇒,0,1}, where ⇒ is a binary operation
symbol. Thus an FLeci-algebra 〈A;∧,∨, ∗,⇒, 0, 1〉 is a commutative, con-
tractive, integral residuated lattice with distinguished element 0 ∈ A. An
FLew-algebra 〈A;∧,∨, ∗,⇒, 0, 1〉 is a commutative, integral residuated lat-
tice with distinguished element 0 ∈ A where 0 ≤ a for all a ∈ A. For studies
of FLew-algebras, see [28, 23, 29, 30].

A Nelson FLew-algebra is an FLew-algebra satisfying the identities:

∼∼x ≈ x (DN)

(x ∨ y) ∧ (x ∨ z) ≈ x ∨ (y ∧ z) (D7)

(x ∧ y) ∨ (x ∧ z) ≈ x ∧ (y ∨ z) (D8)

x ⇒
(
x ⇒ (x ⇒ y)

)
≈ x ⇒ (x ⇒ y) (E2)(

x ⇒ (x ⇒ y)
)
∧
(
∼ y ⇒ (∼ y ⇒ ∼x)

)
≈ x ⇒ y (N)

where ∼x abbreviates the term x ⇒ 0. By [41, Section 2.4] the class NFLew

of all Nelson FLew-algebras is a variety.
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The main result of Part I of this series [41] states

Theorem 2.1. [41, Theorem 1.1]

1. The map δ : Λ[FLew] → FmΛ[N] defined by

x ∧ y �→ x ∧ y

x ∨ y �→ x ∨ y

x ∗ y �→ ∼(x → ∼ y) ∨ ∼(y → ∼x) (∗def)

x ⇒ y �→ (x → y) ∧ (∼ y → ∼x) (⇒def)

0 �→ 0

1 �→ 1

is an interpretation of NFLew in N .

2. The map ε : Λ[N] → FmΛ[FLew] defined by

x ∧ y �→ x ∧ y

x ∨ y �→ x ∨ y

x → y �→ x ⇒ (x ⇒ y) (→def)

¬x �→ x ⇒ (x ⇒ 0) (¬def)

∼x �→ x ⇒ 0 (∼def)

0 �→ 0

1 �→ 1

is an interpretation of N in NFLew.

3. The interpretations δ and ε are mutually inverse.

Hence the varieties of Nelson algebras and Nelson FLew-algebras are term

equivalent.

2.3. k-deductive systems

Let Λ be a language type and let 1 ≤ k < ω. A k-formula is an element of
the Cartesian product Fmk

Λ. We denote k-formulas using lowercase boldface
Greek letters ϕ,ψ, . . . , except when k = 1, where we write simply ϕ,ψ, . . . .
Given a substitution σ : FmΛ → FmΛ and a k-formula ϕ := 〈ϕ0, . . . , ϕk−1〉,
we write variously σϕ or σ(ϕ) for

〈
σ(ϕ0), . . . , σ(ϕk−1)

〉
. For Γ ⊆ Fmk

Λ we
write σ(Γ ) for

{
σ(ϕ) : ϕ ∈ Γ

}
.

A k-deductive system is a pair S := 〈Λ,�S〉, where �S ⊆ ℘(Fmk
Λ)×Fmk

Λ,
and the following conditions are satisfied for all Γ,∆ ⊆ Fmk

Λ and ϕ ∈ Fmk
Λ

[6, Definition 3.1]:
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1. ϕ ∈ Γ implies Γ �S ϕ;

2. Γ �S ϕ and ∆ �S ψ for every ψ ∈ Γ implies ∆ �S ϕ;

3. Γ �S ϕ implies Γ ′ �S ϕ for some finite Γ ′ ⊆ Γ ;

4. Γ �S ϕ implies σ(Γ ) �S σ(ϕ) for every substitution σ.

A deductive system is a 1-deductive system.
Let S be a k-deductive system. The relation �S is called the consequence

relation of S. The consequence operator associated with �S is the map
CnS : ℘(Fmk

Λ) → ℘(Fmk
Λ) given by CnS(Γ ) := {ϕ ∈ Fmk

Λ : Γ �S ϕ}. A
set T ⊆ Fmk

Λ is called an S-theory (briefly, a theory) if T �S ϕ implies
ϕ ∈ T , for each ϕ ∈ Fmk

Λ. The set of all theories of S is denoted ThS.
For Γ,∆ ⊆ Fmk

Λ, the notation Γ �S ∆ abbreviates ‘Γ �S ϕ for all ϕ ∈ ∆’,
while Γ ��S ∆ abbreviates ‘both Γ �S ∆ and ∆ �S Γ ’. For a systematic
exposition of the theory of k-deductive systems, see Blok and Pigozzi [4, 6].

2.4. Definitional equivalence for k-deductive systems

Let A := 〈A; cA〉c∈Λ be an algebra of type Λ, and let F ⊆ Ak for k ≥ 1. A
congruence θ on A is said to be compatible with F if 〈a0, . . . , ak−1〉 ∈ F and
ai θ bi (i = 0, . . . , k − 1) imply 〈b0, . . . , bk−1〉 ∈ F . The Leibniz congruence

on A over F is the largest congruence on A compatible with F . In symbols,

ΩA F :=
∨

{θ ∈ ConA : θ is compatible with F}.

We write simply Ω for ΩFmΛ . For a survey of the operator ΩA F in abstract
algebraic logic, see [16].

For a k-dimensional deductive system S, the Tarski congruence Ω̃(S) is
the largest congruence on the formula algebra that is compatible with every
theory of S. In symbols,

Ω̃(S) :=
⋂

{Ω T : T ∈ ThS}.

For studies of the Tarski congruence in (second-order) abstract algebraic
logic see [17, 15].

Let Λ1 and Λ2 be two language types, and let α be a map from Λ1

to FmΛ2
. The standard extension of α is the function ᾱ : FmΛ1

→ FmΛ2

defined recursively based on the complexity of terms by:

(vi)
ᾱ = vi,

(cϕ0, . . . , ϕn−1)
ᾱ = [[ϕᾱ

0 , . . . , ϕᾱ
n−1]]c

α
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where vi is a variable, c ∈ Λ1 is an n-ary connective, ϕ0, . . . , ϕn−1 are Λ1-
formulas, and [[ϕ0, . . . , ϕn−1]] is the surjective substitution that takes values
ϕi on vi for i = 0, . . . , n − 1, and takes value vi on vi+n [21, Section 2.1.1,
p. 48]. The map ᾱ extends to k-formulas in the natural way on defining
ϕᾱ := 〈ϕᾱ

0 , . . . , ϕᾱ
k−1〉 for all ϕ := 〈ϕ0, . . . , ϕk−1〉 ∈ Fmk

Λ1
and Γ ᾱ := {ϕᾱ :

ϕ ∈ Γ} for all Γ ⊆ Fmk
Λ1

.
Let S1 := 〈Λ1,�S1

〉 and S2 := 〈Λ2,�S2
〉 be two k-dimensional deductive

systems. A mapping α : Λ1 → FmΛ2
is said to be an interpretation of S1 in

S2 if it satisfies the following two conditions [21, Definition 2.5]:

(DE-1) 〈cα, µcα〉 ∈ Ω̃(S2) for all connectives c of Λ1 with arity n and sub-
stitutions µ of Λ2 that fix the first n variables;

(DE-2) If Γ �S1
ϕ then Γ ᾱ �S2

ϕᾱ for all Γ ⊆ Fmk
Λ1

and ϕ ∈ Fmk
Λ1

.

Let α be an interpretation of S1 in S2, and β an interpretation of S2

in S1. We say that α and β are mutually inverse if 〈ϕ,ϕᾱβ̄〉 ∈ Ω̃(S1) and
〈ψ,ψβ̄ᾱ〉 ∈ Ω̃(S2) for all ϕ ∈ FmΛ1

and ψ ∈ FmΛ2
. The deductive systems S1

and S2 are said to be definitionally equivalent if there are interpretations α
of S1 in S2 and β of S2 in S1 that are mutually inverse [21, Definition 2.14].5

The notion of definitional equivalence for k-deductive systems presented
here is due to Gyuris [21]. For alternative notions of definitional equivalence
with applicability to abstract algebraic logic see [47, 32, 12]. For a compar-
ison between the notion of definitional equivalence presented here and the
notion of equipollence [12] due to Caleiro and Gonçalves, see [39].

2.5. Regularly algebraisable logics

Let S be a deductive system over a language type Λ. Recall from [15,
Section 1.4, p. 36] that a finite set {∆0, . . . ,∆m−1} of Λ-formulas in two
variables is a finite system of equivalence formulas for S if for any n-ary
connective c ∈ Λ and any set of Λ-formulas {ϕk : k = 0, . . . , n − 1} ∪ {ψk :
k = 0, . . . , n−1}∪{ϕ,ψ, χ} the following conditions hold for j = 0, . . . ,m−1:

(ALG1) �S ϕ ∆j ϕ6

(ALG2) ϕ, {ϕ ∆i ψ : i = 0, . . . ,m − 1} �S ψ

(ALG3) {ϕ ∆i ψ : i = 0, . . . ,m − 1} �S ψ ∆j ϕ

5For a discussion of the distinction between definitional equivalence as described in this
paper, and the more familiar notion in algebraic logic of deductive equivalence, see Blok
and Pigozzi [6, Note 4.1].

6To simplify notation, we are writing ϕ ∆j ϕ for ∆j(ϕ, ϕ), etc., here and in the sequel.
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(ALG4) {ϕ ∆i ψ : i = 0, . . . ,m − 1}, {ψ ∆i χ : i = 0, . . . ,m − 1} �S ϕ ∆j χ

(ALG5) {ϕk ∆i ψk : i = 0, . . . ,m − 1; k = 0, . . . , n − 1} �S

c(ϕ0, . . . , ϕn−1) ∆j c(ψ0, . . . , ψn−1).

S is said to be regularly algebraisable if it has a finite system of equivalence
formulas and in addition the following conditions hold for j = 0, . . . ,m − 1:

(ALG6) ϕ,ψ �S ϕ ∆j ψ.

By [15, Theorem 28], every regularly algebraisable logic is algebraisable in
the sense of Blok and Pigozzi [3]. For studies of regularly algebraisable logics,
see [34, 14, 15].

Let S be a regularly algebraisable deductive system over a language
type Λ with finite system of equivalence formulas {∆j : j = 0, . . . ,m − 1}.
Then there exists a unique quasivariety Alg Mod∗ S of algebras of type Λ,
and a constant term 1 := ∆j(x, x) of Alg Mod∗ S, such that the following
conditions hold for any Γ ∪ {ϕ,ψ} ⊆ FmΛ:7

(EQV1) Γ �S ϕ if and only if {ψ ≈ 1 : ψ ∈ Γ} |=Alg Mod∗ S ϕ ≈ 1

(EQV2) ϕ ≈ ψ =||=Alg Mod∗ S {ϕ ∆j ψ ≈ 1 : j = 0, . . . ,m − 1}.

(Here Γ =||=Alg Mod∗ S Γ′ abbreviates ‘Γ |=Alg Mod∗ S Γ′ and Γ′ |=AlgMod∗
S Γ’.)

The class Alg Mod∗ S is called the equivalent quasivariety semantics of S.
For any presentation of S by a set of axioms Ax and (proper) inference
rules Ru, the equivalent quasivariety Alg Mod∗ S is determined by the fol-
lowing collection of identities and quasi-identities [15, Theorem 30]:

(AX-1) ϕ ≈ 1, for each ϕ ∈ Ax

(AX-2) ψ0 ≈ 1 and . . . and ψp−1 ≈ 1 implies ϕ ≈ 1

for each inference rule 〈ψ0, . . . , ψp−1, ϕ〉 ∈ Ru

(AX-3) ∆0(x, y) ≈ 1 and . . . and ∆m−1(x, y) ≈ 1 implies x ≈ y.

The remarks of this section extend in a natural way to deductive systems
that are algebraisable in the sense of Blok and Pigozzi [3]. For details, see
[3, 6, 14]. For all other terminology and notation of abstract algebraic logic
not specified either above or in the sequel see Czelakowski and Pigozzi [15]
and Blok and Pigozzi [3, 6].

7By [44, Theorem 3.2.4, p. 182], Alg Mod∗
S |= ∆i(x, x) ≈ ∆i′(y, y) for all 0 ≤ i, i′ ≤

m − 1. Hence ∆j(x, x) is a constant term of Alg Mod∗
S as claimed.
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2.6. 1-assertional logics

Let K be a pointed quasivariety over a language type Λ. The 1-assertional

logic of K, in symbols SASL K, is the deductive system from sets of Λ-terms
to Λ-terms determined by the equivalence [15, Corollary 33]:

Γ �SASL K ϕ if and only if {ψ ≈ 1 : ψ ∈ Γ} |=K ϕ ≈ 1

for all Γ ∪ {ϕ} ⊆ FmΛ.8 For studies of assertional logics see [14, 15, 7].

A pointed quasivariety K is said to be relatively point regular if, when-
ever A ∈ K and θ, φ ∈ ConK A with 1A/θ = 1A/φ, we have that θ = φ.
The following result of Czelakowski and Pigozzi [15] exhibits a one-one corre-
spondence between regularly algebraisable logics and relatively point regular
quasivarieties.

Theorem 2.2. [15, Corollary 35]

1. Every regularly algebraisable deductive system S is the 1-assertional logic

of a unique relatively point regular quasivariety, namely its equivalent

quasivariety semantics. In symbols, S = SASL Alg Mod∗ S.

2. Every relatively point regular quasivariety K is the equivalent quasivariety

semantics of a unique regularly algebraisable deductive system, namely its

1-assertional logic. In symbols, K = Alg Mod∗ SASL K.

3. Substructural logics over FL

In this section we briefly criticise the notion of substructural logic over FLS

(S ⊆ {e, c, i, o}) presented in [18, 19] from the perspective of algebraic and
non-classical logic, propose an alternative definition, and characterise (in the
sense of this paper) the substructural logics over FLS .

According to Galatos and Ono [18, Section 3.1, p. 285], and Galatos et al.
[19, Section 2.1.4], a substructural logic over FLS is a theory of FLS closed
under substitutions, or equivalently, the set of theorems of an axiomatic
extension of FLS . This definition is unorthodox in that:

• Deductive systems are viewed as sets of formulas and not as consequence
relations. The study of substructural logics over FL in the sense of
[18, 19] thereby amounts to an investigation, in the framework of the

8Since K is closed under the formation of ultraproducts, S
ASL K is finitary and hence

is a deductive system in the sense of this paper.
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Blok-Pigozzi theory of algebraisable logics [3], of the axiomatic exten-
sions of FL via an examination of the subvarieties of the variety of FL-
algebras. But in full generality, the study of an algebraisable deductive
system S is tantamount to an investigation of the extensions of S via an
examination of the subquasivarieties of its equivalent quasivariety seman-
tics. (A justification for these remarks is given prior to the statement of
Corollary 3.2 below.) Thus the definition of substructural logic over FLS

due to [18, 19] is in a sense unduly restrictive.

• There is nothing that prohibits a logic having all the structural rules
from being substructural. Indeed, the classical propositional calculus is
a substructural logic over FLecw in the sense of [18, 19], as Galatos and
Ono explicitly point out in [18, p. 279]. But, as Restall [35, p. 1] asserts,
“Substructural logics [should] focus on the behaviour and presence — or
more suggestively, the absence — of structural rules” [italics Restall’s].9

Thus the definition of substructural logic over FLS due to [18, 19] is in
a sense overly generous.

Let S be a deductive system over a language type Λ. An extension of S

is any system S′ := 〈Λ,�S′〉 over the same language type Λ such that Γ �S ϕ
implies Γ �S′ ϕ for all Γ ∪ {ϕ} ⊆ FmΛ. S′ is said to be axiomatic if it can
be obtained by adjoining new axioms to S only. By Blok and Pigozzi [3,
Corollary 4.9], any extension of a (regularly) algebraisable deductive system
is itself (regularly) algebraisable.

A deductive system S over a language type Λ is said to be Fregean if, for
every T ∈ ThS, the relativised interderivability relation ��T

S defined for all
ϕ,ψ ∈ FmΛ by

ϕ��T
S ψ if and only if T,ϕ �S ψ and T, ψ �S ϕ

is a congruence relation on FmΛ [15, Definition 59]. S is non-Fregean if it
is not Fregean. For studies of Fregean logics, see [17, 14, 15].

The discussion heading this section leads us to the following definition.
A substructural logic over FLS, S ⊆ {e, c, i, o}, is a deductive system S that
is definitionally equivalent to a non-Fregean extension of FLS . The next
result shows the notion of substructural logic over FLS used in this paper
appropriately captures the notion of a substructural logic over FL as an
extension of FL lacking some or all of the structural rules.

9For further support for this point of view see e.g. Došen [36, p. 6].
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Theorem 3.1. An extension S of FL is Fregean if and only if it is an

axiomatic extension of FLeci.
10

Proof. It is clear that any axiomatic extension of FLeci is Fregean. For the
converse, suppose S is a Fregean extension of FL. Because S is Fregean and
algebraisable with theorems, from Czelakowski and Pigozzi [15, Theorem 61]
we have that S is regularly algebraisable. Since S is regularly algebraisable,
p ≈ 1 is a single defining equation for S in the sense of Blok and Pigozzi
[3, Definition 2.2]. This implies that S is an extension of the deductive
system FLi.

Observe next that {p\q} is a protoequivalence system for S in the sense
of Czelakowski and Pigozzi [15, Section 1.4, p. 32]. Since ∧ is a conjunction
formula for S in the sense of [15, Section 2.2, p. 57], and S is Fregean and
algebraisable with theorems, from [15, Theorem 64] we have that S has the
uniterm deduction-detachment theorem (in the sense of [15, Definition 38])
with uniterm deduction-detachment system {p\(p ∧ q)}. Because S is an
extension of FLi, the formulas ϕ\(ϕ ∧ ψ) and ϕ\ψ are provably equivalent
(in the sense of [19, Section 2.1.2]) over S. Therefore {p\q} is also a uniterm
deduction-detachment system for S. This suffices to guarantee that S is an
extension of FLeci.

It remains only to observe that S is an axiomatic extension of FLeci.
Because ∧ is a conjunction formula for S, the deductive system S has the
property of conjunction in the sense of Font and Jansana [17, Definition 2.45].
Since S is Fregean and algebraisable with theorems, from Font and Jansana
[17, Corollary 4.32] we have that S is strongly algebraisable (i.e., Alg Mod∗ S

is a variety). The claim that S is an axiomatic extension of FLeci now follows,
because S is regularly algebraisable.

A pointed quasivariety K is said to be relatively congruence orderable if,
for every A ∈ K and all a, b ∈ A, ΘA

K
(a,1A) = ΘA

K
(b,1A) implies a = b. K

is said to be Fregean if it is both relatively point regular and relatively con-
gruence orderable [15, Definition 85]. For studies of Fregean quasivarieties
in general algebra, see [31, 1, 22].

By [27, Corollary 1.3.5], there exists a lattice anti-isomorphism from the
lattice of extensions of an algebraisable deductive system S onto the lat-
tice of subquasivarieties of Alg Mod∗ S, which moreover maps each extension
of S to its equivalent quasivariety. Combining these remarks with Theo-
rem 2.2, Theorem 3.1, and Czelakowski and Pigozzi [15, Theorem 86] yields

10The deductive system FLeci is definitionally equivalent to Johansson’s minimal logic
[34, Chapter XI], [47, Section 2.7]. For a discussion, see [19, Section 2.3.8].
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the following corollary, which is due independently to the first author and
to N. Galatos (unpublished).

Corollary 3.2. A quasivariety of FL-algebras is Fregean if and only if it

is a variety of FLeci-algebras.
11

For recent results related to Theorem 3.1 and Corollary 3.2, see Bou
et al. [9, Section 4].

4. Definitional equivalence for regularly algebraisable logics

In this section we give a sufficient condition for two regularly algebraisable
logics to be definitionally equivalent (Theorem 4.6).

Let K be a quasivariety over a language type Λ axiomatised by a set
of identities Id and a set of quasi-identities QId. Recall from Czelakowski
and Pigozzi [15, Definition 2] or Blok and Pigozzi [6, Section 3.3.2] that
the applied equational logic determined by K, in symbols SEQLK, is the 2-
dimensional deductive system presented by the following collection of axioms
and inference rules:

(EQ-1) 〈p, p〉

(EQ-2)
〈p, q〉

〈q, p〉

(EQ-3)
〈p, q〉, 〈q, r〉

〈p, r〉

(EQ-4)
〈p0, q0〉, . . . , 〈pn−1, qn−1〉

for each c ∈ Λ of arity n〈
c(p0, . . . , pn−1), c(q0, . . . , qn−1)

〉
(EQ-5) 〈ϕ,ψ〉 for every identity ∀x̄(ϕ ≈ ψ) ∈ Id

(EQ-6)
〈χ0, ζ0〉, . . . , 〈χn−1, ζn−1〉

for every quasi-identity
〈ϕ,ψ〉

∀x̄(χ0 ≈ ζ0 and . . . and χn−1 ≈ ζn−1 implies ϕ ≈ ψ) ∈ QId.

Applied equational logics have the following

Theorem 4.1 (Completeness theorem). [6, Theorem 3.9] Let K be a quasi-

variety over a language type Λ and let Γ ∪
{
〈ϕ0, ϕ1〉

}
⊆ Fm2

Λ. Then{
〈ψ0, ψ1〉 : 〈ψ0, ψ1〉 ∈ Γ

}
�SEQL K 〈ϕ0, ϕ1〉 if and only if{

ψ0 ≈ ψ1 : 〈ψ0, ψ1〉 ∈ Γ
}
|=K ϕ0 ≈ ϕ1.

11The variety of FLeci-algebras is term equivalent to the variety of generalised Heyting
algebras. For a discussion, see [19, Section 2.3.8] or [9, Section 4].
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Let S be a deductive system. The following useful technical lemma of
Czelakowski and Pigozzi [15] asserts that the Alg Mod∗ S-congruences on the
formula algebra are precisely the Leibniz congruences.

Lemma 4.2. [15, Lemma 12] Let S be a deductive system over a language

type Λ. Then ConAlgMod∗
S FmΛ = {Ω T : T ∈ ThS}.

For an applied equational logic S, Ω̃(S) has a particularly transparent
description:

Lemma 4.3. [21, Proposition 1.26] Let S be an applied equational logic. Then

Ω̃(S) = CnS(∅).

The next result, due to Gyuris, shows that the notion of definitional
equivalence for deductive systems generalises the notion of term equivalence
for quasivarieties described in Part I of this series [41, Section 2.1].

Proposition 4.4. [21, Proposition 2.17] Let K1 and K2 be two quasivari-

eties over language types Λ1 and Λ2. Let S1 := SEQL K1 and S2 := SEQL K2 be

the applied equational logics determined by K1 and K2 respectively. Then S1

and S2 are definitionally equivalent if and only if K1 and K2 are term equiv-

alent. In particular, if K1 and K2 are term equivalent with interpretations

α : Λ1 → FmΛ2
and β : Λ2 → FmΛ1

then S1 and S2 are definitionally

equivalent with the same mutually inverse interpretations.

In Theorem 4.6 below, we lift the right-to-left direction of Proposition 4.4
to the setting of regularly algebraisable logics. But first, a technical lemma.

Lemma 4.5. Let K be a relatively point regular quasivariety over a lan-

guage type Λ. If ϕ ≡ ψ (mod Ω̃(SEQL K)) for Λ-formulas ϕ,ψ, then ϕ ≡ ψ
(mod Ω̃(SASL K)).

Proof. Suppose ϕ ≡ ψ (mod Ω̃(SEQL K)). By Lemma 4.3, �SEQL K 〈ϕ,ψ〉.
By the completeness theorem for applied equational logics, therefore, we have
that K |= ϕ ≈ ψ, whence FmΛ /θ |= ϕ ≈ ψ for all θ ∈ ConK FmΛ. Since
ConAlg Mod∗ SASL K FmΛ = ConK FmΛ (by Theorem 2.2), we conclude that
ϕ ≡ ψ (mod θ) for all θ ∈ ConAlgMod∗

SASL K FmΛ. By Lemma 4.2, therefore,
ϕ ≡ ψ (mod Ω T ) for all T ∈ ThSASL K. Thus ϕ ≡ ψ (mod

⋂
{Ω T : T ∈

ThSASL K}), which is to say ϕ ≡ ψ (mod Ω̃(SASL K)) as claimed.

Theorem 4.6. Let S1 and S2 be two regularly algebraisable deductive systems

over language types Λ1 and Λ2. Let K1 and K2 be the relatively 1K1-regular

and relatively 1K2-regular quasivarieties comprising the equivalent quasiva-

riety semantics of S1 and S2 respectively. Suppose K1 and K2 are term
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equivalent with interpretations α : Λ1 → FmΛ2
and β : Λ2 → FmΛ1

such

that (1K1)α = 1K2 and (1K2)β = 1K1. Then S1 and S2 are definitionally

equivalent with the same mutually inverse interpretations.

Proof. By Proposition 4.4, SEQL K1 and SEQL K2 are definitionally equiv-
alent with mutually inverse interpretations α : Λ1 → FmΛ2

and β : Λ2 →
FmΛ1

. Throughout the proof we make implicit use of this observation.
Let c be an n-ary basic connective of Λ1 and µ a substitution of Λ2

that fixes the first n variables. By (DE-1), 〈cα, µcα〉 ∈ Ω̃(SEQL K2), so by
Lemma 4.5, 〈cα, µcα〉 ∈ Ω̃(SASL K2). By Theorem 2.2(1), we conclude that
〈cα, µcα〉 ∈ Ω̃(S2). Observe next that for any Γ ∪ {ϕ} ⊆ FmΛ1

,

Γ �S1
ϕ iff Γ �SASL K1

ϕ by Theorem 2.2

iff {ψ ≈ 1K1 : ψ ∈ Γ} |=K1
ϕ ≈ 1K1

iff
{
〈ψ,1K1〉 : ψ ∈ Γ

}
�SEQL K1

〈ϕ,1K1〉 by Theorem 4.1

only if
{
〈ψᾱ, (1K1)ᾱ〉 : ψ ∈ Γ

}
�SEQL K2

〈ϕᾱ, (1K1)ᾱ〉 by (DE-2)

iff
{
〈ψᾱ,1K2 : ψ ∈ Γ 〉

}
�SEQL K2

〈ϕᾱ,1K2〉

iff {ψᾱ ≈ 1K2 : ψ ∈ Γ} |=K2
ϕᾱ ≈ 1K2 by Theorem 4.1

iff Γ ᾱ �SASL K2
ϕᾱ

iff Γ ᾱ �S2
ϕᾱ by Theorem 2.2.

This shows that α is an interpretation of S1 in S2. A similar argument
verifies that β is an interpretation of S2 in S1.

Since 〈ϕ,ϕᾱβ̄〉 ∈ Ω̃(SEQL K1) for any ϕ ∈ FmΛ1
, we have that 〈ϕ,ϕᾱβ̄〉 ∈

Ω̃(SASL K1) by Lemma 4.5. By Theorem 2.2(1), 〈ϕ,ϕᾱβ̄〉 ∈ Ω̃(S1). A similar
argument establishes 〈ϕ,ϕβ̄ᾱ〉 ∈ Ω̃(S2) for any ϕ ∈ FmΛ2

. Hence the inter-
pretations α and β are mutually inverse. This completes the proof that S1

and S2 are definitionally equivalent.

5. N is a substructural logic over FLew

In this section we complete the proofs of Theorems 1.1 and 1.2. We give
a (Hilbert-style) axiomatisation of a certain deductive system H, and show
that H is FLew (Lemma 5.4). We present NFLew as an axiomatic ex-
tension of H, and verify that its equivalent variety semantics is NFLew

(Corollary 5.6). From the term equivalence of the varieties NFLew and
N (Theorem 2.1), we conclude that the deductive systems NFLew and N

are definitionally equivalent (Theorem 1.1). It follows from this observation
that N is a substructural logic over FLew (Theorem 1.2).
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Let H denote the deductive system over the language type Λ[FLew] pre-
sented by the following collection of axioms and inference rules:12

(p ⇒ q) ⇒
(
(q ⇒ r) ⇒ (p ⇒ r)

)
(A1)(

p ⇒ (q ⇒ r)
)
⇒

(
q ⇒ (p ⇒ r)

)
(A2)

p ⇒ (q ⇒ p) (A3)

p ⇒
(
q ⇒ (p ∗ q)

)
(A4)(

p ⇒ (q ⇒ r)
)
⇒

(
(p ∗ q) ⇒ r

)
(A5)

(p ∧ q) ⇒ p (A6)

(p ∧ q) ⇒ q (A7)

(p ⇒ q) ⇒
(
(p ⇒ r) ⇒ (p ⇒ (q ∧ r))

)
(A8)

p ⇒ (p ∨ q) (A9)

q ⇒ (p ∨ q) (A10)

(p ⇒ r) ⇒
(
(q ⇒ r) ⇒ ((p ∨ q) ⇒ r)

)
(A11)

1 (A12)

0 ⇒ p (A13)

p, p ⇒ q �H q. (MP)

Lemma 5.1. The following rules of inference are derived rules of H:

p ⇒ q, q ⇒ p, r ⇒ s, s ⇒ r �H (p ∧ r) ⇒ (q ∧ s)

p ⇒ q, q ⇒ p, r ⇒ s, s ⇒ r �H (p ∨ r) ⇒ (q ∨ s).

Proof. See Appendix A.

Lemma 5.2. The deductive system H is regularly algebraisable with finite

system of equivalence formulas {p ⇒ q, q ⇒ p}.

Proof. The proof of Raftery and van Alten [33, Proposition 2] shows that H

satisfies Conditions (ALG1), (ALG4), and (ALG6). Condition (ALG3) holds
for H trivially, while Condition (ALG2) follows from modus ponens. By
the proof of [33, Proposition 2] again, H satisfies Condition (ALG5) with
respect to the connectives ⇒ and ∗. Further, Lemma 5.1 suffices to guarantee
that H satisfies Condition (ALG5) with respect to the connectives ∧ and ∨.

12The axioms and inference rules (A1)–(A13) and (MP) comprise a Hilbert-style presen-
tation of FLew (see Lemma 5.4 below). For other Hilbert-style axiomatisations of FLew,
see Ono and Komori [28] and van Alten and Raftery [45]. Both these alternative axioma-
tisations enjoy the separation theorem. In contrast, the presentation of FLew given here
lacks the separation theorem, but is convenient for applications.
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Of course, Condition (ALG5) holds vacuously for H with respect to the
connectives 0 and 1. Thus H is regularly algebraisable with finite system of
equivalence formulas {p ⇒ q, q ⇒ p}.

By Condition (EQV1), Alg Mod∗ H satisfies an identity of the form ϕ ≈ 1

for each axiom ϕ of the presentation of H given above. Denote any identity
so obtained by ϕ[≈ 1]. By algebraisability and Conditions (AX1)–(AX3),
Alg Mod∗ H is axiomatised by the identities (A1)[≈ 1]–(A13)[≈ 1] together
with the quasi-identities:

x ≈ 1 and x ⇒ y ≈ 1 implies y ≈ 1 (5.1)

x ⇒ y ≈ 1 and y ⇒ x ≈ 1 implies x ≈ y. (5.2)

Lemma 5.3. Alg Mod∗ H is the variety of all FLew-algebras.

Proof. Let A ∈ Alg Mod∗ H. From the proof of [33, Proposition 2], we have
that the 〈∗,⇒, 1〉-reducts of members of Alg Mod∗ H are pocrims. In partic-
ular, therefore, 〈A; ∗,⇒, 1〉 is a pocrim. Further, the identities (A6)[≈ 1]–
(A8)[≈ 1] and (A9)[≈ 1]–(A11)[≈ 1] guarantee that for all a, b ∈ A, a∧b and
a∨b are the greatest lower bound and least upper bound of {a, b} respectively
with regards to the pocrim partial order �.13 Hence 〈A;∧,∨〉 is a lattice
whose lattice order ≤ is �. By [41, Lemma 3.11], A is a commutative, inte-
gral, residuated lattice. The identity (A13)[≈ 1] can now be seen to assert
that 0 ≤ a for all a ∈ A, whence A ∈ FLew. Hence Alg Mod∗ H ⊆ FLew.

Conversely, from the well-developed arithmetic of FLew-algebras [8, 19]
it readily follows that FLew satisfies the identities (A1)[≈ 1]–(A13)[≈ 1]
together with the quasi-identities (5.1)–(5.2). Hence FLew ⊆ Alg Mod∗ H.

Lemma 5.4. H is FLew.

Proof. From Lemmas 5.2 and 5.3 we have that H is regularly algebraisable
with equivalent variety semantics FLew, while from Galatos and Ono [18,
Theorems 3.3 and 3.4] we have that FLew is regularly algebraisable, also with
equivalent variety semantics FLew.14 From Theorem 2.2(1) we conclude that
H = SASL FLew = FLew as desired.

13For the definition of the pocrim partial order, see Part I of this series [41, Section 3].
14The results of [18, Theorem 3.3, Theorem 3.4] show only that FLew is algebraisable

with equivalent variety semantics FLew . However, it is easy to verify Condition (ALG6)
holds for FLew.
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Let NFLew denote the axiomatic extension of H by the four axioms
labelled (Double Negation), (Distributivity), (3-Potency), and (Nelson) of
Section 1. Since any extension of a regularly algebraisable deductive sys-
tem S is itself regularly algebraisable, from Lemma 5.2 we have that NFLew

is regularly algebraisable. Moreover, from Lemma 5.4 and Condition (EQV1)
we have that Alg Mod∗ NFLew is the subvariety of FLew determined by the
identities

∼∼x ⇒ x ≈ 1 (5.3)(
x ∧ (y ∨ z)

)
⇒

(
(x ∧ y) ∨ (x ∧ z)

)
≈ 1 (5.4)(

x ⇒ (x ⇒ (x ⇒ y))
)
⇒

(
x ⇒ (x ⇒ y)

)
≈ 1 (5.5)(

(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x))
)
⇒ (x ⇒ y) ≈ 1. (5.6)

In [23, p. 18] Kowalski and Ono essentially observe that a variety of
FLew-algebras satisfies (5.3) if and only if it satisfies (DN). By (5.3), there-
fore, Alg Mod∗ NFLew |= (DN). Further, it is part of the folklore of lattice
theory that a variety of lattices is distributive if and only if it satisfies the
lattice inequality x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z). From (5.4) it follows
that Alg Mod∗ NFLew |= (D7)–(D8). Additionally, it is well known from
the theory of BCK-algebras that any class of BCK-algebras satisfying the
BCK-identity (x ⇒n+1 y) ⇒ (x ⇒n y) ≈ 1 is n + 1-potent.15 From (5.5) we
thus have that Alg Mod∗ NFLew |= (E2). Summarising in the terminology of
Part I [41]: Alg Mod∗ NFLew is a variety of 3-potent, distributive, classical
FLew-algebras.

Lemma 5.5. The variety Alg Mod∗ NFLew satisfies the identity:(
x ⇒ (x ⇒ y)

)
∧
(
∼ y ⇒ (∼ y ⇒ ∼x)

)
≈ x ⇒ y. (N)

Proof. See Appendix A.

From Lemma 5.5 and the remarks directly preceding the lemma we have

Corollary 5.6. Alg Mod∗ NFLew is the variety of Nelson FLew-algebras.

The main result of this paper, Theorem 1.1, now follows from directly
from Corollary 5.6, Theorem 2.1, and Theorem 4.6.

By [41, Corollary 3.8], a Nelson algebra satisfies the identity x ⇒ y ≈
x ⇒ (x ⇒ y), where ⇒ is defined as in (⇒def), if and only if it is term
equivalent to a Boolean algebra. Thus NFLew �|= x ⇒ y ≈ x ⇒ (x ⇒ y). It
follows that the deductive system NFLew is not contractive, i.e., (c) is not
a rule of NFLew. From Theorem 3.1 we thus have

15For the definitions of the terms x ⇒n+1 y and n + 1-potent, see [41, Section 3].
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Lemma 5.7.16 NFLew is a substructural logic over FLew.

The main result of this series of papers, Theorem 1.2, now follows directly
from Theorem 1.1 and Lemma 5.7.

Added in proof. The results of this paper, together with results obtained
recently by Busaniche and Cignoli in [11], imply N is definitionally equivalent
to the extension NFL′

ew of the deductive system H by the axioms of (Double
Negation), (3-potency), and the rule of inference

(p ∗ p) ⇒ (q ∗ q), (∼ p ∗ ∼ p) ⇒ (∼ q ∗ ∼ q) � p ⇒ q.
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A. Appendix

In the following (machine-oriented) proof of Lemma 5.1, A, B, C and D
denote arbitrary constants for which the hypothesis of the lemma holds and
for which the corresponding conclusions necessarily follow. The justification
[i, j] indicates an application of modus ponens with major premise i and
minor premise j. Steps 1–7 are axioms of H; Steps 8 and 9 are the hypotheses
of the lemma; and Steps 20 and 21 give the desired conclusions. Steps 20
and 21 of the proof are flagged with ‘*’ for easy identification.

Lemma 5.1. The following rules of inference are derived rules of H:

p ⇒ q, q ⇒ p, r ⇒ s, s ⇒ r �H (p ∧ r) ⇒ (q ∧ s)

p ⇒ q, q ⇒ p, r ⇒ s, s ⇒ r �H (p ∨ r) ⇒ (q ∨ s).

16Lemma 5.7 continues to hold with respect to Galatos and Ono’s conception of sub-
structural logic over FL. Hence the main result of this series of papers, Theorem 1.2,
remains valid when formulated in the framework of [18, 19].
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Proof.

1. (p ⇒ q) ⇒ ((q ⇒ r) ⇒ (p ⇒ r)) [(A1)]
2. (p ∧ q) ⇒ p [(A6)]
3. (p ∧ q) ⇒ q [(A7)]
4. (p ⇒ q) ⇒ ((p ⇒ r) ⇒ (p ⇒ (q ∧ r))) [(A8)]
5. p ⇒ (p ∨ q) [(A9)]
6. p ⇒ (q ∨ p) [(A10)]
7. (p ⇒ q) ⇒ ((r ⇒ q) ⇒ ((p ∨ r) ⇒ q)) [(A11)]
8. A ⇒ B [Assumption]
9. C ⇒ D [Assumption]

10. (p ⇒ q) ⇒ ((p ∧ r) ⇒ q) [1, 2]
11. (p ⇒ q) ⇒ ((r ∧ p) ⇒ q) [1, 3]
12. (B ⇒ p) ⇒ (A ⇒ p) [1, 8]
13. (D ⇒ p) ⇒ (C ⇒ p) [1, 9]
14. A ⇒ (B ∨ p) [12, 5]
15. (p ⇒ (B ∨ q)) ⇒ ((A ∨ p) ⇒ (B ∨ q)) [7, 14]
16. C ⇒ (p ∨ D) [13, 6]
17. (A ∧ p) ⇒ B [10, 8]
18. ((A ∧ p) ⇒ q) ⇒ ((A ∧ p) ⇒ (B ∧ q)) [4, 17]
19. (p ∧ C) ⇒ D [11, 9]

*20. (A ∨ C) ⇒ (B ∨ D) [15, 16]
*21. (A ∧ C) ⇒ (B ∧ D) [18, 19]

In the (machine-oriented) proof of Lemma 5.5 below, the justification
[i → j] indicates paramodulation from i into j; that is, unifying the left-
hand side of i with a subterm of j, instantiating j with the corresponding
substitution, and replacing the subterm with the corresponding instance of
the right-hand side of i. The labels (D3), (M1), etc., in Steps 1–2, 4, and
6–10 indicate identities established in Part I [41].

Lemma 5.5. The variety Alg Mod∗ NFLew satisfies the identity:

(
x ⇒ (x ⇒ y)

)
∧
(
∼ y ⇒ (∼ y ⇒ ∼x)

)
≈ x ⇒ y. (N)

Proof.

1. x ∨ y ≈ y ∨ x [(D3)]
2. x ∗ 1 ≈ x [(M1)]
3. ∼x := x ⇒ 0 [(∼def)]
4. ∼∼x ≈ x [(DN)]
5. ((x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x))) ⇒ (x ⇒ y) ≈ 1 [(5.6)]
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6. x ⇒ (y ⇒ x) ≈ 1 [(3.17)]
7. x ⇒ (y ⇒ z) ≈ y ⇒ (x ⇒ z) [(3.18)]
8. (x ⇒ y) ∧ (x ⇒ z) ≈ x ⇒ (y ∧ z) [(4.2)]
9. (x ∗ (x ⇒ y)) ∨ y ≈ y [(4.3)]

10. (x ⇒ y) ∧ (z ⇒ y) ≈ (x ∨ z) ⇒ y [(4.4)]
11. x ⇒ (y ⇒ 0) ≈ y ⇒ ∼x [3 → 7]
12. x ⇒ (((x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x))) ⇒ y) ≈ 1 [7 → 5]
13. x ∨ (y ∗ (y ⇒ x)) ≈ x [9 → 1]
14. (x ⇒ y) ∨ (y ∗ 1) ≈ x ⇒ y [6 → 13]
15. (x ⇒ y) ∨ (z ∗ (x ⇒ (z ⇒ y))) ≈ x ⇒ y [7 → 13]
16. x ⇒ ∼ y ≈ y ⇒ ∼x [3 → 11]
17. ∼x ⇒ ∼ y ≈ y ⇒ x [4 → 16]
18. (x ⇒ y) ∨ y ≈ x ⇒ y [2 → 14]
19. x ∨ (y ⇒ x) ≈ y ⇒ x [18 → 1]
20. (x ⇒ y) ∨ (x ⇒ (z ⇒ y)) ≈ z ⇒ (x ⇒ y) [7 → 19]
21. x ⇒ (((x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (x ⇒ y))) ⇒ y) ≈ 1 [17 → 12]
22. x ⇒ (((x ⇒ (x ⇒ y)) ∧ (x ⇒ (∼ y ⇒ y))) ⇒ y) ≈ 1 [7 → 21]
23. x ⇒ ((x ⇒ ((x ⇒ y) ∧ (∼ y ⇒ y))) ⇒ y) ≈ 1 [8 → 22]
24. x ⇒ ((x ⇒ ((x ∨ ∼ y) ⇒ y)) ⇒ y) ≈ 1 [10 → 23]
25. (x ⇒ y) ∨ ((x ⇒ ((x ∨ ∼ y) ⇒ y)) ∗ 1) ≈ x ⇒ y [24 → 15]
26. (x ⇒ y) ∨ (x ⇒ ((x ∨ ∼ y) ⇒ y)) ≈ x ⇒ y [2 → 25]
27. (x ∨ ∼ y) ⇒ (x ⇒ y) ≈ x ⇒ y [26 → 20]
28. (x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (x ⇒ y)) ≈ x ⇒ y [27 → 10]
29. (x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x ⇒ y [17 → 28]
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