Dov M. GABBAY A Comment on Work by
KARL SCHLECHTA Booth and Co-authors

Abstract. Booth and his co-authors have shown in [2], that many new approaches to
theory revision (with fixed K) can be represented by two relations, < and <, where < is
the usual ranked relation, and < is a sub-relation of < . They have, however, left open a
characterization of the infinite case, which we treat here.

Keywords: Theory Revision, Non-monotonic Logic, Completeness Proofs .

Contents
1 Introduction 403
1.1  The problem we solve . . . . .. ... ... .. ... ... 403
1.1.1  The framework . . . . . . . . . .. ... ... ... 404
1.2 Outline . . . . . . . . . . 406
2 The framework of [2] 406
3 Background material 408
4 Construction and Proof 422
4.1  Proof . . . . .. 424
4.1.1  The ranked relation < . . . ... .. ... .. ... 424
4.1.2 The subrelation <« . . . . . .. ... 427
4.1.3  Comment . . . . . . . .. 430
5 Conclusion 431
References 431

1. Introduction
1.1. The problem we solve

Booth and his co-authors have shown in a very interesting paper, see [2], that
many new approaches to theory revision (with fixed K') can be represented
by two relations, < and <, where < is the usual ranked relation generated by
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AGM revision for fixed K, and < is a sub-relation of <. They have, however,
left open a characterization of the infinite case, which we treat here.

1.1.1. The framework

The background is AGM revision theory, see [1]. The basic problem of theory
revision is to “integrate” new information into old information, preserving
consistency. More precisely, both parts of information, taken separately, are
supposed to be consistent, but (in the interesting case) taking the union will
not do, as this union is inconsistent. AGM gave “rationality postulates” any
such integration should satisfy. The revision operator is usually written as
%, 80 in the usual notation we revise information K with a new formula ¢,
and the result is K * ¢. One of those postulates is, e.g., robustness under
reformulation: If ¢ and ¢’ are (classically) equivalent, so are K*¢ and K x¢'.

It was shown in [5] that a distance on the set of classical models gives a
semantics to AGM revision, similar to, but in one important point different
from, the Stalnaker/Lewis semantics for counterfactual conditionals. When
K is fixed, the AGM axioms are closely related to the axioms of rationality
in preferential structures, i.e., to a preference relation. In distance termi-
nology, we take the ¢p—models which are closest to the set of K —models.
In preference terminology, as K is fixed, we take the “best” or “minimal”
¢—models.

It was the insight of Booth and co-authors that working with two rela-
tions, instead of just one preference relation, and leaving the set of p—models,
one can code many different approaches to theory revision which go beyond
the AGM approach. The basic idea can perhaps best be described as follows:
In the general setting, the second relation is a subrelation of the first, assume
now that they are identical. But we leave the set of ¢—models. Consider
again the preference picture. We take now not only the “best” ¢—models,
but also all those models (forcibly —¢—models) which are better than one
of the best ¢—models. Different subrelations have different interpretations,
but this picture should suffice here. If v(¢) is the function which chooses for
¢ all those models we just described, then we can split v in two, one part
pt(¢), which chooses as usual the best ¢—models, one part = (¢), which
chooses the —=¢—models below the best ¢—models. So u*(¢) = v(p)NM(p),
and 4~ (6) = v(9) — M(6).

The characterisation problem is now to give conditions for v (or for u*
and p~) which hold for all such choice functions as described above, and
conversely, if they hold, then we can construct both relations, and find again
the same choice functions by above definition.
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Booth et al. gave such a characterisation for the finite case. Charac-
terising ranked structures in the finite case is, in principle, easy, as we can
“grab” any single model by a formula. The infinite case is similar, if we are
allowed to use full, perhaps infinite, theories, i.e., sets of formulas. Again,
we can “grab” one model with a full theory. The more challenging case is
the infinite version, when we are allowed to consider formulas only, as any
formula will (if consistent) always have an infinity of models. So, if we want
to find for z some y with x < y and some additional properties for y, we
have somehow to “circumscribe” y, without ever being allowed to use the full
information we need. This is the problem we solve in Section 4 (page 422).

We first give there the conditions, formulate our main result, and turn to
the proof. The proof consists of two parts. In the first part, we construct the
ranked relation < . This is quite straightforward, using usual techniques of
constructing such a relation. The proof is also quite modular, e.g., we show
transitivity, absence of cycles, and then use a known lemma for the final
construction. The more interesting and challenging part is to construct the
subrelation <. It is there that we have to do with finite bits of information,
striving for a full characterisation of one model (for which we need an infinite
amount of information). The trick is to construct the infinite amount of
information using inductively a finite amount of information. (A picture
might illustrate this: we want to draw a 30 cm long straight line, but have
only a rule of length 20 cm. We draw first 20 cm, then push the rule down,
and draw the last 10 cm, holding the rule against the first part.) This part
of the proof is not very modular, and the interested reader will just have to
follow the line.

The, for us, main definition Booth et al. give is (in slight modification,
we use the strict subrelations):

DEFINITION 1.1. Given a deductively closed set of formulas K (as ususal in
AGM style revision, see [1]), and < and <, we define

Koo :=Th({w : w < w' for some w' € min(M(—¢),<)}),

i.e. Koog is given by all those worlds, which are below the K —closest
—¢—worlds, as seen from K.

We want to characterize Koo¢, for fixed K. Booth et al. have done the
finite case by working with complete consistent formulas, i.e. single models.
We want to do the infinite case without using complete consistent theories,
i.e. in the usual style of completeness results in the area.

Our approach is basically semantic, though we use sometimes the lan-
guage of logic, on the one hand to show how to approximate with formulas
a single model, and on the other hand when we use classical compactness.
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This is, however, just a matter of speaking, and we could translate it into
model sets, too, but we do not think that we would win much by doing so.
Moreoever, we will treat only the formula case, as this seems to be the most
interesting (otherwise the problem of approximation by formulas would not
exist), and restrict ourselves to the definability preserving case. The more
general case is left open, for a young researcher who wants to sharpen his
tools by solving it. Another open problem is to treat the same question for
variable K, and for distance based revision.

1.2. Outline

After giving the framework of the article by Booth et al., we give background
information about preferential logic. We then state the conditions we need,
formulate our result (the extension to the infinite case of the representation
result for the finite case stated in [2]), and proceed to the proof.

We introduce two functions pu* and p~, define a relation < and show
that it represents ™, and then (the more difficult part) define a relation <,
and show that it represents p~.

We will work in propositional logic here, where the language can be
infinite, i.e. where there may be infinitely (also uncountably) many propo-
sitional variables.

2. The framework of [2]

For the reader’s convenience, and to put our work a bit more into perspective,
we repeat now some of the definitions and results given by Booth and his
co-authors. We will be very brief, and just prepare the terrain so to say.

Consequently, all material in this section is due to Booth and his co-
authors.

< will be a total pre-order, anchored on M (K), the models of K, i.e.
M(K) = min(W, <), the set of < —minimal worlds.

We have a second binary relation < on W, which is a reflexive subrelation
of <.

DEFINITION 2.1. (1) (<, =) is a K—context iff < is a total pre-order on W,
anchored on M (K), and < is a reflexive sub-relation of <.

(2) Koog := Th({w : w < w' for some w' € min(M(—¢),<)}) is called
a basic removal operator.

When we translate to model sets, or even generalize to arbitrary sets,
and reformulate a little, forgetting about the fixed K, we can obtain:
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pt(X):={zr € X : xis < —minimal in X}, and

p (X)) :={y ¢ X :y <z for some x € p*(X)},

and separate the usual AGM operation, p*(X), from the new part:
everything which is below ™ (X).

This is, roughly, the perspective from which we see the problem.

THEOREM 2.1. (Note that Booth et al. impose that ¢ on the right of oo is
always consistent, so this caveat for some conditions in the AGM theory is
not necessary.)
Basic removal is characterized by:

B1l) Koogp = Cn(Koog) - Cn classical consequence,

2) ¢ ¢ Koco,

3) If = ¢ « ¢/, then Koogp = Koog/,
B4) Kool = K,
B5) Koog € Cn(K U {-¢}),
B6) if 0 € Koo(o A ¢), then 0 € Koo(o A ¢ A1),
B7) if 0 € Koo(o A ¢), then Koop C Koo(o A ¢),
B8) (Kooo) N (Koog) C Koo(o A ¢),
B9) if ¢ ¢ Koo(o A ¢), then Koo(o A ¢) C Koog.
B1) — (B3) belong to the basic AGM contraction postulates, (B4) —
(B5) are weakened versions of another basic AGM postulate:
Vacuity) If ¢ ¢ K, then Koogp = K
which does not necessarily hold for basic removal operators.
The same holds for the remaining two basic AGM contraction postulates:
(Inclusion) Koo C K
(Recovery) K C Cn((Koog) U {¢}).
The main definition towards the completeness result of Booth et al. is:

(
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(B
(
(
(
(
(
(
(
)
(

DEFINITION 2.2. Given K and oo, the structure C'(K, o0) is defined by:
(<) w < w iff ~a & Koo(—a A —a’) and
(2) w=w iff ~a g Kood/,
where « is a formula which holds exactly in w, analogously for v’ and «'.

(Thus, o and o are equivalent to complete consistent theories, with
models w and w’. This is, of course, only possible in finite languages of
classical propositional languages, as we only have finite conjunctions at our
disposal. Herein lies the restriction.)

As it is easy to get confused here, we add a comment — where we take
liberties to make things intuitively clearer.
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Looking back at Definition 2.1 (page 406), we have

(L) w<w iff we {v:v=< for some v € min({w,w'}, <)}

and

(X)) w=w iff we{v:v=<v for some v € min({w'},<)}

In our perspective, in the case (<) we stay in X := {w,w'}, so we speak
about T (X), in the second case, we leave X := {w'}, so we speak about
p(X). So we have w < W' iff w € pm({w,w'}), w < w iff w e p= ({w'}).

Booth et al. then give a long list of Theorems showing equivalence be-
tween various postulates, and conditions on the orderings < and < . This,
of course, shows the power of their approach.

We give three examples:

CONDITION 2.1.

(¢) If (for each i = 1,2) w; < w' for all w’, then wy < wo.
(d) If w; < wsq for all wy, then w; < wy for all ws.
(e) If wy = we, then wy = wy or wy < w' for all w'.

THEOREM 2.2. Let co be a basic removal operator as defined above.

(1) oo satisfies one half of (Vacuity) : If ¢ ¢ K, then K C Koo,
1) If (<, <) satisfies (c), then oo satisfies (Vacuity).

2.2) If oo satlsﬁes (Vacuity), then C(K, o0) satisfies (c).

3.1) If (<, %) satisfies (d), then oo satisfies (Inclusion).

3.2) If 0 satlsﬁes (Inclusion), then C(K,co) satisfies (d).

4.1) If (<, %) satisfies (e), then oo satisfies (Recovery).

4.2) If oo satlsﬁes (Recovery), then C(K, 0co) satisfies (e).

5) The following are equivalent:

) oo is a full AGM contraction operator,

) oo satisfies (B1) — (B9), (Inclusion), and (Recovery)

)

oo is generated by some (<, <) satisfying (d) and (e).

(2.
(
(
(
(
(
(
(5.1
(5.2
(5.3

3. Background material

We give here some background material showing without proof connections
between conditions for preferential structures and an abstract result on or-
derings. Moreover, we give an introduction to AGM revision.

The material presented here goes beyond what is strictly needed, but
helps to put the question more into perspective.
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DEFINITION 3.1.

(1) We use P to denote the power set operator, II{X; : i € I} := {g :
g: I —\{X;:iel},Vie lg(i) € X;} is the general cartesian prod-
uct, card(X) shall denote the cardinality of X, and V' the set-theoretic
universe we work in - the class of all sets. Given a set of pairs X, and a
set X, we denote by X | X := {(z,i) € X : € X}. When the context
is clear, we will sometime simply write X for X | X. (The intended use
is for preferential structures, where x will be a point (intention: a clas-
sical propositional model), and 7 an index, permitting copies of logically
identical points.)

(2) A C B will denote that A is a subset of B or equal to B, and A C B
that A is a proper subset of B, likewise for A D B and A D B.
Given some fixed set U we work in, and X C U, then C(X):=U — X .

(3) If Y C P(X) for some X, we say that ) satisfies
(M) iff it is closed under finite intersections,

() iff it is closed under arbitrary intersections,

(V) iff it is closed under finite unions,

(U) iff it is closed under arbitrary unions,

(C) iff it is closed under complementation,

(—) iff it is closed under set difference.

(4) We will sometimes write A = B || C for: A= B,or A= C,or A= BUC.

We make ample and tacit use of the Axiom of Choice.

DEFINITION 3.2.

(1) We work here in a classical propositional language £, a theory T" will be
an arbitrary set of formulas. Formulas will often be named ¢, 1, etc.,
theories T, S, etc.

v(L) will be the set of propositional variables of L.

F(L£) will be the set of formulas of L.

M will be the set of (classical) models for £, M(T') or My is the set of
models of T, likewise M (¢) for a formula ¢.

(2) Dg :={M(T): T a theory in L}, the set of definable model sets.

Note that, in classical propositional logic, #, My € D,, D, contains
singletons, is closed under arbitrary intersections and finite unions.
An operation f : Y — P(Mg) for Y C P(M,) is called definability
preserving , (dp) or (udp) in short, iff for all X € D, NY f(X) € D¢.
We will also use (udp) for binary functions f: Y x Y —— P(M) — as
needed for theory revision — with the the obvious meaning.
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(3) F will be classical derivability, and
T:={¢:TF ¢}, the closure of T under + .

(4) Con(.) will stand for classical consistency, so Con(¢) will mean that
¢ is classical consistent, likewise for Con(T'). Con(T,T") will stand for
Con(TUT'), etc.

(5) Given a consequence relation v, we define
T:={¢:T |~ ¢}.
(There is no fear of confusion with 7', as it just is not useful to close
twice under classical logic.)

6) TVT :={pVv¢ :0peT,¢ T}

(7) If X € Mg, then Th(X) := {¢ : X = ¢}, likewise for Th(m) , m € M.
(E will usually be classical validity.)

Explanation of Table 1 (page 417), “Logical rules, definitions and con-
nections Part I” and Table 2 (page 418), “Logical rules, definitions and
connections Part I1”:

The tables are split in two, as they would not fit onto a page otherwise.
The difference between the first two columns is that the first column treats
the formula version of the rule, the second the more general theory (i.e., set
of formulas) version.

The numbers in the first column “Corr.”, meaning “Correspondence”,
refer to Proposition 21 in [3]. The first column “Corr.” is to be understood
as follows:

Let a logic |~ satisfy (LLE) and (CCL), and define a function f :
Dy — D; by f(M(T)) := M(T). Then f is well defined, satisfies (udp),
and T = Th(f(M(T))).

If |~ satisfies a rule in the left hand side, then - provided the additional
properties noted in the middle for = hold, too - f will satisfy the property
in the right hand side.

Conversely, if f : Y — P(M,) is a function, with D, C Y, and we define
a logic |~ by T := Th(f(M(T))), then |~ satisfies (LLE) and (CCL). If f
satisfies (udp), then f(M(T)) = M(T).

If f satisfies a property in the right hand side, then - provided the ad-
ditional properties noted in the middle for < hold, too - |~ will satisfy the
property in the left hand side.

We use the following abbreviations for those supplementary conditions in
the “Correspondence” columns: “T" = ¢” means that, if one of the theories
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(the one named the same way) is equivalent to a formula, we do not need
(udp). —(pdp) stands for “without (udp)”.

A= B | C will abbreviate A= B,or A=C,or A=BUC.

The numbers in the left hand column of the following Fact 3.1 (page 411)
refer to the proof of Fact 3.6 in [3].

Fact 3.1. Table 3 (page 419), “Interdependencies of algebraic rules”, is to be
read as follows: If the left hand side holds for some function f : Y — P(U),
and the auxiliary properties noted in the middle also hold for f or ), then
the right hand side will hold, too — and conversely.

“sing.” will stand for: “) contains singletons”

DEFINITION 3.3. Fix U # (), and consider arbitrary X. Note that this X
has not necessarily anything to do with U, or U below. Thus, the functions
pur below are in principle functions from V' to V' — where V is the set
theoretical universe we work in.

Note that we work here often with copies of elements (or models). In
other areas of logic, most authors work with valuation functions. Both
definitions — copies or valuation functions — are equivalent, a copy (x, 1)
can be seen as a state (x,7) with valuation z. In the beginning of research on
preferential structures, the notion of copies was widely used, whereas e.g.,
[4] used that of valuation functions. There is perhaps a weak justification
of the former terminology. In modal logic, even if two states have the same
valid classical formulas, they might still be distinguishable by their valid
modal formulas. But this depends on the fact that modality is in the object
language. In most work on preferential structures, the consequence relation
is outside the object language, so different states with same valuation are in
a stronger sense copies of each other.

(1) Preferential models or structures.

(1.1) The version without copies:
A pair M := (U, <) with U an arbitrary set, and < an arbitrary
binary relation on U is called a preferential model or structure.
(1.2) The version with copies :
A pair M := (U,<) with U an arbitrary set of pairs, and < an
arbitrary binary relation on U is called a preferential model or
structure.
If (z,i) € U, then z is intended to be an element of U, and i the index
of the copy.
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We sometimes also need copies of the relation < . We will then replace
< by one or several arrows « attacking non-minimal elements, e.g.,
x < y will be written o : z — y , (x,i) < (y,7) will be written
a : (x,i) — (y,i) , and finally we might have (o, k) : = — y and
(o, k) @ (x,1) — (y,1) , etc.

(2) Minimal elements, the functions g

(2.1)

The version without copies:

Let M := (U, <), and define

pm(X) i ={zeX:2ecUAN-T' e XNU <z}

uam(X) is called the set of minimal elements of X (in M).

Thus, pa(X) is the set of elements such that there is no smaller one
in X.

The version with copies:

Let M := (U, <) be as above. Define

pm(X) i={z € X : Ha,i) e U.-3 (", 7)) e U(a' € X N (2,7) <
(z,7))}.

Thus, pa(X) is the projection on the first coordinate of the set of
elements such that there is no smaller one in X.

Again, by abuse of language, we say that ua(X) is the set of mini-
mal elements of X in the structure. If the context is clear, we will
also write just p.

We sometimes say that (x,i) “kills” or “minimizes” (y,j) if (z,7) <
(y, 7). By abuse of language we also say a set X kills or minimizes
a set Y if for all (y,j) € U, y € Y there is (x,i) € U, € X s.t.
(1) < (y,J)-

M is also called injective or 1-copy , iff there is always at most one
copy (z,i) for each z. Note that the existence of copies corresponds
to a non-injective labelling function — as is often used in nonclassical
logic, e.g., modal logic.

We say that M is transitive, irreflexive, etc., iff < is.
Note that u(X) might well be empty, even if X is not.

Usually, preferential structures work with copies of models (or, equiv-
alently, with function which attribute values to points, as, e.g., in Kripke
structures for modal logics). Ranked structures (usually) do not need copies.
For completeness’ sake, we gave the full definition, though it will not be used
here. For more details, the reader is referred to [7] or [3].
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DEFINITION 3.4. We define the consequence relation of a preferential struc-
ture for a given propositional language L.

(1)(1.1) If m is a classical model of a language £, we say by abuse of language
(m,i) = ¢ iff m = ¢,
and if X is any set of such pairs, that
X |= ¢ iff for all (m,i) € X m = ¢.

(1.2) If M is a preferential structure, and X is a set of L—models for a
classical propositional language £, or a set of pairs (m, i), where the
m are such models, we call M a classical preferential structure or
model.

(2) Validity in a preferential structure, or the semantical consequence
relation defined by such a structure:
Let M be as above.
We define:

T Em ¢ il pm(M(T)) | ¢, ie, pm(M(T)) © M(9).
(3) M will be called definability preserving iff for all X € Dy ppm(X) €
Dy.

As upg is defined on Dy, but need by no means always result in some
new definable set, this is (and reveals itself as a quite strong) additional

property.

(Note that the X in above definition is any set, intuitively x € ), where
Y is some set of sets as in Definition 3.3 (page 411).)

DEFINITION 3.5. Let ) C P(U). (In applications to logic, Y will be D,.)

A preferential structure M is called Y—smooth iff for every X € ) every
element x € X is either minimal in X or above an element, which is minimal
in X. More precisely:

(1) The version without copies:
If x € X € ), then either x € u(X) or there is 2’ € pu(X).2' < z.

(2) The version with copies:
If x € X € Y, and (x,i) € U, then either there is no (z/,i') e U, 2’ € X,
(@/,i"y < (x,i) or there is (2/,i') e U, (2/,i') < (x,i), 2’ € X, s.t. there
isno (x",i"y eU, 2" € X, with (z",¢") < (2,7').
(Writing down all details here again might make it easier to read appli-
cations of the definition later on.)
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When considering the models of a language £, M will be called smooth
iff it is D —smooth ; D/ is the default.

Obviously, the richer the set ) is, the stronger the condition J)—smooth-
ness will be.

FAcT 3.2. Let < be an irreflexive, binary relation on X, then the following
two conditions are equivalent:

(1) There is 2 and an irreflexive, total, binary relation <’ on 2 and a
function f: X — Qst. 2 <y & f(z) <" f(y) for all z,y € X.

(2) Let z,y,2 € X and x_Ly wrt. < (i.e., neither x < y nor y < x), then
z<r=z<yandr<z=y<z

PrROOF. (1) = (2): Let xLly, thus neither f(z) <" f(y) nor f(y) <" f(x),
but then f(z) = f(y). Let now z < z, so f(z) <’ f(z) = f(y), so z < .
T <z =y < zis similar.

(2) = (1): Forz € X let [z] := {2/ € X : xLa’}, and Q:={[z] : . € X }.
For [z], [y] € Q let [z] <" [y] :< « < y. This is well-defined: Let x Lz, yLy'
and z < y, then x < ¢/ and 2/ < /. Obviously, <’ is an irreflexive, total
binary relation. Define f: X — Q by f(z) := [z], then x < y & [z] <" [y] &
F@) < 1)

DEFINITION 3.6. We call an irreflexive, binary relation < on X, which sat-
isfies (1) (equivalently (2)) of Fact 3.2 (page 414), ranked. By abuse of
language, we also call a preferential structure (X, <) ranked, iff < is.

Fact 3.3. If < on X is ranked, and free of cycles, then < is transitive.

PROOF. Let z <y < z. If x 12, then y >~ z, resulting in a cycle of length 2.
If z < x, then we have a cycle of length 3. So = < z.

We give a generalized abstract nonsense result, taken from [5], which
must be part of the folklore:

LEMMA 3.4. Given a set X and a binary relation R on X, there exists a total
preorder (i.e., a total, reflexive, transitive relation) S on X that extends R
such that

Va,y € X(zSy,ySz = xR*y)

where R* is the reflexive and transitive closure of R.

PROOF. Define x = y iff xR*y and yR*z. The relation = is an equivalence
relation. Let [z] be the equivalence class of x under = . Define [z] =< [y] iff
xR*y. The definition of < does not depend on the representatives x and y
chosen. The relation < on equivalence classes is a partial order. Let < be
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any total order on these equivalence classes that extends < . Define xSy iff
[] < [y]. The relation S is total (since < is total) and transitive (since < is
transitive) and is therefore a total preorder. It extends R by the definition
of < and the fact that < extends <. Suppose now xSy and ySxz. We have
[z] < [y] and [y] < [z] and therefore [z] = [y] by antisymmetry. Therefore

x =y and zR*y.

To put AGM revision into context, we cite the main definitions and
results, essentially from [1].

DEFINITION 3.7. We present in parallel the logical and the semantic (or
purely algebraic) side. For the latter, we work in some fixed universe U,
and the intuition is U = My, X = M(K), etc., so, e.g., A € K becomes
X C B, etc.

(For reasons of readability, we omit most caveats about definability.)

K, will denote the inconsistent theory.

We consider two functions, - and *, taking a deductively closed theory
and a formula as arguments, and returning a (deductively closed) theory on
the logics side. The algebraic counterparts work on definable model sets.
It is obvious that (K — 1), (K x 1), (K — 6), (K * 6) have vacuously true
counterparts on the semantical side. Note that K (X) will never change,
everything is relative to fixed K (X). K *¢ is the result of revising K with ¢.
K — ¢ is the result of subtracting enough from K to be able to add —¢ in a
reasonable way, called contraction.

Moreover, let <x be a relation on the formulas relative to a deductively
closed theory K on the formulas of £, and <x a relation on P(U) or a
suitable subset of P(U) relative to fixed X. When the context is clear, we
simply write < . <g (<x) is called a relation of epistemic entrenchment for
K (X).

Table 4 (page 420), “AGM theory revision”, presents “rationality postu-
lates” for contraction (-), rationality postulates revision (x) and epistemic
entrenchment. In AGM tradition, K will be a deductively closed theory,
¢, formulas. Accordingly, X will be the set of models of a theory, A, B the
model sets of formulas.

In the further development, formulas ¢ etc. may sometimes also be
full theories. As the transcription to this case is evident, we will not go
into details.

DEFINITION 3.8. We define the collective and the individual variant of choos-
ing the closest elements in the second operand by two operators, |, T: P(U) x

PU) — PU) :
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Let d be a distance or pseudo-distance.

XY :={yeY:3z,e XV2' € X,Vy € Y(d(zy,y) <d(,y)}

(the collective variant, used in theory revision)

and

X1Y:={yeY: 3z, € XVyY € Y(d(zy,y) <d(zy,y)}

(the individual variant, used for counterfactual conditionals and theory
update).

Thus, A |; B is the subset of B consisting of all b € B that are closest
to A. Note that, if A or B is infinite, A |; B may be empty, even if A and
B are not empty. A condition assuring nonemptiness will be imposed when
necessary.

REMARK 3.5.

(1) Note that (X | 7) and (X | 8) express a central condition for ranked
structures: If we note X | . by fx(.), we then have: fx(A)NB # 0 =
fx(ANB) = fx(A)NB.

(2) Tt is trivial to see that AGM revision cannot be defined by an indi-
vidual distance (see Definition 3.8 (page 415)): Suppose X | Y := {y € Y :
Jz, € X(Vy € Y.d(zy,y) < d(zy,y'))}. Consider a,b,c. {a,b} | {b,c} = {b}
by (X | 3) and (X | 4), so d(a,b) < d(a,c). But on the other hand
{a,c} | {b,c} = {c}, so d(a,b) > d(a,c), contradiction.

PROPOSITION 3.6. We refer here to Table 5 (page 421), “AGM interdefin-
ability”. Contraction, revision, and epistemic entrenchment are interdefin-
able by the following equations, i.e., if the defining side has the respective
properties, so will the defined side. (See [1].)

Speaking in terms of distance defined revision, X | A is the set of those
a € A, which are closest to X, and X © A is the set of y which are either in
X, or in C(A) and closest to X among those in C(A).

The reader is referred to [1] for more explanation and motivation.
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Table 1. Logical rules, definitions and connections Part I

Logical rules, definitions and connections Part I

Logical rule Corr.
Basics
(SC) Supraclassicality (5C) = (4.1)
atB=alpg TCT <= (4.2)
(REF) Reflexivity
TU{a} a
(LLE) (LLE)

Left Logical Equivalence
Faoa,app=
o N p
(RW) Right Weakening
apBFB— B =
ap g
(wOR)
ap B, FB=
ava g
(disjOR)
atk =ad, a B,

o VB =>ava I~ B
(cp)
Consistency Preservation
ap L =>abk L

(AND)
apBapp =
aprBAB
(CCL) Classical Closure

(OR)
ap B B =
ava g

anNa CaU{a'}

(cuT)
T o;TU{a} B =
Thp

T=T =T=T'

(RW)
T hpBFB—B =
T~ 6
(wOR) = (3.1)
TNT CTvVvT <= (3.2)
(disjOR) = (2.1)
-Con(TUT') = <= (2.2)
T™TNnT CTVT
(CP) = (5.1)
<= (5.2)
Th1l=TFL
(ANDy)
aB=alt -8
(ANDy)
a B, o By =
apl (2B1V ...V 2Bp_1)
(AND)
ThrBTRKE =
T~ BAB
(cckrL)
T classically closed
(OR) = (1.1)
T™TNnT CTVT < (1.2)
(PR) = (6.1)

TUT CTUT’

T =¢

<« (6.5)

T =¢

(cuT) = (7.1)

TCT' CT = <= (7.2)
T CT

< (pdp) + (1 C) (6.2)
# —(udp) (6.3)
< (p Q) (6.4)

Model set

(1 ©)
f(X)CcXx

(hwOR)
f(XuYy)C f(X)uy

(ndisjOR)
XNy =0=
F(XUY)C f(X)uUfY)
(n9)

f(X)=0=X=0
(1@ fin)
X#0= f(X)#0
for finite X

(LOR)
F(XUY)CFX)uUfY)

(nPR)
XCY =
FY)NnX C f(X)

(uPR')
FX)NY CFXNY)
(LCUT)
FX)CYcx=
F(X) C FY)
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Table 2. Logical rules, definitions and connections Part 11

Logical rule

(wCM)

alpB,a Fa,anNBFa =

o B
(CMz)

ok Bia B = angly 4

(CMy)

a v B, o By =
QABIA A Bp1 Y B
(CM) Cautious Monotony
aBa B =

anpB B

or (ResM)
Monotony

ThaB=TU{a} 3

(CUM) Cumulativity
ap B =
(a v B e anppp)

(RatM) Rational Monotony
apBapp —p =
ang B

(DR)
aVvp iy =
a v yor By

Restricted

Logical rules, definitions and connections Part II

Corr.

Cumulativity

(CM) = (8.1)
TCT CT = <= (8.2)
TCT

= (9.1)

<= (9.2)
(cuM) = (11.1)
TCT CT = < (11.2)
T=T
(€2) = (10.1)
TCT,T'CT = < (10.2)
T =

Rationality

(RatM) = (12.1)
Con(TUT'), T+HT = < (pdp) (12.2)
T2T'UT # —(pndp) (12.3)

=T =¢ (12.4)
(RatM =) = (13.1)

Con(TUT'), T+HT = < (pdp) (13.2)

T=T'UT # —(pdp) (13.3)
=T =¢ (13.4)
(Log =") = (14.1)

Con(T'UT) = <= (udp) (14.2)

# —(ndp) (14.3)
<= T =¢ (14.4)
= (15.1)

< (15.2)

TUT =T'UT

(Log [1)
T VT’ is one of

T,or T/, or TNT’ (by (CCL))
(LogUL)
Con(T'UT), =Con(T'UT) = < (ndp) (16.2)

—-Con(T VT UT")
(LogU’)

# —(udp) (16.3)

Con(T'UT), =Con(T'UT) =< (pdp) (17.2)

TVT =T # —(pdp) (17.3)

Model set

(nCM)
fFX)CYCX=
F(Y) € f(X)
(nResM)

f(X)CANB=
f(XNA)CB
(nCUM)
fFX)CYCX=
F(Y) = f(X)

(n C2)

FX)CY, f(Y)C X =
F(X) = f(Y)

(pRatM)
XCY,XNfY)#0=
FX)cry)nx

(1 =)
XCY,XNFY)#0D =
FX)=fY)nX

(v =")
FONX#£0 =
FYNX)=f(Y)nX

(e 1D
f(X UY) is one of

F(X)s F(Y) or F(X)UF(Y)

= (1 O+ (1 =) (16.1) (uU)

FY)N(X = f(X) #0 =

f(XUY)NY =9

= (0 Q)+ (1 =) AT.1) (uU)

FY)N(X = f(X) #0 =

F(XUY) = f(X)
(k)

ae X — f(X)=

b e X.a & f({a,b})
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Table 3. Interdependencies of algebraic rules

Interdependencies of algebraic rules

Basics
(1.1) (uPR) = () + Q) (uPR')
(1.2) =
(2.1) (uPR) = (1 Q) (HOR)
(2:2) = @S+ (=)
(2:3) = (k Q) (LwOR)
(24) <= w9+ (=)
®3) (LPR) = (nCUT)
4 (wS)+kC2)+ (CUM) 7 (nPR)
+(pRatM) + (N)
Cumulativity
(5.1) (LCM) = (N + k<) (1ResM)
(5.2) < (infin.)
(6) (nCM) + (nCUT) & (LCUM)
(7) (1 Q)+ (r<2) = (LCUM)
®) (kS + (uCUM) + (M) = (nC2)
(9) (1 S) + (nCUM) 7 (1 C2)
Rationality
(10) (uRatM) + (uPR) = (k=)
(11) (1 =) = (WPR) + (uRatM)
(12.1) (k=) = (M) + k9 (="
(12.2) <
(13) (1 C) + (1 =) ) (1)
(1) )+ () + (u =) =) () (W), (WCUM)
(15) (1) + (1) = (-) ol Y (4 =)
(16)  (ul)+ (1 €) + (WPR)+ = (U) + sing. (4 =)
(1<)
an) (unCUM) + (n =) = (U) + sing. (1€)
(18) (WCUM)+(u=)+ (1<) = (U) 1)
(19) (uPR)+ (nCUM)+ (p||) = sufficient, (1 =).
e.g., true in Dp
(20) (1 C)+ (WPR) + (u=) 5 (1)
(21) (W) +WPR)+(ul) # (without (=) (1 =)
(22) (1 Q)+ (WPR) + (u I+ » )
(n =)+ (pV) (thus not

representable by

ranked structures)
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Table 4. AGM theory revision

AGM theory revision
Contraction, K — ¢

K — ¢ is deductively closed

K-¢CK (X2 XCXoA
Vg K=>K—¢p=K (X©3) XZA=>X0A=X
Vo=¢ZK—0¢ (X©4) AZU=>X0AZA
K C (K —-9¢)u{¢} (X ©5) (X0ANACX
Fépeotv=K-—¢p=K—1
(K=¢)N (K —9¢) C (xem Xo(ANB)C
K —(¢A) (X0 A)U(X o B)
¢EK—(dNY) = (Xo8) Xo(ANB)ZA=

K—-—(¢pry) S K—¢

Revision, K * ¢

K x ¢ is deductively closed

X0ACXo(ANB)

peEK %o (X 12) X|ACA
K+x¢ C KU{¢} (X13) XNACX|A

—¢ ¢ K = (X |4) XNA#)=>
KU{¢} CKx¢ X|ACXNA
Kx¢p=K, =F ¢ (X ]5) X|A=0=A=0

Fo—ot=Kxp=Kx -

Kx(pny) C (X117 (X1A)NnBC

(K =) U{y} X|(ANnB)

- € K*¢= (X]8) (X|ANB#£0=

(K x ) U{s} C K * (6 A Y)

Epistemic entrenchment

X|(ANB)C(X|A)NB

<[ is transitive (FE1) <x is transitive
b= ¢ <k (EE2) ACB=A<x B
Ve, (EE3) VA, B
(¢ <k dNporh <g pAp) (A<x AnBor B<x ANB)
K#K, = (FE4) X #£0=
(¢ & K iff Vip.¢p <g ¥) (X € Aiff VB.A <x B)
Vo) <g ¢ =+ ¢ (EE5) VB.B<x A= A=U
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Table 5. AGM interdefinability

v3@E@uv)ox

281N UIY10

‘n=v fH

€ b g XSy
n=9gv
{fganvx>vn>5g>x:giU
X
(Molx)nx=vex
vullv)oex)=vI|x

(pveo)—>12¢
0 B st S P
AVE -

Wn%@x {410 QAP A>P) 3D} =1¢— 3

(P 3)UX =0 — 3
dN(P— =) = ¢x )

ALyiqeuyspasyul NOV
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4. Construction and Proof

We change perspective a little, and work directly with a ranked relation, so
we forget about the (fixed) K of revision, and have an equivalent, ranked
structure. (This result is part of the folklore: for fixed K, AGM axioms
describe a ranked relation on the set of all models, where model of K are
at the bottom, see above.) We are then interested in an operator v, which
returns a model set v(M(¢)), written sloppily v(¢), where v(¢) N M(¢) is
given by a ranked relation <, and v(¢) — M(¢) := {x & M(¢) : Jy €
v(p) N M(¢)(z <Qy)}, and < is an arbitrary subrelation of < .

The essential problem is to find such y, as we have only formulas to find it.
In the finite case, every model can be described by a formula, i.e., there is a
formula which holds in this model, and nowhere else. In the infinite case, we
need a full theory to do this. Our aim is, however, to achieve characterization
with rules about formulas. So we have to take a more careful approach. But
this is also the challenge which makes the problem interesting. (If we had
full theories, we could just look at all Th({y}) whether x € v(Th({y})),
where z,y are models.)

There is still some more work to do, as we have to connect the two
relations, and simply taking a ready representation result will not do, as we
shall see.

We first introduce some notation, then a set of conditions, and formulate
the representation result. Soundness will be trivial. For completeness, we
construct first the ranked relation <, show that it does what it should do,
and then the subrelation <.

Note that, contrary to Booth et al., we work here with the strict part
of the relations. This is a slight restriction, but our main interest was to
deal with an infinite case by finite means. So, for what we want to do, it is
perhaps not so important.

NOTATION 4.1.

We set
pt (X)) =v(X)NX
pu (X)) =v(X)-X

where X := M (¢) for some ¢.

Recall that, intuitively, ™ (X) is the set of < —minimal elements of
X,and p=(X) ={z € X : Jy € p7(X)(z <y)}, where < is an arbitrary
subrelation of < .

So, p~(X) is, roughly, everything which is underneath some minimal
element of X. This motivates the properties of = to be defined now.
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CONDITION 4.1.

1) says that if there is y € Y which is below X, then no minimal
element of Y can be in X, and (u~2) says that in this case the minimal
elements of X UY have to be exactly the minimal elements of Y. But then
also what is below Y, cannot be in X, (11~3). These conditions exclude cycles.

(= 4) and (p~5) are consequences of the existential quantifier in the
intuitive meaning of u~.

Many of the axioms characterizing basic removal in Theorem 2.1 (page
407) are about rankedness, and thus closely follow AGM tradition, we will
put them into conditions about ™, where we speak about rankedness. On
the other hand, our axioms (u %) either exclude cycles, or treat the existen-
tial quantifier. So Booth’s and our own sets of axioms don’t have very much
in common — directly, of course.

Recall for the following conditions (u0), (u C), (u =) defined in Table 1
(page 417), and in Table 2 (page 418) which we repeat here for the reader’s
convenience:

(10) X #0 — p(X) #0
(b S)uX)cX
(=) XY, pY)NX#0= pX)=pnlY)nX.

FacT 4.1. (p~1) and (u0), (u C) for p* imply
(1) 1 (X) Y #0 = 5 (X) A (V) =
(2) XNup (X)=0.

PrROOF. (1) Let p™(X)Np (Y) # 0, then X Np~(Y) # 0, so by (n1)
pt(X)NY = 0.
(2) Set X :=Y, and use (ud), (n C), (™ 1).

FACT 4.2. Let the following conditions (u C), (1), (u =) for u*, and (u=1)—
(u~5) hold for u* and p~. Let 0,0’ be partial models, i.e. defined only
for some propositional variables. Let o C o/, M(¢') N u*(X) # 0, then
p (M(c')NX) Cu (M(o)NX). (We have antitony for x~ in o.)

PRrROOF. By M(c') C M(c), M(o) N ut(X) # 0. Thus, by (u =) for u™,
M(o) Nt (X) = @t (M(o) 1 X), and M(o?) 1 #(X) = i+ (M(o") 0 X),
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so by M(0) € M(o) u*(M(o') N X) C u*(M(o) N X), so by (u~4)
= (M(o') N X) € i~ (M(o) N X).

Consider in the following Proposition v : {M(¢) : ¢ € F(L)} — Dy.
Let p™(X) :=v(X)NX, and p~(X) := v(X) — X. (Thus, as v is defin-
ability preserving, so is u*.)

PROPOSITION 4.3.

v:{M(¢):¢ € F(L)} — D is representable by < and <,

where < is a smooth ranked relation, and < a subrelation of <, and
(X)) is the set of < —minimal elements of X, and p~(X) ={x ¢ X : Jy €
+HX).(z ap)),

iff the following conditions hold:

(1 ©), (u0), (u=) for p, and (u~1) = (u75) for p* and ™.

(Note that we look only at definablity preserving v, this is the general
prerequisite. We do not claim that any v satisfying the p—conditions is
automatically definability preserving.)

ESERS

The rest of this Section is the proof of above Proposition.

4.1. Proof

Set Y := {M(¢) : ¢ € F(L)}. Note that ) is closed under finite unions,
finite intersections, and complementation.

Soundness is easy:

The first three hold for smooth ranked structures, and the others are
easily verified.

We turn to Completeness. For this purpose, we first generate the ranked
relation <, and then the subrelation <.

4.1.1. The ranked relation <

There is a small problem.

The authors first thought that one may take any result for ranked struc-
tures off the shelf, plug in the other relation somehow (see the second half),
and that’s it. No, that is not sufficient, as the following example shows:

EXAMPLE 4.1. Suppose there is z, and a sequence x; converging to x in the
usual topology. Thus, if x € M(¢), then there will always be some z; in
M (@), too. Take now a ranked structure Z, where all the z; are strictly
smaller than z, and make some y bigger than z. Consider now any formula
Y such that x = v, y = 1. As infinitely many of the z; will also be models
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of v, = will never be a minimal model of 1. So we will never be able to
determine that « < y. (If we are allowed to consider full theories, we could
“see” this, of course.) So just considering minimal models will never show
x < y. If, however, we now can also look at models smaller than y, we can
see, under some prerequisites about the order, e.g. definability preservation,
that = is in this set, so we know that =z < y. Thus, we cannot just take
the minimality information, construct the first relation, and then look at
what is below, to determine the second relation. We have to take the second
information also to construct the first relation. [

Consequently, considering p~ may give strictly more information, and we
have to put in a little more work. We just patch a proof for simple ranked
structures, adding information obtained through p~.

We follow closely the strategy of the proof of 3.10.11 in [7]. We will,
however, change notation at one point: the relation R in [7] is called < here.
The proof goes over several steps, which we will enumerate.

Note that by Fact 3.1 (page 411), taken from [7], see also [3], (u ||), (uU),
(), (n=") hold for ut, as the prerequisites about the domain are valid.

(1) To generate the ranked relation <, we first define two relations, <
and =<y, where =<7 is the usual one for ranked structures, as defined in the
proof of 3.10.11 of [7]. The relation < will be defined in step (4) below.

a=1biffaept(X), be X for some X, or a =b, and

a=9biff a € p=(X), b € X for some X.

Finally, we set a < b iff a <1 b or a <5 b.

(2) Obviously, < is reflexive, we show that < is transitive by looking at
the four different cases.

(2.1) In [7], it was shown that a <1 b <; ¢ = a =3 ¢. For completeness’
sake, we repeat the argument: Suppose a <1 b, b <1 ¢, let a € u™(A), b € A,
be ut(B), c e B. We show a € p"(AUB). By (u ||) a € pt (AU B) or
b€ ut(AUB). Suppose b € ut (AU B), then pt (AU B)N A # 0, so by
(u=) umT(AUB)NA=pu"(A),soacpu"(AUB).

(2.2) Suppose a =1 b <9 ¢, weshow a <y c:Let ce Y, be u (V)N X,
a € put(X). Consider X UY. As X Npu=(Y) #0, by (u2) pH(XUY) =
pt(X),soaepu™(XUY)and c€ X UY, s0 a =< c.

(2.3) Suppose a =2 b <9 ¢, we show a <y c: Let ce Y, be u~ (V)N X,
a € p (X). Consider X UY. As X Npu=(Y) #0, by (u2) pt(XUY) =
pt(X),soby (u™4) p (XUY)=pu(X),s0a € p (XUY)and ce XUY,
so a =<9 cC.

(2.4) Suppose a <2 b <1 ¢, we show a <o c: Let c€ Y, b€ pt(Y)N X,
a € p (X). Consider X UY. As ut (V)N X #0, pt(X) CpH(XUY).



426 D. M. Gabbay and K. Schlechta

(Proof: By (u[}), (X UY) =t (X) | 4 (¥), s0, if u* (X) € prt(X U
Y), then pt(X)Nup™ (XUY) =0, so u™ (X)N(XUY —pt (XUY)) # 0 by (u0),
so by (uU) pt(XUY)=p™(Y). Butif um(Y)NX =pT(XUY)NX £ 0,
pt(X) = pH(XUY)NX by (u =), so ut(X)Npt (XUY) # 0, contradiction.)

Sou (X)) Cpu (XUY)by (p4),s0ce XUY,ae€ pu (XUY), and
a =<9 C.

(3) We next prove the following two properties:

B1)aeput(A),be A—ut(A) = bAa.

32)aep (A),becA=bAa.

Proof of (3.1):

(a) Case < .

—(b =1 a) was shown in [7], we repeat again the argument: Suppose
there is B s.t. b € p™(B), a € B. Then by (uU) p(AUB)N B =0, and by
(uU) ut(AUB) = put(A), but a € u*(A) N B, contradiction.

(b) Case =5

Suppose there is B s.t. a € B, b € pu~(B). But AN pu~(B) # 0 implies
pt(A)NnB=0by (u1).

Proof of (3.2):

(a) Case <7 .

Suppose b =<1 a, so there is B s.t. a € B, b€ p*(B), so BN u~(A) # 0,
sout(B)NA=0hby (u1).

(b) Case =5

Suppose b =<5 a, so there is B s.t. a € B, b€ u~(B),so BN u~(A) # 0,
sou (B)NA=0by (u3).

(4) Let, by Lemma 3.4 (page 414), S be a total, transitive, reflexive
relation on U := M, which extends < s.t. xSy,ySx = x < y (recall that
= is transitive and reflexive). But note that we “lose ignorance” here, as
we make arbitrary decisions. (The authors think that one should keep in
mind that one took such arbitrary decisions. This is, e.g., important to
distinguish the situation of classical completeness, where we consider all
models from, e.g., the situation of general preferential structures, where we
have one universal model. It is good to keep such fine distinctions in mind
- they might become useful one day.) Define a < b iff a.Sb, but not bSa. If
alb (i.e. neither a < b nor b < a), then, by totality of S, aSb and bSa.

First, < is ranked: If ¢ < a_Lb, then by transitivity of S ¢Sb, but if bSc,
then again by transitivity of S aSec. Similarly for ¢ > a_Lb.

(5) It remains to show that < represents p* and is Y—smooth:

Let a € A — u™(A). By (ud), 3b € p+(A), so b <1 a, but by case (3.1)
above a A b, so bSa, but not aSbh,s0b < a,s0a € A—pu(A). Let a € u(A),
then for all’ € Aa < d’,s0 aSd’,sothereisnoad’ € Ad < a,soa € pu(A).



A Comment on Work by Booth and Co-authors 427

Finally, u*(A) # 0, all x € u*(A) are minimal in A as we just saw, and for
a€ A—pt(A) thereis b € u™(A), b <; a, so the structure is smooth.

4.1.2. The subrelation <

We now construct the subrelation <1 and show that <1 represents p~.

As this part of the proof is a bit long, and the technique perhaps some-
what unusual, we first give a detailed overview. We start with some z €
p~(X). Our task is to find suitable y € p*(X), for which we can define
x <y.y is a model in a possibly infinite language, so y is described by a
possibly infinite sequence of true/false for each propositional variable. Alter-
natively, y is described by a possibly infinite sequence of p; or —p;, 1 < k for
some arbitrary, fixed, enumeration of the variables of the language. We will
construct inductively such a sequence of decisions for each variable. As we
can work only with (finite) formulas, we have access only to finite fragments
of this sequence. We will see that this suffices. During construction, we will
preserve inductively conditions (1) and (2) below, which will assure that the
construction process is possible, and also, in the end, that y has the desired
properties. At some points in the construction, we might choose p;, but also
—p;, in this case we use an arbitrary model m to determine our strategy.

We turn to the construction of y. We take arbitrary = € p~(X), and
have to choose suitable y € u™(X) to make z <1 y. We first have to show
that, if ©=(X) # 0, then u*(X) # (. (We are indebted to one of the referees
for insisting that this should be shown properly.) If X # (), then pu*(X) # 0
by (uf) for p*. So the only possible case where it might fail is X = (.
We have to show that p~ (@) = 0. This goes as follows: ut(0) = 0 by
(n ) for p*, so p* () C p*(B) for all B, so by (u™4) p~(0) € pu(B)
for all B. Take arbitrary Z, and consider (u~3), setting X =Y = p~=(2).
Then = (Z)Np (= (2) 0= pu (Z)Np (u(Z)) = 0, contradiction, so
p=(Z) N p~ (= (Z)) = 0. By the above p=(0) € p=(Z) Np~(n=(2)) = 0,
and we are done.

The problem — if it is one — is that we can use only finite amounts
of information to find such y. y, as a model, is a, possibly infinite, function
T :v(L) — {t, f}. We construct 7 inductively, using finite subsequences
o C 7. (The authors consider this technique sufficiently interesting — it is,
as a matter of fact, the reason why we think this extension of the result
of [2] to the infinite case is publishable.) We do not (just) construct the
finite subsequences o mentioned below, but we construct the perhaps very
big sequence 7, of which the ¢ may be just tiny fragments. The point is that
those fragments suffice to construct 7, in a way they assure coherence of 7.
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Suppose we found for x € u~(X) such y € u(X) and made z < y. By
put(X) C X and the definition of the relation <5 above, we know that z < y.
By (3.2) above, we know that y Z x, and by the definition of the relation <,
we know that x < y, so < is a subrelation of < . (We need not know more
details about the relation <1 to be constructed now, so we can do this part
of the proof now.)

Take an arbitrary enumeration of the propositional variables of £, p; :
i < K, k some (possibly infinite and very big) cardinal. We will inductively
decide for p; or —p;. o etc. will denote a finite subsequence of the choices
made so far, i.e. ¢ = %£p;,,...,=£p;, for some n < w. (£p will denote here
some choice, either p or —p, which we will make inductively.)

Given such o, M (0) := M(%£p;,)N...NM(x£p;,). 0+ o’ will be the union
of two such sequences, this is again one such sequence.

Take an arbitrary model m for £, i.e. a function m : v(L) — {t, f}. We
will use this model as a “strategy”, which will tell us how to decide, if we
have some choice.

We determine y by an inductive process, essentially cutting away " (X)
around y. We choose p; or —p; preserving the following conditions induc-
tively:

For all finite sequences o as above we have:

(1) M(o) N p*(X) # 0,

(2) x € p= (X N M(o)).

For didactic reasons, we do the case py separately.

Recall that (p@) holds for u™ by prerequisite. Consider pg. Either
M(po) N ut(X) # 0, or M(—po) N ut(X) # 0, or both. (Recall: (ud)
holds for u*, X # 0, so u™(X) # (), but any element is either in M(pg) or
in M(—po).) If e.g. M(po) Np™(X) # 0, but M(—po) N pt(X) =0, then we
have no choice, and we take pg. In the opposite case, we take —pg. E.g. in
the first case, u™ (X N M(py)) = p™(X), so z € u= (X N M(py)) by (u™4).
If both intersections are non-empty, then by (1=5) x € u= (X N M(poy)) or
z € pu (X NM(=pp)), or both. Only in the last case, we use our strategy to
decide whether to choose py or —pg : if m(pg) = t, we choose py, if not, we
choose —pg. o(0) will be py or —=pg. Obviously, (1) and (2) above are satisfied
for the finite sequence o = (£py).

Suppose we have chosen p; or —p; for all ¢ < «, i.e. defined a partial
function 7 from v(£) to {¢, f}, and the induction hypotheses (1) and (2) hold
for all finite o C 7. We show now that we can extend 7 to 7/, which chooses

additionally p, or —p,, such that all finite ¢ C 7’ still satisfy conditions
(1) and (2).
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Consider p,, a < K.

We have to show that we can choose £p,, in a way such that the induction
hypotheses (1) and (2) still hold for all finite subsequences o of 7 + (£p,).
The new cases to consider involve the choice of +p,, of course.

If there is no finite subsequence o of the choices done so far s.t. M (o) N
M (po) Nt (X) = 0, then p, is a candidate. Likewise for —pg.

One of p, or —p, is a candidate: Suppose not, then there are o and o’
subsequences of the choices done so far, and M (o) N M (p,) "™ (X) = 0 and
M (o") N M (=pa) N (X) = 0. Consider the finite subsequence o + ¢’. But
now M (oc+o")Nu™(X) = M(o)NM(a")NuT(X) C M(o)NM (pa)Npt(X) U
M (o) N M (=ps) Nt (X) = 0, contradicting (1) of the induction hypothesis
for o + o’. So the induction hypothesis (1) will hold again for all finite
subsequences o of T+ (£p,).

Let o C ¢’ be two finite subsequences of 7 + (p,) if p, is a candidate, or
7+ (=pa) if =py is a candidate. Thus by (1) M (o’) N p™(X) # 0, so by Fact
4.2 (page 423) p= (M (o) NX) C u= (M(o) N X).

If we have only one candidate left, say e.g. p., then for each sufficiently
big sequence o M (o) N M (=pa) N pt(X) = 0, thus for such o pu™(M(o) N
M(pa)NX) = M(o)NM (pa) ™ (X) = M(0)Np* (X) = p (M (0)NX), and
thus by (u=4) u= (M (o0)NM(pa)NX) = p~ (M(o)NX). So for all sufficiently
big finite o x € p= (M (0)NX) = p~ (M(o)NM(ps)NX) by (2) for 0. But p,
is a candidate, so as we just saw, for any ¢” C o u~ (M(c) N M(pa) N X) C
pw= (M(c") N M(po) N X), and x € p= (M(c”) N M(ps) N X) for any finite

" s0 (2) holds again.

Suppose now that we have two candidates, thus for p, and —p, and each
o M(o) N M(ps) Nt (X) # 0 and M(o) N M(—pa) N ut(X) # 0. Thus, as
we just saw, p~ (M (c")NX) C p~(M(o) N X) for ¢ C ¢’ where 0,0’ might
involve p, or —p,, as both are candidates. By the same kind of argument
as above we see that either for p, or for —p,, or for both, and for all finite
subsequences o x € pu~ (M(o)NM(ps)NX)or z € u= (M(o)NM(—ps)NX).
If not, there are o and ¢’ and & p= (M (o) N M(ps) N X) 2 p~ (M(o +
0') N M(pa) N X) and © & p~(M(c") N M(=pa) N X) 2 (M(0+0’) n
M(=p) 0 X), but 5= (Mo + 0 0 X) = - (M(e 4 0%) 1 M(pa) 1 X) U
pw (M(oc+d" )N M(=py)NX),s0x & pn (M(a +0’)N X), contradicting the
induction hypothesis (2).

If we can choose both, we let the strategy decide, as for pyg.

So induction hypotheses (1) and (2) will hold again for 7+ < £p, >

This inductive procedure finally gives a complete description of some
model y (relative to the strategy!), and we set x < y.
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We now show that <1 represents p~.

We have to show: for all Y € Yz € p= (V) & 2 € pg(Y) & Jy €
pt(Y).x <y. Recall that  was chosen in p~(Y) at the beginning, so z ¢ Y,
and we constructed y with x <1y, not x for a given y.

‘="

As we will do above construction for all Y, it suffices to show that y €
put(X), we do this now:

If y ¢ u™(X), then Th(y) is inconsistent with Th(u™ (X)), as p* is
definability preserving, so by classical compactness there is a suitable finite
sequence o with M (o) N pt(X) = 0, but this was excluded by the induction
hypothesis (1). Soy € p*(X).

£4¢77:

Conversely, if the y constructed above is in u™(Y), then = has to be in
p~ (Y), as we show now:

Remember that by construction for this x € p=(X), y € u(Y).

Suppose y € puT(Y), but z € = (V). Soy € p*(Y) and y € pu*™(X),
and Y = M(¢) for some ¢, so there will be a suitable finite sequence o s.t.
for all ¢/ with o C ¢/ M(c/) N X C M(¢) =Y, and by our construction
x € pu~ (M(o")NX) by hypothesis (2). Asy € u™(X)NpT(Y)N(M(o')NX)
by (u =) and M(¢')N X C Y, u™(M(c') N X) C p™(Y), so by (u74)
p~(M(e")NX) Cpu (YY), sox e pu (Y), contradiction.

We do now this construction for all strategies. Obviously, this does not
modify our results.

This finishes the completeness proof. [J

As we postulated definability preservation, there are no problems to
translate the result into logic. (Note that v was applied to formula defined
model sets, but the resulting sets were perhaps theory defined model sets.)

4.1.3. Comment

This comment is for readers familiar with [6].

One might try a construction similar to the one for Counterfactual Con-
ditionals, see [6], and try to patch together several ranked structures, one
for each K on the left, to obtain a general distance, by repeating elements.

So we would have different “copies” of A, say A;, more precisely of its
elements, and the natural definition seems to be: A % ¢ F 1 iff for all 4
Aixpt1,s0 Al B=J{A; | B:iel}

But this does not work: Take A := {a,d’,a"}, B := {b,b'}, with A |
B :={bV},and a | B=d | B=d"| B = {b}. Then for all copies of
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the singletons, the result cannot be empty, but must be {b}. But A | B can
only be a “partial” union of the x | B, x € A, so it must be {b} for all copies
of A, contradiction.

(Alternative definitions with copies fail too, but no systematic investiga-
tion was done.)

5. Conclusion

Booth et al. have shown that one can do many things in revision with two
relations. They also gave a representation result for the finite case.

Our contribution is to have given a representation for the interesting
infinite case, where only information about formula defined model sets is
given. To prove our result, we used a - in this context probably novel —
technique, constructing the required models from finite fragments.

Acknowledgements. The authors are very much endebted to two very
careful referees, who not only made the paper readable, but also corrected
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