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Abstract. Theories where truth is a naive concept fall under the following dilemma:

either the theory is subject to Curry’s Paradox, which engenders triviality, or the theory is

not trivial but the resulting conditional is too weak. In this paper we explore a number of

theories which arguably do not fall under this dilemma. In these theories the conditional

is characterized in terms of (possibly infinite) non-deterministic matrices. These non-

deterministic theories are similar to  Lukasiewicz logic in that they are consistent and their

conditionals are quite strong. The difference is the following: while  Lukasiewicz logic is

ω-inconsistency, the non-deterministic theories might turn out to be ω-consistent.

Keywords: Naive truth theory,  Lukasiewicz logic, Curry’s paradox, non-deterministic se-

mantics, ω-inconsistency.

1. Introduction

In this paper we want to address the problem of finding a strong conditional
connective for a naive theory of truth1. This problem is not really new.
Usually, theories where truth is treated as a naive concept fall under the
following dilemma: either the theory is subject to Curry’s Paradox, which
engenders triviality, or the theory is not trivial but the resulting conditional
is too weak2. Recently there have been many attempts to avoid this dilemma
by the introduction of rather complicated conditionals (see for example [3],
[5], [6], and [11]).

One relatively familiar and uncomplicated conditional which does not
fall under the dilemma is  Lukasiewicz conditional (as long as the semantics
is continuum-valued). However, discussing  Lukasiewicz logic, Hartry Field
[6], p.94 claims that:

Presented by Name of Editor; Received December 1, 2005
1By a naive truth theory we mean a theory that contains all instances of the schema

Trpφq ↔ φ (where pφq is a name for the sentence φ). By a transparent truth theory
we mean a theory where Trpφq and φ are everywhere intersubstitutable. In the non-
deterministic theories we introduce below, this distinction will not matter.

2Some substructural theories of truth do not fall under this dilemma, but here we will
only consider theories with a consequence relation that satisfies all the usual structural
properties.
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(...) the clear inadequacy of the continuum-valued semantics for
languages with quantifiers should not blind us to its virtues in a
quantifier-free context. Indeed, one might well hope that some sim-
ple modification of it would work for languages with quantifiers. In
fact, this does not seem to be the case: major revisions in the ap-
proach seem to be required.

Now, we do not know exactly what Field means by ‘major revisions’, but
here we will consider several close cousins of  Lukasiewicz logic and argue that
most of them are at least not clearly inadequate. Although this can be done
proof-theoretically -by analyzing which axioms and rules must be satisfied
by the target conditional- we employ a semantic approach. In particular, we
will use non-deterministic matrices to obtain (relatively) strong subtheories
of  Lukasiewicz logic.

The rest of the paper is structured as follows. As the technique of
non-deterministic matrices might be unfamiliar for philosophers interested
in semantic paradoxes, the next section gives a brief and sketchy tutorial
on the topic. In Section 3, after showing the inadequacy of finitely-valued
 Lukasiewicz logic (whether deterministic or not), we present the well-known
continuum-valued version of  Lukasiewicz logic. Section 4 contains several
ways of making this logic non-deterministic and shows how strong the re-
sulting theories are. Section 5 contains some speculative remarks on whether
the non-deterministic theories we consider are ω-inconsistent, and section 6
shows how it is possible to define a determinately operator in these theories.
Section 7 compares the present proposal to a similar but slightly different
approach developed recently and section 8 contains some closing remarks.

2. Non-deterministic matrices

The idea of a non-truth-functional connective is quite old and well-known.
Recently, though, this idea has been studied by using what is sometimes
called ‘non-deterministic matrices’. This formal tool has been rigorously
developed by those - specially computer scientist - who wish to study a
number of properties of proof systems from a semantic point of view. A
very complete introduction to the topic can be found in [1]3. Intuitively,

3In any case, we think non-deterministic matrices have not been sufficiently explored
as a tool to study semantic paradoxes (nor, for that matter, to study other kinds of
philosophical puzzles). For a very brief survey on possible applications of non-deterministic
matrices, see [1]. To the best of our knowledge, the application to semantic paradoxes has
not been discussed anywhere.
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in a non-deterministic framework there is at least one connective such that
you cannot completely determine the value of a compound formula involving
that connective even if you know the values of all the atomic formulas of the
language. We can give a more formal definition in the following way:

Definition 2.1. (NDMatrix) A non-deterministic matrix for a language
L is a tuple M = < V,D,O >, where:

• V is a non-empty set of truth values,

• D is a non-empty proper subset of V, and

• O is a set of functions such that for every n-ary connective � in L, there
is a corresponding function �M in O such that �M: Vn −→ P(V)−∅.4

The interesting part of the definition has to do with the set O of functions
for the non-deterministic connectives. In a deterministic matrix, for each n-
ary connective � in L, there is a corresponding function �M such that �M:
Vn −→ V. The function takes a certain n-tuple of values in Vn and assigns
a value in V. In the case of non-deterministic connectives, the co-domain of
the corresponding function is the set of sets of values P(V)−∅, rather than
the set of values V.

Also notice that deterministic matrices are a special case of non-deter-
ministic matrices. More specifically, for each n-ary connective � in a deter-
ministic matrixM which is interpreted as a function �M: Vn −→ V, we can
build a non-deterministic matrixM′ where that connective can be taken as
a function that only outputs singleton values, that is, �M′ : Vn −→ {A ⊆ V:
|A| = 1}. By doing this we obtain a non-deterministic matrix with connec-
tives that mimic the behavior of the deterministic connectives.

It is straightforward to characterize the usual notions of valuation, sat-
isfaction, validity, and so on, for non-deterministic matrices:

Definition 2.2. (V aluation) Let FormL denote the set of formulae of the
language L. A valuation in M is a function v: FormL −→ V such that for
each n-ary connective � of L, the following holds for all φ1, ..., φn ∈ FormL:
v(�(φ1, ..., φn)) ∈ �M(v(φ1), ..., v(φn))

Notice that since �M(v(φ1), ..., v(φn)) gives a set of values rather than
a single value, we use ∈ instead of = in the previous definition. With this

4The reason for excluding the empty set is that it is not straightforward how to compute
the value of compound formulae where at some step of the computation we have as input
the empty set.
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new notion of valuation, the concepts of satisfaction and validity can be
defined in the usual way.

To see how this actually works, we will provide an example of a non-
deterministic matrix that might be relevant for the study of semantic para-
doxes.

Example 2.3. Let L be a propositional language with one unary connective
¬ and two binary connective ∨ and ∧. Let M1 = < V1, D1, O1 >, where:

• V1 = {1, 0},

• D1 = {1}, and

• O1 is defined in the following way:

¬M1

1 {0}
0 {1,0}

∨M1

1 1 {1}
1 0 {1}
0 1 {1}
0 0 {0}

∧M1

1 1 {1}
1 0 {0}
0 1 {0}
0 0 {0}

A reason for employing this matrix is that it is compatible with a naive
theory of truth. It is well-known that the paracomplete three-valued logic
K3 can support a transparent truth predicate. But it is easy to see that
2M1 φ ∨ ¬φ. Moreover, every K3-countermodel can be turned into an M1-
countermodel by replacing all assignments of the value 1

2 by 0, and leaving
everything else untouched. This means thatM1 is a sublogic of K3. Hence,
M1 is a (paracomplete two-valued!) consistent non-deterministic matrix
that supports a transparent truth predicate5.

From this example it should be clear that taking a deterministic matrix
and transforming it into a non-deterministic matrix (possibly) weakens the
resulting logic. This makes sense: a non-deterministic matrix considers more
valuations than a deterministic one, at least ceteris paribus. So if we are
in the business of solving paradoxes by weakening logic, non-deterministic
matrices might be a good tool to see what sort of paradox-immune logics we
can obtain.

5The logic characterized by this matrix is usually known as CLaN. Notice also that
the dual of the logic characterized by M1 is the paraconsistent logic CLuN , which is a
sublogic of the paraconsistent logic LP, dual to K3. For more details on these logics see
[4].
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3.  Lukasiewicz logic

Since we want to discuss semantic paradoxes, we assume, as usual, that
the language we are working with has some way to talk about itself. More
specifically, for each formula φ of the language there is a term pφq that is
the name of that formula. So, if the language contains a truth predicate, we
can construct a Liar sentence λ such that λ is ¬ Trpλq, a Curry sentence δ
such that δ is Trpδq→ ⊥, and so on6.

There are some multivalued logics that could arguably be considered
as plausible solutions to the Liar Paradox (K3 and LP are usually seen
as natural candidates). The problems with this kind of views are well-
known. The material conditional exhibits an odd behavior in these logics:
LP does not validate Modus Ponens (φ, φ ⊃ ψ 2LP ψ), while K3 does not
validate Identity (2K3 φ ⊃ φ). Both Field [6] and Beall [5] have worked on
supplementing such theories with a suitable conditional. However, Curry’s
paradox makes this task quite complicated: any naive truth theory cannot
have a conditional connective validating, for example, Modus Ponens and
Contraction, or Modus Ponens and Conditional Proof.

Is there any other way of supplementing these logics with a suitable con-
ditional? That depends, of course, on what we take a suitable conditional to
be. One option is to say that a suitable conditional is one that satisfies cer-
tain principles and rules of inferences, for instance, Modus Ponens, Identity,
and so on. Another option is to impose more general constraints regarding
the way in which a valuation should behave with respect to a conditional
connective. These are not mutually exclusive approaches. We could impose
constraints on the valuations in such a way that the conditional validates
the principles and rules we want. Nonetheless, it might be that in certain
contexts one of the approaches is more illuminating than the other.

If we are working in a linearly ordered space of values7, it seems useful to
embrace the second approach and to say that a conditional → is suitable if
it is not subject to Curry’s Paradox and it satisfies the following constraints:

1. If v(φ) ≤ v(ψ), then v(φ→ ψ) ∈ D

2. If v(φ) > v(ψ), then v(φ→ ψ) ∈ V −D

6We won’t concern ourselves at this point on how to get self-reference. If the reader
prefers, she can take λ to be equivalent to the sentence ¬Trpλq and so on. As far as we
can tell, nothing we say depends on this.

7We’ll assume further that the space of values satisfies the following condition:
for all x and for all y, if x ∈ D and y ∈ V − D, then x > y.
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Can a transparent truth theory be supplemented with a suitable conditional
in this sense? Unfortunately, for any finitely-valued linearly-ordered matrix,
regardless of whether it is deterministic or not, the following can be proved:

Theorem 3.1. No n-valued linearly ordered matrix containing a transparent
truth predicate can have a suitable conditional, provided that for each non-
designated value i there is a sentence φ such that v(φ) = i8.

Proof. Assume that V has n elements. Since the elements in V are linearly
ordered by some relation <, we can list them in the following way: r1, ...., rn,
where r1 < .... < rn and ∅ 6= D ⊆ {r2, ...., rn}. Since D is finite, there must
be a greatest non-designated element ri /∈ D. Now consider a sentence γ such
that γ is Trpγq→ φ, where v(φ) = ri. Now we reason as follows: if v(γ) ∈ D,
then v(γ) > v(φ). So by constraint 2, v(γ) ∈ V −D; if v(γ) ∈ V −D,
then v(γ) ≤ v(φ). So by constraint 1, v(γ) ∈ D. Either way, we have a
contradiction.

So the problem with finite non-deterministic matrices is that you can use
the greatest non-designated value to construct a version of Curry’s Paradox9.
With infinite matrices the problem does not necessarily arise. There might
not be a greatest non-designated value precisely because there might be in-
finitely many increasing non-designated values. However, there is a different
problem with infinitely valued theories that include a naive truth predicate.
The best such theory in the market is  Lukasiewicz’s theory  L∞

10, which can
be semantically characterized as follows (see [8] for more details on  L∞):

Definition 3.2. (  Lukasiewicz logic  L∞) Let  L∞ be the theory characterized
by the matrix < d, I,V,D,O >, where

• d is a non-empty set,

• I is an interpretation function for the non-logical vocabulary,

• V = {x ∈ R : 0 ≤ x ≤ 1} = [0, 1],

8In fact, we can prove that there is such a sentence, so we can dispose of this assumption.
However, the proof is simpler this way.

9See [9] for a different version of this result not involving non-deterministic matrices.
Restall’s theorem is in a way stronger than what we have just proved, since it also applies
to some non-linearly ordered space of values. However, in a different sense, it is weaker,
since it only considers deterministic matrices.

10Usually, if theorists want to stress that the truth predicate is in the language, this
goes under the label  L∞Tr, and moreover, if there is a base syntax theory present such as
Peano Arithmetic, it becomes  LPA

∞ Tr. To ease the notation we will use  L+
∞ for the theory

with the truth predicate plus some sort of naming system.
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• D = {1}, and

• O is defined in the following way:

– v(¬φ) = 1− v(φ),

– v(φ ∨ ψ) = max(v(φ), v(ψ)),

– v(∃xφ) = sup{v′(φ) : v′ is an x-variant of v}, and

–

v(φ→ ψ) =

{
1 if v(φ) ≤ v(ψ)

1− (v(φ)− v(ψ)) otherwise

We obtain the theory  L+
∞ by considering only those valuations that in

addition to this satisfy v(Trpφq) = v(φ), for every φ. This theory has
some attractive properties, specially regarding the truth predicate and the
conditional. For instance, like K3 and LP, the Liar and other problem-
atic sentences receive the value 1

2 , but unlike K3 both Identity and all T-
biconditionals are valid in  L+

∞, and unlike LP, Modus Ponens is valid in
 L+
∞. Also, it is possible to provide a weakly complete axiomatization for

its propositional Tr-free fragment. More specifically, all  L∞-tautologies and
inferences with finitely many premises are provable from the following four
axioms (together with the rule of Modus Ponens):

φ→ (ψ → φ)
(¬ψ → ¬φ)→ (φ→ ψ)
(φ→ ψ)→ ((χ→ φ)→ (χ→ ψ))
((φ→ ψ)→ ψ)→ ((ψ → φ)→ φ)

The problem is that  L+
∞ has some unpleasant properties as well. First, the

previous axiomatization is only weakly complete. There are semantically
valid Tr-free inferences that are not provable in it.

Secondly, the natural way to extend this theory to a first-order language
is by introducing the following two axioms (together with the rule of Gen-
eralization):

∀xφ(x)→ φ(t) (where t is free for x in φ)
∀x(φ→ ψ)→ (φ→ ∀xψ) (where x is not free in φ)

However, once we do so, the theory is not even weakly complete11. There are

11[8] refers the reader to a proof by Scarpellini.
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some first-order semantically valid Tr-free sentences which are not provable
in this axiomatization.

These two properties are not really disturbing if you do not care much
about proof-theory. However, there is a third unpleasant property:  L+

∞ is
“nearly” inconsistent. A bit more rigorously:

Definition 3.3. (ω-inconsistency) We say that a theory T is ω-inconsistent
if and only if for some formula φ(x) and each object o, T � φ[o/x] but
T � ∃x¬φ(x) (where o is a name for o)12.

Assuming, for instance, that the base theory of  L+
∞ is Peano arithmetic,

the following can be proved:

Theorem 3.4. (See [10], [7], [2])  L+
∞ is ω-inconsistent13.

So a question naturally arises: are there interesting subtheories of  L∞
with a strong conditional which are not ω-inconsistent? This question has
been raised by Bacon in [2]. Nevertheless, our approach will be different
from Bacon’s14.

4. Making  Lukasiewicz logic non-deterministic

The first logic we’ll talk about is ND L+
∞, which is just like  L+

∞ with the only
difference that the conditional behaves in the following way:

v(φ→ ψ) ∈

{
{1} if v(φ) ≤ v(ψ)

V − D otherwise

12We should point out that being ω-inconsistent is different from being inconsistent
in ω-logic (i.e. from lacking an ω-model), although the latter might be regarded as an
undesirable property as well. A theory is inconsistent in ω-logic if the theory together
with the ω-rule is inconsistent. A theory that is consistent in ω-logic is ω-consistent, but
the converse might fail.

13In addition to this, in [7] it is proved that adding compositional axioms for truth
to  L+

∞ makes the theory inconsistent, and not just ω-inconsistent. More precisely, let
Sent L+

∞
(x) be a predicate holding of all and only the (names of) sentences of  L+

∞, and

let ∨. be a function that when applied to the codes of two formulas gives the code of their
disjunction. It can be shown that  L+

∞ already validates every instance of axiom-schemas
such as Trpφ∨.ψq ↔ (Trpφq ∨ Trpψq). However, the addition of ∀x∀y(Sent L∞

(x) ∧
Sent L∞

(y)→ (Tr(x∨. y)↔ (Tr(x) ∨ Tr(y)))) makes the theory inconsistent.
14His approach is proof-theoretic. He analyses what axioms for the conditional can we

endorse while avoiding ω-inconsistency. In section 5, after presenting our approach, we
will briefly compare it to Bacon’s.
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Clearly, while  Lukasiewicz’s conditional is deterministic, ND L+
∞’s condi-

tional is not15. Of course, both conditionals behave exactly the same when
the value of the antecedent is less or equal to the value of the consequent, but
they differ when this is not the case. Also notice that ND L+

∞’s conditional
flows very naturally from the two constraints imposed above on any suitable
conditional. Here is an incomplete list of principles and inferences which are
valid in this theory (in some cases the names are somewhat arbitrary):

φ→ ψ, φ � ψ (Modus Ponens)
� φ→ φ (Identity)
� ¬¬φ→ φ (Double Negation)
(φ→ ψ) ∧ ¬ψ � ¬φ (Modus Tollens)
� (φ ∧ (ψ ∨ χ))→ (φ ∧ ψ) ∨ (φ ∧ χ) (Distribution)
� φ→ (φ ∨ ψ) (Disj. Intr.)
� (φ ∧ ψ)→ φ (Conj. Elim.)
� (φ→ ψ) ∨ (ψ → φ) (Connectivity)
φ � ψ → φ (Positive Weakening)
¬φ � φ→ ψ (Explosion)
(φ→ ψ) ∧ (ψ → χ) � φ→ χ (Weak Transitivity)
¬φ ∨ ψ � φ→ ψ (Material Conditional)

The problem with this theory is that the conditional is still too weak. It
does not validate many plausible inferences and principles. So it is interest-
ing to see how much the conditional can be strengthened without making
the theory inconsistent or ω-inconsistent16. To investigate this issue we now
introduce a number of restrictions on the valuations over which the notion
of validity will be characterized.

A very odd feature of ND L+
∞ is that a conditional might not get the

value 0 even if its antecedent gets value 1 and its consequent value 0. A way
to avoid this is by imposing the following straightforward restriction:

Definition 4.1. ( Semiclassical) A valuation v in a matrix M is semiclas-
sical if and only if for any pair of formulae φ1 and φ2, if v(φ1) and v(φ2)
are both in {0, 1}, then v(φ1 → φ2) = v(¬φ1 ∨ φ2).

15Actually, some minor additional adjustments need to be made. The other logical
expressions are defined non-deterministically too, but in a non-interesting way. For ex-
ample, negation and disjunction are characterized as follows: v(¬φ) ∈ {1 − v(φ)}, and
v(φ ∨ ψ) ∈ {max(v(φ), v(ψ))}.

16Actually, we have no proof of its ω-consistency, but we strongly suspect that it is in
fact ω-consistent. As we will show in section 5, the usual ways to prove ω-inconsistency
will not apply.
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Let’s call this new theory ND L+
∞(S), for non-deterministic infinitely-

valued  Lukasiewicz logic with a transparent truth predicate and semiclassical
valuations. With this new restriction we obtain several inferences that were
not validated in ND L+

∞ (we give examples below).
This is not the only odd feature of ND L+

∞. Consider two conditionals
φ1 → φ2 and φ3 → φ4 (where the value of the antecedent is greater than the
value of the consequent) such that in φ1 → φ2 the “distance” between φ1
and φ2 is close to 0 and in φ3 → φ4 it is close to 1. Nothing so far prevents
a valuation from assigning to the first a value close to 0 and to the second a
value close to 1. To avoid this unpleasant consequence, we can impose the
following restriction:

Definition 4.2. ( Uniform1) A valuation v in a matrix M is uniform1 if
and only if for any formulae φ1, φ2, φ3 and φ4 such that v(φ1) > v(φ2) and
v(φ3) > v(φ4), if v(φ1)− v(φ2) > v(φ3)− v(φ4), then v(φ1 → φ2) < v(φ3 →
φ4).

Intuitively this says that if we consider two conditional claims, such that
the difference between (the value of) the antecedent and (the value of) the
consequent in the first conditional is greater than the difference between (the
value of) the antecedent and (the value of) the consequent in the second,
the value of the second conditional should be greater than the value of the
first conditional. For example, if v(φ1) = .8, v(φ2) = .6, v(φ3) = .3 and
v(φ4) = .2, then v(φ1 → φ2) < v(φ3 → φ4). We’ll call the resulting theory
ND L+

∞(U1).
Yet another unsatisfactory feature of ND L+

∞ is the following. We might
have the following two conditionals: > → λ and λ → ⊥. Since λ is a Liar
sentence, its value is 1

2 in every valuation. Hence, its “distance” from > is
the same as its “distance” from ⊥. But so far nothing prevents a valuation
from assigning very different values (less than 1) to these two formulae. This
issue can be dealt with by imposing the following restriction:

Definition 4.3. ( Uniform2) A valuation v in a matrix M is uniform2 if
and only if for any formulae φ1, φ2, φ3 and φ4 such that v(φ1) > v(φ2) and,
v(φ3) > v(φ4), if v(φ1)− v(φ2) = v(φ3)− v(φ4), then v(φ1 → φ2) = v(φ3 →
φ4).

This informally says that if we have two conditional claims, such that
the difference between (the value of) the antecedent and (the value of) the
consequent is the same in both, the value of the conditionals should be the
same. For example, if v(φ1) = .8, v(φ2) = .6, v(φ3) = .3 and v(φ4) = .1,
then v(φ1 → φ2) = v(φ3 → φ4). We’ll call the resulting theory ND L+

∞(U2).
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Now let’s introduce one final restriction. We think this last restriction is
plausible enough, but perhaps not as easy to justify as the others (for the
record, the restriction holds in  L+

∞):

Definition 4.4. ( Bounded from below) A valuation v in a matrix M is
bounded from below if and only if for any pair of formulae φ1 and φ2, if
v(φ1) > v(φ2), then v(φ1 → φ2) ≥ v(φ2).

So if a conditional has a value other than 1, its value has to be greater
than the value of its consequent. In other words, an untrue conditional
cannot be more untrue than its own consequent. The resulting theory is
ND L+

∞(B)17.
Naturally, it might be desirable to impose these conditions simultane-

ously. The strongest theory obtainable is this framework is ND L+
∞(SU1,2B),

in which all our restrictions play a role18. These four restrictions seem fairly
natural to us and in fact they all hold in  L+

∞, but we are not claiming that
there are no other plausible restrictions that could be imposed without mak-
ing the conditional fully deterministic19.

Observe that a valuation for untrue conditionals is acceptable in the
theory ND L+

∞(SU1,2B) just in case it can be characterized by a strictly
decreasing function20 f such that f(x) ≥ 1−x, where the value of x is given
by the difference between the value of the antecedent and the value of the
consequence of the conditional.

Let’s now define validity for each of the possible theories obtainable by
imposing one or more of the restrictions above:

Definition 4.5. ( Validity) An argument from the set of formulas Γ to the
formula φ is validi (Γ �i φ) if and only if every i valuation v in M that
satisfies γ for every γ ∈ Γ, also satisfies φ, where i might be Semiclassical,
Uniform1, Uniform2, Bounded from Below or any combination of them.21

17It has been pointed out to us that this last restriction is too strong for conditionals
where the content of the antecedent has nothing to do with the content of the consequent.
However, this sort of relevant-oriented worry its out of place in this context.  L+

∞’s condi-
tional is not intended as a model of relevant reasoning, and nor are the subtheories of it
we are considering.

18A similar algebraic approach can be found in [6], chapter 15.
19A natural additional restriction that could be imposed is that the valuation functions

representing the conditional have to be continuous functions. However, we do not see a
strong reason to reject valuation functions that do not fulfill this restriction.

20We say that a function f is strictly decreasing if and only if for all x1, x2 ∈
domf, f(x1) > f(x2) whenever x1 < x2.

21The definition also contemplates the case where Γ is the empty set, so we ambiguously
apply ‘valid’ to both arguments and sentences.
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In what follows we are going to state a number of facts about the theories
obtainable by applying one or more of these restrictions. For instance, it is
not hard to see that by requiring all valuations to be Semiclassical, we obtain:

φ ∧ ¬ψ �S ¬(φ→ ψ) (Negative Material Conditional)

If we demand all valuations to respect the Uniform1 requirement, the fol-
lowing become valid:

φ→ ψ �U1 (ψ → χ)→ (φ→ χ) (Transitivity1)
φ→ ψ �U1 (χ→ φ)→ (χ→ ψ) (Transitivity2)

It is also straightforward to check that ND LU2
∞ validates:

�U2 (¬ψ → ¬φ)→ (φ→ ψ) (Contraposition)
�U2 ((φ→ ψ) ∧ (φ→ χ))→ (φ→ (ψ ∧ χ)) (Conj. Intro.)
�U2 ((φ→ χ) ∧ (ψ → χ))→ ((φ ∨ ψ)→ χ) (Disj. Elim.)

Finally, if we consider ND LB
∞, we get:

�B φ→ (ψ → φ) (Strong Positive Weakening)
(φ ∧ ψ)→ χ �B φ→ (ψ → χ) (Exportation)

It should be clear that each restriction imposed on the set of valuations
gives a strictly stronger notion of validity. One could say that the more
restrictions we impose on the set of valuations, the more deterministic the
conditional is (or, equivalently, the stronger it gets)22. A rough picture of
how the restrictions can be put to work together is provided in figure 4.1:

22This idea is not very different to the one encountered when providing a possible world
semantics for relevant logic. There we obtain stronger and stronger conditionals by im-
posing different constraints on the ternary accessibility relation. See [8], chapter 10 for
the details.
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 L+
∞

ND L+
∞(SU1U2B)

ND L+
∞(U1U2B) ND L+

∞(SU2B)ND L+
∞(SU1B)ND L+

∞(SU1U2)

ND L+
∞(U2B)ND L+

∞(U1B)ND L+
∞(SB)ND L+

∞(U1U2)ND L+
∞(SU2)ND L+

∞(SU1)

ND L+
∞(B)ND L+

∞(U2)ND L+
∞(U1)ND L+

∞(S)

ND L+
∞

Figure 4.1: All the theories.
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A way of spelling out this idea formally is by using the notion of a
refinement:

Definition 4.6. (See [1]) A non-deterministic matrixM2 = 〈V2,D2,O2〉 is
a refinement of a non-deterministic matrixM1 = 〈V1,D1,O1〉 (notationally,
M1 4M2) if and only if

• V2 ⊆ V1,

• D2 = D1 ∩ V2,

• �M2(x1, ..., xn) ⊆ �M1(x1, ..., xn) for every n-ary conective � and every
x1, ..., xn ∈ V1.

As we impose more restrictions on the set of valuations, we get refine-
ments of the previous theories. For example, the following obtains:

ND L+
∞ 4 ND L+

∞(S) 4 ND L+
∞(SU1) 4 ND L+

∞(SU1,2) 4 ND L+
∞(SU1,2B) 4

 L+
∞.23

In [1], the authors prove that for any pair of non-deterministic matrices
M1 andM2, ifM1 4M2, then �M1⊆ �M2 . So it immediately follows that:

�ND L+
∞
⊆ �S ⊆ �SU1 ⊆ �SU1,2 ⊆ �SU1,2B ⊆ � L+

∞
.

Of course, this is just one example. All the ways in which one of our theories
can refine another can be found in Figure 4.1. More specifically, if there is
an upward path from a theory T1 to a theory T2, then T1 4 T2 and hence
�T1 ⊆ �T2 .

Of particular interest is the fact that the strongest non-deterministic
theory we have considered ND L+

∞(SU1,2B) is such that �SU1,2B ⊆ � L∞ .

Moreover, we know that ND L+
∞(SU1,2B) is a proper sublogic of  L+

∞, since
for instance � L+

∞
((φ → ψ) → ψ) → ((ψ → φ) → φ), but 2SU1,2B ((φ →

ψ)→ ψ)→ ((ψ → φ)→ φ).
Although we will not offer the proof here, the following is a well-known

result:

Theorem 4.7. (See [7])  L+
∞ is consistent.

Since all subtheories of  L+
∞ will be consistent as well, as a corollary of

the previous theorem, we can infer:

23Although the definition of a refinement is only meant to be applied to non-deterministic
matrices, the comparison with  L+

∞ is legitimate, since we have shown that every determin-
istic matrix can be mimicked using some non-deterministic matrix.
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Corollary 4.8. ND  L+
∞(SU1,2B) is consistent.

Naturally, it also follows that all subtheories of ND L+
∞(SU1,2B) are con-

sistent24.

5. Proving ω-inconsistency?

What about ω-consistency? It is not at all obvious to us how to construct a
nice model for the non-deterministic theories. Clearly, we cannot show that
a nice model exists by defining a monotone jump operator on the interpreta-
tions of the truth predicate, as is usually done in a number of many-valued
theories. The reason is that ND L+

∞(SU1,2B)’s conditional (just as  L+
∞’s

conditional) is not a monotone operation on the set of values.
Another strategy would be to use Brower’s fixed point theorem, according

to which (roughly) every continuous function in the interval [0, 1] has a fixed
point. In fact, in [6] Field uses this theorem to show that the propositional
fragment of  L+

∞ has a nice model. However, his proof applies only to the
propositional part of the language and it depends on the conditional being
a continuous function, something which holds in  L+

∞ but does not hold in
our theories25.

So although we will not offer a proof of ω-consistency, we will show
that the usual strategies for proving ω-inconsistency do not work for these
theories.

Restall’s [10] proof of  L+
∞’s ω-inconsistency rests on the possibility of

defining a fusion operator using  Lukasiewicz’s conditional. But this cannot
be done –at least in the same way- in the sort of non-deterministic frame-
works we have presented. Restall defines a fusion operator ◦ in the following
way

24What about the possibility of axiomatizing these theories? Although  L+
∞ is not fully

axiomatizable, it is still an open problem whether the non-deterministic theories have a
complete axiomatization. As an anonymous referee points out, if this were the case, we
would have a strong argument in favor of these theories. As far as we can see, the issue is
not at all trivial. For example, it is quite easy to show that  L+

∞ is not compact and that,
as a consequence, it is not axiomatizable (a proof of this claim can be found in [8], p. 240,
exercises 8-9). However, the most direct proof of this fact depends on the possibility of
using the conditional to define a fission operator -dual to the fusion operator (see below)-
something that cannot be done in the usual way with the non-deterministic conditionals.

25Perhaps it is possible to modify the conditional so that it is a continuous function (or
more precisely, a continuous function relative to each valuation). But even in that case it
is still unclear to us whether this strategy would be successful for our non-deterministic
theories.



16 Federico Pailos & Lucas Rosenblatt

φ◦ψ =def ¬(φ→ ¬ψ)

Restall takes 0 to represent truth and 1 to represent falsity. So 0 is the only
designated value and the conditional is defined as restricted substraction:
v(φ→ ψ) = v(ψ)–̇v(φ). This means that v(φ◦ψ) = min(1, v(φ) + v(ψ)).

Since we are working with 1 as the only designated value,  Lukasiewicz’s
conditional is defined as follows: v(φ → ψ) = min(1, 1–v(φ) + v(ψ)). This
means that v(φ◦ψ) = 1–min(1, (1–φ) + (1–ψ)), which simplifies to

v(φ◦ψ) = max(0, ψ–(1–φ)))

The key aspect of ◦’s behavior is that, for any formula φ and any valua-
tion v such that v(φ) 6= 1, there is some finite number n such that the n-fold
fusion of φ with itself will receive the value 0.

v(φ◦(φ◦ . . . (φ◦φ)...))︸ ︷︷ ︸
n−times

) = 0.

Why is that so? Because, as we have already stated, v(φ◦φ) = max(0, φ
–(1–φ)). So φ◦φ (that is, ¬(φ→ ¬φ)) is designed to give a value such that,
if v(φ) = 1, then v(φ◦φ) = 1; but if v(φ) 6= 1, then v(φ◦φ) is strictly less
than v(φ). Moreover, if we fusion φ◦φ with φ, we get a formula whose value
is strictly less than v(φ◦φ); and if we fusion φ◦(φ◦φ) with φ we get a formula
whose value is strictly less than v(φ◦(φ◦φ)); and so on until we reach a
formula with a value less or equal to 1

2 . In that event, one more fusion with
φ is enough to reach a formula with value 0.

Using the fusion operator Restall constructs a sequence of sentences S0,
S1, S2,... such that S0 says that not every Si is true for i > 0, and Sn+1

is the n + 1-fold fusion of S0. Then he goes on to show, using a semantic
argument, that  L∞ is ω-inconsistent, as it declares S0 true, but also declares,
for each i, that Si is true. The reader is encouraged to see [9] for the details.

Things are not so easy in the non-deterministic frameworks we have
been considering. For example, if we try using the conditional as Restall
does it to define a fusion operator, we will not obtain the desired result.
To see why, we will consider ND L+

∞ first. Take any formula φ such that
1
2 < v(φ) < 1. For definiteness, assume that v(φ) = .8. Whereas in  L+

∞,
v(φ → ¬φ) =.4 and hence v(¬(φ → ¬φ)) = v(φ◦φ) = .6, this formula
can receive any undesignated truth-value in ND L+

∞, which means that its
negation can receive any undesignated truth-value as well. Therefore, the
fusion of this particular formula with itself, not only does not decrease the
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value of φ, but it might get a higher value than that of φ. So ◦, defined in this
way, does not work in ND L+

∞ as it is supposed to. So ND L+
∞’s presumed

ω-inconsistency cannot be proved using this method.
This comes as no surprise, since ND L+

∞ is a very weak theory. What
about the stronger theories? It turns out that the situation is more or less
the same. We will consider ND L+

∞(SU1,2B), the strongest non-deterministic
theory we have presented. Assume once again that 1

2 < v(φ) < 1 and for
definiteness let v(φ) = .8. This time it would be inaccurate to say that φ◦φ
can take any undesignated value. Since valuations are bounded from below,
v(φ → ¬φ) ≥ .2, and hence v(φ◦φ) = v(¬(φ → ¬φ)) ≤ .826. So v(φ◦φ) is
indeed less or equal than v(φ). In fact, it holds for any formula φ and any
valuation v that the value of the n-fold fusion of φ with itself is less or equal
than the value of the n − 1-fold fusion of φ with itself. The problem, of
course, is that the restrictions are not enough to guarantee that there is a
finite number n such that the n-fold fusion of φ with itself will have value 0.
It is perfectly possible for the fusion operation to decrease the values “too
slowly”, in the sense that the repeated application of this operator produces
formulas whose values do not decrease or strictly decrease but with a limit
different from 0.

A different way of proving ω-inconsistency is offered by Andrew Bacon
in [2]. Bacon shows a proof-theoretic version of the following result:

Theorem 5.1. (See [2]) Any transparent truth theory closed under the fol-
lowing rules is ω-inconsistent:27

if φ � ψ, then ∃xφ � ∃xψ
φ→ ∃xψ � ∃x(φ→ ψ) (where x is not free in φ)

Proof. See [2] for the proof. Even though his proof is proof-theoretic, it
can be mimicked semantically.

So if any of the non-deterministic theories we have developed satisfies
both these principles, then it is ω-inconsistent. However, we can show that
the second rule does not hold in ND L+

∞(SU1,2B) (and a fortiori that it does
not hold in any of the weaker theories). Just consider a formula ψ(x) with (at
least) x free such that for no x-variant v′ of v it holds that v(φ) ≤ v′(ψ) but
sup{v′(ψ) : v′ is an x-variant of v} = v(φ). In  L+

∞, this valuation will make
both the premise and the conclusion true. However, in ND L+

∞(SU1,2B) or

26The other conditions seem to be of no help in restricting the valuations further.
27Actually, Bacon makes a distinction between strongly ω-inconsistent theories and

weakly ω-inconsistent theories. However, for our purposes this distinction will be un-
necessary.
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in any of the weaker non-deterministic theories, there is no guarantee that
the conclusion is true.

There might be some other way to define fusion, or to prove ω-inconsis-
tency, but currently we are not aware of any.

6. Determinate truth in non-deterministic semantics

One of the known problems of paracomplete theories like K3 is that their
languages are too weak to express the idea that certain sentences are not
determinately true. An additional virtue of  L+

∞ that has been pointed out
by Field in [6], ch.4 is that it overcomes this defect. Its conditional can be
used to define a nice determinately operator:

Dφ =df ¬(φ→ ¬φ).

The reader will notice that Dφ is the same as φ◦φ. So in  L+
∞ the deter-

minately operator is just a case of the fusion operator.
Now, in the previous section we have seen that the fusion operator can-

not be used -at least not in the standard way- to prove the ω-inconsistency
of the non-deterministic theories we have been considering. Since the deter-
minately operator is just a limit case of the fusion operator, a natural worry
is that these theories loose one very attractive feature of  L+

∞, the ability to
consistently add such an operator, and a fortiori, the ability to express the
idea that certain sentences are not determinately true.

However, we will show that there is no reason for concern. Following [6],
we will say that we should expect the following from a nice determinately
operator:

1. If v(φ) = 1, then v(Dφ) = 1.

2. If v(φ) ≤ v(¬φ), then v(Dφ) = 0.

3. If 0 < v(φ) < 1, then v(Dφ) ≤ v(φ)28.

28In [6], p. 235-36, Field flirts with the stronger:
If 0 < v(φ) < 1, then v(Dφ) < v(φ),
which will not hold in our non-deterministic theories, but ends up using 3. For the stronger
version to hold we would need to strengthen bounded from below by imposing that v(φ→
ψ) > v(ψ). As an anonymous referee suggests, it is this what is responsible for  L+

∞’s
ω-inconsistency, because it allows us to define an operator D∗φ expressing the idea that φ
is determinate at all countable ordinals. This in turn would be enough to define classical
negation, since v(D∗φ) = 1 whenever v(φ) = 1, and v(D∗φ) = 0, otherwise. However,
as far as we can see, this condition is not enough to define classical negation in our non-
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4. If v(φ) ≤ v(ψ), then v(Dφ) ≤ v(Dψ).

Fortunately, we can show that if Dφ is defined as ¬(φ → ¬φ) all these
conditions hold for D in ND L+

∞(SU1,2B), the strongest of the theories we
have been considering. More precisely,

Theorem 6.1 (A determinately operator). ND  L+
∞(SU1,2B) contains a nice

determinately operator D.

Proof. Just as before, let Dφ be ¬(φ→ ¬φ)). It is clear that all valuations
satisfy condition 2. and in addition, the following is the case:
If it satisfies semiclassical, then condition 1. holds;
if it satisfies bounded from below, condition 3 holds; and
if it satisfies both uniform1 and uniform2, condition 4 holds.

These properties are not only nice in themselves. Once D is shown to
satisfy them, we can prove that D is non-idempotent, in the sense that
sometimes v(Dφ) 6= v(DDφ). This is specially important in the case of
Liar-like sentences λn such that v(λn) = v(¬DnTrpλnq), where Dn stands
for n iterations of the D operator. We not only have v(Dλ) = 0, but for
any λn such that λn is ¬DnTrpλnq, we can prove v(Dn+1λn) = 0. In other
words, for any Liar sentence expressible in the language we can say in the
language that there is a sense in which it is not determinately true29.

7. Conclusion

We’ll finish by mentioning a similar approach explored recently by Bacon in
[2]. Bacon considers two theories: BCKN and BCKD. BCKN has models
where the space of values is not linearly ordered, so this feature can be
exploited to show that φ → ∃xψ 2 ∃x(φ → ψ). But since we are not
considering non-linearly ordered matrices in this paper, we will ignore it. In
the case of BCKD, the presence of the Dummett axiom D guarantees that
the theory is true only on linearly ordered spaces of values. In particular,
Bacon considers the following semantic definition for BCKD’s conditional:

v(φ→ ψ)=

{
1 if v(φ) ≤ v(ψ)

v(ψ) otherwise

deterministic theories, because we can always pick a value r in ( 1
2
, 1) for D∗φ. So if λ∗ is

the sentence ¬D∗λ, there might be valuations v such that v(λ∗) = v(¬D∗λ) ∈ (0, 1
2
).

29The reader can see [6] for more details.
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Then he goes on to show that the inference from φ→ ∃xψ to ∃x(φ→ ψ)
fails for BCKD’s conditional. However, this inference fails only at the cost
of using models that are not compatible with a transparent truth predicate.
Consider again a Curry sentence δ such that δ is T(δ)→ ⊥. It is straightfor-
ward to see that the above definition for the conditional cannot consistently
assign a truth value to δ30.

In the case of the non-deterministic theories presented above, there is
no analogous problem. Curry’s Paradox is blocked (every Curry sentence
receives a stable non-designated value) and hence triviality is avoided. But
are these theories ω-consistent? We can conjecture that that they are but,
certainly, the need for an ω-consistency proof remains.
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