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Abstract. Different natural deduction proof systems for intuitionistic and classical logic

—and related logical systems—differ in fundamental properties while sharing significant

family resemblances. These differences become quite stark when it comes to the structural

rules of contraction and weakening. In this paper, I show how Gentzen and Jaśkowski’s

natural deduction systems differ in fine structure. I also motivate directed proof nets as

another natural deduction system which shares some of the design features of Genzen and

Jaśkowski’s systems, but which differs again in its treatment of the structural rules, and

has a range of virtues absent from traditional natural deduction systems.
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1. Representing proof: Jaśkowski, Gentzen and Beyond

Logic is about many different things. One of the things logic is about is the
notion of proof. A traditional natural deduction proof displays inferential
connections in a deduction from some set (maybe an empty set) of premises
to some conclusion. A clear and precise conception of proof gives you the
means to see how those inferential connections arise from some small collec-
tion of fundamental inferential steps, in a manner not too dissimilar from
how the variety of molecules are made up from the atoms on the periodic
table.

The 1930s was a time of flowering for our understanding of proof, es-
pecially in the work of logicians like Jaśkowski [12] and Gentzen [8], who
independently in the year 1934 wrote on natural deduction proof systems.1

Each natural deduction system has at its heart a small number of rules for
connectives. The rules come in a particular form, dictated by the shapes of
proofs. In the case of Gentzen’s natural deduction system, a proof is a tree,
and the two rules for the conditional—〈→E 〉 and 〈→I 〉—show how one can
construct and extend proof trees in a controlled fashion:

1Jeff Pelletier gives us an excellent historical account of the early development of natural
deduction [21].
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A→ B A
〈→E〉

B

[A](i)

···
B

〈→I i〉
A→ B

The 〈→E 〉 rule is not only a small proof in its own right. We also
conventionally read this rule (and all rules of this general form) as saying
that if we have one proof, π1, ending in A→ B, and another, π2, ending in A,
then the tree consisting of π1 in the left branch, π2 in the right branch, and
B at the root (the conclusion) is itself a proof. This proof has, as premises,
the premises of π1 together with the premises of π2.

The 〈→I 〉 rule is slightly more complex. It tells us that if we already have
a proof with B as a conclusion (indicated by the vertical ellipsis leading to B)
then we can extend this proof to the conclusion A→ B while discharging as
many premises of the form A in that proof as we wish. (‘As many as we wish’
can include zero. This will become important in what follows.) We indicate
this in a proof by enclosing the discharged assumptions in square brackets,
and (optionally) tagging them with a numeral (here it is i) which pairs the
discharged formulas with this particular instance of the rule. That pairing
is important when instances of the one formula are discharged at different
points in the proof. Here is a proof, displaying some of the distinctive
features of Gentzen’s system. The proof leads from the premise p → r
to the conclusion (p → (r → s)) → (p → (q → s)). All other leaves in the
proof are assumptions discharged at different stages of the proof.

[p→ (r → s)](3) [p](2)

〈→E〉
r → s

p→ r [p](2)

〈→E〉
r
〈→E〉

s
〈→I 1〉

q → s
〈→I 2〉

p→ (q → s)
〈→I 3〉

(p→ (r → s))→ (p→ (q → s))

You may notice that the discharge at step 〈→I1〉 is what we might de-
scribe as vacuous. We have discharged an empty set of formula instances.
There is no assumption q tagged with a 1 in the leaves of the proof. (In fact,
q is not used as an assumption in the proof.) On the other hand, the as-
sumption p discharged at step 〈→I2〉 is discharged twice, once in the left
subproof and once in the right.
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Here is another proof, which shows some of the ways we can take in
indirect route to prove a conclusion.

p→ (p→ (p→ q)) [p](1)

〈→E〉
p→ (p→ q) [p](1)

〈→E〉
p→ q [p](1)

〈→E〉
q

〈→I 1〉
p→ q

[p](2)

〈→I 2〉
p→ p p

〈→E〉
p
〈→E〉

q

This proof leads us from the premises p → (p → (p → q)) (the leftmost
leaf of the tree) and p (the rightmost) to the conclusion q. However, it does
this in a circuitous way: the conclusion q is reached after the second 〈→E〉
step in the left branch of the tree, but after this, a conditional is introduced
only to be eliminated again. This introduction followed by an elimination is
redundant, and the proof tree can be simplified, by taking the two places that
p is discharged (tagged with 1, since these are the instances of p discharged
in the 〈→I1〉 step), and justifying these using the proof of the minor premise
p in the right branch of the tree.

p→ (p→ (p→ q))

[p]
(1)

〈→I 1〉
p→ p p

〈→E〉
p

〈→E〉
p→ (p→ q)

[p]
(2)

〈→I 2〉
p→ p p

〈→E〉
p

〈→E〉
p→ q

[p]
(3)

〈→I 3〉
p→ p p

〈→E〉
p

〈→E〉
q

You can see that this proof is ‘simpler’ in that it doesn’t contain that
redundancy. However, the original proof contains 13 formulas, while this
‘simpler’ proof is larger, containing 16 formulas. The subproof justifying p
is reproduced three times in place of the three instances of the assumption
p discharged at step 〈→I1〉 in the original proof. (Note that the assumption
numbering in the subproof is changed as we subtitute that subproof into the
three different locations. I won’t go into the detail of how this can be done
systematically. The details of what numbers are used where is not important
for the identity or difference of two distinct presentations of a proof.)

However, even though we have simplified a redundancy in the original
proof, this new proof contains three more redundancies, where a conditional
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is introduced and then eliminated. The same redundant derivation of p
from p (using the major premise p→ p) occurs in each of the subproofs. We
can eliminate each these detours. The result is a much simpler proof, which
contains only 7 formulas.

p→ (p→ (p→ q)) p
〈→E〉

p→ (p→ q) p
〈→E〉

p→ q p
〈→E〉

q

Although this proof is made out of only 7 formulas, it has three separate
instances of the undischarged assumption p, while the original proof used
only one instance of that assumption.

A natural deduction proof without such detours is said to be normal, and
procedures for transforming a non-normal proof to a normal one is called,
as you might expect, normalisation. A system has a normalisation theorem
if it can be shown that each non-normal proof can be transformed in some
way into a normal proof [23].

* * *

Gentzen’s technique for natural deduction is not the only way to represent
this kind of reasoning, with introduction and elimination rules for connec-
tives. Independently of Gentzen, Stanis law Jaśkowski constructed a distinct
system for presenting proofs in a natural deduction style. In Jaśkowski’s
system, a proof is a structured list of formulas, rather than a tree. Each
formula in the list is either a supposition, or it follows from earlier formulas
in the list by means of the rule of modus ponens (conditional elimination),
or it is proved by conditionalisation. To prove something by conditionalisa-
tion you first make a supposition of the antecedent: at this point you start
a box. The contents of a box constitute a proof, so if you want to use a
formula from outside the box, you may repeat a formula inside that box so
it is available for use. A conditionalisation step allows you to exit the box,
discharging the supposition you made upon entry. Boxes can be nested, as
follows:
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1. p→ (q → p) Supposition
2. p Supposition
3. p→ (p→ q) Supposition
4. p→ q 2, 3, Modus Ponens
5. q 2, 4, Modus Ponens
6. p→ q 1, Repeat
7. (p→ (p→ q))→ (p→ q) 1–6, Conditionalisation

This nesting of boxes, and repeating or reiteration of formulas to enter boxes,
is the distinctive feature of Jaśkowski’s system.2

Notice that in this proof we concluded the formula (p → (p → q)) →
(p → q) without using a duplicate discharge. We did not need to make the
assumption p twice. The formula p is used twice as a minor premise in a
Modus Ponens step (on line 4, and on line 5 respectively), and it is then
discharged once at line 6. In a normal Gentzen proof of the same formula,
the assumption p would have been be made twice.

Jaśkowski proofs also straightforwardly incorporate the effects of a vacu-
ous discharge in a Gentzen proof. We can prove p→ (q → p) using the rules
as they stand, without making any special plea for a vacuous discharge:

1. p Supposition
2. q Supposition
3. p 1, Repeat
4. q → p 2–3, Conditionalisation
5. p→ (q → p) 1–4, Conditionalisation

The formula q is supposed, and it is not used as a premise to derive anything
else in the proof that follows. Instead, it is discharged immediately after the
innocent bystaner p is brought into its scope. The formula p on line 3 occurs
after the formula q on line 3, in the subproof, but it is hard to see how it
might have been inferred from that q. Conditionalisation, in Jaśkowski’s
system, colludes with reiteration to allow the effect of vacuous discharge.

With that introduction to Jaśkowski-style natural deduction, we can see
how to use this system to present the same kind of reasoning as in the
Gentzen proof from p → r to (p → (r → s)) → (p → (q → s)) given on
page 2.

2These are features shared by Fitch-style natural deduction [7]. Natural deduction
in the style of Suppes [32] or Lemmon [15] is linear, but does not require repeating or
reiteration of formulas because assumptions are encoded by numbering rather than by the
structural feature of the nesting of boxes.
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1. p→ r Supposition
2. p→ (r → s) Supposition
3. p Supposition
4. p→ (r → s) 2, Repeat
5. r → s 3,4, Modus Ponens
6. p→ r 1, Repeat
7. r 3,6 Modus Ponens
8. s 5,7, Modus Ponens
9. q Supposition

10. s 8, Repeat
11. q → s 9–10, Conditionalisation
12. p→ (q → s) 3–11, Conditionalisation
13. (p→ (r → s))→ (p→ (q → s)) 2–12, Conditionalisation

This is not an exact match of the Gentzen proof of page 2, but it comes close.
The Jaśkowski proof has matching Modus Ponens steps for every 〈→E 〉 step
in the Gentzen proof, and Conditionalisation steps for every 〈→I 〉. However,
the two short subproofs, one of r → s in the left branch, and the other, of r
in the right branch, are totally independent of one another in the Gentzen
proof. The undischarged assumption of p → r in the right subproof is not
inside the scope of the discharged assumption of p → (r → s) in the left
subproof, and neither is p → (r → s) within the scope of the assumption
of p → r. They are logically independent of one another. This cannot be
said of the Jaśkowski proof. Since it is linear, a choice must be made as to
the order in which the formulas occur. The assumption p → r governs the
entire proof, and here, the proof of r → s from p → (r → s) and p (lines
3–5) occurs inside the scope region of the assumption of p→ r.

There is a certain degree of “fine control” over inferential connections
between formulas in a Gentzen proof. Some of these finer distinctions are
obscured in the linearisation of a Jaśkowski proof. This is the price paid
for having a linear proof structure. The fact that one formula occurs after
another does not mean that must be inferentially connected to the formulas
that came before it. In proofs, as in life, your elders need not be your
ancestors.

Despite the differences, there are significant similarities between Gent-
zen’s and Jaśkowski’s treatment of natural deduction. Connectives have
introduction and elimination rules, and in Jaśkowski–style proofs just as in
Gentzen–style proofs, we can have non-normal proofs in which an introduc-
tion is immediately followed by an elimination, and we could define nor-
malisation in a similar way. However, normalisation proceeds in a different
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way in the presence of linear proofs. Consider the obvious Jaśkowski–style
analogue to the non-normal Gentzen proof we considered on page 3.

1. p→ (p→ (p→ q)) Supposition
2. p Supposition
3. p→ (p→ (p→ q)) 1, Repeat
4. p→ (p→ q) 2,3, Modus Ponens
5. p→ q 2,4, Modus Ponens
6. q 2,5, Modus Ponens
7. p→ q 2–6, Conditionalisation
8. p Supposition
9. p Supposition

10. p→ p 9–9, Conditionalisation
11. p 8,10, Modus Ponens
12. p→ q 7, Repeat
13. q 11,12, Modus Ponens

This Jaśkowski proof is a proof of the conclusion q within the scope of two
suppositions: p → (p → (p → q)) (line 1) and p (line 8). A Modus Ponens
logically follows a Conditionalisation step in the inner subproof (lines 10 and
11) and in the main proof (the conditional introduced at 7 is next used at 13,
via its repetition at line 12, in a modus ponens), so there are two different
spots to normalise this proof. To normalise, we eliminate both redundant
pairs and we end up with the following simpler proof:

1. p→ (p→ (p→ q)) Supposition
2. p Supposition
3. p→ (p→ (p→ q)) 1, Repeat
4. p→ (p→ q) 2,3, Modus Ponens
5. p→ q 2,4, Modus Ponens
6. q 2,5, Modus Ponens

This is a proof of q from the same assumptions, p→ (p→ (p→ q)) (line
1) and p (this time on line 2). Notice that this proof differs significantly
from the normal Gentzen proof on page 4, since the assumption p occurs
here only once, rather than occuring 3 times. This is because discharing is
very different in Jaśkowski proofs. These have no direct analogue of duplicate
discharge in Gentzen proofs. Only one instance of a formula is discharged
at any one time. However, a discharged formula may be used repeatedly,
as the assumption on line 2 is in this proof: it is the minor premise for the
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Modus Ponens steps on lines 4, 5 and 6, corresponding to the three 〈→E 〉
steps constituting the Gentzen proof.

That is one difference between Gentzen proofs and Jaśkowski proofs,
centred on duplicate discharge and the structural rule of contraction. There
is another significant difference in the structure of proofs, on how vacuous
discharge and the structural rule of weakening is treated. Here is a very
strange small Jaśkowski proof.

1. A Supposition
2. B Supposition
3. A 1, Repeat

This proof has no direct analogue in a Gentzen system. We can, of
course, construct a proof from A and B to A in any number of ways. If we
had the standard Gentzen rules for conjunction, we could reason as follows.

A B
〈∧I 〉

A ∧B
〈∧E〉

A

The result is a proof with A and B as premises and A as the conclusion. But
we need not use conjunction to turn this trick—the rules for the conditional
will do just as well:

A
〈→I 1〉

B → A B
〈→E〉

A

Here we use the vacuous discharge in the 〈→I 〉 step to bring B into the
proof. B isn’t really used in the proof of A, but at the very least, this proof
allows us to bring B alongside A. These proofs both take the circuitous
step through a fresh connective to achieve this result. That’s by necessity,
in the Gentzen system. Both of these proofs are not normal, and if we use
the usual means to normalise Gentzen proofs, the result is the much simpler
proof

A

with premise and conclusion A, but it does not explicitly record the distinct
formula B as a second premise. This is another significant difference be-
tween the two different proof systems. In Gentzen’s system for intuitionistic
propositional logic, there is no normal proof with the two premises p and
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q (atomic formulas) and with the conclusion p.3 It is easy to see why: all
normal proofs have the subformula property. A proof has the subformula
property if and only if all formulas in that proof are subformulas in the
premises and conclusions of the proof. So, if p and q are atomic formulas,
and a proof from p and q to p has the subformula property, it follows that
p and q are identical. After all, any proof from atoms to atoms with the
subformula property cannot contain any formulas with connectives or quan-
tifiers or other complexity (no complex formula is a subformula of an atom),
and given that every inference rule in a Gentzen system either introduces or
eliminates a complex formula, the proof must contain no inference steps. So,
normal proofs from p and q to p (if there are any) must be identity proofs,
in which the premise is identical to the conclusion. If it is a proof of p, then
it must contain p as the only premise. It does not involve q as a distinct
extra side premise.

It follows that Jaśkowski’s system and Gentzen’s systems are not merely
notational variants of one another, at least if we wish to respect the fine
structure of proofs. Jaśkowski’s system has a normal proof from p and q to
p while Gentzen’s doesn’t. Jaśkowski also provides us with a short normal
proof from p→ (p→ (p→ q)) and p to q in which the assumption p is made
only once, and not three times. (However, it is applied three times, not just
once.) There are no such normal Gentzen proofs.

Are these distinctions worth recording? Your answer to this will depend
on what you’re taking the aim of proof theory to be. If proofs are merely
a device for telling you whether or not an argument is valid, then there
is no distinction worth recording between Jaśkowski and Gentzen systems.
The exact same arguments are valid according to both systems. If we are
interested not only in provability but in the properties of particular proofs,
then these differences may matter. As I’ve characterised proof theory—as
giving an account of the inferential connections between formulas in proofs—
then these differences are squarely inside the purview of proof theory.

However, proof theory as studied in the 1930s and into the middle of the
20th Century didn’t take the different representations of proofs and their
properties as a focus of investigation. Instead, results such as normalisation,
cut elimination, and other metatheoretical properties of systems became the
focus. The greatest work in this tradition was due to Gerhard Gentzen.
His most significant results used not natural deduction, but another way of

3I use atomic formulas rather than the schematic formula letters A and B to state this
result because of course for particular formulas A and B there will be a Gentzen proof
which leads from A and B to A. (From p and p → p to p, as but ones example.) There is
no proof in the case where A and B are distinct atoms.
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representing simple inferential connections: the sequent calculus, which will
be our focus in the next section.

2. Reasoning about proofs: sequent calculus

In giving an account of the process of normalisation of natural deduction
proofs, Gentzen [8] discovered that it makes sense to manipulate sequents.
If we have a proof from premises X to conclusion A, then the logical content
can be recorded as a sequent X ` A. Gentzen’s rules 〈→I 〉 and 〈→E 〉 can
be understood as describing sequents. For 〈→I 〉 if we have a proof from
X,A to B, then if we extend this with an 〈→I 〉 step the result is a proof
from X to A→ B. We can represent this as a sequent rule:

X,A ` B
〈→R〉

X ` A→ B

We can do the same for 〈→E 〉. As we have conventionally read 〈→E 〉, It
tells us that if we have a proof from X to A→ B and another proof from Y
to A then we can use these to construct a proof from X,Y to B. We would
have the following inference rule:

X ` A→ B Y ` A

X,Y ` B

Gentzen’s sequent calculus in its modern form does not involve rules like
this,4 in which a formula A→ B is eliminated from the premise of the rule
to the conclusion. He showed that elimination rules like 〈→E 〉 correspond
to rules in which the formula A→ B is introduced on the left of the sequent.
Conceive of 〈→E 〉 in the following way:

A→ B

··· π
A
〈→E’ 〉

B··· π
′

C

4Although Gentzen eliminated elimination rules like these in favour of antecedent intro-
duction rules, but in his paper from 1936 [9] he used rules such as these. As a result,, the
system from this paper was the ancestor of Lemmon’s and Suppes’ style natural deduction,
except that Gentzen did not use numbers and formulas but sequents, and preferred trees
as representation of proofs over lists.
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This tells us that if we have π, a proof, say, from X to A, and a proof π′ from
Y,B to C then we can combine these, in order to construct a proof from
X,A → B, Y to the conclusion C, by combining the proofs together and
adding the premise A→ B. This motivates Gentzen’s sequent rule 〈→L〉.

X ` A Y,B ` C
〈→L〉

X,A→ B, Y ` C

Notice that if we use 〈→E 〉 in this form, (in which the major premise A→ B
is always an assumption) and 〈→I 〉 in the usual way, the resulting Gentzen–
style natural deduction proofs are normal. Proofs constructed out of 〈→E′〉
and 〈→I 〉 have the subformula property and are normal by design.5 This
is reflected in Gentzen sequent derivations constructed out of →L and →R.
These also satisfy the subformula property. To construct the analogue of
non-normal proofs—sequent derivations which do not satisfy the subformula
property, Gentzen introduced the 〈Cut〉 rule.

X ` A Y,A ` B
〈Cut〉

X,Y ` B

This rule is the sequent calculus analogue of composing proofs. If we have
a proof from X to A and a proof from Y and A to B, if we replace the
assmumption of A used in that second proof by the proof from X to A the
result is a proof from Y and X together to B.6

We have said nothing about how vacuous and duplicate dischage is to
be understood in a sequent system like this. One aspect of Gentzen’s great
genius was his decision to not incorporate the effects of discharge into the
→R rule. If we did, we would have something like this:

X −A ` B
〈→R’ 〉

X ` A→ B

where X − A is the same premise collection as X except for having zero
or more instances of A deleted. This would be a good fit for the natural
deduction rules of the Gentzen system. However, this would incorporate
the effects of vacuous and duplicate discharge into the rules for a particular

5Such a natural deduction calculus (with elimination rules always using assumptions)
which easily leads to normalization has been provided by Jan von Plato [19, 22].

6Note that we have implicitly assumed that the order of premises does not matter in
natural deduction proofs. This corresponds to thinking of the premises in a sequent as a
multiset or a set but not a list in which the order of items matters.



12 G. Restall

connective, here the conditional. But as we have seen, the behaviour of the
conditional has consequences in the vocabulary without the conditional. We
have a non-normal proof from the premises p and q to the conclusion p,
but any normal proof will lose one premise and become a proof of a single
premise. While Jaśkowski systems allow for such a proof, it would be a
gain in our understanding to be able to give an account of this sort of proof
without the need to bring in one or other connective when it seems to play no
essential role in the derivation. Gentzen’s genius was to treat these matters
as totally independent of the rules for the connectives. He introduced the
structural rules, in this case, weakening 〈K〉 and contraction 〈W〉.

X ` A
〈K 〉

X,B ` A

X,B,B ` A
〈W 〉

X,B ` A

Now we can be precise and read our →R rule as discharging one and only
one instance of the antecedent formula in the left hand side of the sequent,
and then we can use the structural rules of weakening and contraction to
reduce multiple premises to one, ready for discharge, or use weakening to
generate a premise for discharge when none was there previously.

The motivation, using natural deduction proofs to inspire sequent deriva-
tions, can be used to define a mapping from derivations to proofs. We can
think of a sequent derivation as a way of constructing a natural deduction
proof. If we consider this very simple example of a Gentzen proof,

q → r

p→ q p
〈→E〉

q
〈→E〉

r

we can think of it as being built up in a number of different ways. These
different modes of construction correspond to different sequent derivations.
The following two derivations both can be seen as constructing the one and
the same proof:

p ` p q ` q
〈→L〉

p→ q, p ` q r ` r
〈→L〉

q → r, p→ q, p ` r

p ` p

q ` q r ` r
〈→L〉

q → r, q ` r
〈→L〉

q → r, p→ q, p ` r

The left derivation focuses on the subproof from p→ q and p to q and then
extends this to r using q → r as an extra premise. The right derivation
focuses on the subproof from q and q → r to r and then extends this by
justifying the premise q with two premises p→ q and p. Both are acceptable
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‘readings’ of the original proof. In fact, there is yet another way of presenting
the proof:

p ` p q ` q
〈→L〉

p→ q, p ` q

q ` q r ` r
〈→L〉

q → r, q ` r
〈Cut〉

q → r, p→ q, p ` r
where the intermediate step q is the focus of the 〈Cut〉 step, chaining together
the two subproofs. So, the mapping from sequent calculus derivations to
Gentzen-style natural deduction proofs is many-to-one.

Once Gentzen introduced his sequent system, he noticed that a very
small modification allowed for the smooth representation of classical propo-
sitional logic as well as intuitionistic propositional logic. Once we allow for
multiple formulas on the right hand side of the sequent, and allow for the
corresponding structural rules of weakening and contraction on the right
hand side as well as the left, classical logic straightforwardly follows. The
rules now look like this:

X ` A,W Y,B ` Z
〈→L〉

X,A→ B, Y `W,Z

X,A ` B, Y
〈→R〉

X ` A→ B, Y

X ` Y
〈K 〉

X,B ` Y

X ` Y
〈K 〉

X ` B, Y

X,B,B ` Y
〈W 〉

X,B ` Y

X ` B,B, Y
〈W 〉

X ` B, Y
The resulting system allows for straightforward (if not exactly intuitive)
derivations of distinctively classical sequents, such as that for Peirce’s Law.

p ` p

p ` p
〈K 〉

p ` q, p
〈→R〉

` p→ q, p
〈→L〉

(p→ q)→ p ` p, p
〈W 〉

(p→ q)→ p ` p

In this derivation, the relaxation of our structures for sequents to allow for
multiple conclusion formulas is necessary to allow for contraction on the right
hand side at the last step of the derivation. This makes the interpretation
of the sequent calculus less straightforward. If a derivation of a sequent
X ` A describes the construction of a proof from X to A, then what could
a sequent derivation of X ` Y describe? The many members of X are the
many premises of the proof. The members of Y are the many conclusions
in a proof? Perhaps sense can be made of this notion, but it would take us
too far a field to consider what that story might look like [26].
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Another consequence of Gentzen’s introduction of his sequent calculus is
the systematic analysis of how one can transform a derivation involving the
〈Cut〉 rule into one without it. Gentzen’s own papers describe one such strat-
egy, but there are many others in the literature, too. There is a very general
technique of Cut elimination due to Curry [4] and generalised by Belnap [3]
and others [25], which gives an account of some very general conditions on
a proof system sufficient for it to allow for a systematic elimination of the
〈Cut〉 rule. This has consequences, then, for natural deduction proofs too,
for a natural deduction proof constructed by a derivation without 〈Cut〉 is a
normal proof.

3. Structural rules and what they’re good for

Once we have made structural rules explicit, it is clear that these rules are
both useful, and questionable. There is clearly something odd with regard
to the structural rule of weakening. This use of weakening is characteristic
of the issue.

p ` p
〈K 〉

p, q ` p
〈→R〉

p ` q → p

The irrelevant premise q is ‘weakened in’ to the antecedent of the sequent,
and then immediately discharged. If we want the conditional ‘→’ to record
a genuine connection between the antecedent and the consequent, then this
move will be rejected. This way lies the Anderson–Belnap tradition of rel-
evance (or relevant) logics [1, 2, 6, 16], as well as other resource sensitive
readings [20] used in computer science. The idea has a long history, going
back to the early decades of the 20th Century [5].

Similarly, the structural rule of contraction has come in for some sus-
tained examination, both in terms of self-referential paradox such as Curry’s
paradox [24, 18] but also, vagueness [30, 31]. The structural rule of contrac-
tion is most explicitly at issue in the sequent calculus when it comes to using
an item as the antecedent conditional twice while only discharging it once,
such as in this derivation:

p ` p q ` q
〈→L〉

p→ q, p ` q p ` p
〈→L〉

p→ (p→ q), p, p ` q
〈W 〉

p→ (p→ q), p ` q
〈→R〉

p→ (p→ q) ` p→ q
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The natural deduction readings of this derivation are less explicit about the
form of contraction takes. In a Gentzen system, the deed is done inside the
〈→I 〉 step, where two instances of p are discharged at once:

p→ (p→ q) [p](1)

〈→E〉
p→ q [p](1)

〈→E〉
q

〈→I 1〉
p→ q

In a Jaśkowski system the trick is turned in a different way:

1. p→ (p→ q) Supposition
2. p Supposition
3. p→ (p→ q) 1, Repeat
4. p→ q 2, 3, Modus Ponens
5. q 2, 4, Modus Ponens
6. p→ q 2–5, Conditionalisation

As you can see, at line 5, the conclusion q is justified by two uses of the
supposition p in the inner subproof.

If we are concerned to develop a natural deduction system for a logic
without the rule of contraction, then it is not too difficult to make a Gentzen–
style system: you ban duplicate discharge. If you wish to make a Jaśkowski–
style system, it is more difficult. You cannot ban repetition, since this is
necessary for inferences which use no contraction at all. You must ban
the repeated use of formulas as premises in modus ponens. This is not
straightforward at all.

The mismatch between sequent calculus and natural deduction systems
leads us to consider whether there is something like a natural deduction
system in which there is a better match with the sequent calculus. Is there a
natural deduction system in which classical theorems like Peirce’s Law can
be proved with a structure paralleling that given in the sequent calculus? Is
there a natural deduction system in which structural rules like contraction
can be included or omitted at will (hence being more flexible that Jaśkowski
systems which essentially incorporate weakening and contraction), and in
which weakening and contraction can be available in full generality (so, being
more explicit than Gentzen systems, where there is no weakening proof in
from p and q to p without involving the connectives). These constraints are
satisfied by directed proof nets, or circuit systems.
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4. Directed proof nets

Jean-Yves Girard introduced proof nets as a proof syntax designed ideally
for multiplicative linear logic, but they are adaptable to a range of other sub-
structural logics [10, 11]. Proof nets as introduced by Girard are undirected :
they correspond to single-sided sequent systems, in which all formulas are
conclusions (or, dually, premises). They do not have premises and conclu-
sions. However, it is straightforward to introduce directed proofnets [28, 27],
corresponding to full sequents, and the result is a system much closer to
traditional natural deduction systems. Directed proofnets are not only mo-
tivated by Girard’s proofnets, but it also has antecedents in the work of
Rudolf Carnap (in his “Tables of Development”) and William and Martha
Kneale [13, 14], which were then developed in Shoesmith and Smiley’s Mul-
tiple Conclusion Logic [29]. It is easiest to see the behaviour of proofnets
when you consider sequent derivations involving conjunction, disjunction
and negation. Proofs are no longer represented with lists or trees of formu-
las, but as nets, in which nodes are labelled by rules, where arcs are labelled
by formulas. The following directed proof net has two inputs p ∨ q and ¬p
(the premises) and two conclusions q ∧ ¬r and r. As with other natural de-
duction systems, the rules either introduce or eliminate connectives, and the
usual sequent derivation can be understood as constructing the proof net.

∨E

¬E

¬I

∧I

p ∨ q

¬pp

q

q ∧ ¬r

¬r r

p ` p

q ` q

r ` r
〈¬R〉

` ¬r, r
〈∧R〉

q ` q ∧ ¬r, r
〈∨L〉

p ∨ q ` p, q ∧ ¬r, r
〈¬L〉

p ∨ q, ¬p ` q ∧ ¬r, r

As with other natural deduction systems, the mapping from sequent deriva-
tions to proof nets is many-to-one. This different derivation also constructs
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the same proof net.

p ` p
〈¬L〉

p, ¬p ` q ` q
〈∨L〉

p ∨ q, ¬p ` q

r ` r
〈¬R〉

` ¬r, r
〈∧R〉

p ∨ q, ¬p ` q ∧ ¬r, r
This derivation contains exactly the same rule applications as the first deriva-
tion, but it composes them in different order. This order is irrelevant to the
directed proof net.

Here is how the sequent calculus derivations describe proof net construc-
tion. If we have a proof from X to Y,A this is a circut with inputs X and
outputs Y and A. This is the box labelled π1. A proof from X ′, B to Y ′

is a proof with inputs X ′ and B and outputs Y ′. We compose these with
an 〈→E 〉 node, which has inputs A and A → B (this input marked with a
dot—it is the active port on the node) and output B. This composes the
proof by filling its in its input A with the output A of π1 and plugging in its
output B into the input B required by π2. The resulting proof has inputs
X,A→ B,X ′ and outputs Y, Y ′, as desired.

→E

π1

π2

A

B

A → B

Y

Y ′

X

X ′

X ` Y,A X ′, B ` Y ′

〈→L〉
X,X ′, A→ B ` Y, Y ′

That was no different to the Gentzen natural deduction elimination rule
for the conditional, except for the slight modification allowing for multiple
conclusions in a proof. (Here π1 can have alternate conclusions Y , and this
does not occur in the Gentzen-style natural deduction system. The circuit
notation allows for a smoother representation for multiple conclusions.)

The sort of explanation works for the 〈→I 〉 node, but it works rather
differently, in that the node is composed with a single preexisting proof: π
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from X,A to B, Y . Now the 〈→I 〉 node is plugged in to that proof, with
the input port B supplied by the B exiting the proof π1 (just as with the
traditional 〈→I 〉 Gentzen rule, a proof ending in B is extended by A→ B),
but instead of selecting a number of premises to be discharged (which is a
kind of ‘action at a distance’), the connection betwen the single ‘discharged’
premise and the rule instance is made absolutely explicit by connecting the
output A port on the 〈→I 〉 node to the input A port on the proof π. The
remaining output port of the 〈→I 〉 node is marked with a dot, to indicate
that it is the active port of this rule.

π→I

A → B Y

XA

B

X,A ` B, Y
〈→R〉

X ` A→ B, Y

Note that with both the 〈→I 〉 and 〈→E 〉 constructions, the active port on
the connective node is on the periphery of the proof. Its wire is not linked
to another part of the proof, but to the outside world. This means that the
proof that is constructed is normal. A redudant 〈→I 〉/〈→E 〉pair is found
when an ouptut A → B wire is connected to an input A → B wire. Then
that wire will have dots at both ends, and the result is an active wire, which
can then be simplified in the usual manner of normalisation.

This is part of the definition of a directed proof net. The other part of the
definition, if we are to model classical logic, is the treatment of structural
rules. This is necessary, because the ‘discharge’ achieved in 〈→I 〉 steps
affects only one formula at a time. To discharge more than one formula,
we need to contract those many instances into one. This can be done in a
straightforward way, by pairing wires up.

If we have a proof with two premises A or two conclusions A, a contrac-
tion ties these together and presents them as one instance, to be justified
by another premise, or to be used as a conclusion in reasoning, or to be cut
with another formula, or to be used in any other of a number of ways in
a proof. This makes totally explicit the way that contraction appears in a
proof and it detaches it from reliance upon a connective rule (as in Gentzen’s
natural deduction system) or embeds it into the linear nature of proof (as
in Jaśkowski’s).
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π

Y

X

A

A

π′

Y ′

X ′

A

A

X,A,A ` Y
〈W 〉

X,A ` Y

X ′ ` A,A, Y ′

〈W 〉
X ′ ` A, Y ′

Weakening is treated similarly. In a proof at any stage we can simply add an-
other conclusion or another premise. Now, disconnected from any particular
place in the proof itself.

π

Y

X

A

π′

Y ′

X ′

A

X ` Y
〈K 〉

X,A ` Y

X ′ ` Y ′

〈K 〉
X ′ ` A, Y ′

This, together with the 〈Cut〉 rule suffices to define the implicational frag-
ment of classical logic.
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π

π

X

X ′

Y ′

Y

A

X ` A, Y X ′, A ` Y ′

〈Cut〉
X,X ′ ` Y, Y ′

The resulting system is able to reproduce proofs corresponding nicely to
sequent calculus proofs. Here is a natural deduction proof net corresponding
to our derivation from p → r to (p → (r → s)) → (p → (q → s)). Notice
that the proof net has a very similar structure to our Gentzen proof on
page 2, but the duplicate discharge of p is marked by the contraction of the
two p wires into one by the contraction node, which is then supplied by the
〈→I 〉 node for p → (q → s). The vacuous discharge of q in the Gentzen
proof is mirrored here by the point at which q is weakened from the proof off
the 〈→I 〉 node for q → s. The rest is identical to the Gentzen proof, except
for the radically different presentation as a circuit.
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→E →E

→E

→I

→I

→I

p → r p

p

r → s r

s

q

q → s

p

p → (q → s)

p → (r → s)

(p → (r → s)) → (p → (q → s))

We can utilise the distinctive features of circuit notation by allowing for
the downward branching of multiple conclusions in proofs. This allows for a
simple, normal, directed proof net for Peirce’s Law, satisfying the subformula
property, corresponding to the usual sequent derivation:

→I

→E

q

p → q
(p → q) → p

p

p

p

p ` p

p ` p
〈K 〉

p ` q, p
〈→R〉

` p→ q, p
〈→L〉

(p→ q)→ p ` p, p
〈W 〉

(p→ q)→ p ` p
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The result is a proof system for classical logic which has the same fea-
tures as other natural deduction systems, but which adheres more closely
to Gentzen’s sequent calculus. As a result, it explicitly marks the presence
or absence of structural rules, in the use of specific structural node types.
This makes it more straightforward to include them or avoid them as appli-
cations demand, and it makes the features of structural rules independent
of the operation of any particular connective type: the rules are modular
in a way that Gentzen’s or Jaśkowski’s natural deduction systems are not.
Cut-free derivations in the sequent calculus correspond neatly and precisely
to normal directed proof nets.

Does this mean that directed proof nets are better than other natural
deduction systems? Of course that is an impossible question to give a defini-
tive answer. Better for what? It depends on what the aim of the exercise is.
Jaśkowski and Gentzen style natural deduction systems have their own in-
dividual virtues. They are certainly more straightforward and more easy to
learn than the circuit-notation used in directed proof nets. Single conclusion
proofs are more accessible than mutiple conclusion proofs, too. But if the aim
is to give an account of the kinds of inferential connections which are found
in natural reasoning, then if classical sequent calculus derivations encode
at least some of that reasoning, then it seems that proof circuit structures
have their place. No other systems combine the virtues of separability of
introduction and elimination rules for each connective (shared with Gentzen
and Jaśkowski systems, but not with Hilbert systems), the modularity of
take-it-or-leave-it options for structural rules, independent of any particular
connective rules (shared with sequent calculi and their cousins, but not had
by Gentzen or Jaśkowski), and the efficiency and parallelism of a natural
deduction format (an advantage over merely working inside sequent calculi).
For these reasons, directed proof nets deserve a place among the family of
natural deduction proof systems.
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