
A.Avron

B.Konikowska

Proof Systems for Reasoning

about Computation Errors

Abstract. In the paper we examine the use of non-classical truth values for dealing

with computation errors in program specification and validation. In that context, 3-

valued McCarthy logic is suitable for handling lazy sequential computation, while 3-valued

Kleene logic can be used for reasoning about parallel computation. If we want to be able

to deal with both strategies without distinguishing between them, we combine Kleene and

McCarthy logics into a logic based on a non-deterministic, 3-valued matrix, incorporating

both options as a non-deterministic choice. If the two strategies are to be distinguished,

Kleene and McCarthy logics are combined into a logic based on a 4-valued deterministic

matrix featuring two kinds of computation errors which correspond to the two computation

strategies described above. For the resulting logics, we provide sound and complete calculi

of ordinary, two-valued sequents.

Keywords: three-valued logics, four-valued logics, parallel computation, lazy sequential

computation, computation errors, non-deterministic matrices, sequent calculi.

1. Introduction

The use of computer software is ubiquitous in the present-day world. As a
result, most of everyday activities, not only in the business or public spheres,
but also in our private lives, rely — directly or indirectly — on the correct
operation of some software. However, to ensure the correct, reliable opera-
tion of programs, we must first specify them in a correct and precise way,
and then validate them, proving that they will operate fault-free and give
the expected results.

Yet, as the computing practice clearly shows, instead of meeting the
objectives set for them, programs do sometimes run into error states —
so any logic used for program specification and validation must take this
fact into consideration too. In the existing literature, this has been done in
two ways. The first is based on using a partial logic, with formulas getting
no value in case of a computation error — like in [BCJ84, Ho87, Owe85].
The second employs a three-valued logic with the third,“undefined” value
representing a computation error — see e.g. [MC67, Bli91, KTB91, Ko93].

The second approach has become much more popular over years, as it
provides more flexibility in reasoning by allowing us to define a three-valued
semantics of the considered program logic in the way best tailored to a given
application and the intended handling of errors. However, the drawback
is that all possible computation errors in various computing scenarios are

Studia Logica 0: 1–??, 2009.
c© 2009 Kluwer Academic Publishers. Printed in the Netherlands.

2 A. Avron and B. Konikowska

usually bundled together under a single error value and are handled in the
same way. Yet in fact there are two distinct types of computation errors, of
inherently different characters:

• critical errors which make the whole computation stop, or “hang up”,
causing a total failure of the program

• non-critical errors which stop only part of the computation, and can
be remedied by a success elsewhere in it

Clearly, the difference between them is quite fundamental from the prac-
tical viewpoint, especially for mission-critical software supporting the fun-
damental business processes of an enterprise. Hence to ensure the optimum
specification and validation of programs we should distinguish between crit-
ical and non-critical errors, and treat them in different ways. The aim of
our paper is to provide logics able to achieve the above.

A typical example of a critical error occurs in lazy, sequential computa-
tion, when we proceed from left to right, and the whole computation process
stops after encountering the first error. For example, if we are computing
the value v(α ∨ β) of the disjunction of α and β, and encounter an error
in computing v(α), then because of the sequential order of the computation
we cannot proceed any further. As result, even if the computation of v(β)
would yield t (true), we will never learn this – and so we must necessarily
assign an error value to v(α ∨ β).

In turn, a non-critical error can be encountered in a parallel computation,
where an error encountered in one branch of a computation stops this branch
only, while the computation along other branches continues, and can still
give the desired result if one of those branches is a valid alternative to the
error-involving one. Hence in the preceding example this time we would get
v(α∨β) = t, for to compute v(α∨β) we compute in parallel v(α) and v(β),
and as soon as either computation yields the value t, we assign this value to
the disjunction α ∨ β.

Another example of critical and non-critical errors are the so-called ma-
chine error and the error resulting from infinite computation in a sequential
computation mode. Machine error, which consists in e.g. a syntax error
in the program, or the use of an argument outside a function domain, is
immediately signalled by the computer, which allows us to undertake some
corrective actions and continue the computation. In turn, an error resulting
from an infinite computation gives us no such chance, since the computer
just keep churning on and we cannot tell if it will complete the computa-

Proof Systems for Reasoning about Computation Errors 3

tion in a moment or if it has got stuck in an infinite loop — for the halting
problem is undecidable.

Obviously, a good tool for handling critical errors is a well-known logic
describing lazy, sequential computation, namely, the three-valued McCarthy
logic [MC67] with asymmetric conjunction and disjunction, represented by
the following truth tables:

¬ t f e

f t e

∨ t f e

t t t t
f t f e
e e e e

∧ t f e

t t f e
f f f f
e e e e

(1)

where e denotes computation error.
McCarthy logic was originally developed for the purpose of describing the

phenomenon of computation, including computation errors, and has found
application in programming languages like Euclid, Ada and Algol-W. In
[KTB91] and [Ko93], McCarthy connectives combined with Kleene quanti-
fiers were used as a foundation for developing two versions of a three-valued
logic for specification and validation of programs.

In turn, non-critical errors are adequately handled by three-valued Kleene
logic [Kl52]. This is maybe the most famous logic used for reasoning about
undefinedness in general, which is also known to describe parallel computa-
tion (with unlimited parallelism). Unlike McCarthy logic, Kleene logic has
symmetric disjunction and conjunction, and is given by the following truth
tables:

¬ t f u

f t u

∨ t f u

t t t t
f t f u
u t u u

∧ t f u

t t f u
f f f f
u u f u

(2)

where u denotes undefinedness.
Accordingly, from now on the computation strategy tailored to handling

critical errors based on McCarthy logic will be referred to as the (MC)
strategy, while the strategy tailored to handling non-critical errors based on
Kleene logic will be termed the (K) strategy

In the paper we examine three computing scenarios involving both crit-
ical and non-critical errors. The first two of them correspond to the case
when we do not know whether the strategy used by the computer in han-
dling errors is the (MC) or the (K) strategy. To describe this scenario, we
use a three-valued non-deterministic logical matrix [AL01, AL05] where each
element is the union of the corresponding elements of the matrices for Mc-
Carthy and Kleene logics. The logic generated by the static semantics of

4 A. Avron and B. Konikowska

that matrix describes the situation when the computer uses the same strat-
egy in all cases (but we do not know which one). In turn, the logic generated
by the dynamic semantics of that matrix describes the situation when the
computer can use a different strategy in each particular case. Finally, the
last scenario is one where the computer distinguishes between critical and
non-critical errors, and hence chooses the right strategy — the (MK) or the
(K) one — for either kind of error. This corresponds to a four-valued de-
terministic matrix featuring two kinds of error values, with the critical error
handled like in McCarthy logic, and the non-critical one — like in Kleene
logic.

For all the three considered logics, we provide sound and complete calculi
of ordinary sequents. The systems for the static semantics of the three-valued
Nmatrix and for the four-valued ordinary matrix are a great improvement
over those developed earlier in [AK05, Ko08], respectively. Indeed, some of
the rules in the latter systems relied on the use of constants, and such rules
had to be used also in reasoning about constant-free formulas. In opposition
to the above, the systems provided here do not employ any constants.

2. Non-deterministic matrices

We begin with recalling from [AL01, AL05, AK05] the fundamentals of the
notions of a non-deterministic matrix and its semantics, needed to handle
the first two computing scenarios mentioned in the introduction.

In what follows, L is a propositional language, On (n ≥ 0) is the set of its
n-ary connectives, W is its set of wffs, p, q, r denote propositional variables,
ϕ,ψ, φ, τ denote arbitrary formulas (of L), and Γ,∆ denote finite sets of
formulas.

Definition 1. A non-deterministic matrix (Nmatrix) for L is a triple M =
(V,D,O), where V is a non-empty set of truth values, D is a non-empty
proper subset of V (containing its designated values), and O includes an
n-ary function ⋄̃ : Vn → 2V \ {∅} for every n-ary connective ⋄ ∈ On.

Definition 2. Let M = (V,D,O) be an Nmatrix.

1. A dynamic valuation in M is a function v : W → V such that for each
n-ary connective ⋄ ∈ On, the following holds for all ψ1, . . . , ψn ∈ W:

(S) v(⋄(ψ1, . . . , ψn)) ∈ ⋄̃(v(ψ1), . . . , v(ψn))

2. A static valuation in M is a function v : W → V which satisfies
Condition (S) together with the following compositionality principle:

Proof Systems for Reasoning about Computation Errors 5

for each ⋄ ∈ On and for every ψ1, . . . , ψn, ϕ1, . . . , ϕn ∈ W,

(C) v(⋄(ψ1, . . . , ψn)) = v(⋄(ϕ1, . . . , ϕn)) if (∀i)(v(ψi) = v(ϕi))

Note 1. The ordinary (deterministic) matrices correspond to the case when
each ⋄̃ is a function taking singleton values only. Then it can be treated as a
function ⋄̃ : Vn → V; thus there is no difference between static and dynamic
valuations, and we have full determinism.

Note 2. Both dynamic and static valuations depend solely on the set of
truth values assigned to the given values of some formulas by the (nondeter-
ministic) interpretation of the connective combining those formulas and not
on the formulas themselves. Hence both types of valuation can be termed
extensional.

By the above definitions, the dynamic semantics corresponds to selecting
the value of v(⋄(ψ1, . . . , ψn)) out of the whole set ⋄̃(v(ψ1), . . . , v(ψn)) sep-
arately and independently for each tuple (v(ψ1), . . . , v(ψn)), which means
that v(ψ1), . . . , v(ψn) do not uniquely determine v(⋄(ψ1, . . . , ψn)). This se-
mantics corresponds to the maximum level of non-determinism possible in
the context of an Nmatrix.

In case of the static semantics, this choice is made globally, system-wide.
Namely, by Condition (C), the value of v(⋄(ψ1, . . . , ψn)) is now uniquely
determined by v(ψ1), . . . , v(ψn). Hence the interpretation of ⋄ is a function
f v
⋄ : Vn → V such that, for any (t1, . . . , tn) ∈ V, and any ψ1, . . . , ψn ∈ W:

f v
⋄ (t1, . . . , tn) ∈ ⋄̃(t1, . . . , tn), v(⋄(ψ1, . . . , ψn)) = f v

⋄ (v(ψ1) . . . v(ψn)) (3)

Clearly f v
⋄ represents a “determinisation” of ⋄̃ applied in computing the

value of any formula under the given valuation, and the non-determinism is
now limited to choosing f v

⋄ among all functions compatible with the non-
deterministic interpretation ⋄̃ of ⋄, with the selection being performed before
any computation begins.

Definition 3. A valuation v in M satisfies a formula ψ (v |= ψ) if v(ψ) ∈
D, and is a model of Γ (v |= Γ) if it satisfies every formula in Γ.

Definition 4. We say that:

• ψ is dynamically (statically) valid in M, in symbols |=d
M
ψ (|=s

M
ψ),

if v |= ψ for each dynamic (static) valuation v in M.

6 A. Avron and B. Konikowska

• We say that ∆ dynamically (statically) follows from Γ in M, in symbols
Γ ⊢d

M
∆ (Γ ⊢s

M
∆), if for every dynamic (static) model v of Γ in M

we have v |= φ for some φ ∈ ∆.

• The relation ⊢d
M

(⊢s
M

) is called the dynamic (static) consequence re-
lation induced by M.

Definition 5.

• By a sequent over the language L we mean an expression Σ of the form
Γ ⇒ ∆, where Γ,∆ are finite sets of formulas of L.

• A valuation v in an Nmatrix M satisfies the sequent Σ = Γ ⇒ ∆,
written v |= Σ, if either v 6|= γ for some γ ∈ Γ or v |= δ for some
δ ∈ ∆.

• A sequent Σ is said to be dynamically (statically) valid in an Nmatrix
M, in symbols |=d

M
Σ (|=s

M
Σ) if v |= Σ for every dynamic (static)

valuation v in M.

3. Combining Kleene and McCarthy logics

3.1. Combination based on a 3-valued non-deterministic matrix

Assume V = {f, e, t},D = {t}, and L has a unary connective ¬ and a
binary connective ∨. If we combine the matrices for Kleene and McCarthy
logics restricted to ¬,∨ 1 (by taking their union), we obtain the Nmatrix
M3

MK
= (V,D,O), with O = {¬̃, ∨̃}, where2:

¬̃ f e t

t e f

∨̃ f e t

f f e t

e e e {e, t}
t t t t

(4)

One can easily see that M3
MK

with the static semantics describes the
situation where the computer uses either strategy (K) or strategy (MC) all
the time. Indeed: if in the static semantics we take fK

∨ (e, t) = t, we obtain
Kleene logic, while by choosing fM

∨ (e, t) = e we get McCarthy logic. In turn,
the dynamic semantics corresponds to the situation where the computer can

1The standard language of these logics includes the connective ∧ as well, but in both

of them ∧ is definable in terms of ¬,∨ by De Morgan laws.
2For simplicity, in the truth tables below we omit the set brackets in singleton sets.

Proof Systems for Reasoning about Computation Errors 7

apply a different strategy in each particular case. Thus the two calculi related
to the static and dynamic semantics of MMK yield results applicable to both
strategies.

The above Nmatrix and the logics corresponding to its dynamic and
static semantics were studied in [AK05]. In that paper, complete sequent
calculi for both static and dynamic semantics of MMK were provided. They
were obtained by translating systems of 3-sequent inference rules and axioms
for both semantics obtained using the general method introduced in [AK05]
into ordinary, 2-sided sequent calculi with help of the general translation
method described in [ABK06]. However, the proof system for the static
semantics had the drawback of using constants which were employed even
in rules applied to constant-free formulas. In this paper we will remedy
this deficiency by providing a proof system for the static semantics without
constants, obtained by extending a cosmetically modified version of the proof
system for the dynamic semantics introduced in [AK05]. More precisely,
we provide here the following sequent calculi for the dynamic and static
semantics of M3

MK
:

Dynamic semantics: The system SCd
3 for the dynamic semantics of M3

MK

is defined as follows:

Axioms:

(A1) Γ, α⇒ ∆, α (A2) Γ, α,¬α⇒ ∆

Inference rules: Cut plus the following rules:

(r1)
Γ, α⇒ ∆

Γ,¬¬α⇒ ∆
(r2)

Γ ⇒ ∆, α

Γ ⇒ ∆,¬¬α

(r3)
Γ, α⇒ ∆ Γ, β ⇒ ∆

Γ, α ∨ β ⇒ ∆
(r4)

Γ ⇒ ∆, α

Γ ⇒ ∆, α ∨ β

(r5)
Γ ⇒ ∆,¬α Γ ⇒ ∆, β

Γ ⇒ ∆, α ∨ β

(r8)
Γ,¬α⇒ ∆

Γ,¬(α ∨ β) ⇒ ∆
(r9)

Γ ⇒ ∆,¬α Γ ⇒ ∆,¬β
Γ ⇒ ∆,¬(α ∨ β)

(r10)
Γ,¬β ⇒ ∆

Γ,¬(α ∨ β) ⇒ ∆

8 A. Avron and B. Konikowska

Note that the gap in the numbering of the rules follows from the fact
that the numbering is aligned with that of the rules in a bigger system
for the four-valued logic mentioned in the introduction, which will be
provided later on.

The nonstandard character of some of the sequent rules given above
follows from the nonstandard properties of the matrix M3

MK
, espe-

cially with regard to disjunction. As those properties make some stan-
dard sequent rules unsound, they have forced us to replace them with
sound, but nonstandard analogues. For example, rule (r5) has been
introduced as a sound counterpart of the standard rule

Γ ⇒ ∆, β

Γ ⇒ ∆, α ∨ β

which is unsound in the semantics based on M3
MK

. Indeed: for Γ =
∆ = ∅ and any valuation v such that v(α) = e and v(β) = t we have
v |= (⇒ β) but v 6|= (⇒ α ∨ β), since v(α ∨ β) = e ∨ t = e 6∈ D.

Static semantics: The system SCs
3 for the static semantics of M3

MK
is

obtained by supplementing the system SCd
3 for the dynamic semantics

with the rule:

(S)
Γ ⇒ ∆, β Γ, ϕ⇒ ∆ Γ,¬ϕ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆, α ∨ β

Roughly speaking, the above rule ensures that if a valuation v selects
t as the value of ϕ ∨ ψ for some ϕ,ψ such that v(ϕ) = e, then it will
choose the value t for α ∨ β whenever v(β) = t — which amounts to
choosing a deterministic function as the interpretation of ∨.

As we have noted above, the advantage of SCs
3 over the system developed

in [AK05] is that, unlike the former, it does not require the use of constants.

3.2. Combination based on a 4-valued deterministic matrix

The situation when the computer distinguishes between the two kinds of
errors — critical and non-critical ones — and uses the appropriate strat-
egy for each of them is described by an ordinary (deterministic) four-valued
matrix M4

MK
= (T ,D,I), where T = {f, t,u, e}, D = {t}, and the in-

terpretations of the connectives restricted to t, f and u behave like Kleene
connectives, and restricted to t, f and e — like McCarthy ones. As to the
interplay between the critical and non-critical errors, we have adopted here

Proof Systems for Reasoning about Computation Errors 9

the assumption that e prevails over u whatever their order. More exactly,
the interpretations ¬̃, ∨̃ ∈ I of negation and disjunction3 are given by:

¬̃ t f u e

f t u e

∨̃ t f u e

t t t t t
f t f u e
u t u u e
e e e e e

(5)

The logic generated by this matrix was considered in [Ko08]. However,
the proof system provided there relied heavily on the use of the “finiteness
operator” ◦, used to distinguish between e and u and defined with help of
the constant added for that purpose to the original language. In this paper,
we will improve on [Ko08] by providing a complete proof system for the
considered logic without the use of any additional operator or constant.

The proof system for M4
MK

is the sequent calculus SC4 consisting of the
following elements:

Axioms:

(A1) Γ, α⇒ ∆, α (A2) Γ, α,¬α⇒ ∆

Inference rules:

Cut, plus the following rules:

(r1)
Γ, α⇒ ∆

Γ,¬¬α⇒ ∆
(r2)

Γ ⇒ ∆, α
Γ ⇒ ∆,¬¬α

(r3)
Γ, α⇒ ∆ Γ, β ⇒ ∆

Γ, α ∨ β ⇒ ∆
(r4)

Γ ⇒ ∆, α
Γ ⇒ ∆, α ∨ β

(r5)
Γ ⇒ ∆,¬α Γ ⇒ ∆, β

Γ ⇒ ∆, α ∨ β

(r6)
Γ ⇒ ∆, β Γ, α ∨ β ⇒ ∆

Γ,¬α ∨ β ⇒ ∆
(r7)

Γ ⇒ ∆, β Γ ⇒ ∆, α ∨ β
Γ ⇒ ∆,¬α ∨ β

3As before, we disregard ∧ in our considerations, since it can be obtained out of ¬ and

∨ using De Morgan laws.

10 A. Avron and B. Konikowska

(r8)
Γ,¬α⇒ ∆

Γ,¬(α ∨ β) ⇒ ∆
(r9)

Γ ⇒ ∆,¬α Γ ⇒ ∆,¬β
Γ ⇒ ∆,¬(α ∨ β)

(r10)
Γ,¬β ⇒ ∆

Γ,¬(α ∨ β) ⇒ ∆

(r11)
Γ ⇒ ∆, γ Γ, α ∨ γ ⇒ ∆

Γ, (α ∨ β) ∨ γ ⇒ ∆
(r12)

Γ ⇒ ∆, α ∨ γ Γ ⇒ ∆, β ∨ γ
Γ ⇒ ∆, (α ∨ β) ∨ γ

(r13)
Γ, α⇒ ∆ Γ, β ∨ γ ⇒ ∆

Γ, (α ∨ β) ∨ γ ⇒ ∆

As we see, the system SC4 is again obtained out of the basic system SCd
3

for the dynamic semantics of M3
MK

— this time, by adding rules (r6–r7)
and (r11–r13). Note also that since Axioms A1, A2 are given in the form
which incorporates weakening, the weakening rules are admissible in SC4,
as well as in the other systems considered here, of which fact we will make
use in the sequel.

4. Soundness and completeness of the proof systems

Let us denote provability under any sequent calculus SC considered in this
paper by ⊢SC .

4.1. Four-valued logic

We start with the largest system of all the three introduced here, i.e. SC4:

Theorem 1. The system SC4 is sound, i.e. each sequent provable in SC4

is valid in M4
MK

.

Proof. The validity of axioms is obvious. By way of example, we will
show the soundness of three inference rules: (r6), (r11) and (r13). In what
follows, v denotes an arbitrary valuation in M4

MK
, Pi, i = 1, 2, premises of

the considered rule, and C its conclusion.

Rule (r6) :
Γ ⇒ ∆, β Γ, α ∨ β ⇒ ∆

Γ,¬α ∨ β ⇒ ∆

Assume v |= Pi, i = 1, 2. If v 6|= γ for some γ ∈ Γ or v |= δ for some
δ ∈ ∆, then obviously v |= C. Otherwise v |= β, whence v(β) = t, and
v 6|= α ∨ β, which in view of v(β) = t implies v(α) = e by (5). Hence
also v(¬α) = e and v(¬α ∨ β) = e, so v |= C.

Proof Systems for Reasoning about Computation Errors 11

(r11)
Γ ⇒ ∆, γ Γ, α ∨ γ ⇒ ∆

Γ, (α ∨ β) ∨ γ ⇒ ∆
Assume again that v |= Pi, i = 1, 2. As

Γ,∆, are handled like above, suppose v |= γ and v 6|= α ∨ γ. Then,
reasoning like for (r6) above, we get v(γ) = t and v(α) = e. Hence
v((α ∨ β) ∨ γ) = (e ∨ v(β)) ∨ t = e ∨ t = e and v |= C.

(r13)
Γ, α⇒ ∆ Γ, β ∨ γ ⇒ ∆

Γ, (α ∨ β) ∨ γ ⇒ ∆

Disregarding Γ,∆, assume v 6|= α and v 6|= β ∨ γ. Then v(α) 6= t
and v(β ∨ γ) 6= t, whence v(β) 6= t and either v(γ) 6= t or v(β) = e.
Accordingly, v(α∨β) 6= t and since — in view of v(α) 6= t — v(β) = e
implies v(α∨β) = e, in both foregoing cases we get v((α∨β)∨γ) 6= t,
whence v |= C. 2

It remains to prove the converse result, i.e. the completeness of SC4:

Theorem 2. The system SC4 is complete, i.e. each sequent valid in M4
MK

is provable in SC4.

Proof. Assume Σ = Γ ⇒ ∆ is a sequent over W valid in M4
MK

. To
prove that ⊢SC4

Σ, we argue by contradiction.
Suppose 6⊢SC4

Σ. We carry out an analogue of a maximal consistent set
construction in the Lindenbaum style by extending Γ,∆ to a pair of sets
T, S ⊆ W such that:

(TS1) Γ ⊆ T,∆ ⊆ S (TS2) T ∩ S = ∅ (TS3) T ∪ S = W

(TS4) For any finite sets Γ′ ⊆ T,∆′ ⊆ S, 6⊢SC4
(Γ′ ⇒ ∆′)

(6)

The sets T, S with the above properties are constructed inductively, as the
unions of two monotonically increasing sequences of sets Ti, Si ⊆ W, i =
0, 1, . . ., satisfying conditions TS1, TS2, TS4 above. For the purposes of
that construction, let ϕ1, ϕ2, . . . be an ordering of W.

Let T0 = Γ, S0 = ∆. Since Γ ∩ ∆ = ∅ (for otherwise Σ = Γ ⇒ ∆ would
be an instance of Axiom A1), T0, S0 satisfy conditions TS1, TS2. Condition
TS4 is also satisfied, for in the opposite case Σ would be derivable from
Γ′ ⇒ ∆′ by weakening.

Assume now we have constructed the sequences {Ti}, {Si} with the de-
sired properties up to i = k. Let ϕ = ϕl be the first formula in the considered
ordering of W such that ϕ 6∈ (Tk ∪ Sk). Then one of the following holds:

(1) 6⊢SC4
Γ′, ϕ ⇒ ∆′ for any finite sets Γ′ ⊆ Tk,∆

′ ⊆ Sk; or

12 A. Avron and B. Konikowska

(2) 6⊢SC4
Γ′′ ⇒ ∆′′, ϕ for any finite sets Γ′′ ⊆ Tk,∆

′′ ⊆ Sk.

Indeed: otherwise we would have ⊢SC4
Γ′, ϕ ⇒ ∆′ and ⊢SC4

Γ′′ ⇒ ∆′′, ϕ

for some finite Γ′,∆′,Γ′′,∆′′ as above, whence by weakening and cut we
would get ⊢SC4

Γ′,Γ′′ ⇒ ∆′,∆′′. However, as Γ′ ∪ Γ′′,∆′ ∪∆′′ are finite and
Γ′ ∪ Γ′′ ⊆ Tk,∆

′ ∪ ∆′′ ⊆ Sk, this would contradict condition TS3 for Tk, Sk,
which is satisfied by the inductive hypothesis.

If (1) holds, we put Tk+1 = Tk ∪ {ϕ}, Sk+1 = Sk; otherwise we put
Sk+1 = Sk ∪ {ϕ}, Tk+1 = Tk. Then Tk ⊆ Tk+1, Sk ⊆ Sk+1, and Tk+1, Sk+1

obviously satisfy conditions TS1 and TS2. What is more, since Tk, Sk satisfy
condition TS4, then from the definition of Tk+1, Sk+1 it can be easily deduced
that those sets also satisfy condition TS4.

For the monotonic sequences {Ti}, {Si} constructed in this way, we take
T =

⋃
∞

i=1 Ti, S =
⋃

∞

i=1 Si. Then it is easy to see that T, S satisfy conditions
TS1, TS2, TS4. As Γ∪∆ ⊆ (T ∪S) by TS1 and each formula ϕ ∈ W outside
Γ ∪ ∆ is added either to Ti or Si at some step i of the construction process
described above, then T, S satisfy also condition TS4.

Based on the sets T, S, we now define a valuation v as follows:

1. For any atomic formula p in W:

v(p) =





t if (i) p ∈ T

f if (ii) ¬p ∈ T
e if (iii) (∃β ∈ T)(p ∨ β ∈ S)
u (iv) otherwise

(7)

2. The valuation v is extended to complex formulas in W according to
the truth tables (5) of the matrix M4

MK
.

To see the reasons behind the rather peculiar e clause in (7), let us note
that our intention is to have v satisfy the formulas in T and not satisfy the
formulas in S. As in M4

MK
we have e ∨ t = e and a ∨ t = t for a 6= e, this

means β ∈ T and p ∨ β ∈ S must necessarily imply v(p) = e.

As in (7) condition (iv) is the complement of the union of conditions
(i)–(iii), to prove that the valuation v is well-defined we have to show that
conditions (i)–(iii) are disjoint. In fact, we can prove this holds for arbitrary
formulas, not only atomic ones:

Lemma 1. For any formula α ∈ W, the following conditions are disjoint:

(i) α ∈ T (ii) ¬α ∈ T (iii) (∃β ∈ T)(α ∨ β ∈ S) (8)

Proof Systems for Reasoning about Computation Errors 13

Proof. It is obvious that (i), (ii) are disjoint, for if both α and ¬α
belonged to T , then by axiom (A2) for Γ′ = {α,¬α}, ∆′ = ∆ we would have
Γ′ ⊆ T,∆′ ⊆ S and ⊢SC4

Γ′ ⇒ ∆′, which would contradict condition TS4
holding for T, S.

In turn, if (i) and (iii) were not disjoint, then we would have both α ∈ T

and α ∨ β ∈ S for some β ∈ T . However, as from axiom (A1) and rule
(r4) of SC4 we can easily deduce that ⊢SC4

(α ⇒ α ∨ β), this would again
contradict condition TS4 holding for T, S.

Finally, if (ii) and (iii) were not disjoint, then for some β ∈ T we would
have ¬α ∈ T, β ∈ T and α∨β ∈ S. Considering that by axiom (A1) and rule
(r5) of SC4 we have ⊢SC4

(¬α, β ⇒ α∨ β), this would once more contradict
condition TS4 for T, S. Hence (i)–(iii) are all disjoint, which ends the proof
of the lemma.

Next we deduce from Lemma 1 the following key lemma:

Lemma 2. [Truth Lemma]

1. The implications “if” in points (i)–(iv) of Equation (7) can be replaced
with equivalences “iff”,

2. Equation (7) in the “iff” version holds for any formula α ∈ W.

Proof. The first part follows directly from Lemma 1. To prove the
second one, we argue by structural induction on the complexity of α. As
by Lemma 1 it is enough to actually prove that (i)–(iv) in (7) hold in one
direction, we will prove it in the “if” direction only. However, in view of the
same Lemma, in applying the inductive assumption to formulas from the
structural levels preceding the current one we will be able to assume that
(i)–(iv) hold in the “only if” direction too.

First, by (7) and Lemma 1, the thesis holds for atomic formulas. Assume
now it holds for formulas ϕ of rank r(ϕ) ≤ k, with the rank of a formula
defined in the usual way as the maximum nesting of operators, and let ψ be
a formula of rank k + 1. To prove that (7) holds also for ψ, we examine the
two possible forms of ψ, and for each of them prove, based on the inductive
hypothesis, that ψ satisfies each of the conditions (i)–(iv) in (7).

ψ = ¬α , where r(α) ≤ k.

(i) If ¬α ∈ T , then by (ii) of the inductive hypothesis for α we have
v(α) = f, whence v(ψ) = v(¬α) = ¬̃f = t by the truth tables (5),
so (i) holds for ψ.

14 A. Avron and B. Konikowska

(ii) If ¬(¬α) ∈ T , then α 6∈ S. Indeed: as ¬¬α ∈ T , and by axiom
(A1) and rule (r1) we have ⊢SC4

¬¬α⇒ α, this would contradict
property (TS4) of T, S. Hence by TS3 α ∈ T , which by (i) of
the inductive hypothesis for α implies v(α) = t. This yields
v(ψ) = ¬̃t = f, so (ii) holds too.

(iii) Assume now there is a β ∈ T such that ¬α∨β ∈ S. As by axiom
A1 and rule (r7) we have ⊢SC4

(β, α ∨ β ⇒ ¬α ∨ β), this implies
α∨β 6∈ T , whence α∨β ∈ S. By (iii) of the inductive hypothesis
for α, this implies v(α) = e, whence v(ψ) = ¬̃e = e, and (iii)
holds as well.

(iv) Assume finally that none of the foregoing holds, i.e. (A) ¬α 6∈ T ,
(B) ¬(¬α) 6∈ T , and (C) ¬(∃β ∈ T)(¬α∨β ∈ S). By the inductive
assumption on α, (A) implies that v(α) 6= f, and so v(ψ) 6= t.
Further, as by rule (r2) ⊢SC4

(α⇒ ¬¬α), then (B) implies α 6∈ T ,
whence v(α) 6= t by the inductive assumption, and so v(ψ) 6= f.
Suppose now v(ψ) = e. Then, as ψ = ¬α, we have also v(α) = e.
Hence (by the “only if” direction of point (iii) of the inductive
assumption for α) there exists β ∈ T such that α ∨ β ∈ S. Now
TS3 and (C) imply that ¬α ∨ β ∈ T . However, by A1 and rule
(r6) ⊢SC4

(β,¬α ∨ β ⇒ α ∨ β), and so α ∨ β ∈ T too. This
contradicts property TS4 of T, S. Accordingly, v(ψ) 6= e, which
in view of v(ψ) 6= f, t yields v(ψ) = u. Thus (iv) holds too.

ψ = α ∨ β , where r(α), r(β) ≤ k

(i) Assume first α ∨ β ∈ T . As by axiom (A1) and rule (r3) we have
⊢SC4

(α ∨ β ⇒ α, β), then either α ∈ T or β ∈ T . Indeed: in
the opposite case, we would have α, β ∈ S, and the provability of
the above sequent would contradict property TS4 of T, S. Now,
if α ∈ T , then by (i) of the inductive hypothesis for α we have
v(α) = t, whence v(ψ) = t∨̃v(β) = t.
If β ∈ T , then v(β) = t by the inductive hypothesis for β. Hence
v(ψ) = v(α)∨̃t ∈ {t, e}. Suppose v(ψ) = e; then v(α) = e, and
so by the inductive hypothesis for α there exists β′ ∈ T such that
α∨β′ ∈ S. However, as ⊢SC4

(α∨β ⇒ (α∨β)∨β′) by rule (r4), and
from rule (r11) we can derive that ⊢SC4

((α∨β)∨β′, β′ ⇒ α∨β′),
then by cut we get ⊢SC4

(α ∨ β, β′ ⇒ α ∨ β′), which contradicts
property TS4 of T, S. Thus v(ψ) = t, and condition (i) holds.

(ii) Assume now ¬(α ∨ β) ∈ T . As by (A1) and rules (r8), (r10)
we have ⊢SC4

(¬(α ∨ β) ⇒ ¬α) and ⊢SC4
(¬(α ∨ β) ⇒ ¬β),

Proof Systems for Reasoning about Computation Errors 15

respectively, then by property TS4 of T, S we must have ¬α,¬β ∈
T . By (ii) of the inductive hypothesis for α, β, this implies v(α) =
v(β) = f, whence by v(ψ) = ¬̃t∨̃¬̃t = f∨̃f = f, so (ii) holds too.

(iii) Assume next there is a γ ∈ T such that (α ∨ β) ∨ γ ∈ S. As by
(A1) and rule (12) we have ⊢SC4

(α∨γ, β∨γ ⇒ (α∨β)∨γ), then
by TS4 either α∨γ 6∈ T or β∨γ 6∈ T . As this amounts to either (1)
α∨γ ∈ S or (2) β∨γ ∈ S with γ ∈ T , then by (iii) of the inductive
hypothesis for α, β, we have correspondingly either (1′) v(α) = e
or (2′) v(β) = e. Clearly, (1′) implies v(ψ) = e∨̃v(β) = e. In turn,
if (2′) holds, then v(ψ) = v(α)∨̃e = t if v(α) = t, and e otherwise.
Suppose v(α) = t; then by the “only if” direction of point (i) of
the inductive hypothesis for α we have α ∈ T . By axiom (A1)
and rule (r4) applied twice we obtain ⊢SC4

(α ⇒ (α ∨ β) ∨ γ) —
which, considering that α ∈ T and (α ∨ β) ∨ γ ∈ S contradicts
property TS4 of T, S. Hence v(α) 6= t, and accordingly v(ψ) = e,
so (iii) holds as well.

(iv) Finally, assume that none of (i)—(iii) holds, whence α ∨ β ∈
S,¬(α ∨ β) ∈ S and (∗) (∀γ)(γ ∈ S or (α ∨ β) ∨ γ ∈ T). We will
show that in this case v(ψ) = v(α∨β) cannot be t, f or e, whence
v(ψ) = u.

v(α ∨ β) 6= f:
Suppose otherwise. Then we have v(α) = v(β) = f, which
by (ii) of the inductive hypothesis for α, β yields ¬α,¬β ∈ T .
However, by (A1) and (r9), ⊢SC4

(¬α,¬β ⇒ ¬(α∨β)), which
in view of ¬(α ∨ β) ∈ S contradicts property TS4 of T, S.
Thus indeed v(ψ) 6= f.

v(α ∨ β) 6= t:
Suppose to the contrary. Then either
(1) v(α) = t, or
(2) v(β) = t and v(α) 6= e.
If (1), then α ∈ T by the “only if” implication of point (i)
of the inductive hypothesis for α. However, as by A1 and
rule (r4) we have ⊢SC4

(α ⇒ α ∨ β), in view of α ∨ β ∈ S

we get a contradiction with property TS4 of T, S. In turn,
(2) implies β ∈ T by (i) of the inductive hypothesis for β.
Together with α ∨ β ∈ S, this yields v(α) = e by (iii) of the
inductive assumption for α – which contradicts the second
part of (2).

v(α ∨ β) 6= e:

16 A. Avron and B. Konikowska

Assume otherwise. Then either
(1) v(α) = e, or
(2) v(α) 6= t and v(β) = e.
By the inductive hypothesis for α, (1) implies (∃γ ∈ T)(α ∨
γ ∈ S). However, in view of (∗) at the beginning of this point
(iv), γ ∈ T implies (α∨β)∨γ ∈ T . In turn, by (A1) and rule
(11), ⊢SC4

((α∨β)∨γ, γ ⇒ α∨γ) — which in view of α∨γ ∈ S

contradicts property TS4 of T, S. In turn, (2) implies (2’)
α ∈ S and (2”) (∃γ ∈ T)(β ∨ γ ∈ S), with γ ∈ T implying
(α∨β)∨ γ ∈ T like in (1). However, by axiom (A1) together
with rule (r13) we have ⊢SC4

((α ∨ β) ∨ γ ⇒ α, β ∨ γ). Since
α ∈ S by (2′) and β∨γ ∈ S by (2′′), this once more contradicts
property TS4 of T, S. Hence indeed v(α ∨ β) 6= e, which in
view of the fact that v(α ∨ β) 6= f, t yields v(α ∨ β) = u as
the only possibility. Thus (iv) also holds.

This ends the proof of Lemma 2.

To complete the proof of Theorem 2, note that as Γ ⊆ T,∆ ⊆ S by TS1,
T ∩ S = ∅ by TS2, and the only designated value in the matrix M4

MK
is t,

then Lemma 2 implies that v 6|= (Γ ⇒ ∆). This contradicts the validity of
Γ ⇒ ∆ in M4

MK
. 2

4.2. Three-valued nondeterministic logics

4.2.1. Dynamic semantics

We start with the system SCd
3 for the dynamic semantics of the matrix

M3
MK

. Obviously, axioms (A1), (A2) are valid in that semantics. Reasoning
exactly like in case of the four-valued logic above, we can easily show that
the axioms and inference rules of SCd

3 — which are a subset of those of SCd
4

— are sound in that semantics too. Thus we obtain:

Theorem 3. The system SCd
3 is sound for the dynamic semantics of M3

MK
,

i.e. each sequent provable in SCd
3 is dynamically valid in M3

MK
.

The completeness theorem for SCd
3 (presented in a slightly different ver-

sion) was already proved in [AK05]. However, for the sake of uniformity, we
will now give a new proof of that theorem, based on the new ideas used in
the completeness proof for SC4 given above.

Theorem 4. The system SCd
3 is complete for the dynamic semantics of

M3
MK

, i.e. each sequent dynamically valid in M3
MK

is provable in SCd
3 .

Proof Systems for Reasoning about Computation Errors 17

Proof We again argue by contradiction. Assuming that Σ = Γ ⇒ ∆ is
dynamically valid in M3

MK
and 6⊢

SCd

3

Σ, we use the same method as in case
of SC4 to extend Γ,∆ to a pair of sets T, S ⊆ W such that:

(TS1) Γ ⊆ T,∆ ⊆ S (TS2) T ∩ S = ∅ (TS3) T ∪ S = W

(TS4) For any finite sets Γ′ ⊆ T,∆′ ⊆ S, 6⊢
SCd

3

(Γ′ ⇒ ∆′)
(9)

Then we define a valuation v as follows: for any formula α in W,

v(α) =





t iff (i) α ∈ T

f iff (ii) ¬α ∈ T
e iff (iii) α,¬α ∈ S

(10)

It is easy to see that v is well-defined since the cases (i)–(iii) above are
mutually exclusive and exhaustive. Indeed: by TS3, each of α,¬α must
belong to either T or S. However, by TS1 neither α nor ¬α can belong both
to T and S, while by (A1) and TS4 α and ¬α cannot both belong to T .

What is more, in view of (TS1), (TS2), v |= γ for each γ ∈ Γ and v 6|= δ for
each δ ∈ ∆, whence v 6|= Σ. Thus in order to contradict the assumed validity
of Σ in the dynamic semantics of M3

MK
, and hence prove the completeness

of SCd
3 , it suffices to show that v is a legal dynamic valuation in M3

MK
,

i.e. that it is compliant with the truth tables (4) of that Nmatrix. To this
end, we check what values are assigned by v to negation and disjunction of
formulas with given logical values.

Negation

1. If v(α) = t, then by (10)(i) we have α ∈ T . As ⊢
SCd

3

(α ⇒ ¬¬α)

by (r2), from TS4 and TS3 we obtain ¬(¬α) = ¬¬α ∈ T , whence
(10)(ii) for ¬α yields v(¬α) = f.

2. If v(α) = f, then ¬α ∈ T , whence by (10)(i) applied to ¬α we get
v(¬α) = t.

3. If v(α) = e, then by (10)(ii) we have α,¬α ∈ S. As ⊢
SCd

3

(¬¬α⇒

α) by (r1), then in view of TS4 we get ¬¬α 6∈ T . Hence ¬α,¬(¬α)
are both in S and by (10)(iii) applied to ¬α we get v(¬α) = e.

Disjunction

1. If v(α) = t, then α ∈ T by (10)(i). As ⊢
SCd

3

(α ⇒ α ∨ β) by rule

(r4), in view of TS4 and TS3, α ∈ T implies α ∨ β ∈ T , whence
v(α ∨ β) = t by (10)(i) applied to α ∨ β.

18 A. Avron and B. Konikowska

2. If v(α) = v(β) = f, then ¬α,¬β ∈ T by (10)(i). Since by (r9)
we have ⊢

SCd

3

(¬α,¬β ⇒ ¬(α ∨ β)), then ¬(α ∨ β) ∈ T , whence

v(α ∨ β) = f by (10)(ii).

3. If v(α) = f and v(β) = t, then by (10)(i), (ii) we have ¬α ∈ T, β ∈
T . As by (r5) ⊢

SCd

3

(¬α, β ⇒ α ∨ β), this yields α ∨ β ∈ T and

v(α ∨ β) = t.

4. If v(α) = f and v(β) = e, then by (10)(ii), (iii) we get ¬α ∈ T

and β,¬β ∈ S. As by (r10) ⊢
SCd

3

(¬(α ∨ β) ⇒ ¬β), then ¬β ∈ S

implies ¬(α ∨ β) ∈ S. Further, as by axioms (A1), (A2) and
rule (r3) ⊢

SCd

3

(¬α,α ∨ β ⇒ β), then ¬α ∈ T and β ∈ S imply

α∨ β ∈ S. Applying (10)(iii) for α∨ β to the last two results, we
obtain v(α ∨ β) = e.

5. Assume finally v(α) = e, which yields (∗) α,¬α ∈ S by (10)(iii).
As by (r8) ⊢

SCd

3

(¬(α ∨ β) ⇒ ¬α), then the former implies (∗∗)

¬(α ∨ β) ∈ S. Accordingly, ¬(α ∨ β) 6∈ T , and by (10) we obtain
v(α∨β) 6= f, whence v(α∨β) ∈ {t, e}. As by (4) ∨̃(e, t) = {t, e},
then v(α ∨ β) is compliant with the truth table for ∨ in (4) if
v(β) = t. If v(β) = f, then ¬β ∈ T . As by (A1), (A2) and (r3)
we have ⊢

SCd

3

(¬β, α∨β ⇒ α), then (∗) implies α∨ β ∈ S, which

together with (∗∗) yields v(α ∨ β) = e. Lastly, if v(β) = e, then
β,¬β ∈ S, which again yields α∨β ∈ S in view of (∗) and the fact
that by (r3) ⊢

SCd

3

(α∨ β ⇒ α, β). Thus once more v(α∨β) = e .

Clearly, the above implies that v(¬α) ∈ ¬̃v(α) and v(α∨β) ∈ ∨̃(v(α), v(β)),
where ¬̃, ∨̃ are the interpretations of ¬,∨ given by the truth tables (4) of
M3

MK
. Thus v is indeed a legal dynamic valuation in that matrix, which

ends the proof. 2

Finally, let us remark that by adding to SCd
3 the rule

Γ ⇒ ∆, β

Γ ⇒ ∆, α ∨ β

we obtain a proof system for Kleene logic, while by adding the rule

Γ, α⇒ ∆ Γ,¬α⇒ ∆

Γ, α ∨ β ⇒ ∆

we get a proof system for Kleene logic. The proofs of Theorems 3, 4 can
be easily extended to soundness and completeness proofs for the systems
obtained in the above way.

Proof Systems for Reasoning about Computation Errors 19

4.2.2. Static semantics

The last remaining soundness and completeness proofs are those for the
system SCs

3 for the static semantics of the matrix M3
MK

.

Theorem 5. The system SCs
3 is sound for the static semantics of M3

MK
,

i.e. each sequent provable in SCs
3 is statically valid in M3

MK
.

Proof. The system SCs
3 differs from the system SCd

3 for the dynamic
semantics of M3

MK
in just one inference rule

(S)
Γ ⇒ ∆, β Γ, ϕ⇒ ∆ Γ,¬ϕ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆, α ∨ β

Since each static valuation in M3
MK

is also a dynamic valuation in that
Nmatrix, from the soundness theorem for SCd

3 it follows that all the axioms
and inference rules of SCd

3 are also statically valid in M3
MK

. Hence to prove
the soundness of SCs

3 it suffices to prove the soundness of rule (S).

Thus suppose v is an arbitrary static valuation in M3
MK

satisfying the
premises of rule (S). First, if either v 6|= γ for some γ ∈ Γ or v |= δ for
some δ ∈ ∆, then obviously v satisfies the conclusion of rule (S). Otherwise,
v |= β, v 6|= ϕ, v 6|= ¬ϕ, whence v(ϕ) 6= t and v(ϕ) 6= f, which yields v(ϕ) = e.
To show that v satisfies the conclusion of rule (S), assume v |= ϕ∨ψ. Since v
as a static valuation interprets ∨ as a function f∨ : T 2 → T compliant with
the non-deterministic interpretation ∨̃ of ∨ in M3

MK
(see (3)), this means

t = v(ϕ∨ψ) = f∨(v(ϕ), v(ψ)) = f∨(e, v(ψ)). As f∨ is compliant with ∨̃ given
by (4), this implies v(ψ) = t and f∨(e, t) = t. Hence, in view of v(β) = t and
f∨(f, t) = f∨(t, t) = t by (4), we conclude that v(α ∨ β) = f∨(v(α), t) = t.
Thus v satisfies also the premises of rule S, and the rule is sound for the
static semantics. 2.

Now we can pass to proving the completeness of SCs
3 :

Theorem 6. The system SCs
3 is complete for the static semantics of M3

MK
,

i.e. each sequent statically valid in M3
MK

is provable in SCs
3 .

Proof The proof is exactly analogous to that for the system SCd
3 , plus

one additional element: proving that the valuation v defined in the proof is a
static valuation in M3

MK
. In other words, we have to show that v interprets

each connective ⋄ as a function f⋄ : T 2 → T consistent with the non-
deterministic interpretation ⋄̃ of ⋄ in M3

MK
(see (3)). As the interpretation

of negation in M3
MK

is deterministic, the above task reduces to proving this
fact for disjunction.

20 A. Avron and B. Konikowska

Assume the sets T, S are constructed in exactly the same way as before,
but using the provability in SCs

3 in condition TS4. Let v be defined by (10)
in the completeness proof for SCd

3 . As the only nondeterminacy in the truth
tables for disjunction in M3

MK
is ∨̃(e, t) = {t, e}, in order to prove that v

is indeed a static valuation, it suffices to show that, for any α, β, ϕ, ψ ∈ W

If v(ϕ) = e, v(ψ) = t and v(ϕ ∨ ψ) = t,
then v(α) = e, v(β) = t implies v(α ∨ β) = t

(11)

Thus assume that the antecedents of both implications in (11) hold. Then by
the definition (10) of v we have β, ϕ ∨ψ ∈ T and ϕ,¬ϕ ∈ S. However, from
rule (S) we can deduce that ⊢SCs

3
(β, ϕ ∨ ψ ⇒ α ∨ β, ϕ,¬ϕ). Accordingly,

α ∨ β ∈ S would contradict property TS4 of sets T, S, whence α ∨ β ∈ T .
Thus v(α ∨ β) = t, and (11) holds. 2.

5. Role of the cut rule in the presented proof systems

The cut rule is an official rule of the systems presented above. This may
justly be taken as a drawback. Therefore we devote the last section of this
paper to a short discussion of this issue.

First, it should be noted that though we have included the cut in the
system SCd

3 , and used it in constructing the sets T, S on which the current
completeness proof relies, the cut rule can be eliminated from that system,
as shown in [AK05].

Moreover, from [AK05] and the results of the present paper it also follows
that a sequent Γ ⇒ ∆ is statically valid in M3

MK
iff both Γ ⇒ ∆, e ∨ t

and Γ, e ∨ t ⇒ ∆ have cut-free proofs in the system obtained from SCs
3

by augmenting its language with the constants e, t representing e and t
(respectively), and adding the axioms (⇒ t), (e ⇒), (¬e ⇒) to the system
itself. This means that cut in this variant of SCd

3 can be confined to the
formula e ∨ t. As for SCd

3 itself — it is still an open problem whether the
cut rule can completely be eliminated from it or not (we believe it can).

Finally, we also do not know whether elimination of the cut rule from
the system SC4 is possible or not. This issue will be the subject of further
research, and if the cut cannot be eliminated, the goal will be to find out
how to control its use in an acceptable way.

Acknowledgment

This research was supported by THE ISRAEL SCIENCE FOUNDATION
(grant No 809-06).

Proof Systems for Reasoning about Computation Errors 21

References

[AK05] Avron A., and Konikowska B., Proof Systems for Logics Based on
Non-deterministic Multiple-valued Structures, Logic Journal of the
IGPL, 13 (2005), pp. 365-387,

[ABK06] Avron A., Ben-Naim J., and Konikowska B., Cut-free Ordinary
Sequent Calculi for Logics Having Generalized Finite-Valued Se-
mantics, Logica Universalis 1 (2006), pp. 41–69,

[AL01] Avron A., and Lev I., Canonical Propositional Gentzen-Type Sys-
tems, in Proceedings of the 1st International Joint Confer-
ence on Automated Reasoning (IJCAR 2001) (R. Goré, A
Leitsch, T. Nipkow, Eds), LNAI 2083, Springer Verlag, 2001, pp.
529–544,

[AL05] Avron A., and Lev I., Non-deterministic Multiple-valued Struc-
tures, Journal of Logic and Computation, 15 (2005), pp. 241–261,

[BCJ84] Barringer H., Chang J.H., Jones C.B., A logic covering undefined-
ness in program proofs, Acta Informatica 21 (1984), pp. 251–269,

[Bli91] Blikle A., Three-valued predicates for software specification and
validation, Fundamenta Informaticae 14(1991), pp. 387–410,

[Ho87] Hogevijs A., Partial predicate logic in computer science, Acta In-
formatica 24, (1987), pp. 381–393,

[Kl52] Kleene S.C., Introduction to Metamathematics, North-Holland,
1952,

[KTB91] Konikowska, B., Tarlecki, A., Blikle, J., A three-valued logic for
software specification and validation, Fundamenta Informaticae
14(4), 1991, pp. 411–453,

[Ko93] Konikowska, B. Two over three: a two-valued logic for software
specification and validation over a three-valued predicate calculus,
Journal for Applied Nonclassical Logic 3(1), 1993, pp. 39–71,

[Ko08] Konikowska B., A Four-Valued Logic for Reasoning about Finite
and Infinite Computation Errors in Programs, accepted to: The
Many Sides of Logic, W. A. Carnielli, M. E. Coniglio, I. M.
Loffredo D’ Ottaviano eds., Series Studies in Logic, College Publi-
cations, London,

22 A. Avron and B. Konikowska

[MC67] McCarthy J., A basis for a mathematical theory of computa-
tion Computer Programming and Formal Systems, North-Holland,
1967,

[Owe85] Owe O., An approach to program reasoning based on first order
logic for partial functions, Res. Rep. Institute of Informatics, Uni-
versity of Oslo, no. 89, 1985,

